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Abstract

In this study, we examine the magnetospheric chaos and dynamical complexity response to the
disturbance storm time (D) and solar wind electric field (VBg) during different categories of
geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the
D,; and VB, are analyzed for the period of nine years using nonlinear dynamics tools (Maximal
Lyapunov Exponent, MLE, Approximate Entropy, ApEn and Delay Vector Variance, DVV). We
found a significant trend between each nonlinear parameter and the categories of geomagnetic
storm. The MLE and ApEn values of the Dy, indicate that chaotic and dynamical complexity
responses are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and
decline further during major geomagnetic storms. However, the MLE and ApEn values obtained
from VB, indicate that chaotic and dynamical complexity responses are high with no significant
difference between the periods that are associated with minor, moderate and major geomagnetic
storms. The test for nonlinearity in the D, time series during major geomagnetic storm reveals the
strongest nonlinearity features. Based on these findings, the dynamical features obtained in the
VB, as input and D, as output of the magnetospheric system suggest that the magnetospheric

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature.

Keywords: D, signals, Solar wind electric field (VBs) signals, Geomagnetic storm, Chaotic

behaviour, Dynamical complexity, Nonlinearity.
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1.0 Introduction

The response of chaos and dynamical complexity behaviour with respect to magnetospheric
dynamics varies (Tsurutani et al., 1990). This is due to changes in the interplanetary electric fields
imposed on the magnetopause and those penetrating the inner magnetosphere and sustaining
convection thereby initiating geomagnetic storm (Dungey, 1961; Pavlos et al., 1992). A prolonged
southward turning of interplanetary magnetic field (IMF,B,), which indicates that solar wind-
magnetosphere coupling is in-progress was confirmed on many occasions for which such
geomagnetic storm was driven by Corotating Interaction Regions (CIRs), or by the sheath
preceding an interplanetary coronal mass ejection (ICME) or by a combination of the sheath and
an ICME magnetic cloud (Gonzalez and Tsurutani, 1987; Tsurutani and Gonzalez, 1987
Tsurutani et al., 1988; Cowley, 1995; Tsutomu, 2002; Yurchyshyn et al., 2004; Kozyra et al., 2006;
Echer et al., 2008; Meng et al., 2019; Tsurutani et al., 2020). The sporadic magnetic reconnection
between the southward component of the Alfven waves and the earth’s magnetopause leads to
isolated substorms/convection events such as the high intensity long-duration continuous AE
activity (HILDCAA) which are shown to last from days to weeks (Akasofu, 1964; Tsurutani et al.,
1972; Meng et al., 1973; Tsurutani and Gonzalez, 1987; Hajra et al., 2013; Liou et al., 2013;
Mendes et al., 2017; Hajra and Tsurutani, 2018; Tsurutani and Hajra, 2021). Notably, the
introduction of Disturbance Storm Time (Ds;) index (Sugiura, 1964; Sugiura and Kamei, 1991)
unveiled the quantitative measure of the total energy of the ring current particles. Therefore, the
Dy; index remains one of the most popular global indicators that can precisely reveal the severity

of a geomagnetic storm (Dessler and Parker, 1959).

The D,; fluctuations exhibit different signatures for different categories of geomagnetic storm.

Ordinarily, one can easily anticipate that fluctuations in a Dy, signal appear chaotic and complex.
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These may arise from the changes in the interplanetary electric fields driven by the solar wind-
magnetospheric coupling processes. At different categories of geomagnetic storm, fluctuations in
the Dy, signals differ (Oludehinwa et al., 2018). One obvious reason is that as the intensity of the
geomagnetic storm increases, the fluctuation behaviour in the Dy, signal becomes more complex
and nonlinear in nature. It has been established that the electrodynamic response of the
magnetosphere to solar wind drivers are non-autonomous in nature (Price and Prichard, 1993;
Price et al., 1994; Johnson and Wings, 2005). Therefore, the chaotic analysis of the
magnetospheric time series must be related to the concept of input-output dynamical process
(Russell et al., 1974; Burton et al.,1975; Gonzalez et al., 1989; Gonzalez et al., 1994).
Consequently, it is necessary to examine the chaotic behaviour of the solar wind electric field
(VBy) as input signals and the magnetospheric activity index (Dy;) as output during different

categories of geomagnetic storms.

