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Abstract 6 

In this study, we examine the magnetospheric chaos and dynamical complexity response to the 7 

disturbance storm time (𝐷𝑠𝑡) and solar wind electric field (𝑉𝐵𝑠) during different categories of 8 

geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the 9 

𝐷𝑠𝑡 and 𝑉𝐵𝑠 are analyzed for the period of nine years using nonlinear dynamics tools (Maximal 10 

Lyapunov Exponent, MLE, Approximate Entropy, ApEn and Delay Vector Variance, DVV). We 11 

found a significant trend between each nonlinear parameter and the categories of geomagnetic 12 

storm. The MLE and ApEn values of the 𝐷𝑠𝑡  indicate that chaotic and dynamical complexity 13 

responses are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and 14 

decline further during major geomagnetic storms. However, the MLE and ApEn values obtained 15 

from 𝑉𝐵𝑠 indicate that chaotic and dynamical complexity response are high with no significant 16 

difference between the periods that are associated with minor, moderate and major geomagnetic 17 

storms. The test for nonlinearity in the 𝐷𝑠𝑡 time series during major geomagnetic storm reveals the 18 

strongest nonlinearity features. Based on these findings, the dynamical features obtained in the 19 

𝑉𝐵𝑠 as input and 𝐷𝑠𝑡 as output of the magnetospheric system suggest that the magnetospheric 20 

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature. 21 

Keywords: 𝐷𝑠𝑡 signals, Solar wind electric field (𝑉𝐵𝑠) signals, Geomagnetic storm, Chaotic 22 

behaviour, Dynamical complexity, Nonlinearity. 23 
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1.0 Introduction 25 

The response of chaos and dynamical complexity behaviour with respect to magnetospheric 26 

dynamics varies. This is due to changes in the interplanetary electric fields imposed on the 27 

magnetopause and those penetrating the inner magnetosphere and sustaining convection thereby 28 

initiating geomagnetic storm (Pavlos et al. 1992). A prolonged southward turning of interplanetary 29 

magnetic field (IMF,𝐵𝑧), which indicates that solar wind-magnetosphere coupling is in-progress 30 

was confirmed on many occasions for which such geomagnetic storm was driven by Corotating 31 

Interaction Regions (CIRs), or by the sheath preceding an interplanetary coronal mass ejection 32 

(ICME) or by a combination of the sheath and an ICME magnetic cloud (Russell et al. 1974; 33 

Burton et al.1975; Gonzalez and Tsurutani, 1987;  Tsurutani et al. 1988; Cowley, 1995; Tsutomu, 34 

2002; Yurchyshyn et al. 2004; Kozyra et al. 2006; Echer et al. 2008; Meng et al. 2019; Tsurutani 35 

et al. 2020). Notably, the introduction of Disturbance Storm Time (𝐷𝑠𝑡) index (Sugiura, 1964; 36 

Sugiura and Kamei, 1991) unveil the quantitative measure of the total energy of the ring current 37 

particles. Therefore, the 𝐷𝑠𝑡 index remains one of the most popular global indicators that can 38 

precisely reveal the severity of a geomagnetic storm (Dessler and Parker, 1959). 39 

The 𝐷𝑠𝑡 fluctuations exhibit different signatures for different categories of geomagnetic storm. 40 

Ordinarily, one can easily anticipate that fluctuations in a 𝐷𝑠𝑡 signal appear chaotic and complex. 41 

These may arise from the changes in the interplanetary electric fields driven by the solar wind-42 

magnetospheric coupling processes. At different categories of geomagnetic storm, fluctuations in 43 

the 𝐷𝑠𝑡  signals differ (Oludehinwa et al. 2018). One obvious reason is that as the intensity of the 44 

geomagnetic storm increases, the fluctuation behaviour in the 𝐷𝑠𝑡  signal becomes more complex 45 

and nonlinear in nature. It has been established that the electrodynamic response of the 46 

magnetosphere to solar wind driver are non-autonomous in nature (Price and Prichard, 1993; Price 47 
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et al. 1994; Johnson and Wings, 2005).  Therefore, the chaotic analysis of the magnetospheric time 48 

series must be related to the concept of input-output dynamical process. Consequently, it is 49 

necessary to examine the chaotic behaviour of the solar wind electric field (𝑉𝐵𝑠) as input signals 50 

and the magnetospheric activity index (𝐷𝑠𝑡) as output during different categories of geomagnetic 51 

storms. 52 

Several works have been presented on the chaotic and dynamical complexity behaviour of the 53 

magnetospheric dynamics based on autonomous concept, i.e using the time series data of 54 

magnetospheric activity alone such as auroral electrojet (AE), Amplitude Lower (AL) and 𝐷𝑠𝑡 55 

index (Vassiliadis et al.1990; Baker and Klimas, 1990; Vassiliadis et al.1991; Shan et al. 1991; 56 

Pavlos et al. 1994; Klimas et al. 1996; Valdivia et al. 2005; Mendes et al. 2017; Consolini, 2018). 57 

They found evidence of low-dimensional chaos in the magnetospheric dynamics. For instance, the 58 

report by Vassiliadis et al. (1991) shows that the computation of Lyapunov exponent for AL index 59 

time series gives a positive value of Lyapunov exponent indicating the presence of chaos in the 60 

magnetospheric dynamics. Unnikrishnan, (2008) studied the deterministic chaotic behaviour in the 61 

magnetospheric dynamics under various physical conditions using AE index time series and found 62 

that the seasonal mean value of Lyapunov exponent in winter season during quiet periods (0.7 ±63 

