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Abstract 6 

In this study, we examine the magnetospheric chaos and dynamical complexity response in the 7 

disturbance storm time (𝐷𝑠𝑡) and solar wind electric field (𝑉𝐵𝑠) during different categories of 8 

geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the 9 

𝐷𝑠𝑡 and 𝑉𝐵𝑠 are analyzed for the period of nine years using nonlinear dynamics tools (Maximal 10 

Lyapunov Exponent, MLE, Approximate Entropy, ApEn and Delay Vector Variance, DVV). We 11 

found a significant trend between each nonlinear parameter and the categories of geomagnetic 12 

storm. The MLE and ApEn values of the 𝐷𝑠𝑡  indicate that chaotic and dynamical complexity 13 

response are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and 14 

declined further during major geomagnetic storms. However, the MLE and ApEn values obtained 15 

in 𝑉𝐵𝑠 indicate that chaotic and dynamical complexity response are high with no significant 16 

difference between the periods that are associate with minor, moderate and major geomagnetic 17 

storms. The test for nonlinearity in the 𝐷𝑠𝑡 time series during major geomagnetic storm reveals the 18 

strongest nonlinearity features. Based on these findings, the dynamical features obtained in the 19 

𝑉𝐵𝑠 as input and 𝐷𝑠𝑡 as output of the magnetospheric system suggest that the magnetospheric 20 

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature. 21 

Keywords: 𝐷𝑠𝑡 signals, Solar wind electric field (𝑉𝐵𝑠) signals, Geomagnetic storm, Chaotic 22 

behaviour, Dynamical complexity, Nonlinearity. 23 
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1.0 Introduction 25 

The response of chaos and dynamical complexity behaviour with respect to magnetospheric 26 

dynamics varies. This is due to changes in the interplanetary electric fields imposed on the 27 

magnetopause and those penetrating the inner magnetosphere and sustaining convection thereby 28 

initiating geomagnetic storm (Pavlos et al. 1992). A prolonged southward turning of interplanetary 29 

magnetic field (IMF,𝐵𝑧), which indicates that solar wind-magnetosphere coupling is in-progress 30 

was confirmed on many occasions that such geomagnetic storm was driven by corona mass 31 

ejection (Russell et al. 1974; Burton et al.1975; Gonzalez and Tsurutani, 1987; Cowley, 1995; 32 

Tsutomu, 2002). Irrespective of what causes the geomagnetic storm, the disturbance storm time 33 

(𝐷𝑠𝑡) remains the most popular global indicator that can precisely unveil the severity of a 34 

geomagnetic storm (Dessel and Parker, 1959).  35 

The dynamics in the 𝐷𝑠𝑡  signal displays signature of fluctuations in its underlying dynamics at 36 

different categories of geomagnetic storm. Ordinarily, one can easily anticipate that fluctuations 37 

in a 𝐷𝑠𝑡 signal appear chaotic and complex. These may arise from the changes in the interplanetary 38 

electric fields driven by the solar wind-magnetospheric coupling processes. At different categories 39 

of geomagnetic storm, fluctuations in the 𝐷𝑠𝑡  signals differ (Oludehinwa et al. 2018). One obvious 40 

reason is that as the intensity of the geomagnetic storm increases, the fluctuation behaviour in the 41 

𝐷𝑠𝑡  signal becomes more complex and nonlinear in nature. It’s have been established that the 42 

electrodynamic response of the magnetosphere to solar wind driven are non-autonomous in nature 43 

(Price and Prichard, 1993; Price et al. 1994; Johnson and Wings, 2005).  Therefore, the chaotic 44 

analysis of the magnetospheric time series must be related to the concept of input-output dynamical 45 

process. Consequently, it is necessary to examine the chaotic behaviour of the solar wind electric 46 
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field (𝑉𝐵𝑠) as input signals and the magnetospheric activity index (𝐷𝑠𝑡) as output during different 47 

categories of geomagnetic storms. 48 

Several works have been presented on the chaotic and dynamical complexity behaviour of the 49 

magnetospheric dynamics based on autonomous concept, i.e using the time series data of 50 

magnetospheric activity alone such as auroral electrojet (AE), lower auroral electrojet (AL) and 51 

𝐷𝑠𝑡 index (Vassilidia et al.1990; Baker and Klimas, 1990; Vassilidia et al.1991; Shan et al. 1991; 52 

Pavlos et al. 1994; Klimas et al. 1996; Valdivia et al. 2005; Mendes et al. 2017; Consolini, 2018). 53 

They found evidence of low-dimensional chaos in the magnetospheric dynamics. For instance, the 54 

report by Vassilidia et al. (1991) shows that the computation of Lyapunov exponent for AL index 55 

time series gives a positive value of Lyapunov exponent indicating the presence of chaos in the 56 

magnetospheric dynamics. Unnikrishnan, (2008) studied the deterministic chaotic behaviour in the 57 

magnetospheric dynamics under various physical conditions using AE index time series and found 58 

that the seasonal mean value of Lyapunov exponent in winter season during quiet periods (0.7 ±59 