Several works have been presented on the chaotic and dynamical complexity behaviour of the
magnetospheric dynamics based on autonomous concept, i.e using the time series data of
magnetospheric activity alone such as auroral electrojet (AE), Amplitude Lower (AL) and D,
index (Vassiliadis et al.,1990; Baker and Klimas, 1990; Vassiliadis et al.,1991; Shan et al., 1991,
Pavlos et al., 1994; Klimas et al., 1996; Valdivia et al., 2005; Mendes et al., 2017; Consolini,
2018). They found evidence of low-dimensional chaos in the magnetospheric dynamics. For
instance, the report by Vassiliadis et al. (1991) shows that the computation of Lyapunov exponent
for AL index time series gives a positive value of Lyapunov exponent indicating the presence of
chaos in the magnetospheric dynamics. Unnikrishnan, (2008) studied the deterministic chaotic
behaviour in the magnetospheric dynamics under various physical conditions using AE index time

series and found that the seasonal mean value of Lyapunov exponent in winter season during quiet
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periods (0.7 + 0.11min~1) is higher than that of the stormy periods (0.36 &+ 0.09 min™1).
Balasis et al. (2006) examined the magnetospheric dynamics in the D, index time series from
pre-magnetic storm to magnetic storm period using fractal dynamics. They found that the transition
from anti-persistent to persistent behaviour indicates that the occurrence of an intense geomagnetic
storm is imminent. Balasis et al. (2009) further reveal the dynamical complexity behaviour in the
magnetospheric dynamics using various entropy measures. They reported a significant decrease in
dynamical complexity and an accession of persistency in the D, time series as the magnetic storm
approaches. Recently, Oludehinwa et al. (2018) examined the nonlinearity effects in Dy, signals
during minor, moderate and major geomagnetic storm using recurrence plots and recurrence
quantification analyses. They found that the dynamics of the Dy, signal is stochastic during minor

geomagnetic storm periods and deterministic as the geomagnetic storm increases.

Also, studies describing the solar wind and magnetosphere as a non-autonomous system have been
extensively investigated. Price et al. (1994) examine the nonlinear input-output analysis of AL
index and different combinations of interplanetary magnetic field (IMF) with solar wind
parameters as input functions. They found that only a few of the input combinations show any
evidence whatsoever for nonlinear coupling between the input and output for the interval
investigated. Pavlos et al. (1999) presented further evidence of magnetospheric chaos. They
compared the observational behaviour of the magnetospheric system with the results obtained by
analyzing different types of stochastic and deterministic input-output systems and asserted that a
low dimensional chaos is evident in magnetospheric dynamics. Devi et al. (2013) studied the
magnetospheric dynamics using AL index and the southward component of IMF(B,). They
observed that the magnetosphere and turbulent solar wind have values corresponding to nonlinear

dynamical system with chaotic behaviour. The modeling and forecasting approach have been
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applied to magnetospheric time series using nonlinear models (Valdivia et al., 1996; Vassiliadis et
al., 1999; Vassiliadis, 2006; Balikhin et al., 2010). These efforts have improved our understanding
that the concept of nonlinear dynamics can reveal some hidden dynamical information in the
observational time series. In addition to these nonlinear effects in Dy, signals, a measure of the
exponential divergence and convergence within the trajectories of a phase space known as
Maximal Lyapunov Exponent (MLE), which has the potential to depict the chaotic behavior in the
D,; and VB, time series during a minor, moderate and major geomagnetic storm have not been
investigated. In addition, to the best of our knowledge, computation of Approximate Entropy
(ApEn) that depicts the dynamical complexity behaviour during different categories of
geomagnetic storm has not been reported in the literature. The test for nonlinearity through delay
vector variance (DVV) analysis that reveals the nonlinearity features in Dg; and V Bg time series
during minor, moderate and major geomagnetic storms is not well known. It is worth to note that
understanding the dynamical characteristics in the Dg; and V B signals at different categories of
geomagnetic storms will provide useful diagnostic information to different conditions of space
weather phenomenon. Consequently, this study attempts to carry out comprehensive numerical
analyses to unfold the chaotic and dynamical complexity behaviour in the Dy, and V B; signals
during minor, moderate and major geomagnetic storm. In section 2, our methods of data
acquisition are described. Also, the nonlinear analysis that we employed in this investigation are

detailed. In section 3, we unveiled our results and engage the discussion of results in section 4.

