
Dear Reviewer,

Thank you very much for your positive comments and suggestions. The suggestions provided we agree improve the
presentation of several of the key points in the study, and we have attempted to address each in turn. Please find
below our responses to the individual comments and a description of the corresponding changes to the manuscript
made to address each point. For each point, the initial comment is given in bold, while modifications to the text are
italicised and shown in blue.

1. it is helpful to use a table to succinctly summarize the key differences among the techniques.
Some of the algorithmic details are unnecessarily elaborated (e.g., pg8) whereas the actual
differences are obscured. For example, does K-mean cluster produce orthogonal basis vectors?
and are the clusters easier to interpret than principal components of PCA. What are the unique
advantages of AA relative to PCA and K-mean cluster?
We agree that it is helpful to have a single summary of the key differences between the methods, and that too
much focus was placed on the numerical solution of the optimization problem. To address this, the discussion
of the numerical implementation of the solution for the AA/CC optimization problem beginning on line 191
of the original manuscript has been moved to a separate appendix. Instead, we now conclude Sect. 2 with
a summary of the key differences between the different methods, including a table (Table 1) collecting the
different cost and constraint functions, that reads as follows:
The various choices of cost function and constraints defining the above methods are summarized in Table 1.
While all of the methods fit within the broader class of matrix factorizations, the different choices of cost func-

Table 1: Summary of the definitions of each of the four methods compared in this study. Each method is defined
by a choice of cost function to be minimized together with a set of constraints placed on the factors Z and W (or Z
and C for AA). The choices for each impact that nature of the features that each method extracts from a particular
dataset.

Method Cost function Constraints Targeted features

PCA 1
2T
‖X − ZWT ‖2

F rank(ZWT ) ≤ k Directions of maximum variance
k-means 1

2T
‖X − ZWT ‖2

F Zti ∈ {0, 1}, Z1k = 1T Data centroids
Convex coding 1

2T
‖X − ZWT ‖2

F + λW ΦW (W ) Z � 0, Z1k = 1T Basis convex hull
AA 1

2T
‖X − ZCX‖2

F C � 0, C1T = 1k, Z � 0, Z1k = 1T Data convex hull

tions and constraints lead to important differences in the low-dimensional representation of the data produced
by each method. For instance, in contrast to PCA, the basis vectors produced by k-means, convex coding, or
AA are in general not orthogonal. In some circumstances, this non-orthogonality may be advantageous when
the structure necessary to ensure orthogonal basis vectors (e.g., via appropriate cancellations) obscures impor-
tant features or makes interpretation of the full PCA basis vectors difficult. A k-means clustering may, for
example, provide a much more natural reduction of the data when multiple distinct, well-defined clusters are
present. The cost function and choice of constraints that define convex coding and archetypal analysis imply
that the optimal basis vectors produced by these methods are such that their convex hull (i.e., the set of all
linear combinations of the basis vectors with weights summing to one) best fits the data. Consequently, both
are well-suited for describing data where points can be usefully characterized in terms of their relationship to
a set of extreme values, be they spatial patterns of large positive or negative anomalies in a geophysical field
or particular combinations of spectral components in a frequency domain representation of a signal. PCA and
k-means may be less useful in such cases, as neither yields a decomposition of the data in terms of points at
or outside of the boundaries of the observations. AA differs from more general convex encodings in imposing
the stricter requirement that the dictionary elements, i.e., the archetypes, lie on the boundary of the data. It
is, in this sense, conservative, in that the features extracted by AA lie on the convex hull of the data and so
correspond to a set of extremes that are nevertheless consistent with the observed data. In the absence of any
regularization (λW → 0), the general convex codings that we consider admit basis vectors that lie well outside
of the observed data. By doing so, the method finds a set of basis vectors whose convex hull better reconstructs
the data than in AA, at the cost of representing it in terms of points that may not be physically realistic. This
behaviour, and the impact of the different choices of cost function and constraints, is sketched in Fig. 1.
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2. please explain how the case studies were chosen. Are the outcomes of the case studies supposed
to inform us about the geophysical variables that one, or several of the approaches are more
suitable than others?
Yes, this is correct; the two case studies were chosen to highlight instances where some of the methods may not
be as suitable or useful as the others, depending on the focus of the analysis. In the case of the SST data, the
existence of a single, well-separated mode of variability results in all four methods producing similar bases with
which to represent the data. Consequently, for this application all of the methods are relatively comparable
when it comes to defining a set of modes, and are distinguished by other features such as the magnitude of the
reconstruction error for a given basis size, as noted in point 3. The second case study is chosen to emphasize
the fact that this agreement between the methods is, however, dependent on the features of the SST data,
so that for variables where this scale separation is absent, such as geopotential height, the choice of method
becomes more important from the point of view of extracting useful modes. To attempt to summarize this
motivation for the choice of case studies, the first paragraph of Sect. 3 has been expanded and now reads as
follows:
We now turn to a set of case-studies that demonstrate some of the implications of the various differences noted
above in realistic applications. We consider two particular examples that highlight the importance of considering
the particular physical features of interest when choosing among possible dimension reduction methods. The
first example that we consider, an analysis of SST anomalies, is characterized by a large separation of scales
between modes of variability together with key physical modes, particularly ENSO, that can be directly related
to extreme values of SST anomalies. This means that the basis vectors or spatial patterns extracted by PCA,
k-means, and convex coding are for the most part rather similar in structure, and so the choice of method may
be guided by other considerations, such as the level of reconstruction error. We then contrast this scenario with
the example of an analysis of mid-latitude geopotential height anomalies, where there is neither scale separation
nor do the physical modes coincide solely with extreme anomaly values. As a result, methods that are based on
constructing a convex coding of the data, without targeting features that capture the dynamical characteristics
of the relevant modes, produce representations that are, arguably, more difficult to interpret, and hence may be
less suitable than clustering based methods.

