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Abstract.

The residence time of energy in a planetary atmosphere, τ , recently introduced and computed for the Earth’s atmosphere

(Osácar et al., 2020), is here extended to the atmospheres of Venus, Mars and Titan. τ is the timescale for the energy transport

across the atmosphere. In the cases of Venus, Mars and Titan, these computations are lower bounds due to a lack of some

energy data. If the analogy between τ and the solar Kelvin-Helmholtz scale is assumed, then τ would also be the time the5

atmosphere needs to return to equilibrium after a global thermal perturbation.

1 Introduction

When the inflow, Fi, of any substance into a box is equal to the outflow, Fo, then the amount of that substance in the box,M,

is constant. This constitutes an equilibrium or steady state. Then, the ratio of the stock in the box to the flow rate (in or out) is

called residence time and is a timescale for the transport of the substance in the box.10

t=
M
F
. (1)

In equation (1) it is assumed that the substance is conserved. A good example of this type is the parameter defined in atmo-

spheric chemistry (Hobbs, 2000) as the average residence time of each individual gas, defined as (Eq. 1).M is the total average

mass of the gas in the atmosphere and F the total average influx or outflux, which in time average for the whole atmosphere

are equal.15

In this work we extend the substance that flows in the box from matter to energy and the residence time is

τ =
E

F
, (2)

where E is the total energy in the box (a planetary atmosphere) and F the energy flux that enters or leaves it.

Here, by using (2), we estimate the average residence time of energy in several planetary atmospheres. Planetary atmospheres

constitute steady state problems because the storage of energy in their interior is not systematically increasing or decreasing.20

Several authors have previously considered the energy-residence time relation in other type of problems (Mcilveen, 1992, 2010;

Harte, 1988).
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The structure of this communication is the following: Section 2 addresses the numerator of Eq. (2) E, while Section 3 deals

with the denominator F . In Section 4 the residence time of energy is considered for the Sun. In Section 5, we introduce a final

discussion.25

2 Forms of energy in a planetary atmosphere

The most important forms of energy in an atmosphere are: the thermodynamic internal energy, U , the potential energy due to

the planet’s gravity, P , the kinetic energy, K, and the latent energy, L, related to the phase transitions.

In a planar atmosphere, in hydrostatic equilibrium and by using the state equation for an ideal gas, the first two quantities

can be written as30

U =

∞∫
0

cv T (z)ρ(z)dz =
cv
R

∞∫
0

p(z)dz, (3)

P =

∞∫
0

g z ρ(z)dz =

∞∫
0

p(z)dz, (4)

In expressions (3) and (4), cv is the specific heat at constant volume, R is the gas constant and ρ(z) and T (z) are the density

and temperature of the mixture of gases of the atmosphere, respectively. E stands for the total energy in the atmosphere:35

E = U +P +K +L. (5)

The sum S = U +P will be called dry static energy, then

E = S+K +L. (6)

It is important to remark that S is much bigger than the sum K +L. For example, for the Earth (Peixoto and Oort, 1992)

S

K +L
=

150

6
= 25. (7)40

In the case of Earth’s atmosphere, the four terms U , P , K, L and, hence, E are well approximated (Peixoto and Oort, 1992).

However for the atmospheres of Venus, Mars and Titan we can only compute the terms U and P and estimate S but not E.

We have carried out these computations by performing the numerical integration (4), using the vertical data p(z) shown in

(Sánchez-Lavega, 2011, page 212-227). The results of E or S for each planet are shown in Table 1.

For the Earth’s atmosphere, the estimates of different authors are very similar. Table 2 compares values of Peixoto and Oort45

(1992) and Hartmann (1994). The last row corresponds to the difference between the total energy of the Earth’s atmosphere

(E) and its dry static energy (S). The kinetic and latent components can be neglected in a first approximation.

The sound velocity of an ideal gas is

c=

√
γ
R∗
M
T (8)
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Table 1. Forms of energy in planetary atmospheres

Venus Earth Mars Titan

P (Jm−2) 1.24E+11 7.00E+08 6.05E+06 2.63E+09

U (Jm−2) 4.31E+11 1.80E+09 2.10E+07 6.79E+09

S (Jm−2) 5.55E+11 2.50E+09 2.71E+07 9.42E+09

K (Jm−2) . . . 1.30E+06 . . . . . .

L (Jm−2) . . . 7.00E+07 . . . . . .

E (Jm−2) . . . 2.57E+09 . . . . . .

Cp/R 4.47 3.5 4.37 3.58

Table 2. Earth’s energy comparison

Units 106 Jm−2 Peixoto and Oort (1992) Hartmann (1994) ∆(%)

P 693 700 0.17

U 1803 1800 -1.01

L 63.8 70 -9.72

K 1.23 1.3 -5.69

E 2561 2571 -0.39

S 2493 2500 -0.28

(E−S)/E (%) 2.539 2.773

where R∗ is the universal constant of gases and M is the molecular mass of the gas; γ = Cp/Cv is the adiabatic constant and50

T the temperature. The sound velocity can be used to estimate the ratio between K and S.

