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Abstract

In this study, we examine the magnetospheric chaos and dynamical complexity response to the
disturbance storm time (D) and solar wind electric field (VBg) during different categories of
geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the
D,; and VB, are analyzed for the period of nine years using nonlinear dynamics tools (Maximal
Lyapunov Exponent, MLE, Approximate Entropy, ApEn and Delay Vector Variance, DVV). We
found a significant trend between each nonlinear parameter and the categories of geomagnetic
storm. The MLE and ApEn values of the Dy, indicate that chaotic and dynamical complexity
responses are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and
decline further during major geomagnetic storms. However, the MLE and ApEn values obtained
from V By indicate that chaotic and dynamical complexity response are high with no significant
difference between the periods that are associated with minor, moderate and major geomagnetic
storms. The test for nonlinearity in the D, time series during major geomagnetic storm reveals the
strongest nonlinearity features. Based on these findings, the dynamical features obtained in the
VB, as input and D, as output of the magnetospheric system suggest that the magnetospheric

dynamics is nonlinear and the solar wind dynamics is consistently stochastic in nature.

Keywords: D, signals, Solar wind electric field (VBs) signals, Geomagnetic storm, Chaotic

behaviour, Dynamical complexity, Nonlinearity.
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1.0 Introduction

The response of chaos and dynamical complexity behaviour with respect to magnetospheric
dynamics varies. This is due to changes in the interplanetary electric fields imposed on the
magnetopause and those penetrating the inner magnetosphere and sustaining convection thereby
initiating geomagnetic storm (Pavlos et al. 1992). A prolonged southward turning of interplanetary
magnetic field (IMF,B,), which indicates that solar wind-magnetosphere coupling is in-progress
was confirmed on many occasions for which such geomagnetic storm was driven by Corotating
Interaction Regions (CIRs), or by the sheath preceding an interplanetary coronal mass ejection
(ICME) or by a combination of the sheath and an ICME magnetic cloud (Russell et al. 1974;
Burton et al.1975; Gonzalez and Tsurutani, 1987; Tsurutani et al. 1988; Cowley, 1995; Tsutomu,
2002; Yurchyshyn et al. 2004; Kozyra et al. 2006; Echer et al. 2008; Meng et al. 2019; Tsurutani
et al. 2020). Notably, the introduction of Disturbance Storm Time (D) index (Sugiura, 1964;
Sugiura and Kamei, 1991) unveil the quantitative measure of the total energy of the ring current
particles. Therefore, the Dg; index remains one of the most popular global indicators that can

precisely reveal the severity of a geomagnetic storm (Dessler and Parker, 1959).

The Dg; fluctuations exhibit different signatures for different categories of geomagnetic storm.
Ordinarily, one can easily anticipate that fluctuations in a Dy, signal appear chaotic and complex.
These may arise from the changes in the interplanetary electric fields driven by the solar wind-
magnetospheric coupling processes. At different categories of geomagnetic storm, fluctuations in
the Dy, signals differ (Oludehinwa et al. 2018). One obvious reason is that as the intensity of the
geomagnetic storm increases, the fluctuation behaviour in the Dy, signal becomes more complex
and nonlinear in nature. It has been established that the electrodynamic response of the

magnetosphere to solar wind driver are non-autonomous in nature (Price and Prichard, 1993; Price
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et al. 1994; Johnson and Wings, 2005). Therefore, the chaotic analysis of the magnetospheric time
series must be related to the concept of input-output dynamical process. Consequently, it is
necessary to examine the chaotic behaviour of the solar wind electric field (VB;) as input signals
and the magnetospheric activity index (Dg;) as output during different categories of geomagnetic

storms.

Several works have been presented on the chaotic and dynamical complexity behaviour of the
magnetospheric dynamics based on autonomous concept, i.e using the time series data of
magnetospheric activity alone such as auroral electrojet (AE), Amplitude Lower (AL) and D,
index (Vassiliadis et al.1990; Baker and Klimas, 1990; Vassiliadis et al.1991; Shan et al. 1991;
Pavlos et al. 1994; Klimas et al. 1996; Valdivia et al. 2005; Mendes et al. 2017; Consolini, 2018).
They found evidence of low-dimensional chaos in the magnetospheric dynamics. For instance, the
report by Vassiliadis et al. (1991) shows that the computation of Lyapunov exponent for AL index
time series gives a positive value of Lyapunov exponent indicating the presence of chaos in the
magnetospheric dynamics. Unnikrishnan, (2008) studied the deterministic chaotic behaviour in the
magnetospheric dynamics under various physical conditions using AE index time series and found
that the seasonal mean value of Lyapunov exponent in winter season during quiet periods (0.7 +
0.11 min™1) is higher than that of the stormy periods (0.36 + 0.09 min~1). Balasis et al. (2006)
examined the magnetospheric dynamics in the Dy, index time series from pre-magnetic storm to
magnetic storm period using fractal dynamics. They found that the transition from anti-persistent
to persistent behaviour indicates that the occurrence of an intense geomagnetic storm is imminent.
Balasis et al. (2009) further reveal the dynamical complexity behaviour in the magnetospheric
dynamics using various entropy measures. They reported a significant decrease in dynamical