0.11 𝑚𝑖𝑛−1) is higher than that of the stormy periods (0.36 ± 0.09 𝑚𝑖𝑛−1). Balasis et al. (2006) 60 

examined the magnetospheric dynamics in the 𝐷𝑠𝑡  index time series from pre-magnetic storm to 61 

magnetic storm period using fractal dynamics. They found that the transition from anti-persistent 62 

to persistent behaviour indicates that the occurrence of an intense geomagnetic storm is imminent. 63 

Balasis et al. (2009) further reveal the dynamical complexity behaviour in the magnetospheric 64 

dynamics using various entropy measures. They reported a significant decrease in dynamical 65 

complexity and an accession of persistency in the 𝐷𝑠𝑡  time series as the magnetic storm 66 

approaches. Recently, Oludehinwa et al. (2018) examined the nonlinearity effects in 𝐷𝑠𝑡  signals 67 

during minor, moderate and major geomagnetic storm using recurrence plot and recurrence 68 
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quantification analysis. They found that the dynamics of the 𝐷𝑠𝑡 signal is stochastic during minor 69 

geomagnetic storm periods and deterministic as the geomagnetic storm increases.  70 

Also, studies describing the solar wind and magnetosphere as non-autonomous system have been 71 

extensively investigated. Price et al. (1994) examine the nonlinear input-output analysis of AL 72 

index and different combinations of interplanetary magnetic field (IMF) with solar wind 73 

parameters as input function. They found that only a few of the input combinations show any 74 

evidence whatsoever for nonlinear coupling between the input and output for the interval 75 

investigated. Pavlos et al. (1999) extends further evidence of magnetospheric chaos. They 76 

compared the observational behaviour of the magnetospheric system with the results obtained by 77 

analyzing different types of stochastic and deterministic input-output systems and assert that a low 78 

dimensional chaos is evident in magnetospheric dynamics. Devi et al. (2013) studied the 79 

magnetospheric dynamics using AL index with the southward component of IMF, (Bz) and 80 

observed that the magnetosphere and turbulent solar wind have values corresponding to nonlinear 81 

dynamical system with chaotic behaviour. The modeling and forecasting approach have been 82 

applied to magnetospheric time series using nonlinear models (Valdivia et al. 1996; Vassiliadis et 83 

al. 1999; Vassiliadis, 2006; Balikhin et al. 2010). These efforts have improved our understanding 84 

with regards to the facts that nonlinear dynamics can reveal some hidden dynamical information 85 

in the observational time series. In addition to these nonlinear effects in 𝐷𝑠𝑡  signals, a measure of 86 

the exponential divergence and convergence within the trajectories of a phase space known as 87 

(Maximal Lyapunov Exponent, MLE), which have the potential to depicts the chaotic behavior in 88 

the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 time series during a minor, moderate and major geomagnetic storm have not been 89 

investigated. In addition, to the best of our knowledge, computation of Approximate Entropy 90 

(ApEn) that depicts the dynamical complexity behaviour during different categories of 91 
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geomagnetic storm has not been reported in the literature. The test for nonlinearity through delay 92 

vector variance (DVV) analysis that establishes the degree at which nonlinearity response in 𝐷𝑠𝑡 93 

time series during minor, moderate and major geomagnetic storms is not well known. It is worth 94 

to note that understanding the dynamical characteristics in the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 signals at different 95 

categories of geomagnetic storms will provide useful diagnostic information to different conditions 96 

of space weather phenomenon. Consequently, this study attempts to carry out comprehensive 97 

numerical analysis to unfold the chaotic and dynamical complexity behaviour in the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 98 

signals during minor, moderate and major geomagnetic storm. In section 2, our methods of data 99 

acquisition are described. Also, the nonlinear analysis that we employed in this investigation are 100 

detailed. In section 3, we unveiled our results and engage the discussion of results in section 5. 101 

2.0 Description of the Data and Nonlinear Dynamics 102 

The 𝐷𝑠𝑡  index is a record of ground-based magnetic stations at low-latitudes observatories around 103 

the world and depicts the variation of the magnetospheric currents such as the chapman-ferraro 104 

current in the magnetopause, ring and tail currents (Sugiura, 1964; Love and Gannon, 2009). Due 105 

to its global nature, 𝐷𝑠𝑡 time series provides a measure of how intense a geomagnetic storm was 106 

(Dessel and Parker, 1959). In this study, we considered 𝐷𝑠𝑡 data for the period of nine years from 107 