K

S
≈
(v
c

)2

(9)

In the case of Mars, on surface c= 228.73ms−1. Table 3 contains data of winds measured by Viking probes on the surface

(Sheehan, 1996, p. 194). With these data, K can be neglected in Mars. In the case of Titan, Mitchell (2011) assumes that the

kinetic energy can be neglected. Based on these figures, the kinetic energy can be omitted in a first approximation for Mars and55

Titan.

In case when S is not much bigger than K+L, our results for τ would be a lower bound. Future observations will determine

these numbers.

Table 3. Wind velocity in Mars

Day Night Storm Max during storm

v (m/s) 7 2 17 26

K/S ≈ (v/c)2 0.0009 0.00007 0.0055 0.0129
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Table 4. Fluxes of energy and residence times in planetary atmospheres

Venus Earth Mars Titan

Fi (Wm−2) 17292± 1715 561± 9.17 49± 3.97 6.88

Fo (Wm−2) 17292± 1713 561± 5 49± 4.239 6.87

τ (days) 371.48± 26.04 53.43± 0.42 6.87± 0.41 15916

3 Absorbed and emitted energy fluxes and residence time in planetary atmospheres

The values of the energy fluxes for all planets have been deduced from Read et al. (2016). For each planet, Fi and Fo represent60

the inflow and outflow of energy absorbed or emitted by the atmospheres. The so called ‘Trenberth diagrams’ (Kiehl and

Trenberth, 1997), (Read et al., 2016) are particularly suited to the identification of these fluxes.

As an example, in the case of Venus (see Read et al. (2016, Figure 6)), the fluxes absorbed by the atmosphere (Fi) are:

135Wm−2 from incoming solar radiation (shortwave) absorbed in the middle atmosphere, 3Wm−2 from incoming solar

radiation absorbed by the lower atmosphere; and 17154Wm−2 of longwave flux absorbed from surface. Thus, the total influx65

is 17292Wm−2.

The emitted fluxes (Fo) are 17132Wm−2 of longwave radiation to surface and 160Wm−2 of longwave radiation emitted

from atmosphere to space. The total outflux value is 17292Wm−2. Analogous calculations for the rest of planets give the

values for Fi and Fo shown in Table 4.

These energy fluxes were computed by Read et al. (2016) through complex and detailed numerical models. Their results70

coincide well with observations and have little uncertainty, so its effect on the residence time of energy is small. In any case,

here we have computed that uncertainty value.

For Earth, quoting (Read et al., 2016, p. 704): "Figure 1 thus represents the current state of the art in deriving such an

energy budget for an entire planet." Although (Read et al., 2016) do not give exact numbers for uncertainty of energy fluxes,

their references herein do. We have computed the following uncertainty values: Fin = 561± 9.17 Wm−2⇒ τ = 53.43± 0.8775

d, and Fout = 561± 5 Wm−2⇒ τ = 53.43± 0.48 d. We note how both fluxes and residence times are extremely similar and

compatible. A weighted average would give us τ = 53.43± 0.42 d.

When computing the energy fluxes of Mars, Read et al. (2016) use a detailed radiative transfer model "suggesting an

uncertainty in infrared fluxes of around 6–12%". By using the worst case scenario of a 12% uncertainty, we obtain Fin =

49± 3.97 Wm−2⇒ τ = 6.87± 0.56 d, and Fout = 49± 4.23 Wm−2⇒ τ = 53.43± 0.59. This gives us τ = 6.87± 0.41 d.80

These uncertainties are reflected in Table 4.

About the energy fluxes in Venus, Read et al. (2016) state: "energy fluxes agree with available observations to around

±10%". However, they admit that "the energy budget presented (...) should therefore be seen as a plausible scheme that

is internally self-consistent and representative of a reasonably good radiative–dynamical model of the Venus atmosphere in

equilibrium". Assuming an uncertainty of 10% in energy fluxes, Fin = 17292± 1715 Wm−2⇒ τ = 371.48± 36.84 d, and85

Fout = 17292± 1713 Wm−2⇒ τ = 371.48± 36.80 d. This gives τ = 371.48± 26.04 d.
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In Titan’s energy fluxes, Read et al. (2016) do not state any bound on uncertainties. However, they say (Read et al., 2016,

p.711) "energy fluxes are consistent with the measurements of Li et al. (2011) to within a few per cent, although the internal

and surface fluxes are not well constrained by observations.". We can assume that the energy fluxes they present and used here,

are fairly accurate with low uncertainty.90

With the total energy values, E or S (in Table 1) and F (Table 4), we estimate the value of residence time of energy in the

atmosphere of each planet. However, as we stressed above, strictly speaking E is only known in the Earth’s case. In the other

three cases, the ratio (S/F ) is a lower bound for the actual residence time.

