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Abstract

In this study, we examine the magnetospheric chaos and dynamical complexity response in, the
disturbance storm time (Dg;) and solar wind electric field (VB,) during different categories of
geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the
Dy, and VB, are analyzed for the period of nine years using nonlinear dynamics tools (Maximal
Lyapunov Exponent, MLE, Approximate Entropy, ApEn and Delay Vector Variance, DVV). We
found a significant trend between each nonlinear parameter and the categories of geomagnetic
storm. The MLE and ApEn values of the Dy, indicate that chaotic and dynamical complexity
response are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and
declined further during major geomagnetic storms. However, the MLE and ApEn values obtained
in VB; indicate that chaotic and dynamical complexity response are high with no significant
difference between the periods that are associate with minor, moderate and major geomagnetic
storms. The test for nonlinearity in the D, time series during major geomagnetic storm reveals the
strongest nonlinearity features. Based on these findings, the dynamical features obtained in the
VB, as input and Dy, as output of the magnetospheric system suggest that the magnetospheric

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature.

Keywords: Dg; signals, Solar wind electric field (VBy) signals, Geomagnetic storm, Chaotic

behaviour, Dynamical complexity, Nonlinearity.
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1.0 Introduction

The response of chaos and dynamical complexity behaviour with respect to magnetospheric
dynamics varies. This is due to changes in the interplanetary electric fields imposed on the
magnetopause and those penetrating the inner magnetosphere and sustaining convection thereby
initiating geomagnetic storm (Pavlos et al. 1992). A prolonged southward turning of interplanetary
magnetic field (IMF,B,), which indicates that solar wind-magnetosphere coupling is in-progress
was confirmed on many occasions that such geomagnetic storm was driven by corona mass
ejection (Russell et al. 1974; Burton et al.1975; Gonzalez and Tsurutani, 1987; Cowley, 1995;
Tsutomu, 2002). Irrespective of what causes the geomagnetic storm, the disturbance storm time
(Ds:) remains the most popular global indicator that can precisely unveil the severity of a

geomagnetic storm (Dessel and Parker, 1959).

The dynamics in the Dy; signal displays signature of fluctuations in its underlying dynamics at
different categories of geomagnetic storm. Ordinarily, one can easily anticipate that fluctuations
in a D, signal appear chaotic and complex. These may arise from the changes in the interplanetary
electric fields driven by the solar wind-magnetospheric coupling processes. At different categories
of geomagnetic storm, fluctuations in the Dy, signals differ (Oludehinwa et al. 2018). One obvious
reason is that as the intensity of the geomagnetic storm increases, the fluctuation behaviour in the
Dy, signal becomes more complex and nonlinear in nature. It’s-have been established that the
electrodynamic response of the magnetosphere to solar wind driven are non-autonomous in nature
(Price and Prichard, 1993; Price et al. 1994; Johnson and Wings, 2005). Therefore, the chaotic
analysis of the magnetospheric time series must be related to the concept of input-output dynamical

process. Consequently, it is necessary to examine the chaotic behaviour of the solar wind electric
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field (V By) as input signals and the magnetospheric activity index (D) as output during different

categories of geomagnetic storms.

Several works have been presented on the chaotic and dynamical complexity behaviour of the
magnetospheric dynamics based on autonomous concept, i.e using the time series data of
magnetospheric activity alone such as auroral electrojet (AE), lower auroral electrojet (AL) and
Dy, index (Vassilidia et al.1990; Baker and Klimas, 1990; Vassilidia et al.1991; Shan et al. 1991,
Pavlos et al. 1994; Klimas et al. 1996; Valdivia et al. 2005; Mendes et al. 2017; Consolini, 2018).
They found evidence of low-dimensional chaos in the magnetospheric dynamics. For instance, the
report by Vassilidia et al. (1991) shows that the computation of Lyapunov exponent for AL index
time series gives a positive value of Lyapunov exponent indicating the presence of chaos in the
magnetospheric dynamics. Unnikrishnan, (2008) studied the deterministic chaotic behaviour in the
magnetospheric dynamics under various physical conditions using AE index time series and found
that the seasonal mean value of Lyapunov exponent in winter season during quiet periods (0.7 +
0.11 min™1) is higher than that of the stormy periods (0.36 + 0.09 min~1). Balasis et al. (2006)
examined the magnetospheric dynamics in the Dy; index time series from pre-magnetic storm to
magnetic storm period using fractal dynamics. They found that the transition from anti-persistent
to persistent behaviour indicates that the occurrence of an intense geomagnetic storm is imminent.
Balasis et al. (2009) further reveal the dynamical complexity behaviour in the magnetospheric
dynamics using various entropy measures. They reported a significant decrease in dynamical
complexity and an accession of persistency in the Dy, time series as the magnetic storm
approaches. Recently, Oludehinwa et al. (2018) examined the nonlinearity effects in D, signals

during minor, moderate and major geomagnetic storm using recurrence plot and recurrence
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guantification analysis. They found that the dynamics of the Dy, signal is stochastic during minor

geomagnetic storm periods and deterministic as the geomagnetic storm increases.

Also, studies describing the solar wind and magnetosphere as non-autonomous system have been
extensively investigated. Price et al. (1994) examine the nonlinear input-output analysis of AL
index and different combinations of interplanetary magnetic field (IMF) with solar wind
parameters as input function. They found that only a few of the input combinations show any
evidence whatsoever for nonlinear coupling between the input and output for the interval
investigated. Pavlos et al. (1999) extends further evidence of magnetospheric chaos. They
compared the observational behaviour of the magnetospheric system with the results obtained by
analyzing different types of stochastic and deterministic input-output systems and assert that a low
dimensional chaos is evident in magnetospheric dynamics. Devi et al. (2013) studied the
magnetospheric dynamics using AL index with the southward component of IMF, (Bz) and
observed that the magnetosphere and turbulent solar wind have values corresponding to nonlinear
dynamical system with chaotic behaviour. The modeling and forecasting approach have been
applied to magnetospheric time series using nonlinear models (Valdivia et al. 1996; Vassiliadis et
al. 1999; Vassiliadis, 2006; Balikhin et al. 2010). These efforts have improved our understanding
with regards to the facts that nonlinear dynamics can reveal some hidden dynamical information
in the observational time series. In addition to these nonlinear effects in Dy, signals, a measure of
the exponential divergence and convergence within the trajectories of a phase space known as
(Maximal Lyapunov Exponent, MLE), which havg the potential to depicts the chaotic behavior in
the Dy, and V B, time series during a minor, moderate and major geomagnetic storm have not been
investigated. In addition, to the best of our knowledge, computation of Approximate Entropy