0.11 𝑚𝑖𝑛−1) is higher than that of the stormy periods (0.36 ± 0.09 𝑚𝑖𝑛−1). Balasis et al. (2006) 64 

examined the magnetospheric dynamics in the 𝐷𝑠𝑡  index time series from pre-magnetic storm to 65 

magnetic storm period using fractal dynamics. They found that the transition from anti-persistent 66 

to persistent behaviour indicates that the occurrence of an intense geomagnetic storm is imminent. 67 

Balasis et al. (2009) further reveal the dynamical complexity behaviour in the magnetospheric 68 

dynamics using various entropy measures. They reported a significant decrease in dynamical 69 

complexity and an accession of persistency in the 𝐷𝑠𝑡  time series as the magnetic storm 70 
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approaches. Recently, Oludehinwa et al. (2018) examined the nonlinearity effects in 𝐷𝑠𝑡  signals 71 

during minor, moderate and major geomagnetic storm using recurrence plot and recurrence 72 

quantification analysis. They found that the dynamics of the 𝐷𝑠𝑡 signal is stochastic during minor 73 

geomagnetic storm periods and deterministic as the geomagnetic storm increases.  74 

Also, studies describing the solar wind and magnetosphere as non-autonomous system have been 75 

extensively investigated. Price et al. (1994) examine the nonlinear input-output analysis of AL 76 

index and different combinations of interplanetary magnetic field (IMF) with solar wind 77 

parameters as input function. They found that only a few of the input combinations show any 78 

evidence whatsoever for nonlinear coupling between the input and output for the interval 79 

investigated. Pavlos et al. (1999) presented further evidence of magnetospheric chaos. They 80 

compared the observational behaviour of the magnetospheric system with the results obtained by 81 

analyzing different types of stochastic and deterministic input-output systems and asserted that a 82 

low dimensional chaos is evident in magnetospheric dynamics. Devi et al. (2013) studied the 83 

magnetospheric dynamics using AL index with the southward component of IMF, (Bz) and 84 

observed that the magnetosphere and turbulent solar wind have values corresponding to nonlinear 85 

dynamical system with chaotic behaviour. The modeling and forecasting approach have been 86 

applied to magnetospheric time series using nonlinear models (Valdivia et al. 1996; Vassiliadis et 87 

al. 1999; Vassiliadis, 2006; Balikhin et al. 2010). These efforts have improved our understanding 88 

with regards to the facts that nonlinear dynamics can reveal some hidden dynamical information 89 

in the observational time series. In addition to these nonlinear effects in 𝐷𝑠𝑡  signals, a measure of 90 

the exponential divergence and convergence within the trajectories of a phase space known as 91 

Maximal Lyapunov Exponent (MLE), which has the potential to depict the chaotic behavior in the 92 

𝐷𝑠𝑡  and 𝑉𝐵𝑠 time series during a minor, moderate and major geomagnetic storm have not been 93 
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investigated. In addition, to the best of our knowledge, computation of Approximate Entropy 94 

(ApEn) that depicts the dynamical complexity behaviour during different categories of 95 

geomagnetic storm has not been reported in the literature. The test for nonlinearity through delay 96 

vector variance (DVV) analysis that establishes the degree at which nonlinearity response in 𝐷𝑠𝑡 97 

time series during minor, moderate and major geomagnetic storms is not well known. It is worth 98 

to note that understanding the dynamical characteristics in the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 signals at different 99 

categories of geomagnetic storms will provide useful diagnostic information to different conditions 100 

of space weather phenomenon. Consequently, this study attempts to carry out comprehensive 101 

numerical analysis to unfold the chaotic and dynamical complexity behaviour in the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 102 

signals during minor, moderate and major geomagnetic storm. In section 2, our methods of data 103 

acquisition are described. Also, the nonlinear analysis that we employed in this investigation are 104 

detailed. In section 3, we unveiled our results and engage the discussion of results in section 5. 105 

2.0 Description of the Data and Nonlinear Dynamics 106 

The 𝐷𝑠𝑡  index is derived by measurements from ground-based magnetic stations at low-latitudes 107 

observatories around the world and depicts mainly the variation of the ring current, as well as the 108 

Chapman-Ferraro Magnetopause currents, and tail currents to a lesser extent (Sugiura, 1964; Love 109 

and Gannon, 2009). Due to its global nature, 𝐷𝑠𝑡 time series provides a measure of how intense a 110 

geomagnetic storm was (Dessel and Parker, 1959). In this study, we considered 𝐷𝑠𝑡 data for the 111 

period of nine years from January to December between 2008 and 2016 which were downloaded 112 

from the World Data Centre for Geomagnetism, Kyoto, Japan (http://wdc.kugi-kyoto-113 

u.ac.jp/Dstae/index.html). The sampling time of 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series data was 1-hour. We use 114 

the classification of geomagnetic storms as proposed by Gonzalez et al. (1994) such that 𝐷𝑠𝑡  index 115 

value in the ranges 0 ≤ 𝐷𝑠𝑡 ≤ −50𝑛𝑇, −50𝑛𝑇 ≤ 𝐷𝑠𝑡 ≤ −100𝑛𝑇, −100𝑛𝑇 ≤ 𝐷𝑠𝑡 ≤ −250𝑛𝑇 116 

http://wdc.kugi-kyoto-u.ac.jp/dstae/index.html
http://wdc.kugi-kyoto-u.ac.jp/dstae/index.html
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are classified as minor, moderate and major geomagnetic storms respectively and each month is 117 

being classified based on its minimum Dst value.  The solar wind electric field (𝑉𝐵𝑠) data are 118 

archived from the National Aeronautics and Space Administration, Space Physics Facility 119 