2.0 Description of the Data and Nonlinear Dynamics

The Dy, index is derived by measurements from ground-based magnetic stations at low-latitudes
observatories around the world and depicts mainly the variation of the ring current, as well as the

Chapman-Ferraro Magnetopause currents, and tail currents to a lesser extent (Sugiura, 1964;
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Feldstein et al., 2005; Feldstein et al., 2006; Love and Gannon, 2009). Due to its global nature, Dg;
time series provides a measure of how intense a geomagnetic storm was (Dessel and Parker, 1959).
In this study, we considered D, data for the period of nine years from January to December

between 2008 and 2016 which were downloaded from the World Data Centre for Geomagnetism,

Kyoto, Japan (http://wdc.kugi-kyoto-u.ac.jp/Dstae/index.html). We use the classification of
geomagnetic storms as proposed by Gonzalez et al. (1994) such that Dy, index value in the ranges
0 < Dst < =50nT, —50nT < Dst < —100nT, —100nT < Dst < —250nT are classified as
minor, moderate and major geomagnetic storms respectively and each time series is being
classified based on its minimum Dy, value. The solar wind electric field (VB,) data are archived
from the National Aeronautics and Space Administration, Space Physics Facility

(http://omniweb.gsfc.nasa.gov). The sampling time of Dy, and V B, time series data was 1-hour. It

is well known that the dynamics of the solar wind contribute to the driving of the magnetosphere
(Burton et al. 1975). Furthermore, we took the solar wind electric field (V Bg) as the input signal
(Price and Prichard, 1993; Price et al., 1994). The VB, was categorized according to the periods
of minor, moderate and major geomagnetic storm. Then, the D;; and VB, time series were

subjected to a variety of nonlinear analytical tools explained as follow:

2.1 Phase Space Reconstruction and Observational time series

An observational time series can be defined as a sequence of scalar measurements of some
quantity, which is a function of the current state of the system taken at multiples of a fixed sampling
time. In nonlinear dynamics, the first step in analyzing an observational time series data is to
reconstruct an appropriate state space of the system. Takens (1981) and Mane (1981) stated that

one time series or a few simultaneous time series are converted to a sequence of vectors. This
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reconstructed phase space has all the dynamical characteristic of the real phase space provided the

time delay and embedding dimension are properly specified.
X(@) = [x(@t),x(t+1),x(t+27),.., x(t + (m — D71]T (1)

Where X(t) is the reconstructed phase space, x(t) is the original time series data, 7 is the time
delay and m is the embedding dimension. An appropriate choice of T and m are needed for the
reconstruction of phase space which is determined by average mutual information and false nearest

neighbor, respectively.
2.2 Average Mutual Information (AMI)

The method of Average Mutual Information (AMI) is one of the nonlinear techniques used to
determine the optimal time delay (7) required for phase space reconstruction in observational time
series. The time delay mutual information was proposed by Fraser and Swinney, (1986) instead of
an autocorrelation function. This method takes into account nonlinear correlations within the time
series data. It measures how much information can be predicted about one time series point, given

full information about the other. For instance, the mutual information between x; and x;
quantifies the information in state x;,.) under the assumption that information at the state x; is

known. The AMI for a time series, x(¢t;), i=1,2,...,,N is calculated as:

P(x(t)x(t;+T))
P(x(ty)) P(x(£;+T))

I(T) = Biey, ey P8, x(t; + T)) x log, | @)

where x(t;) is the ith element of the time series, T = kAt (k = 1,2, ..., kpmax), P(x(t;)) is the
probability density at x(t;), P(x(t;),x(t; +T)) is the joint probability density at the pair
x(t;), x(t; + T). The time delay (7) of the first minimum of AMI is chosen as optimal time delay

(Fraser and Swinney, 1986). Therefore, the AMI was applied to the Dg; and V B, time series and

Page 7 of 43



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

the plot of AMI versus time delay is shown in Figure (3). We notice that the AMI showed the first
local minimum at roughly t = 15hr. Furthermore, the values of t near this value of ~15hr
maintain constancy for both VB and Ds;. In the analysis T = 15hr was used as the optimal time

delay for the computation of maximal Lyapunov exponent.
2.3 False Nearest Neighbor (FNN)