(ApEn) that depicts the dynamical complexity behaviour during different categories of
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geomagnetic storm has not been reported in the literature. The test for nonlinearity through delay
vector variance (DVV) analysis that establishes the degree at which nonlinearity response in Dy;
time series during minor, moderate and major geomagnetic storms is not well known. It is worth
to note that understanding the dynamical characteristics in the Dg; and V B signals at different
categories of geomagnetic storms will provide useful diagnostic information to different conditions
of space weather phenomenon, Consequently, this study attempts to carry out comprehensive
numerical analysis to unfold the chaotic and dynamical complexity behaviour in the D, and VB,
signals during minor, moderate and major geomagnetic storm. In section 2, our methods of data
acquisition are described. Also, the nonlinear analysis that we employed in this investigation are

detailed. In section 3, we unveiled our results and engage the discussion of results in section 5.

2.0 Description of the Data and Nonlinear Dynamics

The Dy, index is arecord-of ground-based magnetic stations at low-latitudes observatories around
the world and depicts the variation of the magnetospheric currents such as the chapman-ferraro
current in the magnetopause, ring and tail currents (Sugiura, 1964; Love and Gannon, 2009). Due
to its global nature, D, time series provides a measure of how intense a geomagnetic storm was
(Dessel and Parker, 1959). In this study, we considered Dy, data for the period of nine years from
January to December between 2008 and 2016 which were downloaded from the World Data Centre

for Geomagnetism, Kyoto, Japan (http://wdc.kugi-kyoto-u.ac.jp/Dstae/index.html). We use the

classification of geomagnetic storms as proposed by Gonzalez et al. (1994) such that Dy, index
value in the ranges 0 < Dst < —50nT, —50nT < Dst < —100nT, —100nT < Dst < —250nT
are classified as minor, moderate and major geomagnetic storms respectively. The solar wind
electric field (VBy) data are archived from the National Aeronautics and Space Administration,

Space Physics Facility (http://omniweb.gsfc.nasa.gov). It is well known that the dynamics of the
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solar wind contribute to the driving of the magnetosphere (Burton et al. 1975). Furthermore, we
took the solar wind electric field (VBy) as the input signals (Price and Prichard, 1993; Price et al.
1994). The VB, was categorized according to the periods of minor, moderate and major
geomagnetic storm. Then, the Dy, and VB, time series were subjected to a variety of nonlinear

analytical tools explained as follow:
2.1 Phase Space Reconstruction and Observational time series

An observational time series can be defined as a sequence of scalar measurements of some
quantity, which is a function of the current state of the system taken at multiples of a fixed sampling
time. In nonlinear dynamics, the first step in analyzing an observational time series data is to
reconstruct an appropriate state space of the system. Takens, (1981) and Mane, (1981) stated that
one time series or a few simultaneous time series are converted to a sequence of vectors. This
reconstructed phase space has all the dynamical characteristic of the real phase space provided the

time delay and embedding dimension are properly specified.
X(t) = [x(6),x(t + 1), x(t + 27), .., x(t + (m — D7]T (@)

Where X(t) is the reconstructed phase space, x(t) is the original time series data, 7 is the time
delay and m is the embedding dimension. An appropriate choice of T and m are needed for the
reconstruction phase space which is determined by average mutual information and false nearest

neighbour respectively.
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2.2 Average Mutual Information (AMI)

The method of Average Mutual Information (AMI) is one of the nonlinear techniques used to
determine the optimal time delay (t) required for phase space reconstruction in observational time
series. The time delay mutual information was proposed by Fraser and Swinney, (1986) instead of
autocorrelation function. This method takes into account nonlinear correlations within the time
series data. It measures how much information can be predicted about one time series point, given
full information about the other. For instance, the mutual information between x; and x(;,

quantifies the information in state x(;,) under the assumption that information at the state x; is

known. The AMI for a time series, x(t;), i = 1,2,...,N is calculated as:

_PGt)x(6:4T)
P(x(ty) P(x(£;+T))

I(T) = Ty, xcepry P, x(t: +T)) X log, | e

Where x(t;) is the ith element of the time series, T = kAt (k = 1,2, ..., kjmax), P(x(t;)) is the
probability density at x(t;), P(x(t;),x(t; + T)) is the joint probability density at the pair
x(t;), x(t; + T). The time delay (t) of the first minimum of AMI is chosen as optimal time delay
(Fraser and Swinney, 1986). Therefore, the AMI was applied to the Dy; and V B, time series and
the plot of AMI against time delay is shown in Figure (3). We notice that the AMI showed the first
local minimum at roughly (t = 15hr). Furthermore, the values of t near this value of (~15hr)
maintain constancy for both VBs and D;. In the analysis (z = 15hr) was used as the optimal

time delay for the computation of maximal Lyapunov exponent.
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2.3 False Nearest Neighbour (FNN)

In determining the optimal choice of embedding dimension(m), the false nearest neighbour
method was used in the study. It was suggested by Kennel et al. (1993). The concept is based on
how the number of neighbours of a point along a signal trajectory changes with increasing
embedding dimension. With increasing embedding dimension, the false neighbour will no longer
be neighbours, therefore by examining how the number of neighbours changes as a function of
dimension, an appropriate embedding dimension can be determined. The FNN is calculated such

that a sequence of vector is reconstructed in the form as
P(i) = {Xi, Xivr Xivors s Xi+(m—1)‘r} (3)

Where 7 is the time delay for each point in the m-dimensional embedding space, after that the
algorithm search for neighbour P(j) such that, |P(i) — P(j)| < &, where ¢ is a small constant
usually of the order of the standard deviation of the time series. Then a normalized distance I'(i)

between the (m + 1)th embedding coordinates of points P (i) and P(j) can be computed as

. _|Xi+m1:_Xj+m‘r|
MO = =60 @

If the distance of the iteration to the nearest neighbor ratio exceeds a defined threshold(¢), the
points are considered as false neighbor. In the analysis, the FNN was applied to the Dy, and V B
time series to detect the optimal value of embedding dimension(m). Figure (4) shows a sample
plot of FNN against embedding dimension in one of the months under investigation (other months
show similar results, thus for brevity we depict only one of the results). We notice that the false

nearest neighbor attains its minimum value at m > 5 indicating that embedding dimension (m)
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from m > 5 are optimal values. Therefore, m = 5 was used for the computation of maximal

Lyapunov exponent.