(http://omniweb.gsfc.nasa.gov). It is well known that the dynamics of the solar wind contribute to 120 

the driving of the magnetosphere (Burton et al. 1975). Furthermore, we took the solar wind electric 121 

field (𝑉𝐵𝑠) as the input signal (Price and Prichard, 1993; Price et al. 1994). The 𝑉𝐵𝑠 was 122 

categorized according to the periods of minor, moderate and major geomagnetic storm. Then, the 123 

𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series were subjected to a variety of nonlinear analytical tools explained as 124 

follow:  125 

2.1 Phase Space Reconstruction and Observational time series 126 

An observational time series can be defined as a sequence of scalar measurements of some 127 

quantity, which is a function of the current state of the system taken at multiples of a fixed sampling 128 

time. In nonlinear dynamics, the first step in analyzing an observational time series data is to 129 

reconstruct an appropriate state space of the system. Takens, (1981) and Mane, (1981) stated that 130 

one time series or a few simultaneous time series are converted to a sequence of vectors. This 131 

reconstructed phase space has all the dynamical characteristic of the real phase space provided the 132 

time delay and embedding dimension are properly specified.  133 

𝑋(𝑡) =  [𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏]𝑇    (1) 134 

where 𝑋(𝑡) is the reconstructed phase space, 𝑥(𝑡) is the original time series data, 𝜏 is the time 135 

delay and 𝑚 is the embedding dimension. An appropriate choice of 𝜏 and 𝑚 are needed for the 136 

reconstruction phase space which is determined by average mutual information and false nearest 137 

neighbour respectively. 138 

http://omniweb.gsfc.nasa.gov/
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2.2 Average Mutual Information (AMI) 139 

The method of Average Mutual Information (AMI) is one of the nonlinear techniques used to 140 

determine the optimal time delay (𝜏) required for phase space reconstruction in observational time 141 

series. The time delay mutual information was proposed by Fraser and Swinney, (1986) instead of 142 

autocorrelation function. This method takes into account nonlinear correlations within the time 143 

series data. It measures how much information can be predicted about one time series point, given 144 

full information about the other. For instance, the mutual information between 𝑥𝑖 and 𝑥(𝑖+𝜏) 145 

quantifies the information in state 𝑥(𝑖+𝜏) under the assumption that information at the state 𝑥𝑖 is 146 

known.  The AMI for a time series, 𝑥(𝑡𝑖),    𝑖 = 1,2, … , 𝑁  is calculated as:  147 

𝐼(𝑇) = ∑ 𝑃(𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇)) × log2 [
𝑃(𝑥(𝑡𝑖),𝑥(𝑡𝑖+𝑇))

𝑃(𝑥(𝑡𝑖)) 𝑃(𝑥(𝑡𝑖+𝑇))
].

𝑥(𝑡𝑖),   𝑥(𝑡𝑖+𝑇)   (2) 148 

Where 𝑥(𝑡𝑖) is the 𝑖th element of the time series, 𝑇 = 𝑘∆𝑡   (𝑘 = 1,2, … , 𝑘𝑚𝑎𝑥), 𝑃(𝑥(𝑡𝑖)) is the 149 

probability density at 𝑥(𝑡𝑖), 𝑃(𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇)) is the joint probability density at the pair 150 

𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇). The time delay (𝜏) of the first minimum of AMI is chosen as optimal time delay 151 

(Fraser and Swinney, 1986). Therefore, the AMI was applied to the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series and 152 

the plot of AMI against time delay is shown in Figure (3). We notice that the AMI showed the first 153 

local minimum at roughly (𝜏 = 15ℎ𝑟). Furthermore, the values of 𝜏 near this value of (~15hr) 154 

maintain constancy for both VBs and 𝐷𝑠𝑡.  In the analysis (𝜏 = 15ℎ𝑟) was used as the optimal 155 

time delay for the computation of maximal Lyapunov exponent. 156 

 157 

 158 

 159 
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2.3 False Nearest Neighbour (FNN) 160 

In determining the optimal choice of embedding dimension(𝑚), the false nearest neighbour 161 

method was used in the study. It was suggested by Kennel et al. (1992). The concept is based on 162 

how the number of neighbours of a point along a signal trajectory changes with increasing 163 

embedding dimension. With increasing embedding dimension, the false neighbour will no longer 164 

be neighbours, therefore by examining how the number of neighbours changes as a function of 165 

dimension, an appropriate embedding dimension can be determined. For instance, suppose we 166 

have a one-dimensional time series. We can construct a time series 𝑦(𝑡) of 𝐷-dimensional points 167 

from the original one-dimensional time series 𝑥(𝑡) as follows: 168 

𝑦(𝑡) = (𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝐷 − 1)𝜏)                           (3) 169 

where 𝐷 is embedding dimension. Using the formular from Kennel et al. (1992); Wallot and 170 

Monster, (2018). If we have a 𝐷-dimensional phase space and denote the 𝑟𝑡ℎ nearest neighbour of 171 

a coordinate vector 𝑦(𝑡) by 𝑦(𝑟)(𝑡), then the square of the Euclidean distance between 𝑦(𝑡) and 172 

the 𝑟𝑡ℎ nearest neighbor is: 173 

𝑅𝐷
2 (𝑡, 𝑟) = ∑[𝑥(𝑡 + 𝑘𝜏) − 𝑥(𝑟)(𝑡 + 𝑘𝜏)]