In determining the optimal choice of embedding dimension(m), the false nearest neighbor method
was used in the study. The method was suggested by Kennel et al. (1992). The concept is based
on how the number of neighbors of a point along a signal trajectory changes with increasing
embedding dimension. With increasing embedding dimension, the false neighbor will no longer
be neighbors, therefore by examining how the number of neighbors changes as a function of
dimension, an appropriate embedding dimension can be determined. For instance, suppose we
have a one-dimensional time series. We can construct a time series y(t) of D-dimensional points

from the original one-dimensional time series x(t) as follows:

y(@) = (x(@),x(t+1),..,.x(t+ (D —11) 3)

where t and D are time delay and embedding dimension. Using the formular from Kennel et al.
(1992); Wallot and Monster, (2018), if we have a D-dimensional phase space and denote the rth
nearest neighbor of a coordinate vector y(t) by y™(t), then the square of the Euclidean distance

between y(t) and the rth nearest neighbor is:

D-1
R2(t,7) = Z [x(t + kt) — x (¢t + kn)]’ 4)
k=0
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Now applying the logic outlined above, we can go from a D-dimensional phase space to (D + 1)
dimensional phase space by time-delay embedding, adding a new coordinate to y(t), and ask what

is the squared distance between y(t) and the same rth nearest neighbor:
R3.,(t,7) = R3(t, 1) + [x(t + DT) — xM(t + Dr)]2 (5)

As explained above, if the one-dimensional time series is already properly embedded in D
dimensions, then the distance R between y(t) and the rth nearest neighbor should not change
appreciably by some distance criterion R;,;(i.e R < R;,;). Moreover, the distance of the nearest
neighbor when embedded into the next higher dimension relative to the size of the attractor should
be less than some criterion A;,;(i.e Rpy1 < Agp;). Doing this for the nearest neighbor of each
coordinate will result on many false nearest neighbors when embedding is insufficient or in few
(or no) false neighbors when embedding is sufficient. In the analysis, the FNN was applied to the
Dy; and V B, time series to detect the optimal value of embedding dimension(m). Figure (4) shows
a sample plot of the percentage of false nearest neighbor against embedding dimension in one of
the months under investigation (other months show similar results, thus for brevity we depict only
one of the results). We notice that the false nearest neighbor attains its minimum value at m > 5
indicating that embedding dimension (m) from m > 5 are optimal values. Therefore, m = 5 was

used for the computation of maximal Lyapunov exponent.
2.4 Maximal Lyapunov Exponent (MLE)

The Maximal Lyapunov Exponent (MLE) is one of the most popular nonlinear dynamics tool used
for detecting chaotic behaviour in a time series data. It describes how small changes in the state of
a system grow at an exponential rate and eventually dominate the behaviour. An important

indication of chaotic behavior of a dissipative deterministic system is the existence of a positive
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Lyapunov Exponent. A positive MLE signifies divergence of trajectories in one direction or
expansion of an initial volume in this direction. On the other hand, a negative MLE exponent
implies convergence of trajectories or contraction of volume along another direction. The
algorithm proposed by Wolf et al. (1985) for estimating MLE is employed to compute the chaotic
behavior of the Dy, and VB time series at minor, moderate and major geomagnetic storm. Other
methods of determining MLE includes Rosenstein’s method, Kantz’s method and so on. In this
study, the MLE at minor, moderate and major geomagnetic storms periods was computed with
m = 5 and T = 15hr as shown in figures (5 & 6-bar plots) for D, and VB. The calculation of
MLE is explained as follows: given a sequence of vector x(t), an m-dimensional phase space is

formed from the observational time series through embedding theorem as

{x(®),x(t+71),..x(t+ (m—1)71)} (6)

where m and t are as defined earlier, after reconstructing the observational time series, the
algorithm locates the nearest neighbor (in Euclidean sense) to the initial point {x(t,), ..., x(ty, +
(m — 1)t} and denote the distance between these two points L(t,). At a later point ¢t;, the initial

length will have evolved to length L'(t;). Then the MLE is calculated as:

1

M L' (tx)
Zk=1 logZ L(tk—l) (7)

1=

tm—to

M is the total number of replacement steps. We look for a new data point that satisfies two criteria
reasonably well: its separation, L(t;), from the evolved fiducial point is small. If an adequate
replacement point cannot be found, we retain the points that were being used. This procedure is

repeated until the fiducial trajectory has traversed the entire data.
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2.5 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is one of the nonlinear dynamics tools that measure the dynamical
complexity in observational time series. The concept was proposed by Pincus, (1991) which
provides a generalized measure of regularity, such that it accounts for the logarithm likehood in
the observational time series. For instance, a dataset of length, N, that repeat itself for m points
within a boundary will again repeat itself for m + 1 points. Because of its computational
advantage, ApEn has been widely used in many areas of disciplines to study dynamical complexity
(Pincus and Kalman (2004); Pincus and Goldberger (1994); McKinley et al. (2011); Kannathan et
al. (2005); Balasis et al. (2009); Shujuan and Weidong, (2010); Moore and Marchant (2017)). The