S

F
≤ E

F
= τ. (10)

These results and their estimated uncertainties are shown in Table 4.95

4 Residence time of energy in the Sun

Although the physics in the solar interior greatly differs from that of a planetary atmosphere, we have considered convenient

to introduce this section because of the parallelism that exists between the atmospheric τ and the solar Kelvin-Helmoholtz

timescale.

τKH =
GM2

�
R�L�

∼ 107 yr. (11)100

Where G is the gravitational constant and M�, R� and L� stand for the solar mass, radius and radiant flux.

The Sun is in a steady state for the energy. The temperatures in its interior are not systematically increasing or decreasing.

In Stix (2003) it is shown that the Kelvin-Helmholtz timescale (KH) corresponds to both the time that a photon takes from the

core until it leaves the surface and the time necessary for the star to return to equilibrium after a global perturbation.

As τKH is the ratio between stored energy and its flux, it also can be considered as a residence time of energy in the Sun (for105

details, see Osácar et al. (2020)). Furthermore, Spruit (2000) shows that KH is the longest timescale for any solar perturbations.

In summary, if the analogy between the solar KH and the atmospheric τ is assumed, then τ is not only the timescale for the

energy transport in the atmosphere, but also the timescale the atmosphere needs to return to equilibrium after a global thermal

perturbation. Furthermore, τ is the longest timescale for any atmospheric perturbation.

5 Final discussion110

As we concluded in section 4, τ may not only be the mean time it takes for the energy to enter and leave the atmosphere; it may

also be the time needed to return to equilibrium after a global thermal perturbation. Although this is likely the case, it does not

constitute a proof. But, if this analogy is accepted, it imposes the condition that τ has to be greater than any other relaxation

timescale.

In this Section, we will introduce the so called radiative relaxation time, τR and we will explore if the inequality τ > τR115

holds.
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Table 5. Radiative relaxation timescale (τr)

Venus Earth Mars Titan

cp (JKg−1 K−1) 850 1004 830 1040

Teff (K) 238 263 222 94

g (ms−2) 8.84 9.81 3.76 1.35

p(mb) 50.16 432 6.36 31.

τR (days) 1.826 12.403 0.655 146.731

τ (days) 371.48± 26.04 53.43± 0.42 6.87± 0.41 15916

In general, if an atmospheric state at equilibrium is perturbed, the atmosphere uses the most efficient mechanism at hand to

neutralize it. Typically, this mechanism can be convective, advective or radiative. The radiative relaxation timescale, τR, is the

time it would take to relax the perturbation by radiating the energy excess in the infrared. This timescale is often found in the

bibliography (e.g. Houghton (2002), Wells (2012), Sánchez-Lavega (2011)).120

The computation of this timescale τR is done by a perturbative method, see for example Wells (2012), and gives

τR =
cpp/g

4σT 3
eff

. (12)

In this expression, cp is the specific heat at constant pressure, g is gravity and σ is the Stefan-Boltzmann constant. Teff is the

blackbody effective temperature of the planet and p is the pressure at the height where the computation is performed.

Due to the factor p in the numerator of Eq. 12, the value of τR decreases rapidly with height. Therefore, radiation is not an125

efficient mechanism to neutralize perturbations in the low troposphere. In that region τR is thus very long. The low troposhere

is dominated by convective movements. We find a clear example of these phenomena in Venus, where τR varies from 116 days

at 40 Km (lower cloud deck) to 0.5 hr at 100 Km (Sánchez-Lavega et al., 2017).

Since about the 80% of radiative flux leaving an atmosphere comes from the cold top of the highest atmospheric opaque

layer, we have estimated τR at the height of maximum emission, p= pr, which is the pressure at the height where T = Teff .130

In Table 5 we show the results for τR in the case of Venus, Earth, Mars and Titan, and the data used for calculating them.

The data for this table were obtained from (Sánchez-Lavega, 2011). The values for energy residence time τ are those from last

row of Table 4. In the four cases, the radiative timescale τR is shorter than the time of energy residence τ .

If in any of the planets, the quoted values of τ were a lower bound, as commented in Section 2, then the inequality τ > τR

would be strengthened.135

Data availability. The data of the energies used for the estimation of residence time in the Venus, Earth, Mars and Titan atmospheres were

computed with p and T from Sánchez-Lavega (2011, page 212-227). The fluxes of energy for all the cases were deduced from Read et al.

(2016). The data for the calculation of τR were obtained from Sánchez-Lavega (2011).
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