2
𝐷−1

𝑘=0

                            (4) 174 

Now applying the logic outlined above, we can go from a 𝐷-dimensional phase space to (𝐷 + 1) 175 

dimensional phase space by time-delay embedding, adding a new coordinate to 𝑦(𝑡), and ask what 176 

is the squared distance between 𝑦(𝑡) and the same 𝑟𝑡ℎ nearest neighbour: 177 

𝑅𝐷+1
2 (𝑡, 𝑟) = 𝑅𝐷

2 (𝑡, 𝑟) + [𝑥(𝑡 + 𝐷𝜏) − 𝑥(𝑟)(𝑡 + 𝐷𝜏)]
2

           (5) 178 

As explained above, if the one-dimensional time series is already properly embedded in 𝐷 179 

dimensions, then the distance 𝑅 between 𝑦(𝑡) and the 𝑟𝑡ℎ nearest neighbour should not 180 
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appreciably change by some distance criterion 𝑅𝑡𝑜𝑙(𝑖. 𝑒 𝑅 < 𝑅𝑡𝑜𝑙). Moreover, the distance of the 181 

nearest neighbour when embedded into the next higher dimension relative to the size of the 182 

attractor should be less than some criterion 𝐴𝑡𝑜𝑙(𝑖. 𝑒 𝑅𝐷+1 < 𝐴𝑡𝑜𝑙). Doing this for the nearest 183 

neighbour of each coordinate will result on many false nearest neighbours when embedding is 184 

insufficient or in few (or no) false neighbours when embedding is sufficient. In the analysis, the 185 

FNN was applied to the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series to detect the optimal value of embedding 186 

dimension(𝑚). Figure (4) shows a sample plot of the percentage of false nearest neighbour against 187 

embedding dimension in one of the months under investigation (other months show similar results, 188 

thus for brevity we depict only one of the results). We notice that the false nearest neighbor attains 189 

its minimum value at 𝑚 ≥ 5 indicating that embedding dimension (𝑚) from 𝑚 ≥ 5 are optimal 190 

values. Therefore, 𝑚 = 5 was used for the computation of maximal Lyapunov exponent. 191 

2.4 Maximal Lyapunov Exponent (MLE) 192 

The Maximal Lyapunov Exponent (MLE) is one of the most popular nonlinear dynamics tool used 193 

for detecting chaotic behaviour in a time series data. It describes how small changes in the state of 194 

a system grow at an exponential rate and eventually dominate the behaviour. An important 195 

indication of chaotic behavior of a dissipative deterministic system is the existence of a positive 196 

Lyapunov Exponent. A positive MLE signifies divergence of trajectories in one direction or 197 

expansion of an initial volume in this direction. On the other hand, a negative MLE exponent 198 

implies convergence of trajectories or contraction of volume along another direction. The 199 

algorithm proposed by Wolf et al. (1985) for estimating MLE is employed to compute the chaotic 200 

behavior of the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 time series at minor, moderate and major geomagnetic storm. Other 201 

methods of determining MLE includes Rosenstein’s method, Kantz’s method and so on. In this 202 

study, the MLE at minor, moderate and major geomagnetic storms periods was computed with 203 
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𝑚 = 5 and 𝜏 = 15ℎ𝑟 as shown in figures 5 & 6 (bar plots) for 𝐷𝑠𝑡 and 𝑉𝐵𝑠.  The calculation of 204 

MLE is explained as follows: given a sequence of vector 𝑥(𝑡), an 𝑚-dimensional phase space is 205 

formed from the observational time series through embedding theorem as 206 

           {𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏)}     (6)  207 

 Where 𝑚 and 𝜏 are as defined earlier, after reconstructing the observational time series, the 208 

algorithm locates the nearest neighbour (in Euclidean sense) to the initial point {𝑥(𝑡0), … , 𝑥(𝑡0 +209 

(𝑚 − 1)𝜏} and denote the distance between these two points 𝐿(𝑡0). At a later point 𝑡1, the initial 210 

length will have evolved to length  𝐿′(𝑡1). Then the MLE is calculated as:  211 

                  𝜆 =
1

𝑡𝑀−𝑡0
∑ log2

𝐿′(𝑡𝑘)

𝐿(𝑡𝑘−1)

𝑀
𝑘=1       (7) 212 

M is the total number of replacement steps. We look for a new data point that satisfies two criteria 213 

reasonably well: its separation, 𝐿(𝑡1), from the evolved fiducial point is small. If an adequate 214 

replacement point cannot be found, we retain the points that were being used. This procedure is 215 

repeated until the fiducial trajectory has traversed the entire data 216 

2.5 Approximate Entropy (ApEn) 217 

Approximate Entropy (ApEn) measures the dynamical complexity in observational time series. It 218 

was proposed by Pincus, (1991), it provides a generalized measure of regularity, such that it 219 

accounts for the logarithm likehood in the observational time series. For instance, a dataset of 220 

length, 𝑁, that repeat itself for 𝑚 points within a boundary will again repeat itself for 𝑚 + 1 points. 221 

Because of its computational advantage, ApEn has been widely used in many areas of disciplines 222 

to study dynamical complexity (Pincus and Kalman (2004); Pincus and Goldberger (1994); 223 
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McKinley et al. (2011); Kannathan et al. (2005); Balasis et al. (2009); Shujuan and Weidong, 224 