ApEn is computed using the formula below:

ApEn(m,7,N) = ! N mHlog ™ (1) — %Zﬁv:}mlog cm(r) (8)

N-m+1 -m

1
N-m+1

where ¢/ (1) = YIS 0(r — ||x; — x5]|) is the correlation integral, m is the embedding
dimension and r is the tolerance. To compute the ApEn for the Dy; and V B, time series classified
as minor, moderate and major geomagnetic storm from 2008 to 2016, we choose (m = 3,7 =
1hr). We refer the works of Pincus, (1991); Kannathal et al. (2005); and Balasis et al. (2009) to

interested readers where all the computational steps regarding ApEn were explained in details.

Figures (5 & 6) depict the stem plot of ApEn for Dy, and (VB;) from 2008 to 2016.
2.6 Delay Vector Variance (DVV) analysis

The Delay Vector Variance (DVV) is a unified approach in analyzing and testing for nonlinearity
in a time series (Gautama et al., 2004; Mandic et al., 2007). The basic idea of the DVV is that, if

two delay vectors of a predictable signal are close to each other in terms of the Euclidean distance,
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they should have similar target. For instance, when a time delay () is embedded into a time series
x(k), k =1,2,...,N, then a reconstructed phase space vector is formed which represents a set of

delay vectors (DVs) of a given dimension.
X(k) = [Xk—m‘n PXk—T]T (9)

Reconstructing the phase space, a set (4;) is generated by grouping those DVs that are with a
certain Euclidean distance to DVs (X(k)). For a given embedding dimension (m), a measure of

unpredictability o =2 is computed over all pairwise Euclidean distance between delay vector as

d(i,j) = llx@ —xMOIl ¢ #)) (10)

Then, sets A, () are generated as the sets which consist of all delay vectors that lie closer to x (k)

than a certain distance r.

A (ra) = x@llx(k) — x|l < 74} (11)
For every set A, (1), the variance of the corresponding target o *2 (1) is

1$N 2
NZk:l Uk(rd)

o ** (rg) = o

(12)

where o *2 (r;) is target variance against the standardized distance indicating that Euclidean
distance will be varied in a manner standardized with respect to the distribution of pairwise
distance between DVs. Iterative Amplitude Adjusted Fourier Transform (IAAFT) method is used
to generate the surrogate time series (Kugiumtzis, 1999). If the surrogate time series yields DV
plots similar to the original time series and the scattered plot coincides with the bisector line, then
the original time series can be regarded as linear (Theiler et al., 1992; Gautama et al., 2004; Imitaz,

2010; Jaksic et al., 2016). On the other hand, if the surrogate time series yields DV plot that is not
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similar to that of the original time series, then the deviation from the bisector lines indicates
nonlinearity. The deviation from the bisector lines grows as a result of the degree of nonlinearity

in the observational time series.

ZN 0_*2

7 = [0 () 22D (13)
where as*f (rp) is the target variance at the span r, for the i*" surrogate. To carry out the test for
nonlinearity in the D, signals, m = 3 and n; = 3, the number of reference DVs=200, and number

of surrogate, N, = 25 was used in all the analysis. Then we examined the nonlinearity response at

minor, moderate and major geomagnetic storm.
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3.0 Results

In this study, Dg; and VB, time series from January to December were analyzed for the period of
nine years (2008 to 2016) to examine the chaotic and dynamical complexity response in the
magnetospheric dynamics during minor, moderate and major geomagnetic storms. Figures (1) &
(2), display the samples of fluctuation signatures of Dy, and V B, signals classified as (a): minor,
(b): moderate and (c): major geomagnetic storms. The plot of Average Mutual information against
time delay () shown in Figure (3) depicts that the first local minimum of the AMI function was
found to be roughly at T = 15hr. Furthermore, we notice that the values of T near this value of
(~15hr) maintain constancy for both VB, and Ds;. Also, in Figure (4), we display the plot of the
percentage of false nearest neighbor against embedding dimension (m). It is obvious that a
decrease in false nearest neighbor when increasing the embedding dimension drop steeply to zero
at the optimal dimension(m = 5), thereafter the false neighbors stabilizes at that m = 5 for VB,
and Dg;. Therefore, m =5 and 7 = 15hr was used for the computation of MLE at different
categories of geomagnetic storm, while m = 3 and 7 = 1hr are applied for the computation of

ApEn values.