2.4 Maximal Lyapunov Exponent (MLE)

The Maximal Lyapunov Exponent (MLE) is one of the most popular nonlinear dynamics tool used
for detecting chaotic behaviour in a time series data. It describes how small changes in the state of
a system grow at an exponential rate and eventually dominate the behaviour. An important
indication of chaotic behavior of a dissipative deterministic system is the existence of a positive
Lyapunov Exponent. A positive MLE signifies divergence of trajectories in one direction or
expansion of an initial volume in this direction. On the other hand, a negative MLE exponent
implies convergence of trajectories or contraction of volume along another direction. Algorithm
proposed by Wolf et al. (1985) for estimating MLE is employed to compute the chaotic behavior
of the Dy, and VB, time series at minor, moderate and major geomagnetic storm. Other methods
of determining MLE includes Rosenstein’s method, Kantz’s method and so on. In this study, the
MLE at minor, moderate and major geomagnetic storms periods was computed with m = 5 and
T = 15hr as shown in figures (5 & 6-bar plots) for Dy, and VB;. The calculation of MLE is
explained as follows: given a sequence of vector x(t), an m-dimensional phase space is formed

from the observational time series through embedding theorem as

{x(@®),x(t + 7)., x(t+ (m — 1)} (5)

Where m and t are as defined earlier, after reconstructing the observational time series, the
algorithm locates the nearest neighbour (in Euclidean sense) to the initial point {x(¢t,), ..., x(to, +
(m — 1)1} and denote the distance between these two points L(t,). At a later time t;, the initial

length will have evolved to length L'(t;). Then the MLE is calculated as
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_ 1 M L' (ty)
A= ty—to k=1 10g2 L(tk-1) (6)

M is the total number of replacement steps.
2.5 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is one of the nonlinear dynamics tools that measure the dynamical
complexity in observational time series. The concept was proposed by Pincus, (1991) which
provides a generalized measure of regularity, such that it accounts for the logarithm likehood in
the observational time series. For instance, a dataset of length, N, that repeat itself for m points
within a boundary will again repeat itself for m + 1 points. Because of its computational
advantage, ApEn have been widely used in many areas of disciplines to study dynamical
complexity (Pincus and Kalman (2004); Pincus and Goldberger (1994); McKinley et al. (2011);
Kannathan et al. (2005); Balasis et al. (2009); Shujuan and Weidong, (2010); Moore and Marchant

(2017)). The ApEn is computed using the formula below:

1 _ 1 _
ApEn(m,r,N) = — N-m+llog C™ (1) — mﬂv:lm log CI™ (1) )
where /" (r) = N_;MZjL‘F“ 0(r — ||x; — x;||) is the correlation integral, m is the embedding

dimension and r is the tolerance. To compute the ApEn for the Dy, and V B, time series classified
as minor, moderate and major geomagnetic storm from 2008 to 2016, we choose (m = 3,7 =
1hr). We refer the works of Pincus, (1991); Kannathal et al. (2005); and Balasis et al. (2009) to
interested readers where all the computational steps regarding ApEn were explained in details.

Figures (5 & 6) depict the stem plot of ApEn for Dy, and (V By) from 2008 to 2016.
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2.6 Delay Vector Variance (DVV) analysis

The Delay Vector Variance (DVV) is a unified approach in analyzing and testing for nonlinearity
in a time series (Gautama et al. 2004; Mandic et al. 2007). The basic idea of the DVV is that, if
two delay vectors of a predictable signal are close to each other in terms of the Euclidean distance,
they should have similar target. For instance, when a time delay (7) is embedded into a time series
x(k), k =1,2,...,N, then a reconstructed phase space vector is formed which represents a set of

delay vectors (DVs) of a given dimension.
X(k) = [Xk—m‘n ---»Xk—‘r]T (8)

Reconstructing the phase space, a set (1) is generated by grouping those DVs that are with a
certain Euclidean distance to DVs (X(k)). For a given embedding dimension (m), a measure of

unpredictability o %2 is computed over all pairwise Euclidean distance between delay vector as

d@,j) = llx@ —x(MI ¢ #)) ©9)

Then, sets A, () are generated as the sets which consist of all delay vectors that lie closer to x (k)

than a certain distance r,.

A (rg) = {x@llx(k) — x(@) < 74} (10)
For every set A, (r4), the variance of the corresponding target o *2 (r,;) is

1gN 2
N 2k=10k(Ta)

0 (1g) = L

11)

where o %2 (r,) is target variance against the standardized distance indicating that Euclidean
distance will be varied in a manner standardized with respect to the distribution of pairwise

distance between DVs. Iterative Amplitude Adjusted Fourier Transform (IAAFT) method is used
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to generate the surrogate time series (Kugiumtzis, 1999). If the surrogate time series yields DV
plots similar to the original time series and the scattered plot coincides with the bisector line, then
the original time series can be regarded as linear (Theiler et al. 1992; Gautama et al.2004; Imitaz,
2010; Jaksic et al. 2016). On the other hand, if the surrogate time series yield DV plot that is not
similar to that of the original time series, then the deviation from the bisector lines indicates
nonlinearity. The deviation from the bisector lines grows as a result of the degree of nonlinearity

in the observational time series.