complexity and an accession of persistency in the D, time series as the magnetic storm
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approaches. Recently, Oludehinwa et al. (2018) examined the nonlinearity effects in Dy, signals
during minor, moderate and major geomagnetic storm using recurrence plot and recurrence
quantification analysis. They found that the dynamics of the D,; signal is stochastic during minor

geomagnetic storm periods and deterministic as the geomagnetic storm increases.

Also, studies describing the solar wind and magnetosphere as non-autonomous system have been
extensively investigated. Price et al. (1994) examine the nonlinear input-output analysis of AL
index and different combinations of interplanetary magnetic field (IMF) with solar wind
parameters as input function. They found that only a few of the input combinations show any
evidence whatsoever for nonlinear coupling between the input and output for the interval
investigated. Pavlos et al. (1999) presented further evidence of magnetospheric chaos. They
compared the observational behaviour of the magnetospheric system with the results obtained by
analyzing different types of stochastic and deterministic input-output systems and asserted that a
low dimensional chaos is evident in magnetospheric dynamics. Devi et al. (2013) studied the
magnetospheric dynamics using AL index with the southward component of IMF, (Bz) and
observed that the magnetosphere and turbulent solar wind have values corresponding to nonlinear
dynamical system with chaotic behaviour. The modeling and forecasting approach have been
applied to magnetospheric time series using nonlinear models (Valdivia et al. 1996; Vassiliadis et
al. 1999; Vassiliadis, 2006; Balikhin et al. 2010). These efforts have improved our understanding
with regards to the facts that nonlinear dynamics can reveal some hidden dynamical information
in the observational time series. In addition to these nonlinear effects in D,; signals, a measure of
the exponential divergence and convergence within the trajectories of a phase space known as
Maximal Lyapunov Exponent (MLE), which has the potential to depict the chaotic behavior in the

D,; and VB, time series during a minor, moderate and major geomagnetic storm have not been
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investigated. In addition, to the best of our knowledge, computation of Approximate Entropy
(ApEn) that depicts the dynamical complexity behaviour during different categories of
geomagnetic storm has not been reported in the literature. The test for nonlinearity through delay
vector variance (DVV) analysis that establishes the degree at which nonlinearity response in Dg;
time series during minor, moderate and major geomagnetic storms is not well known. It is worth
to note that understanding the dynamical characteristics in the Dy, and VB, signals at different
categories of geomagnetic storms will provide useful diagnostic information to different conditions
of space weather phenomenon. Consequently, this study attempts to carry out comprehensive
numerical analysis to unfold the chaotic and dynamical complexity behaviour in the Dy, and VBq
signals during minor, moderate and major geomagnetic storm. In section 2, our methods of data
acquisition are described. Also, the nonlinear analysis that we employed in this investigation are

detailed. In section 3, we unveiled our results and engage the discussion of results in section 5.

2.0 Description of the Data and Nonlinear Dynamics

The Dy, index is derived by measurements from ground-based magnetic stations at low-latitudes
observatories around the world and depicts mainly the variation of the ring current, as well as the
Chapman-Ferraro Magnetopause currents, and tail currents to a lesser extent (Sugiura, 1964; Love
and Gannon, 2009). Due to its global nature, D, time series provides a measure of how intense a
geomagnetic storm was (Dessel and Parker, 1959). In this study, we considered Ds; data for the
period of nine years from January to December between 2008 and 2016 which were downloaded

from the World Data Centre for Geomagnetism, Kyoto, Japan (http://wdc.kugi-kyoto-

u.ac.jp/Dstae/index.html). The sampling time of Dy, and VB, time series data was 1-hour. We use

the classification of geomagnetic storms as proposed by Gonzalez et al. (1994) such that D,; index
value in the ranges 0 < Dst < —50nT, —50nT < Dst < —100nT, —100nT < Dst < —250nT
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are classified as minor, moderate and major geomagnetic storms respectively and each month is
being classified based on its minimum Dst value. The solar wind electric field (VB,) data are
archived from the National Aeronautics and Space Administration, Space Physics Facility