The results of MLE (bar plot) and ApEn (stem plot) for Dy, at minor, moderate and major
geomagnetic storms are shown in Figure 5. During minor geomagnetic storms, we notice that the
value of MLE ranges between 0.07 and 0.14 for most of the months classified as minor
geomagnetic storm. Similarly, the ApEn (stem plot) ranges between 0.59 and 0.83. It is obvious
that strong chaotic behaviour with high dynamical complexity are associated with minor
geomagnetic storms. During moderate geomagnetic storms, (see b part of Figure 5), we observe a
reduction in MLE values (0.04 — 0.07) compared to minor geomagnetic storm periods. Within
the observed values of MLE during moderate geomagnetic storms, we found a slight rise of MLE
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in the following months (Mar 2008), (Apr 2011), (Jan 2012, Feb 2012, Apr 2012), (Jul 2015, Aug
2015, Sept 2015, Oct 2015, Nov 2015) and (Nov 2016). Also, the ApEn revealed a reduction in
values between 0.44 and 0.57 during moderate geomagnetic storms. The lowest values of ApEn
were noticed in the following months: May 2010, Mar 2011, and Jan 2016. During major
geomagnetic storms as shown in Figure 5, the minimum and maximum value of MLE is
respectively 0.03 and 0.04 implying a very strong reduction of chaotic behaviour compared with
minor and moderate geomagnetic storms. The lowest values of MLE were found in the months of
Jul 2012, Jun 2013 and Mar 2015. Interestingly, further reduction in ApEn value (0.29 — 0.40)
was as well noticed during this period. Thus, during major geomagnetic storms, chaotic behaviour

and dynamical complexity subside significantly.

We display in Figure 6, the results of MLE and ApEn computation for the VB which has been
categorized according to the periods of minor, moderate and major geomagnetic storms. The
values of MLE (bar plot) were between 0.06 and 0.20 for V B,. The result obtained indicate strong
chaotic behaviour with no significant difference in chaoticity during minor, moderate and major
geomagnetic storm. Similarly, the results obtained from computation of ApEn (stem plot) for VB,
depict a minimum value of 0.60 and peak value of 0.87 as shown in Figure 6. The ApEn values of
VB, indicates high dynamical complexity response with no significant difference during the

periods of the three categories of geomagnetic storm investigated.

The test for nonlinearity in the D, signals during minor, moderate and major geomagnetic storms
was analyzed through the DVV analysis. Shown in Figure 9 is the DVV plot and DVV scatter plot
during minor geomagnetic storm for January 2009 and January 2014. We found that the DVV
plots during minor geomagnetic storms reveals a slight separation between the original and

surrogate data. Also, the DVV scatter plots shows a slight deviation from the bisector line between
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the original and surrogate data which implies nonlinearity. Also, during moderate geomagnetic
storms, we notice that the DVV plot depicts a wide separation between the original and the
surrogate data. Also, a large deviation from the bisector line between the original and the surrogate
data was also noticed in the DVV scatter plot as shown in Figure (8) thus indicating nonlinearity.
In Figure (9), we display samples of DVV plot and DVV scatter plot during major geomagnetic
storm for Oct 2011 and Dec 2015. The original and the surrogate data showed a very large
separation in the DVV plot during major geomagnetic storm. While the DVV scatter plot depict
the greatest deviation from the bisector line between the original and the surrogate data which is
also an indication of nonlinearity. The DVV analysis of the VB, time series during minor, moderate
and major geomagnetic storms shown in Figures (10-12) revealed a separation between the original
and surrogate data with no significant difference between the periods of minor, moderate and major

geomagnetic storm.