N 033
o = (o) 2 12)
where as*f- (r) is the target variance at the span r, for the i*" surrogate. To carry out the test for
nonlinearity in the D, signals, m = 3 and n; = 3, the number of reference DVs=200, and number

of surrogate, Ny = 25 was used in all the analysis. Then we examined the nonlinearity response at

minor, moderate and major geomagnetic storm.
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3.0 Results

In this study, Dy, and VB, time series from January to December was analyzed for the period of
nine years (2008 to 2016) to examine the chaotic and dynamical complexity response in the
magnetospheric dynamics during minor, moderate and major geomagnetic storms. Figures (1) &
(2), display the samples of fluctuation signatures of Dy, and V B, signals classified as (a): minor,
(b): moderate and (c): major geomagnetic storm. The plot of Average Mutual information against
time delay (7) shown in Figure (3) depicts that the first local minimum of the AMI function was
found to be roughly T = 15hr. Furthermore, we notice that the values of 7 near this value of (~15hr)
maintain constancy for both VB, and D;. Also, in figure (4), we display the plot of false nearest
neighbour against embedding dimension (m). It is obvious that a decrease in false nearest
neighbour when increasing the embedding dimension drop steeply to zero at the optimal
dimension(m = 5), thereafter the false neighbours stabilizes at that m =5 for VB, and Dg;.
Therefore, m = 5 and t = 15hr was used for the computation of MLE at different categories of

geomagnetic storm, while m = 3 and T = 1hr are applied for the computation of ApEn values.

The results of MLE (bar plot) and ApEn (stem plot) for Dy, at minor, moderate and major
geomagnetic storms are shown in Figure 5. During minor geomagnetic storms, we notice that the
value of MLE ranges between 0.07 and 0.14 for most of the months classified as minor
geomagnetic storm. Similarly, the ApEn (stem plot) ranges between 0.59 and 0.83 for most of the
months categorized as minor geomagnetic storm. It is obvious that strong chaotic behaviour with
high dynamical complexity are associated with minor geomagnetic storms. During moderate
geomagnetic storm, (see b part of figure 5), we observe a reduction in MLE values (0.04~0.07)
compared to minor geomagnetic storm periods. Within the observed values of MLE during
moderate geomagnetic storms, we found a slight rise of MLE in the following months (Mar 2008),
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(Apr2011), (Jan 2012, Feb 2012, Apr 2012), (Jul 2015, Aug 2015, Sept 2015, Oct2015, Nov 2015)
and (Nov 2016). Also, the ApEn revealed a reduction in values between 0.44 and 0.57 at moderate
geomagnetic storms. The lowest values of ApEn were noticed in the following months: May 2010,
Mar 2011, and Jan 2016. During major geomagnetic storm as shown in Figure 5, the minimum
and maximum value of MLE is respectively 0.03 and 0.04 implying a very strong reduction of
chaotic behaviour compared with minor and moderate geomagnetic storm. The lowest values of
MLE were found in the months of Jul 2012, Jun 2013 and Mar 2015. Interestingly, further
reduction in ApEn value (0.29~0.40) was as well noticed during this period. Thus, during major

geomagnetic storm, chaotic behaviour and dynamical complexity subsides significantly.

We display in Figure 6, the results of MLE and ApEn computation for the VB which has been
categorized according to the periods of minor, moderate and major geomagnetic storm. The values
of MLE (bar plot) were between 0.06 and 0.20 for V B. The result obtained indicate strong chaotic
behaviour with no significant difference in chaoticity during minor, moderate and major
geomagnetic storm. Similarly, the results obtained from computation of ApEn (stem plot) for VB,
depict a minimum value of 0.60 and peak value of 0.87 as shown in Figure 6. The ApEn values of
VB indicates high dynamical complexity response with no significant difference during the

periods of the three categories of geomagnetic storm investigated.

The test for nonlinearity in the Dg; signals during minor, moderate and major geomagnetic storms
was analyzed through the DVV analysis. Shown in Figure 9 is the DVV plot and DVV scatter plot
during minor geomagnetic storm for January 2009 and January 2014. We found that the DVV
plots during minor geomagnetic storms reveals a slight separation between the original and
surrogate data. Also, the DVV scatter plots shows a slight deviation from the bisector line between

the original and surrogate data which implies nonlinearity. Also, during moderate geomagnetic
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storm, we notice that the DVV plot depicts a wide separation between the original and the surrogate
data. Also, a large deviation from the bisector line between the original and the surrogate data was
also noticed in the DVV scatter plot as shown in Figure (8) thus indicating nonlinearity. In Figure
(9), we display samples of DVV plot and DVV scatter plot during major geomagnetic storm for
Oct 2011 and Dec 2015. The original and the surrogate data showed a very large separation in the
DVV plot during major geomagnetic storm. While the DVV scatter plot depict the greatest
deviation from the bisector line between the original and the surrogate data which is also an

indication of nonlinearity.

4.0 Discussion of Results

4.1 The chaotic and dynamical complexity response in Dy, at minor, moderate and major

geomagnetic storms

Our result shows that the values of MLE for Dy, during minor geomagnetic storm are prevalent,
indicating significant chaotic response during minor geomagnetic stormy periods (bar plot, Figure
5). This increase in chaotic behaviour for Dy; signals during minor geomagnetic storm may be as
a result of asymmetry features in the longitudinal distribution of solar source region for the CMEs
signatures responsible for the development of geomagnetic storms (Zhang et al., 2002; Watari,
2017). Therefore, we suspect that the increase in chaotic behaviour during minor geomagnetic
storm is strongly associated with the longitudinal distribution of solar source region for CMEs.
For most of these periods of moderate geomagnetic storms, the values of MLE decreases compared
to minor geomagnetic storms. This revealed that as geomagnetic stormy events build up, the level
of unpredictability and sensitive dependence on initial condition (chaos) begin to decrease
(Lorentz, 1963; Stogaz, 1994). The chaotic behaviour during major geomagnetic storm decreases

significantly compared with moderate geomagnetic storm. The reduction in chaotic response