(2010); Moore and Marchant (2017)). The ApEn is computed using the formula below: 225 

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
1

𝑁−𝑚+1
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1 −

1

𝑁−𝑚
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1   (8)    226 

where 𝐶𝑖
𝑚(𝑟) =

1

𝑁−𝑚+1
∑ Θ(𝑟 − ‖𝑥𝑖 − 𝑥𝑗‖)𝑁−𝑚+1

𝑗=1  is the correlation integral and 𝑟 is the tolerance. 227 

To compute the ApEn for the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series classified at minor, moderate and major 228 

geomagnetic storm from 2008 to 2016, we choose (𝑚 = 3, 𝜏 = 1ℎ𝑟). We refer the works of 229 

Pincus, (1991); Kannathal et al. (2005); and Balasis et al. (2009) to interested readers where all 230 

the computational steps regarding ApEn were explained in details. Figures (5 & 6) depict the stem 231 

plots of ApEn for 𝐷𝑠𝑡  and (𝑉𝐵𝑠) from 2008 to 2016.   232 

2.6 Delay Vector Variance (DVV) analysis 233 

The Delay Vector Variance (DVV) is a unified approach in analyzing and testing for nonlinearity 234 

in a time series (Gautama et al. 2004; Mandic et al. 2007). The basic idea of the DVV is that, if 235 

two delay vectors of a predictable signal are close to each other in terms of the Euclidean distance, 236 

they should have similar target. For instance, when a time delay (𝜏) is embedded into a time series 237 

𝑥(𝑘), 𝑘 = 1,2, … , 𝑁, then a reconstructed phase space vector is formed which represents a set of 238 

delay vectors (DVs) of a given dimension. 239 

    𝑋(𝑘) = [𝑋𝑘−𝑚𝜏, … , 𝑋𝑘−𝜏]𝑇      (9)                                                                                  240 

Reconstructing the phase space, a set (𝜆𝑘) is generated by grouping those DVs that are with a 241 

certain Euclidean distance to DVs (𝑋(𝑘)).  For a given embedding dimension (𝑚), a measure of 242 

unpredictability 𝜎 ∗2 is computed over all pairwise Euclidean distance between delay vector as 243 

    𝑑(𝑖, 𝑗) = ‖𝑥(𝑖) − 𝑥(𝑗)‖   (𝑖 ≠ 𝑗)                (10)                                      244 
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Then, sets 𝜆𝑘(𝑟𝑑) are generated as the sets which consist of all delay vectors that lie closer to 𝑥(𝑘) 245 

than a certain distance 𝑟𝑑. 246 

    𝜆𝑘(𝑟𝑑) = {𝑥(𝑖)‖𝑥(𝑘) − 𝑥(𝑖)‖ ≤ 𝑟𝑑}     (11)                                                247 

For every set 𝜆𝑘(𝑟𝑑), the variance of the corresponding target 𝜎 ∗2 (𝑟𝑑) is 248 

              𝜎 ∗2 (𝑟𝑑) =
1

𝑁
∑ 𝜎𝑘

2(𝑟𝑑)𝑁
𝑘=1

𝜎𝑘
       (12)                                          249 

where 𝜎 ∗2 (𝑟𝑑) is target variance against the standardized distance indicating that Euclidean 250 

distance will be varied in a manner standardized with respect to the distribution of pairwise 251 

distance between DVs. Iterative Amplitude Adjusted Fourier Transform (IAAFT) method is used 252 

to generate the surrogate time series (Kugiumtzis, 1999). If the surrogate time series yields DV 253 

plots similar to the original time series and the scattered plot coincides with the bisector line, then 254 

the original time series can be regarded as linear (Theiler et al. 1992; Gautama et al.2004; Imitaz, 255 

2010; Jaksic et al. 2016). On the other hand, if the surrogate time series yield DV plot that is not 256 

similar to that of the original time series, then the deviation from the bisector lines indicates 257 

nonlinearity. The deviation from the bisector lines grows as a result of the degree of nonlinearity 258 

in the observational time series. 259 

     𝑡𝐷𝑉𝑉 = √〈(𝜎∗2(𝑟𝑑) −
∑ 𝜎𝑠,𝑙

∗2𝑁
𝑖=1

𝑁𝑠
)〉        (13)                       260 

where 𝜎𝑠,𝑖
∗2(𝑟𝑑) is the target variance at the span 𝑟𝑑 for the  𝑖𝑡ℎ surrogate. To carry out the test for 261 

nonlinearity in the 𝐷𝑠𝑡 signals, 𝑚 = 3 and 𝑛𝑑 = 3, the number of references DVs=200, and 262 

number of surrogates, 𝑁𝑠 = 25 was used in all the analysis. Then we examined the nonlinearity 263 

response at minor, moderate and major geomagnetic storm.  264 
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3.0 Results 265 

In this study, 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series from January to December was analyzed for the period of 266 

nine years (2008 to 2016) to examine the chaotic and dynamical complexity response in the 267 

magnetospheric dynamics during the month of minor, moderate and major geomagnetic storms 268 

activity. Figures (1) & (2), display the samples of fluctuation signatures of 𝐷𝑠𝑡  and 𝑉𝐵𝑠 signals 269 

classified as (a): the month of minor, (b): the month of moderate and (c): the month of major 270 

geomagnetic storm activity. The plot of Average Mutual information against time delay (𝜏) shown 271 

in Figure (3) depicts that the first local minimum of the AMI function was found to be roughly at 272 