January to December between 2008 and 2016 which were downloaded from the World Data Centre 108 

for Geomagnetism, Kyoto, Japan (http://wdc.kugi-kyoto-u.ac.jp/Dstae/index.html). We use the 109 

classification of geomagnetic storms as proposed by Gonzalez et al. (1994) such that 𝐷𝑠𝑡  index 110 

value in the ranges 0 ≤ 𝐷𝑠𝑡 ≤ −50𝑛𝑇, −50𝑛𝑇 ≤ 𝐷𝑠𝑡 ≤ −100𝑛𝑇, −100𝑛𝑇 ≤ 𝐷𝑠𝑡 ≤ −250𝑛𝑇 111 

are classified as minor, moderate and major geomagnetic storms respectively. The solar wind 112 

electric field (𝑉𝐵𝑠) data are archived from the National Aeronautics and Space Administration, 113 

Space Physics Facility (http://omniweb.gsfc.nasa.gov). It is well known that the dynamics of the 114 
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solar wind contribute to the driving of the magnetosphere (Burton et al. 1975). Furthermore, we 115 

took the solar wind electric field (𝑉𝐵𝑠) as the input signals (Price and Prichard, 1993; Price et al. 116 

1994). The 𝑉𝐵𝑠 was categorized according to the periods of minor, moderate and major 117 

geomagnetic storm. Then, the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series were subjected to a variety of nonlinear 118 

analytical tools explained as follow:  119 

2.1 Phase Space Reconstruction and Observational time series 120 

An observational time series can be defined as a sequence of scalar measurements of some 121 

quantity, which is a function of the current state of the system taken at multiples of a fixed sampling 122 

time. In nonlinear dynamics, the first step in analyzing an observational time series data is to 123 

reconstruct an appropriate state space of the system. Takens, (1981) and Mane, (1981) stated that 124 

one time series or a few simultaneous time series are converted to a sequence of vectors. This 125 

reconstructed phase space has all the dynamical characteristic of the real phase space provided the 126 

time delay and embedding dimension are properly specified.  127 

𝑋(𝑡) =  [𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏]𝑇    (1) 128 

Where 𝑋(𝑡) is the reconstructed phase space, 𝑥(𝑡) is the original time series data, 𝜏 is the time 129 

delay and 𝑚 is the embedding dimension. An appropriate choice of 𝜏 and 𝑚 are needed for the 130 

reconstruction phase space which is determined by average mutual information and false nearest 131 

neighbour respectively. 132 

 133 

 134 

 135 
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2.2 Average Mutual Information (AMI) 136 

The method of Average Mutual Information (AMI) is one of the nonlinear techniques used to 137 

determine the optimal time delay (𝜏) required for phase space reconstruction in observational time 138 

series. The time delay mutual information was proposed by Fraser and Swinney, (1986) instead of 139 

autocorrelation function. This method takes into account nonlinear correlations within the time 140 

series data. It measures how much information can be predicted about one time series point, given 141 

full information about the other. For instance, the mutual information between 𝑥𝑖 and 𝑥(𝑖+𝜏) 142 

quantifies the information in state 𝑥(𝑖+𝜏) under the assumption that information at the state 𝑥𝑖 is 143 

known.  The AMI for a time series, 𝑥(𝑡𝑖),    𝑖 = 1,2, … , 𝑁  is calculated as:  144 

𝐼(𝑇) = ∑ 𝑃(𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇)) × log2 [
𝑃(𝑥(𝑡𝑖),𝑥(𝑡𝑖+𝑇))

𝑃(𝑥(𝑡𝑖)) 𝑃(𝑥(𝑡𝑖+𝑇))
].

𝑥(𝑡𝑖),   𝑥(𝑡𝑖+𝑇)   (2) 145 

Where 𝑥(𝑡𝑖) is the 𝑖th element of the time series, 𝑇 = 𝑘∆𝑡   (𝑘 = 1,2, … , 𝑘𝑚𝑎𝑥), 𝑃(𝑥(𝑡𝑖)) is the 146 

probability density at 𝑥(𝑡𝑖), 𝑃(𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇)) is the joint probability density at the pair 147 

𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝑇). The time delay (𝜏) of the first minimum of AMI is chosen as optimal time delay 148 

(Fraser and Swinney, 1986). Therefore, the AMI was applied to the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series and 149 

the plot of AMI against time delay is shown in Figure (3). We notice that the AMI showed the first 150 

local minimum at roughly (𝜏 = 15ℎ𝑟). Furthermore, the values of 𝜏 near this value of (~15hr) 151 

maintain constancy for both VBs and 𝐷𝑠𝑡.  In the analysis (𝜏 = 15ℎ𝑟) was used as the optimal 152 

time delay for the computation of maximal Lyapunov exponent. 153 

 154 

 155 

 156 
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2.3 False Nearest Neighbour (FNN) 157 