Page 15 of 35


User
Comment on Text
I would prefer to use the term "higher" or "larger" instead of "prevalent"

User
Comment on Text
This is more or less the same as the previous sentence, but does not explain why the authors state this assumption


https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342

during moderate and its further declines at major geomagnetic storm may be attributed to the
disturbance in the interplanetary medium driven by solar corona mass ejection (CMES) or co-
rotating interaction region of the solar wind with the magnetosphere (Tsurutani et al. 2003).
Notably, the dynamics of the solar wind-magnetospheric interaction are dissipative chaotic in
nature (Pavlos, 2012); and, the electrodynamics of the magnetosphere due to the flux of
interplanetary electric fields had a significant impact on the state of the chaotic signatures. For
instance, the observation of strong chaotic behaviour during minor geomagnetic storm suggests
that the dynamics was characterized by a weak magnetospheric disturbance. While the reduction
in chaotic behaviour at moderate and major geomagnetic storm period reveals the dynamical
features with regards to when a strong magnetospheric disturbance begins to emerge. Therefore,
our observation of chaotic signatures at different categories of geomagnetic storm has potential
capacity to give useful diagnostic information about impending space weather events. It is
important to note that the features of D, chaotic behaviour at different categories of geomagnetic
storm has not been reported in the literature. For example, previous study of Balasis et al. (2009,
2011) investigate dynamical complexity behaviour using different entropy measures and revealed
the existence of low dynamical complexity in the magnetospheric dynamics and attributed it to
ongoing large magnetospheric disturbance (major geomagnetic storm). The work of Balasis et al.
(2009, 2011) where certain dynamical characteristic evolved in the Dy, signal was revealed was
limited to one year data (2001). It is worthy to note that the year 2001, according to sunspot
variations is a period of high solar activity during solar cycle 23. It is characterized by numerous
and strong solar eruptions that were followed by significant magnetic storm activities. This
confirms that on most of the days in year 2001, the geomagnetic activity is strongly associated

with major geomagnetic storm. The confirmation of low dynamical complexity response in the D,
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signal during major geomagnetic storm agree with our current study. However, the idea of
comparing the dynamical complexity behaviour at different categories of geomagnetic storm and
reveal its chaotic features was not reported. This is the major reason why our present investigation
is crucial to the understanding of the level of chaos and dynamical complexity involved during
different categories of geomagnetic storm. As an extension to a year investigation done by Balasis
et al. (2009, 2011) during a major geomagnetic storm, we further investigated nine years data of
D,; that covered minor, moderate and major geomagnetic storm (see figure 5, stem plots) and
unveiled their dynamical complexity behaviour. During major geomagnetic stormy periods, we
found that the ApEn values decrease significantly, indicating reduction in the dynamical
complexity behaviour. This is in agreement with the low dynamical complexity reported by Balasis
et al. (2009, 2011) during a major geomagnetic period. Finally, based on the method of DVV
analysis, we found that test of nonlinearity in the D, time series during major geomagnetic storm

reveals the strongest nonlinearity features.

4.2 The chaotic and dynamical complexity behaviour in the VB as input signals.

The results of the MLE values for VB; revealed a strong chaotic behaviour during the three
categories of geomagnetic storm. Comparing these MLE values during minor to those observed
during moderate and major geomagnetic storm, the result obtained did not indicate any significant
difference in chaoticity (bar plots, Figure 6). Also, the ApEn values of VB during the periods
associated with minor, moderate and major geomagnetic storm revealed high dynamical
complexity behaviour with no significant difference between the three categories of geomagnetic
storm investigated. These observation of high chaotic and dynamical complexity behaviour in the
dynamics of VB, may be due to interplanetary discontinuities cause by the abrupt changes in the
interplanetary magnetic field direction and plasma parameters (Tsurutani et al. 2010). Also, the
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indication of high chaotic and dynamical complexity behaviour in V B signifies that the solar wind
electric field is stochastic in nature. It is worth mentioning that the dynamical complexity
behaviour for V B, is different from what was observed for Dy, time series data. For instance, our
results for Dy, times series revealed that the chaotic and dynamical complexity behaviour of the
magnetospheric dynamics are high during minor geomagnetic storm, reduce at moderate
geomagnetic storm and further decline during major geomagnetic storm. While the VB, signal
revealed a high chaotic and dynamical complexity behaviour at all the categories of geomagnetic
storm period. Therefore, these dynamical features obtained in the VB, as input signal and the Dy,
as the output in describing the magnetosphere as a non-autonomous system further support the
finding of Donner et al. (2019) that found increased or not changed in dynamical complexity
behaviour for VB, and low dynamical complexity behaviour during storm using recurrence
method. Thus, suggesting that the magnetospheric dynamics is nonlinear and the solar wind

dynamics is consistently stochastic in nature.

5.0 Conclusions

This work has examined the magnetospheric chaos and dynamical complexity behaviour in the
disturbance storm time (Ds;) and solar wind electric field (V By) as input during different categories
of geomagnetic storm. The chaotic and dynamical complexity behaviour at minor, moderate and
major geomagnetic storm for solar wind electric field (VBy) as input and D, as output of the
magnetospheric system were analyzed for the period of 9 years using nonlinear dynamics tools.
Our analysis has shown a noticeable trend of these nonlinear parameters (MLE and ApEn) and the
categories of geomagnetic storm (minor, moderate and major). The MLE and ApEn values of the
Dg; have indicated that the chaotic and dynamical complexity behaviour are high during minor
geomagnetic storm, low during moderate geomagnetic storm and further reduced during major
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geomagnetic storm. The values of MLE and ApEn obtained from V B indicate that chaotic and
dynamical complexity are high with no significant difference during the periods of minor,
moderate and major geomagnetic storm. Finally, the test for nonlinearity in the Dy, time series
during major geomagnetic storm reveals the strongest nonlinearity features. Based on these
findings, the dynamical features obtained in the VB, as input and Dy, as output of the
magnetospheric system suggest that the magnetospheric dynamics is nonlinear and the solar wind

dynamics is consistently stochastic in nature.