𝜏 = 15hr. Furthermore, we notice that the values of 𝜏 near this value of (~15hr) maintain constancy 273 

for both 𝑉𝐵𝑠 and 𝐷𝑠𝑡. Also, in Figure (4), we display the plot of the percentage of false nearest 274 

neighbour against embedding dimension (𝑚). It is obvious that a decrease in false nearest 275 

neighbour when increasing the embedding dimension drop steeply to zero at the optimal 276 

dimension(𝑚 = 5), thereafter the false neighbours stabilizes at 𝑚 = 5 for 𝑉𝐵𝑠 and 𝐷𝑠𝑡. Therefore, 277 

𝑚 = 5 and 𝜏 = 15hr was used for the computation of MLE at different categories of geomagnetic 278 

storm, while 𝑚 = 3 and 𝜏 = 1hr are applied for the computation of ApEn values.   279 

The results of MLE (bar plot) and ApEn (stem plot) for 𝐷𝑠𝑡 at the month of minor, moderate and 280 

major geomagnetic storms activity are shown in Figure 5. During the month of minor geomagnetic 281 

storms activity, we notice that the value of MLE ranges between 0.07 and 0.14 for most of the 282 

months classified as minor geomagnetic storm. Similarly, the ApEn (stem plot) ranges between 283 

0.59 and 0.83. It is obvious that strong chaotic behaviour with high dynamical complexity are 284 

associated with minor geomagnetic storms. During the month of moderate geomagnetic storm 285 

activity, (see b part of Figure (5)), we observe a reduction in MLE values (0.04~0.07) compared 286 

to minor geomagnetic storm periods. Within the observed values of MLE during the month of 287 
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moderate geomagnetic storms activity, we found a slight rise of MLE in the following months 288 

(Mar 2008), (Apr 2011), (Jan 2012, Feb 2012, Apr 2012), (Jul 2015, Aug 2015, Sept 2015, 289 

Oct2015, Nov 2015) and (Nov 2016). Also, the ApEn revealed a reduction in values between 0.44 290 

and 0.57 at the month of moderate geomagnetic storms activity. The lowest values of ApEn were 291 

noticed in the following months: May 2010, Mar 2011, and Jan 2016. During major geomagnetic 292 

storm as shown in Figure 5, the minimum and maximum value of MLE is respectively 0.03 and 293 

0.04 implying a very strong reduction of chaotic behaviour compared with the month of minor and 294 

moderate geomagnetic storm activity. The lowest values of MLE were found in the months of Jul 295 

2012, Jun 2013 and Mar 2015. Interestingly, further reduction in ApEn value (0.29~0.40) was as 296 

well noticed during this period. Thus, during the month of major geomagnetic storm activity, 297 

chaotic behaviour and dynamical complexity subsides significantly. 298 

We display in Figure 6, the results of MLE and ApEn computation for the 𝑉𝐵𝑠 which has been 299 

categorized according to the month of minor, moderate and major geomagnetic storm activity. The 300 

values of MLE (bar plot) were between 0.06 and 0.20 for 𝑉𝐵𝑠. The result obtained indicate strong 301 

chaotic behaviour with no significant difference in chaoticity during minor, moderate and major 302 

geomagnetic storm. Similarly, the results obtained from computation of ApEn (stem plot) for 𝑉𝐵𝑠 303 

depict a minimum value of 0.60 and peak value of 0.87 as shown in Figure 6. The ApEn values of 304 

𝑉𝐵𝑠 indicates high dynamical complexity response with no significant difference during the 305 

periods of the three categories of geomagnetic storm investigated.  306 

The test for nonlinearity in the 𝐷𝑠𝑡 signals during the month of minor, moderate and major 307 

geomagnetic storms activity was analyzed through the DVV analysis. Shown in Figure 9 is the 308 

DVV plot and DVV scatter plot during minor geomagnetic storm for January 2009 and January 309 

2014. We found that the DVV plots during the month of minor geomagnetic storms activity reveal 310 
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a slight separation between the original and surrogate data. Also, the DVV scatter plots shows a 311 

slight deviation from the bisector line between the original and surrogate data which implies 312 

nonlinearity. Also, during the month of moderate geomagnetic storm activity, we notice that the 313 

DVV plot depicts a wide separation between the original and the surrogate data. Also, a large 314 

deviation from the bisector line between the original and the surrogate data was also observed in 315 

the DVV scatter plot as shown in Figure (8) thus indicating nonlinearity. In Figure (9), we display 316 

samples of DVV plot and DVV scatter plot during major geomagnetic storm for Oct 2011 and Dec 317 

2015. The original and the surrogate data showed a very large separation in the DVV plot during 318 

the month of major geomagnetic storm activity. While the DVV scatter plot depict a very large 319 

deviation from the bisector line between the original and the surrogate data which is also an 320 

indication of nonlinearity. The DVV analysis of the 𝑉𝐵𝑠 time series during the month of minor, 321 

moderate and major geomagnetic storm activity shown in Figures (10-12) revealed a slight 322 

separation between the original and surrogate data with no significant difference between the 323 

month of minor, moderate and major geomagnetic activity.  324 

4.0 Discussion of Results 325 

4.1 The chaotic and dynamical complexity response in 𝑫𝒔𝒕 during the months of minor, 326 

moderate and major geomagnetic storms 327 

Our result shows that the values of MLE for 𝐷𝑠𝑡 during the month of minor geomagnetic storm 328 

activity are higher, indicating significant chaotic response during minor geomagnetic stormy 329 

periods (see the bar plots in Figure 5). This increase in chaotic behaviour for 𝐷𝑠𝑡 signals during 330 

minor geomagnetic storm may be as a result of asymmetry features in the longitudinal distribution 331 

of solar source region for the Corotating Interaction Regions (CIR) signatures responsible for the 332 

development of geomagnetic storms (Turner et al. 2006; Kozyra et al. 2006). CIR generated 333 
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magnetic storms are generally weaker than ICME/MC generated storms (Richardson and Cane, 334 