In determining the optimal choice of embedding dimension(𝑚), the false nearest neighbour 158 

method was used in the study. It was suggested by Kennel et al. (1993). The concept is based on 159 

how the number of neighbours of a point along a signal trajectory changes with increasing 160 

embedding dimension. With increasing embedding dimension, the false neighbour will no longer 161 

be neighbours, therefore by examining how the number of neighbours changes as a function of 162 

dimension, an appropriate embedding dimension can be determined. The FNN is calculated such 163 

that a sequence of vector is reconstructed in the form as  164 

                𝑃(𝑖) = {𝑋𝑖, 𝑋𝑖+𝜏, 𝑋𝑖+2𝜏, … , 𝑋𝑖+(𝑚−1)𝜏}      (3)        165 

Where 𝜏 is the time delay for each point in the m-dimensional embedding space, after that the 166 

algorithm search for neighbour 𝑃(𝑗) such that, |𝑃(𝑖) − 𝑃(𝑗)| < 𝜀, where 𝜀 is a small constant 167 

usually of the order of the standard deviation of the time series. Then a normalized distance Γ(i) 168 

between the (𝑚 + 1)𝑡ℎ embedding coordinates of points 𝑃(𝑖) and 𝑃(𝑗) can be computed as 169 

           Γ(𝑖) =
|𝑋𝑖+𝑚𝜏−𝑋𝑗+𝑚𝜏|

|𝑃(𝑖)−𝑃(𝑗)|
        (4)      170 

If the distance of the iteration to the nearest neighbor ratio exceeds a defined threshold(𝜀), the 171 

points are considered as false neighbor. In the analysis, the FNN was applied to the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 172 

time series to detect the optimal value of embedding dimension(𝑚). Figure (4) shows a sample 173 

plot of FNN against embedding dimension in one of the months under investigation (other months 174 

show similar results, thus for brevity we depict only one of the results). We notice that the false 175 

nearest neighbor attains its minimum value at 𝑚 ≥ 5 indicating that embedding dimension (𝑚) 176 
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from 𝑚 ≥ 5 are optimal values. Therefore, 𝑚 = 5 was used for the computation of maximal 177 

Lyapunov exponent. 178 

2.4 Maximal Lyapunov Exponent (MLE) 179 

The Maximal Lyapunov Exponent (MLE) is one of the most popular nonlinear dynamics tool used 180 

for detecting chaotic behaviour in a time series data. It describes how small changes in the state of 181 

a system grow at an exponential rate and eventually dominate the behaviour. An important 182 

indication of chaotic behavior of a dissipative deterministic system is the existence of a positive 183 

Lyapunov Exponent. A positive MLE signifies divergence of trajectories in one direction or 184 

expansion of an initial volume in this direction. On the other hand, a negative MLE exponent 185 

implies convergence of trajectories or contraction of volume along another direction. Algorithm 186 

proposed by Wolf et al. (1985) for estimating MLE is employed to compute the chaotic behavior 187 

of the 𝐷𝑠𝑡  and 𝑉𝐵𝑠 time series at minor, moderate and major geomagnetic storm. Other methods 188 

of determining MLE includes Rosenstein’s method, Kantz’s method and so on. In this study, the 189 

MLE at minor, moderate and major geomagnetic storms periods was computed with 𝑚 = 5 and 190 

𝜏 = 15ℎ𝑟 as shown in figures (5 & 6-bar plots) for 𝐷𝑠𝑡 and 𝑉𝐵𝑠.  The calculation of MLE is 191 

explained as follows: given a sequence of vector 𝑥(𝑡), an 𝑚-dimensional phase space is formed 192 

from the observational time series through embedding theorem as 193 

           {𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏)}     (5)  194 

 Where 𝑚 and 𝜏 are as defined earlier, after reconstructing the observational time series, the 195 

algorithm locates the nearest neighbour (in Euclidean sense) to the initial point {𝑥(𝑡0), … , 𝑥(𝑡0 +196 

(𝑚 − 1)𝜏} and denote the distance between these two points 𝐿(𝑡0). At a later time 𝑡1, the initial 197 

length will have evolved to length  𝐿′(𝑡1). Then the MLE is calculated as 198 
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                  𝜆 =
1

𝑡𝑀−𝑡0
∑ log2

𝐿′(𝑡𝑘)

𝐿(𝑡𝑘−1)

𝑀
𝑘=1       (6) 199 

M is the total number of replacement steps.  200 

2.5 Approximate Entropy (ApEn) 201 

Approximate Entropy (ApEn) is one of the nonlinear dynamics tools that measure the dynamical 202 

complexity in observational time series. The concept was proposed by Pincus, (1991) which 203 

provides a generalized measure of regularity, such that it accounts for the logarithm likehood in 204 

the observational time series. For instance, a dataset of length, 𝑁, that repeat itself for 𝑚 points 205 

within a boundary will again repeat itself for 𝑚 + 1 points. Because of its computational 206 

advantage, ApEn have been widely used in many areas of disciplines to study dynamical 207 

complexity (Pincus and Kalman (2004); Pincus and Goldberger (1994); McKinley et al. (2011); 208 

Kannathan et al. (2005); Balasis et al. (2009); Shujuan and Weidong, (2010); Moore and Marchant 209 