7.0 Acknowledgement

The authors would like to acknowledge the World Data Centre for Geomagnetism, Kyoto, and the
National Aeronautics and Space Administration, Space Physics Facility (NASA) for making the

Dst data and solar wind plasma data available for research purpose.

Declaration of Interest statement

The authors declare that there is no conflicts of interest.

Page 19 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

412

413
414

415

416
417
418

419

420
421

422

423
424

425

426
427

428

429

430

References

Baker, D.N., Klimas, A.J., (1990). The evolution of weak to strong geomagnetic activity: An
interpretation in terms of deterministic chaos. J. GeoPhys. Res. Letts. Vol. 17, No. 1, PP. 41-

44,

Balasis, G., Daglis, I.A., Anastasiadia, A., Eftaxias, K., (2011). Detection of dynamical complexity
changes in Dst time series using entropy concepts and rescaled range analysis. W.Liu, M.
Fujimoto (eds.), The Dynamics Magnetosphere, IAGA Special Sopron Book Series 3, doi:

10.1007/978-94-007-0501-2_12, Springer Science+Business Media B.V. 2011.

Balasis, G., I.A. Daglis, C. Papadimitriou, M. Kalimeri, A. Anastasiadis, K. Eftaxias (2009).
Investigating dynamical complexity in the magnetosphere using various entropy measures,

J.Geophys.Res., 114, A0006, doi: 10.1029/2008JA 014035.

Balasis, G., I.A. Daglis, P. Kapiris, M.Mandea, D. Vassilliadis, K. Eftaxias (2006). From pre-storm
activity to magnetic storms: a transition described in terms of fractal dynamics, Ann.Geophys.,

24, 3557-3567, www.ann-geophys.net/24/3557/2006.

Balikhin, M.A., Boynton, R.J., Billings, S.A., Gedalin, M., Ganushkina, N., Coca, D., (2010). Data
based quest for solar wind-magnetosphere coupling function, Geophys.Res.Lett, 37, L24107,

doi: 10.1029/2010GL045733.

Burton, R.K., McPherron, R.L., Russell, C.T., (1975). An empirical relationship between

interplanetary conditions and Dst. Journal of Geophysical Research, Vol.80, No.31.

Page 20 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

431
432

433

434

435

436

437

438
439

440

441
442
443

444

445
446

447

448

449

450

451

Consolini, G., (2018), Emergence of dynamical complexity in the Earth’s magnetosphere, Machine
learning techniques for space weather, PP. 177-202, doi: 10.1016/B978-0-12-811788-0.00007-

X

Cowley, S.W.H., (1995). The earth’s magnetosphere: A brief beginner’s guide, EOS

Trans.Am.GeoPhys.Union, 76, 525.

Dessler, AJ., Parker, E.N., (1959). Hydromagnetic theory of magnetic storm. J. GeoPhys. Res, 64,

PP 2239-2259.

Devi, S.P., Singh, S.B., Sharma, A.S., (2013). Deterministic dynamics of the magnetosphere:

results of the 0-1 test. Nonlin. Processes Geophys., 20, 11-18, 2013, www.nonlin-processes-

geophys.net/20/11/2013, doi: 10. 5194/npg-20-11-2013.

Donner, R.V., Balasis, G., Stolbova,V., Georgiou, M., Weiderman, M., Kurths, J. (2019).
Recurrence-based quantification of dynamical complexity in the earth’s magnetosphere at
geospace storm time scales. Journal of Geophysical Research: Space Physics, 124, 90-108,

doi: 10.1029/2018JA025318.

Echer, E., Gonzalez, D., Alves, M.V., (2006). On the geomagnetic effects of solar wind
interplanetary magnetic structures. Space Weather, Vol.4, S06001,

doi:10.1029/2005SW000200.

Fraser, A.M., (1986). Using mutual information to estimate metric entropy, dimension and

entropies in chaotic system, Springer-Verlag, 1986, PP: 82-91.

Fraser, A.M., Swinney, H.L., (1986). Independent coordinates for strange attractors from mutual

information, Phys.Rev.A 33, 1134-1140.

Page 21 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

452
453

454

455
456

457

458
459

460

461
462

463

464

465

466
467

468

469

470

Gautama, T., Mandic, D.P., Hulle, M.M.V., (2004). The delay vector variance method for detecting
determinism and nonlinearity in time series. Physica D, 190, 167-176, doi:

10.1016/j.physd.2003.11.001.

Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, HW., Rostoker, G., Tsurutani, B.T.,
Vasyliunas, V.M., (1994). What is a geomagnetic storm? J. Geophys. Res.: Space Physics,

Vol. 99, issue A4, pg. 5771-5792, doi: 10.1029/93JA02867.

Gonzalez, W.D., Tsurutani, B.T., (1987). Criteria of interplanetary parameters causing intense
magnetic storm (Dst < —100nT). Planetary and Space Science,

https://ntrs.nasa.gov/search.jsp?R=198800068.

Horne, R.H., Glauert, S.A., Meredith, N.P., Boscher, D., Maget, V., Heynderickx, D., and Pitcford,
D. (2013). Space weather impacts on satellites and forecasting the Earths electron radiation

belts with SPACECAST. Space weather, 11, 169 - 186

Imtiaz, A., (2010). Detection of nonlinearity and stochastic nature in time series by delay vector

variance method, International journal of Engineering & Technology, Vol. 10, No. 02.

Jaksic, V., Mandic, D.P., Ryan, K., Basu, B., Pakrashi V., (2016). A Comprehensive Study of the
Delay Vector Variance Method for Quantification of Nonlinearity in dynamical Systems.

R.Soc.OpenSci., 2016: 3:150493, http://dx.doi.org/10.1098/rs0s.150493.

Johnson, J.R., Wing, S., (2005), A solar cycle dependence of nonlinearity in magnetospheric

activity. J. Geophys. Res., 110, A04211, doi: 10.1029/2004JA010638.