4.0 Discussion of Results

4.1 The chaotic and dynamical complexity response in D¢, at minor, moderate and major

geomagnetic storms

Our result shows that the values of MLE for Dy, during minor geomagnetic storm are higher,
indicating significant chaotic response during minor geomagnetic stormy periods (bar plot, Figure
5). This increase in chaotic behaviour for Dy, signals during minor geomagnetic storms may be as
a result of asymmetry features in the longitudinal distribution of solar source region for the
Corotating Interaction Regions (CIR) signatures responsible for the development of geomagnetic
storms (Turner et al. 2006; Kozyra et al. 2006). CIR generated magnetic storms are generally
weaker than ICME/MC generated storms (Gonzalez et al., 1994; Tsurutani et al., 1995; Feldstein

et al., 2006; Richardson and Cane, 2011). Therefore, we suspect that the increase in chaotic
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behaviour during minor geomagnetic storms is strongly associated with the asymmetry features in
the longitudinal distribution of solar source region for the Corotating Interaction Regions (CIR)
signatures. For most of these periods of moderate geomagnetic storms, the values of MLE
decreases compared to minor geomagnetic storms. This revealed that as geomagnetic stormy
events build up, the level of unpredictability and sensitive dependence on initial condition (chaos)
begin to decrease (Lorentz, 1963; Stogaz, 1994). The chaotic behaviour during major geomagnetic
storms decreases significantly compared with moderate geomagnetic storms. The reduction in
chaotic response during moderate and its further declines at major geomagnetic storms may be
attributed to the disturbance in the interplanetary medium driven by sheath preceding an
interplanetary coronal mass ejection (ICME) or combination of the sheath and an ICME magnetic
cloud (Echer et al., 2008; Tsurutani et al., 2003; Meng et al., 2019). Notably, the dynamics of the
solar wind-magnetospheric interaction are dissipative chaotic in nature (Pavlos, 2012); and, the
electrodynamics of the magnetosphere due to the flux of interplanetary electric fields had a
significant impact on the state of the chaotic signatures. For instance, the observation of strong
chaotic behaviour during minor geomagnetic storms suggests that the dynamics was characterized
by a weak magnetospheric disturbance. While the reduction in chaotic behaviour at moderate and
major geomagnetic storm period reveals the dynamical features with regards to when a strong
magnetospheric disturbance begins to emerge. Therefore, our observation of chaotic signatures at
different categories of geomagnetic storm has potential capacity to give useful diagnostic
information about monitoring space weather events. It is important to note that the features of D,
chaotic behaviour at different categories of geomagnetic storm has not been reported in the
literature. For example, previous study of Balasis et al. (2009, 2011) investigate dynamical

complexity behaviour using different entropy measures and revealed the existence of low

Page 17 of 43



363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

dynamical complexity in the magnetospheric dynamics and attributed it to ongoing large
magnetospheric disturbance (major geomagnetic storm). The work of Balasis et al. (2009, 2011)
where certain dynamical characteristic evolved in the Dy, signal was revealed was limited to one
year data (2001). It is worthy to note that the year 2001, according to sunspot variations is a period
of high solar activity during solar cycle 23. It is characterized by numerous and strong solar
eruptions that were followed by significant magnetic storm activities. This confirms that on most
of the days in year 2001, the geomagnetic activity is strongly associated with major geomagnetic
storms. The confirmation of low dynamical complexity response in the D, signal during major
geomagnetic storms agree with our current study. However, the idea of comparing the dynamical
complexity behaviour at different categories of geomagnetic storms and reveal its chaotic features
was not reported. This is the major reason why our present investigation is crucial to the
understanding of the level of chaos and dynamical complexity involved during different categories
of geomagnetic storms. As an extension to the single-year investigation done by Balasis et al.
(2009, 2011) during a major geomagnetic storm, we further investigated nine years data of D,
that covered minor, moderate and major geomagnetic storms (see Figure 5, stem plots) and
unveiled their dynamical complexity behaviour. During major geomagnetic stormy periods, we
found that the ApEn values decrease significantly, indicating reduction in the dynamical
complexity behaviour. This is in agreement with the low dynamical complexity reported by Balasis
et al. (2009, 2011) during a major geomagnetic period. Finally, based on the method of DVV
analysis, we found that test of nonlinearity in the Dg; time series during major geomagnetic storms

reveals the strongest nonlinearity features.
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4.2 The chaotic and dynamical complexity behaviour in the VB as input signals.