(2017)). The ApEn is computed using the formula below: 210 

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
1

𝑁−𝑚+1
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1 −

1

𝑁−𝑚
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1   (7)    211 

where 𝐶𝑖
𝑚(𝑟) =

1

𝑁−𝑚+1
∑ Θ(𝑟 − ‖𝑥𝑖 − 𝑥𝑗‖)𝑁−𝑚+1

𝑗=1  is the correlation integral, 𝑚 is the embedding 212 

dimension and 𝑟 is the tolerance. To compute the ApEn for the 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series classified 213 

as minor, moderate and major geomagnetic storm from 2008 to 2016, we choose (𝑚 = 3, 𝜏 =214 

1ℎ𝑟). We refer the works of Pincus, (1991); Kannathal et al. (2005); and Balasis et al. (2009) to 215 

interested readers where all the computational steps regarding ApEn were explained in details. 216 

Figures (5 & 6) depict the stem plot of ApEn for 𝐷𝑠𝑡  and (𝑉𝐵𝑠) from 2008 to 2016.   217 

 218 
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2.6 Delay Vector Variance (DVV) analysis 219 

The Delay Vector Variance (DVV) is a unified approach in analyzing and testing for nonlinearity 220 

in a time series (Gautama et al. 2004; Mandic et al. 2007). The basic idea of the DVV is that, if 221 

two delay vectors of a predictable signal are close to each other in terms of the Euclidean distance, 222 

they should have similar target. For instance, when a time delay (𝜏) is embedded into a time series 223 

𝑥(𝑘), 𝑘 = 1,2, … , 𝑁, then a reconstructed phase space vector is formed which represents a set of 224 

delay vectors (DVs) of a given dimension. 225 

    𝑋(𝑘) = [𝑋𝑘−𝑚𝜏, … , 𝑋𝑘−𝜏]𝑇      (8)                                                                                  226 

Reconstructing the phase space, a set (𝜆𝑘) is generated by grouping those DVs that are with a 227 

certain Euclidean distance to DVs (𝑋(𝑘)).  For a given embedding dimension (𝑚), a measure of 228 

unpredictability 𝜎 ∗2 is computed over all pairwise Euclidean distance between delay vector as 229 

    𝑑(𝑖, 𝑗) = ‖𝑥(𝑖) − 𝑥(𝑗)‖   (𝑖 ≠ 𝑗)      (9)                                      230 

Then, sets 𝜆𝑘(𝑟𝑑) are generated as the sets which consist of all delay vectors that lie closer to 𝑥(𝑘) 231 

than a certain distance 𝑟𝑑. 232 

    𝜆𝑘(𝑟𝑑) = {𝑥(𝑖)‖𝑥(𝑘) − 𝑥(𝑖)‖ ≤ 𝑟𝑑}     (10)                                                233 

For every set 𝜆𝑘(𝑟𝑑), the variance of the corresponding target 𝜎 ∗2 (𝑟𝑑) is 234 

              𝜎 ∗2 (𝑟𝑑) =
1

𝑁
∑ 𝜎𝑘

2(𝑟𝑑)𝑁
𝑘=1

𝜎𝑘
       (11)                                          235 

where 𝜎 ∗2 (𝑟𝑑) is target variance against the standardized distance indicating that Euclidean 236 

distance will be varied in a manner standardized with respect to the distribution of pairwise 237 

distance between DVs. Iterative Amplitude Adjusted Fourier Transform (IAAFT) method is used 238 
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to generate the surrogate time series (Kugiumtzis, 1999). If the surrogate time series yields DV 239 

plots similar to the original time series and the scattered plot coincides with the bisector line, then 240 

the original time series can be regarded as linear (Theiler et al. 1992; Gautama et al.2004; Imitaz, 241 

2010; Jaksic et al. 2016). On the other hand, if the surrogate time series yield DV plot that is not 242 

similar to that of the original time series, then the deviation from the bisector lines indicates 243 

nonlinearity. The deviation from the bisector lines grows as a result of the degree of nonlinearity 244 

in the observational time series. 245 

     𝑡𝐷𝑉𝑉 = √〈(𝜎∗2(𝑟𝑑) −
∑ 𝜎𝑠,𝑙

∗2𝑁
𝑖=1

𝑁𝑠
)〉        (12)                       246 

where 𝜎𝑠,𝑖
∗2(𝑟𝑑) is the target variance at the span 𝑟𝑑 for the  𝑖𝑡ℎ surrogate. To carry out the test for 247 

nonlinearity in the 𝐷𝑠𝑡 signals, 𝑚 = 3 and 𝑛𝑑 = 3, the number of reference DVs=200, and number 248 

of surrogate, 𝑁𝑠 = 25 was used in all the analysis. Then we examined the nonlinearity response at 249 

minor, moderate and major geomagnetic storm.  250 
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3.0 Results 251 

In this study, 𝐷𝑠𝑡 and 𝑉𝐵𝑠 time series from January to December was analyzed for the period of 252 

nine years (2008 to 2016) to examine the chaotic and dynamical complexity response in the 253 

magnetospheric dynamics during minor, moderate and major geomagnetic storms. Figures (1) & 254 