2011). Therefore, we suspect that the increase in chaotic behaviour during minor geomagnetic 335 

storm is strongly associated with the asymmetry features in the longitudinal distribution of solar 336 

source region for the Corotating Interaction Regions (CIR) signatures. For most of these periods 337 

of moderate geomagnetic storms, the values of MLE decreases compared to the month of minor 338 

geomagnetic storms activity. This revealed that as geomagnetic stormy events build up, the level 339 

of unpredictability and sensitive dependence on initial condition (chaos) begin to decrease 340 

(Lorentz, 1963; Stogaz, 1994). The chaotic behaviour during the month of major geomagnetic 341 

storm decreases significantly compared with the month of moderate geomagnetic storm activity. 342 

The reduction in chaotic response during the month of moderate and its further declines at major 343 

geomagnetic storm activity may be attributed to the disturbance in the interplanetary medium 344 

driven by sheath preceding an interplanetary coronal mass ejection (ICME) or combination of the 345 

sheath and an ICME magnetic cloud (Echer et al. 2008; Tsurutani et al. 2003; Meng et al. 2019).  346 

Notably, the dynamics of the solar wind-magnetospheric interaction are dissipative chaotic in 347 

nature (Pavlos, 2012); and, the electrodynamics of the magnetosphere due to the flux of 348 

interplanetary electric fields had a significant impact on the state of the chaotic signatures. For 349 

instance, the observation of strong chaotic behaviour during the month of minor geomagnetic 350 

storm activity suggests that the dynamics was characterized by a weak magnetospheric 351 

disturbance. While the reduction in chaotic behaviour at moderate and major geomagnetic storm 352 

period reveals the dynamical features with regards to when a strong magnetospheric disturbance 353 

begins to emerge. Therefore, our observation of chaotic signatures at different categories of 354 

geomagnetic storm has potential capacity to give useful diagnostic information about monitoring 355 

space weather events. It is important to note that the features of 𝐷𝑠𝑡 chaotic behaviour at different 356 
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categories of geomagnetic storm has not been reported in the literature to the best of our 357 

knowledge. For example, previous study of Balasis et al. (2009, 2011) investigate dynamical 358 

complexity behaviour using different entropy measures and revealed the existence of low 359 

dynamical complexity in the magnetospheric dynamics and attributed it to ongoing large 360 

magnetospheric disturbance (major geomagnetic storm). The work of Balasis et al. (2009, 2011) 361 

where certain dynamical characteristic evolved in the 𝐷𝑠𝑡  signal was limited to one year data 362 

(2001). It is worthy to note that the year 2001, according to sunspot variations is a period of high 363 

solar activity during solar cycle 23. It is characterized by numerous and strong solar eruptions that 364 

were followed by significant magnetic storm activities. This confirms that on most of the days in 365 

year 2001, the geomagnetic activity is strongly associated with major geomagnetic storm. The 366 

confirmation of low dynamical complexity response in the 𝐷𝑠𝑡 signal during major geomagnetic 367 

storm agree with our current study. However, the idea of comparing the dynamical complexity 368 

behaviour at different categories of geomagnetic storm and reveal its chaotic features was not 369 

reported. This is the major reason why our present investigation is crucial to the understanding of 370 

the level of chaos and dynamical complexity involved during different categories of geomagnetic 371 

storm. As an extension to the single-year investigation done by Balasis et al. (2009, 2011) during 372 

a major geomagnetic storm, we further investigated nine years data of 𝐷𝑠𝑡  that covered minor, 373 

moderate and major geomagnetic storm (see Figure (5), stem plots) and unveiled their dynamical 374 

complexity behaviour. During major geomagnetic stormy periods, we found that the ApEn values 375 

decrease significantly, indicating reduction in the dynamical complexity behaviour. This is in 376 

agreement with the low dynamical complexity reported by Balasis et al. (2009, 2011) during a 377 

major geomagnetic period. Finally, based on the method of DVV analysis, we found that test of 378 
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nonlinearity in the 𝐷𝑠𝑡 time series during major geomagnetic storm reveals the strongest 379 

nonlinearity features. 380 

4.2 The chaotic and dynamical complexity behaviour in the 𝑽𝑩𝒔 as input signals. 381 

The results of the MLE values for 𝑉𝐵𝑠 revealed a strong chaotic behaviour during the three 382 

categories of geomagnetic storm. Comparing these MLE values during the month of minor to those 383 

observed during moderate and major geomagnetic storm activity, the result obtained did not 384 

indicate any significant difference in chaoticity (bar plots, Figure (6)). Also, the ApEn values of  385 

𝑉𝐵𝑠  during the periods associated with minor, moderate and major geomagnetic storm revealed 386 

high dynamical complexity behaviour with no significant difference between the three categories 387 

of geomagnetic storm investigated. These observations of high chaotic and dynamical complexity 388 

behaviour in the dynamics of 𝑉𝐵𝑠 may be due to interplanetary discontinuities caused by the abrupt 389 

changes in the interplanetary magnetic field direction and plasma parameters (Tsurutani et al. 390 