Page 22 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

471
472

473

474
475

476

477

478

479

480
481

482

483

484
485

486

487

488

489
490

491

Kannathal, N., M.L. Choo, U. R. Acharya, P. K. Sadasivan (2005). Entropies for detecting of
epilepsy in EEG, Computer Methods and Programs in Biomedicine (2005) 80, 187-194,

www.intl.elsevierhealth.com/journals/cmpb.

Kennel, M.B., R. Brown, H.D.I. Abarbanel (1992). Determining embedding dimension for phase-
space reconstruction using a geometrical construction, PHYSICAL REVIEW A, Volume 45,

Number 6.

Klimas, A.J., Vassilliasdis, D., Baker. D.N., Roberts, D.A., (1996). The organized nonlinear

dynamics of the magnetosphere. J. GeoPhys. Res. Vol.101, No. A6, PP 13089-13113.

Kugiumtzis, D., (1999). Test your surrogate before you test your nonlinearity, Phys. Rev. E, 60,

2808-2816.

Lorenz, E.N., (1963). Determining nonperiodic flow. J. Atmos.Sci.,20,130.

Love, J.J., Gannon, J.L. (2009). Revised Dst and the epicycles of magnetic disturbance: 1958-2007.

Ann.GeoPhys., 27, 3101-3131.

Mandic, D.P., Chen, M., Gautama, T., Van Hull, M.M., Constantinides, A., (2007). On the
Characterization of the Deterministic/Stochastic and Linear/Nonlinear Nature of Time Series.

Proc.R.Soc, 2008: A464, 1141-1160, doi: 10.1098/rspa. 2007.0154.

Maneg, R., (1981). On the dimension of the compact invariant sets of certain nonlinear maps, D.Rand

and L.S.Young, eds, 1981.

Mckinley, R.A., Mclntire, L.K., Schmidt, R., Repperger, D.W., Caldwell, J.A., (2011). Evaluation
of Eye Metrics as a Detector of Fatigue. Human factor, 53 (4): 403-414, doi:

10.1177/0018720811411297.

Page 23 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

492
493
494

495

496
497

498

499
500

501

502
503

504

505
506

507

508
509
510

511

512

Mendes, O., Dominques, M.O., Echer, E., Hajra, R., Menconi, V.E., (2017), Characterization of
high-intnesity, long-duration continuous auroral activitity (HILDCAA) events using
recurrence quantification analysis. Nonlin. Processes Geophys.,24,407-417, doi:10.5194/npg-

24-407-2017.

Millan, H., Gharbarian-Alavijeh, B., Garcia-Fornaris, 1., (2010). Nonlinear dynamics of mean daily
temperature and dewpoint time series at Babolsar, Iran, 1961-2005. Elsevier, Atmospheric

Research 98 (2010) 89-101, doi: 10.1016/j.atmosres.2010.06.001.

Moore, C., Marchant, T., (2017). The approximate entropy concept extended to three dimensions
for calibrated, single parameter structural complexity interrogation of volumetric images.

Physics in Medicine & Biology, 62(15).

Oludehinwa, I.A., Olusola, O.I., Bolaji, O.S., Odeyemi, O.0., (2018). Investigation of nonlinearity
effect during storm time disturbance, Adv. Space. Res, 62 (2018) 440-456, doi:

10.1016/j.asr.2018.04.032.

Omkar, P.T., Verma, P.L., (2013). Solar features and solar wind plasma parameters with
geomagnetic storms during the period of 2002-2006. Indian Journal of Applied Research,

Vol.3, Issue.5, ISSN-2249-555X.

Pavlos, G.P., (1994). The magnetospheric chaos: a new point of view of the magnetospheric
dynamics. Historical evolution of magnetospheric chaos hypothesis the past two decades.
Conference Proceeding of the 2nd Panhellenic Symposium held in Democritus University of

Thrace, Greece, 26-29, April, edited 1994.

Pavlos, G.P., (2012). Magnetospheric dynamics and Chaos theory

Page 24 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

513
514

515

516
517
518

519

520

521

522

523

524
525

526

527

528

529

530

531

532

Pavlos, G.P., Athanasiu, M.A., Diamantidis, D., Rigas, A.G., Sarri, E.T., (1999). Comments and
new results about the magnetospheric chaos hypothesis. Nonlinear Processes in Geophysics

(1999) 6: 99-127.

Pavlos, G.P., Rigas, A.G., Dialetis, D., Sarris, E.T., Karakatsanis, L.P., Tsonis, A.A., (1992).
Evidence of chaotic dynamics in the outer solar plasma and the earth magnetosphere. Chaotic
dynamics: Theory and Practice, Edited by T. Bountis, Plenum Press, New York, Page. 327-

339, doi:10.1007/978-1-4615-3464-8_30.

Pincus, S.M., (1991). Approximate entropy as a measure of system complexity,

Proc.Natl.Acad.Sci. USA, Vol.88, PP. 2297-2301.

Pincus, S.M., Goldberger, A.L., (1994). Physiological time series analysis: what does regularity

guantify, The American Journal of Physiology, 266 (4): 1643-1656.

Pincus, S.M., Kalman, E.K., (2004). Irregularity, volatility, risk, and financial market time series,
Proceedings of the National Academy of Sciences, 101 (38): 13709-13714, doi:

10.1073/pnas.0405168101.

Price, C.P., Prichard, D., Bischoff, J.E., (1994). Nonlinear input/output analysis of the auroral

electrojet index. Journal of Geophysical Research, Vol.99, No: A7, PP: 227-238.

Price,C.P., Prichard, D., (1993). The Non-linear response of the magnetosphere: 30 October, 1978.

Geophysical Research Letters, Vol.20.

Russell, C.T., (2001). Solar wind and Interplanetary Magnetic Field: A Tutorial. Space Weather,

Geophysical Monograph 125, Page: 73-89.

Page 25 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

533

534

535
536

537

538

539

540

541

542

543

544

545

546

547

548
549

550

551

552

Russell, C.T., McPherron, R.L., Burton, R.K. (1974). On the cause of geomagnetic storms,

J.GeoPhys.Res., 79, 1105-11009.

Shujuan G., Weidong, Z., (2010). Nonlinear feature comparison of EEG using correlation
dimension and approximate entropy, 3rd international conference on biomedical engineering

and informatics.