(2), display the samples of fluctuation signatures of 𝐷𝑠𝑡  and 𝑉𝐵𝑠 signals classified as (a): minor, 255 

(b): moderate and (c): major geomagnetic storm. The plot of Average Mutual information against 256 

time delay (𝜏) shown in Figure (3) depicts that the first local minimum of the AMI function was 257 

found to be roughly 𝜏 = 15hr. Furthermore, we notice that the values of 𝜏 near this value of (~15hr) 258 

maintain constancy for both 𝑉𝐵𝑠 and 𝐷𝑠𝑡. Also, in figure (4), we display the plot of false nearest 259 

neighbour against embedding dimension (𝑚). It is obvious that a decrease in false nearest 260 

neighbour when increasing the embedding dimension drop steeply to zero at the optimal 261 

dimension(𝑚 = 5), thereafter the false neighbours stabilizes at that 𝑚 = 5 for 𝑉𝐵𝑠 and 𝐷𝑠𝑡. 262 

Therefore, 𝑚 = 5 and 𝜏 = 15hr was used for the computation of MLE at different categories of 263 

geomagnetic storm, while 𝑚 = 3 and 𝜏 = 1hr are applied for the computation of ApEn values.   264 

The results of MLE (bar plot) and ApEn (stem plot) for 𝐷𝑠𝑡 at minor, moderate and major 265 

geomagnetic storms are shown in Figure 5. During minor geomagnetic storms, we notice that the 266 

value of MLE ranges between 0.07 and 0.14 for most of the months classified as minor 267 

geomagnetic storm. Similarly, the ApEn (stem plot) ranges between 0.59 and 0.83 for most of the 268 

months categorized as minor geomagnetic storm. It is obvious that strong chaotic behaviour with 269 

high dynamical complexity are associated with minor geomagnetic storms. During moderate 270 

geomagnetic storm, (see b part of figure 5), we observe a reduction in MLE values (0.04~0.07) 271 

compared to minor geomagnetic storm periods. Within the observed values of MLE during 272 

moderate geomagnetic storms, we found a slight rise of MLE in the following months (Mar 2008), 273 
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(Apr 2011), (Jan 2012, Feb 2012, Apr 2012), (Jul 2015, Aug 2015, Sept 2015, Oct2015, Nov 2015) 274 

and (Nov 2016). Also, the ApEn revealed a reduction in values between 0.44 and 0.57 at moderate 275 

geomagnetic storms. The lowest values of ApEn were noticed in the following months: May 2010, 276 

Mar 2011, and Jan 2016. During major geomagnetic storm as shown in Figure 5, the minimum 277 

and maximum value of MLE is respectively 0.03 and 0.04 implying a very strong reduction of 278 

chaotic behaviour compared with minor and moderate geomagnetic storm. The lowest values of 279 

MLE were found in the months of Jul 2012, Jun 2013 and Mar 2015. Interestingly, further 280 

reduction in ApEn value (0.29~0.40) was as well noticed during this period. Thus, during major 281 

geomagnetic storm, chaotic behaviour and dynamical complexity subsides significantly. 282 

We display in Figure 6, the results of MLE and ApEn computation for the 𝑉𝐵𝑠 which has been 283 

categorized according to the periods of minor, moderate and major geomagnetic storm. The values 284 

of MLE (bar plot) were between 0.06 and 0.20 for 𝑉𝐵𝑠. The result obtained indicate strong chaotic 285 

behaviour with no significant difference in chaoticity during minor, moderate and major 286 

geomagnetic storm. Similarly, the results obtained from computation of ApEn (stem plot) for 𝑉𝐵𝑠 287 

depict a minimum value of 0.60 and peak value of 0.87 as shown in Figure 6. The ApEn values of 288 

𝑉𝐵𝑠 indicates high dynamical complexity response with no significant difference during the 289 

periods of the three categories of geomagnetic storm investigated.  290 

The test for nonlinearity in the 𝐷𝑠𝑡 signals during minor, moderate and major geomagnetic storms 291 

was analyzed through the DVV analysis. Shown in Figure 9 is the DVV plot and DVV scatter plot 292 

during minor geomagnetic storm for January 2009 and January 2014. We found that the DVV 293 

plots during minor geomagnetic storms reveals a slight separation between the original and 294 

surrogate data. Also, the DVV scatter plots shows a slight deviation from the bisector line between 295 

the original and surrogate data which implies nonlinearity. Also, during moderate geomagnetic 296 
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storm, we notice that the DVV plot depicts a wide separation between the original and the surrogate 297 

data. Also, a large deviation from the bisector line between the original and the surrogate data was 298 

also noticed in the DVV scatter plot as shown in Figure (8) thus indicating nonlinearity. In Figure 299 

(9), we display samples of DVV plot and DVV scatter plot during major geomagnetic storm for 300 

Oct 2011 and Dec 2015. The original and the surrogate data showed a very large separation in the 301 