The results of the MLE values for VB revealed a strong chaotic behaviour during the three
categories of geomagnetic storms. Comparing these MLE values during minor to those observed
during moderate and major geomagnetic storms, the result obtained did not indicate any significant
difference in chaoticity (bar plots, Figure 6). Also, the ApEn values of VB, during the periods
associated with minor, moderate and major geomagnetic storms revealed high dynamical
complexity behaviour with no significant difference between the three categories of geomagnetic
storms investigated. These observation of high chaotic and dynamical complexity behaviour in the
dynamics of VB, may be due to interplanetary discontinuities caused by the abrupt changes in the
interplanetary magnetic field direction and plasma parameters (Tsurutani et al., 2010). Also, the
indication of high chaotic and dynamical complexity behaviour in V B; signifies that the solar wind
electric field is stochastic in nature. The DVV analysis for VB, revealed nonlinearity features with
no significant difference between the minor, moderate and major geomagnetic storms. It is worth
mentioning that the dynamical complexity behaviour for V B is different from what was observed
for Dy, time series data. For instance, our results for D, times series revealed that the chaotic and
dynamical complexity behaviour of the magnetospheric dynamics are high during minor
geomagnetic storms, reduce at moderate geomagnetic storms and further decline during major
geomagnetic storms. While the VB, signal revealed a high chaotic and dynamical complexity
behaviour at all the categories of geomagnetic storm period. Therefore, these dynamical features
obtained in the V B as input signal and the Dy, as the output in describing the magnetosphere as a
non-autonomous system further support the finding of Donner et al. (2019) that found increased

or not changed in dynamical complexity behaviour for VB and low dynamical complexity
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behaviour during storm using recurrence method. Thus, suggesting that the magnetospheric

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature.

5.0 Conclusions

This work has examined the magnetospheric chaos and dynamical complexity behaviour in the
disturbance storm time (D,;) and solar wind electric field (V B) as input during different categories
of geomagnetic storms. The chaotic and dynamical complexity behaviour at minor, moderate and
major geomagnetic storms for solar wind electric field (VBy) as input and Dy, as output of the
magnetospheric system were analyzed for the period of 9 years using nonlinear dynamics tools.
Our analysis has shown a noticeable trend of these nonlinear parameters (MLE and ApEn) and the
categories of geomagnetic storm (minor, moderate and major). The MLE and ApEn values of the
D,; have indicated that the chaotic and dynamical complexity behaviour are high during minor
geomagnetic storms, low during moderate geomagnetic storms and further reduced during major
geomagnetic storms. The values of MLE and ApEn obtained from V B indicate that chaotic and
dynamical complexity are high with no significant difference during the periods of minor,
moderate and major geomagnetic storms. Finally, the test for nonlinearity in the D, time series
during major geomagnetic storms reveals the strongest nonlinearity features. Based on these
findings, the dynamical features obtained in the VB, as input and Dy as output of the
magnetospheric system suggest that the magnetospheric dynamics is nonlinear and the solar wind

dynamics is consistently stochastic in nature.
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713 Figure 7: The DVV plot and Scatter plot for Dy, during minor geomagnetic storm for January
714 2009 and January 2014.
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717  Figure 8: The DVV plot and Scatter plot for Dy, during moderate geomagnetic storm for March
718 2011 and January 2015.

719

Page 39 of 43



DVV Plot (October 2011 for Dst} DVV Scatter Plot (October 2011 for Dst}
1

1 -~
;/’
~ 0.8 & 0.8 2
plb. *E e
5 0.6 F @06
2 ©
® 0.4 S04
= =
g 5
* 0.2 —%— Original w 0.2
Surrogates
1] 0
-1 0 1 2 3 0 0.2 0.4 0.6 0.8 1
std. distance Original(c 2)
DVV Plot (December 2015 for Dst} DVV Scatter Plot (December 2015 for Dst}
1 1 —
;/’
~ 0.8 & 0.8 2
plb. *E e
L w
< 0.6 A ®os6
g ©
® 04 S04
= =
g 5
=02 —#— Original ¢ 0.2
Surmogates
0 0
-1 0 1 2 3 0 0.2 0.4 0.6 0.8 1
std. distance Original(c 2)

720

721 Figure 9: The DVV plot and Scatter plot for D,; during major geomagnetic storm for October
722 2011 and December 2015.
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730  Figure 11: The DVV plot and Scatter plot for VB, during moderate geomagnetic storm for March
731 2011 and January 2015.
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735  Figure 12: The DVV plot and Scatter plot for VB, during major geomagnetic storm for October
736 2011 and December 2015.
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