3. For the SST case, I wonder what the take home message is in terms of the difference among
the three methods as illustrated in Figs. 3-9? Fig 10 shows that the PCA features lower RMSE
than others and yet the conclusion appears to be that these methods are all comparable.
We agree that the take home point was not clearly made in the SST case. For the SST data, all four methods
are comparable in the sense that the physical space patterns that are identified as basis vectors are similar, as
illustrated in Figs. 3 - 9, and so no particular method is obviously preferable for identifying relevant modes.
Methods that are based on locating the convex hull of the data in this case perhaps provide a more direct
interpretation of extreme events, which can be characterized for SSTs in terms of the magnitudes of the
anomalies, but the patterns produced do not differ dramatically from ordinary PCA. As rightly noted, though,
the latter also provides the optimal RMSE for a given basis size, and so is distinguished from the other methods
in terms of the fidelity of the reconstruction; indeed, this behavior in terms of reconstruction error is generic
and we should have highlighted this detail in the first version of the article. To address this point, we now
summarize our conclusions from the case study at the end of Sect. 3.1, beginning at line 311 of the original
manuscript, as follows:
The ordering of the methods in terms of reconstruction error observed in Fig. 10 is expected to be the case more
generally. As noted in Sect. 2, PCA provides the globally optimal reconstruction of the data matrix with a given
rank, in the absence of any constraints, and so amounts to a lower bound on the achievable reconstruction error.
Of the remaining methods, the additional freedom to locate the basis elements outside of the convex hull of the
data when performing an unregularized convex coding allows for a lower reconstruction error than is achievable
using archetypes. For a given basis size the hard clustering resulting from k-means generally results in the
largest RMSE. For larger values of the regularization λW , the optimal basis elements sit within the convex
hull of the data and provide a fuzzy representation of the data with a progressively increasing RMSE. In this
particular analysis of SST data, the performance of the different methods with respect to reconstruction error
is one distinguishing factor that may guide the choice of method; while all four produce similar large-scale
spatial patterns, for a given basis size PCA provides the lowest reconstruction error and might be preferred if
information loss is a significant concern.
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4. For the Z500 anomaly case, what is the recommendation of lambda_w? And what methods
offer a clear linkage between the resulting patterns and "physical extremes"?
In general, the choice of the regularization parameter will depend on the particular use case, a point which we
agree should have been made more clearly. For our purposes, the values λW = 0 and λW = 10 were chosen to
provide an illustration of the impact of this parameter on the fitted bases, and in particular to highlight the
role of the regularization in producing bases that vary from minimizing the reconstruction error to focusing
on features in the data that are less impacted by noise. In the geopotential height case, we argue that placing
more emphasis on the latter provides clearer linkage to the physical extremes, as doing so tends to prefer
states that exhibit some degree of persistence and thus matches the characteristics of the physical features.
This is also achieved by the use of k-means, whereas AA in its usual formulation takes into account only those
points lying on the convex hull of the data and so does not provide a particularly good characterization of
the physical extremes in terms of the associated patterns. It should be noted of course that the dimension
reductions considered here are a starting point for further analysis, e.g., causally relating the observed weather
patterns to known extreme events requires further dynamical analysis, but methods that identify patterns
that closely resemble the relevant structures provide clearer starting points for such analyses. To address this,
we have expanded the discussion (starting at line 386 of the original manuscript) at the end of Sect. 3.2 to
summarize these observations:
. . . but could be improved by, for example, making use of a soft clustering algorithm instead. To summarize,
in the geopotential height case where extreme events are defined not just by large anomalies but persistent
structures, methods such as k-means, or the more heavily regularized convex coding applied here, that better
identify such structures provide bases that are more amenable to interpretation in terms of physical extremes
and so may provide a more direct starting point for analyses of such events. Unregularized convex coding
and archetypal analysis, on the other hand, are less well suited in this respect, as they do not yield a direct
assignment of such events to individual states.
Finally, it is worth noting that, as in the SST case study, . . .
In practice, the regularization λW can be chosen using standard model selection criteria depending on the
user’s objective; for instance, cross-validation could be used to select a value of λW that provides the best
out-of-sample reconstruction or prediction error. As this was not pointed out in the original manuscript, we
have now added the following comment at line 359 to address the problem of choosing λW :
In this sense, by appropriate choice of regularization it is possible to interpolate between a representation of
the data in terms of points on the convex hull and mean features, depending on how much weight is placed on
minimizing the reconstruction error. While here we consider only a few levels of regularization for illustrative
purposes, in general the degree to which this is done, i.e., the choice of λW , can be guided by standard model
selection methods, such as cross-validation.

Additionally, we have made the following minor changes:

• On line 6 of the original manuscript, in the abstract the use of the acronym "EOF" has been replaced by
"empirical orthogonal function".

• Starting on line 21 of the original manuscript, the description of empirical orthogonal functions has been
expanded to read: Perhaps the most familiar example in climate science is provided by empirical orthogonal
function (EOF; Lorenz (1956); Hannachi et al. (2007)) or principal component analysis (PCA; Jolliffe (1986)),
which identifies directions of maximum variance in the data, or, more generally, the directions maximizing a
chosen norm.

• For clarity, on line 314 it is highlighted that the bases produced by the methods correspond to spatial patterns,
and now reads: As a result, all of the dimension reduction methods that we consider extract similar bases
(patterns) . . .
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