DVV plot during major geomagnetic storm. While the DVV scatter plot depict the greatest 302 

deviation from the bisector line between the original and the surrogate data which is also an 303 

indication of nonlinearity.  304 

4.0 Discussion of Results 305 

4.1 The chaotic and dynamical complexity response in 𝑫𝒔𝒕 at minor, moderate and major 306 

geomagnetic storms 307 

Our result shows that the values of MLE for 𝐷𝑠𝑡 during minor geomagnetic storm are prevalent, 308 

indicating significant chaotic response during minor geomagnetic stormy periods (bar plot, Figure 309 

5). This increase in chaotic behaviour for 𝐷𝑠𝑡 signals during minor geomagnetic storm may be as 310 

a result of asymmetry features in the longitudinal distribution of solar source region for the CMEs 311 

signatures responsible for the development of geomagnetic storms (Zhang et al., 2002; Watari, 312 

2017). Therefore, we suspect that the increase in chaotic behaviour during minor geomagnetic 313 

storm is strongly associated with the longitudinal distribution of solar source region for CMEs. 314 

For most of these periods of moderate geomagnetic storms, the values of MLE decreases compared 315 

to minor geomagnetic storms. This revealed that as geomagnetic stormy events build up, the level 316 

of unpredictability and sensitive dependence on initial condition (chaos) begin to decrease 317 

(Lorentz, 1963; Stogaz, 1994). The chaotic behaviour during major geomagnetic storm decreases 318 

significantly compared with moderate geomagnetic storm. The reduction in chaotic response 319 
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during moderate and its further declines at major geomagnetic storm may be attributed to the 320 

disturbance in the interplanetary medium driven by solar corona mass ejection (CMEs) or co-321 

rotating interaction region of the solar wind with the magnetosphere (Tsurutani et al. 2003). 322 

Notably, the dynamics of the solar wind-magnetospheric interaction are dissipative chaotic in 323 

nature (Pavlos, 2012); and, the electrodynamics of the magnetosphere due to the flux of 324 

interplanetary electric fields had a significant impact on the state of the chaotic signatures. For 325 

instance, the observation of strong chaotic behaviour during minor geomagnetic storm suggests 326 

that the dynamics was characterized by a weak magnetospheric disturbance. While the reduction 327 

in chaotic behaviour at moderate and major geomagnetic storm period reveals the dynamical 328 

features with regards to when a strong magnetospheric disturbance begins to emerge. Therefore, 329 

our observation of chaotic signatures at different categories of geomagnetic storm has potential 330 

capacity to give useful diagnostic information about impending space weather events. It is 331 

important to note that the features of 𝐷𝑠𝑡 chaotic behaviour at different categories of geomagnetic 332 

storm has not been reported in the literature. For example, previous study of Balasis et al. (2009, 333 

2011) investigate dynamical complexity behaviour using different entropy measures and revealed 334 

the existence of low dynamical complexity in the magnetospheric dynamics and attributed it to 335 

ongoing large magnetospheric disturbance (major geomagnetic storm). The work of Balasis et al. 336 

(2009, 2011) where certain dynamical characteristic evolved in the 𝐷𝑠𝑡  signal was revealed was 337 

limited to one year data (2001). It is worthy to note that the year 2001, according to sunspot 338 

variations is a period of high solar activity during solar cycle 23. It is characterized by numerous 339 

and strong solar eruptions that were followed by significant magnetic storm activities. This 340 

confirms that on most of the days in year 2001, the geomagnetic activity is strongly associated 341 

with major geomagnetic storm. The confirmation of low dynamical complexity response in the 𝐷𝑠𝑡 342 
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signal during major geomagnetic storm agree with our current study. However, the idea of 343 

comparing the dynamical complexity behaviour at different categories of geomagnetic storm and 344 

reveal its chaotic features was not reported. This is the major reason why our present investigation 345 

is crucial to the understanding of the level of chaos and dynamical complexity involved during 346 

different categories of geomagnetic storm. As an extension to a year investigation done by Balasis 347 

et al. (2009, 2011) during a major geomagnetic storm, we further investigated nine years data of 348 

𝐷𝑠𝑡  that covered minor, moderate and major geomagnetic storm (see figure 5, stem plots) and 349 

unveiled their dynamical complexity behaviour. During major geomagnetic stormy periods, we 350 

found that the ApEn values decrease significantly, indicating reduction in the dynamical 351 

complexity behaviour. This is in agreement with the low dynamical complexity reported by Balasis 352 

et al. (2009, 2011) during a major geomagnetic period. Finally, based on the method of DVV 353 

analysis, we found that test of nonlinearity in the 𝐷𝑠𝑡 time series during major geomagnetic storm 354 

reveals the strongest nonlinearity features. 355 

4.2 The chaotic and dynamical complexity behaviour in the 𝑽𝑩𝒔 as input signals. 356 

The results of the MLE values for 𝑉𝐵𝑠 revealed a strong chaotic behaviour during the three 357 

categories of geomagnetic storm. Comparing these MLE values during minor to those observed 358 

during moderate and major geomagnetic storm, the result obtained did not indicate any significant 359 