2010). Also, the indication of high chaotic and dynamical complexity behaviour in 𝑉𝐵𝑠 signifies 391 

that the solar wind electric field is stochastic in nature.  The DVV analysis for 𝑉𝐵𝑠 revealed 392 

nonlinearity features with no significant difference between the month of minor, moderate and 393 

major geomagnetic storm activity. It is worth mentioning that the dynamical complexity behaviour 394 

for 𝑉𝐵𝑠 is different from what was observed for 𝐷𝑠𝑡  time series data. For instance, our results for 395 

𝐷𝑠𝑡 times series revealed that the chaotic and dynamical complexity behaviour of the 396 

magnetospheric dynamics are high during minor geomagnetic storm, reduce at moderate 397 

geomagnetic storm and further decline during major geomagnetic storm. While the 𝑉𝐵𝑠 signal 398 

revealed a high chaotic and dynamical complexity behaviour at all the categories of geomagnetic 399 

storm period.  Therefore, these dynamical features obtained in the 𝑉𝐵𝑠 as input signal and the 𝐷𝑠𝑡  400 

as the output in describing the magnetosphere as a non-autonomous system further support the 401 
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finding of Donner et al. (2019) that found increase or no change in dynamical complexity 402 

behaviour for  𝑉𝐵𝑠 and low dynamical complexity behaviour during storm using recurrence 403 

method. Thus, suggesting that the magnetospheric dynamics is nonlinear and the solar wind 404 

dynamics is consistently stochastic in nature. 405 

5.0 Conclusions 406 

This work has examined the magnetospheric chaos and dynamical complexity behaviour in the 407 

disturbance storm time (𝐷𝑠𝑡) and solar wind electric field (𝑉𝐵𝑠) as input during different categories 408 

of geomagnetic storm. The chaotic and dynamical complexity behaviour during the month of 409 

minor, moderate and major geomagnetic storm activity for solar wind electric field (𝑉𝐵𝑠) as input 410 

and 𝐷𝑠𝑡 as output of the magnetospheric system were analyzed for the period of 9 years using 411 

nonlinear dynamics tools. Our analysis has shown a noticeable trend of these nonlinear parameters 412 

(MLE and ApEn) and the categories of geomagnetic storm (minor, moderate and major). The MLE 413 

and ApEn values of the 𝐷𝑠𝑡  have indicated that the chaotic and dynamical complexity behaviour 414 

are high during the month of minor geomagnetic storm, low during moderate geomagnetic storm 415 

and further reduced during major geomagnetic storm activity. The values of MLE and ApEn 416 

obtained from 𝑉𝐵𝑠 indicate that chaotic and dynamical complexity are high with no significant 417 

difference during the periods of minor, moderate and major geomagnetic storm. Finally, the test 418 

for nonlinearity in the 𝐷𝑠𝑡 time series during major geomagnetic storm reveals the strongest 419 

nonlinearity features. Based on these findings, the dynamical features obtained in the 𝑉𝐵𝑠 as input 420 

and 𝐷𝑠𝑡 as output of the magnetospheric system suggest that the magnetospheric dynamics is 421 

nonlinear and the solar wind dynamics is consistently stochastic in nature. 422 

 423 
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 625 

Figure 1: Samples of Dst signals classified as (a) Month of Minor, (b) Month of Moderate and (c) 626 

Month of Major geomagnetic storm activity 627 

 628 

Figure 2: Samples of  (𝑉𝐵𝑠) during (a) Month of Minor, (b) Month of Moderate and (c) Month of 629 

Major geomagnetic storm activity. 630 



Page 31 of 39 
 

                                                                 631 

          632 

     Figure 3: The plot AMI against embedding time delay (𝜏)        633 

                    634 

Figure 4: The plot of FNN against embedding dimension (𝑚) 635 
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 636 

Figure 5: The MLE (bar plot) and ApEn (stem plot) of Dst at: (a) Month of Minor, (b) Month of 637 

Moderate and (c) Month of  Major geomagnetic storm activity 638 
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 646 

Figure 6: The MLE (bar plot) and ApEn (stem plot) of solar wind electric field (𝑉𝐵𝑠) during: (a) 647 

Month of Minor, (b) Month of  Moderate and (c) Month of  Major  geomagnetic storm activity. 648 
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 662 

Figure 7: The DVV plot and Scatter plot for 𝐷𝑠𝑡 during the month of  minor geomagnetic storm 663 

for January 2009 and January 2014. 664 
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 665 

 666 

Figure 8: The DVV plot and Scatter plot for 𝐷𝑠𝑡 during the month of  moderate geomagnetic storm 667 

for March 2011 and January 2015. 668 
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 670 

Figure 9: The DVV plot and Scatter plot for 𝐷𝑠𝑡  during the month of major geomagnetic storm 671 

for October 2011 and December 2015. 672 
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 674 

Figure 10: The DVV plot and Scatter plot for 𝑉𝐵𝑠 during the month of  minor geomagnetic storm 675 

for January 2009 and January 2014. 676 
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 679 

Figure 11: The DVV plot and Scatter plot for 𝑉𝐵𝑠 during the month of  moderate geomagnetic 680 

storm for March 2011 and January 2015. 681 
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 684 

Figure 12: The DVV plot and Scatter plot for 𝑉𝐵𝑠 during the month of major geomagnetic storm 685 

for October 2011 and December 2015. 686 
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