Strogatz, S.H., (1994), Nonlinear dynamics and chaos with Application to physics, Biology,

chemistry and Engineering, New York, John Wiley & Sons.

Sugiura, M. (1964). Hourly Values of equatorial Dst for the IGY, Ann.Int. GeoPhys. Year, 35, 9-

45.

Takens, F., (1981). Detecting Strange Attractors in Turbulence in Dynamical Systems, D.Rand &

L.Young Eds, 1981: 898, 366-381.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D., (1992), Testing for nonlinearity

in time series: The method of surrogate data, Physica D, 58, 77.

Tsurutani, B.T., Gonzalez, W.D., Lakhina, G.S. Alex, S., (2003). The extreme magnetic storm of

1-2 September 1859, J. Geophys. Res. 108(A7), doi: 10.1029/2002JA009504.

Tsurutani, B.T., Lakhina, G.S., Verkhoglyadova, O.P., Gonzalez, W.D., Echer, E., Guarnieri, F.L.,
(2010). A review of interplanertary discontinuities and their geomagnetic effects. Journal of

Atmospheric and Solar-Terrestrial Physics, doi: 10.1016/j.jastp.2010.04.001.

Tsutomu, N., (2002). Geomagnetic storms. Journal of communications Research Laboratory, Vol.

49, No.3.

Page 26 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

553
554

555

556
557

558

559
560

561

562

563

564

565

566
567

568

569

570

571

572

Unikrishnan, K., (2008). Comparison of chaotic aspect of magnetosphere under various physical
conditions using AE index time series. Ann. Geophys., 26, 941-953, www.ann-

geophys.net/26/941/2008.

Unikrishnan, K., Ravindran, S., (2010). A study on chaotic behaviour of equatorial/low latitude
ionosphere over indian sub-continent, using GPS-TEC time series, J. Atmos. Sol. Ter. Phys.,

72, 1080-1089.

Valdivia, J.A., Rogan, J., Munoz, V., Gomberoff, L., Klimas, A., Vassilliasdis, D., Uritsky, V.,
Sharma, S., Toledo, B., Wastaviono, L. (2005). The magnetosphere as a complex system. Adv.

Space. Res, 35, 961-971.

Valdivia, J.A., Sharma, A.S., Papadopoulos, K., (1996). Prediction of magnetic storms by nonlinear

models. Geophysical Research Letters, 23(21), 2899-2902, doi: 10.1029/96GL02828.

Vassiliadis, D., (2006). Systems theory for geospace plasma dynamics, Rev.Geophys., 44, RG2002,

doi: 10.1029/2004RG000161.

Vassiliadis, D., Klimas, A.J., Valdivia, J.A., Baker, D.N., (1999). The geomagnetic response as a
function of storm phase and amplitude and solar wind electric field. Journal of Geophysical

Research, 104(A11), 24957-24976, doi: 10.1029/1999JA900185.

Vassilliadis, D., Sharma, A.S., Papadopoulos, K., (1991). Lyapunov exponent of magnetospheric

activity from AL time series. J. GeoPhys. Letts, Vol. 18, No.8, PP. 1643-1646.

Vassilliadis, D.V., Sharma, A.S., Eastman, T.E., Papadopoulou, K., (1990). Low-dimensional

chaos in magnetospheric activity from AE time series. J. GeoPhys.Res.Lett, 17, 1841-1844.

Page 27 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

573 Watari, S., (2017). Geomagnetic storms of cycle 24 and their solar sources, Earth, Planets and

574 Space, PP: 69:70, doi: 10.1186/s40623-017-0653-z.

575 Wolf, A, Swift, J. B., Swinney, H. L., and Vastano, J. A. (1985). Determining Lyapunov exponents

576 from a time series, Physica D, 16, 285-317, doi:10.1016/0167-2789(85)90011-9.

577 Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V., (2002), Identification of solar sources of major

578 geomagnetic storms between 1996 and 2000. Astrophysical Journal, 582:520-533.

Page 28 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

50
ok
3 o7 Jan2009
- L a
g -100 Aug2012

3
- -100 Jul2009
3 Mar2011

-250
1 2 3 4 5 6 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31

579 Days
580  Figure 1: Samples of Dst signals classified as (a) Minor, (b) Moderate and (c) Major geomagnetic
581  storm
Jan2009
/]
o

_1D‘I 2 3 4 5 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
582 Days
583  Figure 2: Samples of (VBy) during (a) Minor, (b) Moderate and (c) Major geomagnetic storm
584  period.

Page 29 of 35



https://doi.org/10.5194/npg-2020-47
Preprint. Discussion started: 23 December 2020
(© Author(s) 2020. CC BY 4.0 License.

585

Dst
VB
s

25

15

Average Mutual Information

05

O 1 1 1 1
0 5 10 15 20

586 Embedding time delay (1)

587 Figure 3: The plot AMI against embedding time delay (1)

1

0.9

c o 9
o N ®

False Nearest Neighbor
o
)]

0.4
0.3
0.2
0.1
0
0 5 10 15 20
538 Embedding Dimension(m)

589  Figure 4: The plot of FNN against embedding dimension (m)

Page 30 of 35



https://doi.org/10.5194/npg-2020-47

Preprint. Discussion started: 23 December 2020

(© Author(s) 2020. CC BY 4.0 License.

©MO)

=
=

(u3dy) Adoaul sjeuy
= < @ -

=
T

xoaddy

0.

[ ]
—= ApEn

= = <=
T

910znON A

LL0ZSNY.

B8LOZLO0

(e)

(b}

(2)

0.
018—

2

s s < S H
(371N} 1usuodx3 Acundei pewrxeyy

2

2
s

2
=

=

590
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617  Figure 7: The DVV plot and Scatter plot during minor geomagnetic storm for January 2009 and
618  January 2014.
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622  Figure 8: The DVV plot and Scatter plot during moderate geomagnetic storm for March 2011 and
623  January 2015.
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626  Figure 9: The DVV plot and Scatter plot during major geomagnetic storm for October 2011 and
627  December 2015.
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