difference in chaoticity (bar plots, Figure 6). Also, the ApEn values of  𝑉𝐵𝑠  during the periods 360 

associated with minor, moderate and major geomagnetic storm revealed high dynamical 361 

complexity behaviour with no significant difference between the three categories of geomagnetic 362 

storm investigated. These observation of high chaotic and dynamical complexity behaviour in the 363 

dynamics of 𝑉𝐵𝑠 may be due to interplanetary discontinuities cause by the abrupt changes in the 364 

interplanetary magnetic field direction and plasma parameters (Tsurutani et al. 2010). Also, the 365 
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indication of high chaotic and dynamical complexity behaviour in 𝑉𝐵𝑠 signifies that the solar wind 366 

electric field is stochastic in nature. It is worth mentioning that the dynamical complexity 367 

behaviour for 𝑉𝐵𝑠 is different from what was observed for 𝐷𝑠𝑡  time series data. For instance, our 368 

results for 𝐷𝑠𝑡 times series revealed that the chaotic and dynamical complexity behaviour of the 369 

magnetospheric dynamics are high during minor geomagnetic storm, reduce at moderate 370 

geomagnetic storm and further decline during major geomagnetic storm. While the 𝑉𝐵𝑠 signal 371 

revealed a high chaotic and dynamical complexity behaviour at all the categories of geomagnetic 372 

storm period.  Therefore, these dynamical features obtained in the 𝑉𝐵𝑠 as input signal and the 𝐷𝑠𝑡  373 

as the output in describing the magnetosphere as a non-autonomous system further support the 374 

finding of Donner et al. (2019) that found increased or not changed in dynamical complexity 375 

behaviour for  𝑉𝐵𝑠 and low dynamical complexity behaviour during storm using recurrence 376 

method. Thus, suggesting that the magnetospheric dynamics is nonlinear and the solar wind 377 

dynamics is consistently stochastic in nature. 378 

5.0 Conclusions 379 

This work has examined the magnetospheric chaos and dynamical complexity behaviour in the 380 

disturbance storm time (𝐷𝑠𝑡) and solar wind electric field (𝑉𝐵𝑠) as input during different categories 381 

of geomagnetic storm. The chaotic and dynamical complexity behaviour at minor, moderate and 382 

major geomagnetic storm for solar wind electric field (𝑉𝐵𝑠) as input and 𝐷𝑠𝑡 as output of the 383 

magnetospheric system were analyzed for the period of 9 years using nonlinear dynamics tools. 384 

Our analysis has shown a noticeable trend of these nonlinear parameters (MLE and ApEn) and the 385 

categories of geomagnetic storm (minor, moderate and major). The MLE and ApEn values of the 386 

𝐷𝑠𝑡  have indicated that the chaotic and dynamical complexity behaviour are high during minor 387 

geomagnetic storm, low during moderate geomagnetic storm and further reduced during major 388 
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geomagnetic storm. The values of MLE and ApEn obtained from 𝑉𝐵𝑠 indicate that chaotic and 389 

dynamical complexity are high with no significant difference during the periods of minor, 390 

moderate and major geomagnetic storm. Finally, the test for nonlinearity in the 𝐷𝑠𝑡 time series 391 

during major geomagnetic storm reveals the strongest nonlinearity features. Based on these 392 

findings, the dynamical features obtained in the 𝑉𝐵𝑠 as input and 𝐷𝑠𝑡 as output of the 393 

magnetospheric system suggest that the magnetospheric dynamics is nonlinear and the solar wind 394 

dynamics is consistently stochastic in nature. 395 
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 579 

Figure 1: Samples of Dst signals classified as (a) Minor, (b) Moderate and (c) Major geomagnetic    580 

storm 581 

 582 

Figure 2: Samples of  (𝑉𝐵𝑠) during (a) Minor, (b) Moderate and (c) Major geomagnetic storm 583 

period. 584 
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                                                                 585 

          586 

     Figure 3: The plot AMI against embedding time delay (𝜏)        587 

                    588 

Figure 4: The plot of FNN against embedding dimension (𝑚) 589 
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 590 

Figure 5: The MLE (bar plot) and ApEn (stem plot) of Dst at: (a) Minor, (b) Moderate and (c) 591 

Major geomagnetic storm 592 

 593 
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 600 

Figure 6: The MLE (bar plot) and ApEn (stem plot) of solar wind electric field (𝑉𝐵𝑠) during: (a) 601 

Minor, (b) Moderate and (c) Major  geomagnetic storm 602 
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 616 

Figure 7: The DVV plot and Scatter plot during minor geomagnetic storm for January 2009 and 617 

January 2014. 618 

 619 
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 621 

Figure 8: The DVV plot and Scatter plot during  moderate geomagnetic storm for March 2011 and 622 

January 2015. 623 
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 625 

Figure 9: The DVV plot and Scatter plot during major geomagnetic storm for October 2011 and 626 

December 2015. 627 

 628 
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