(http://omniweb.gsfc.nasa.gov). It is well known that the dynamics of the solar wind contribute to

the driving of the magnetosphere (Burton et al. 1975). Furthermore, we took the solar wind electric
field (VBy) as the input signal (Price and Prichard, 1993; Price et al. 1994). The VB, was
categorized according to the periods of minor, moderate and major geomagnetic storm. Then, the
Dy; and VB time series were subjected to a variety of nonlinear analytical tools explained as

follow:
2.1 Phase Space Reconstruction and Observational time series

An observational time series can be defined as a sequence of scalar measurements of some
quantity, which is a function of the current state of the system taken at multiples of a fixed sampling
time. In nonlinear dynamics, the first step in analyzing an observational time series data is to
reconstruct an appropriate state space of the system. Takens, (1981) and Mane, (1981) stated that
one time series or a few simultaneous time series are converted to a sequence of vectors. This
reconstructed phase space has all the dynamical characteristic of the real phase space provided the

time delay and embedding dimension are properly specified.
X(@) = [x(t),x(t+1),x(t+21),..,x(t + (m — 1)71]” (1)

Where X(t) is the reconstructed phase space, x(t) is the original time series data, 7 is the time
delay and m is the embedding dimension. An appropriate choice of T and m are needed for the
reconstruction phase space which is determined by average mutual information and false nearest

neighbour respectively.
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2.2 Average Mutual Information (AMI)

The method of Average Mutual Information (AMI) is one of the nonlinear techniques used to
determine the optimal time delay (7) required for phase space reconstruction in observational time
series. The time delay mutual information was proposed by Fraser and Swinney, (1986) instead of
autocorrelation function. This method takes into account nonlinear correlations within the time
series data. It measures how much information can be predicted about one time series point, given

full information about the other. For instance, the mutual information between x; and x;)
quantifies the information in state x;,r) under the assumption that information at the state x; is

known. The AMI for a time series, x(¢t;), i=1,2,...,N is calculated as:

. PGx(E) X(E+T))
I(T) = Sies, ey P8, x(t; + T)) X log, [P(x s (tim)] @)

Where x(t;) is the ith element of the time series, T = kAt (k = 1,2, ..., kpax), P(x(t;)) is the
probability density at x(t;), P(x(t;),x(t; +T)) is the joint probability density at the pair
x(t;), x(t; + T). The time delay (7) of the first minimum of AMI is chosen as optimal time delay
(Fraser and Swinney, 1986). Therefore, the AMI was applied to the Dy, and V B, time series and
the plot of AMI against time delay is shown in Figure (3). We notice that the AMI showed the first
local minimum at roughly (tr = 15hr). Furthermore, the values of = near this value of (~15hr)
maintain constancy for both VBs and Dg;. In the analysis (t = 15hr) was used as the optimal

time delay for the computation of maximal Lyapunov exponent.
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2.3 False Nearest Neighbour (FNN)

In determining the optimal choice of embedding dimension(m), the false nearest neighbour
method was used in the study. It was suggested by Kennel et al. (1992). The concept is based on
how the number of neighbours of a point along a signal trajectory changes with increasing
embedding dimension. With increasing embedding dimension, the false neighbour will no longer
be neighbours, therefore by examining how the number of neighbours changes as a function of
dimension, an appropriate embedding dimension can be determined. For instance, suppose we
have a one-dimensional time series. We can construct a time series y(t) of D-dimensional points

from the original one-dimensional time series x(t) as follows:

y() = (x(t),x(t+1),..,.x(t+ (D —1)71) 3)

Where 7 and D are time delay and embedding dimension. Using the formular from Kennel et al.

(1992); Wallot and Monster, (2018). If we have a D-dimensional phase space and denote the rth

nearest neighbour of a coordinate vector y(t) by y ™ (t), then the square of the Euclidean distance

between y(t) and the rth nearest neighbor is:

R3(t,7) = Z [x(t + k) —x(t + kr)]2 (4)
k=0

Now applying the logic outlined above, we can go from a D-dimensional phase space to (D + 1)
dimensional phase space by time-delay embedding, adding a new coordinate to y(t), and ask what

is the squared distance between y(t) and the same rth nearest neighbour:

RZ,.(t,r) = RE(t,7) + [x(t + DT) —xD(t +DD)|°  (5)
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As explained above, if the one-dimensional time series is already properly embedded in D
dimensions, then the distance R between y(t) and the rth nearest neighbour should not
appreciably change by some distance criterion R;,;(i.e R < R;,;). Moreover, the distance of the
nearest neighbour when embedded into the next higher dimension relative to the size of the
attractor should be less than some criterion A;,;(i.e Rp+q1 < Ago). Doing this for the nearest
neighbour of each coordinate will result on many false nearest neighbours when embedding is
insufficient or in few (or no) false neighbours when embedding is sufficient. In the analysis, the
FNN was applied to the D;;, and VB time series to detect the optimal value of embedding
dimension(m). Figure (4) shows a sample plot of the percentage of false nearest neighbour against
embedding dimension in one of the months under investigation (other months show similar results,
thus for brevity we depict only one of the results). We notice that the false nearest neighbor attains
its minimum value at m > 5 indicating that embedding dimension (i) from m > 5 are optimal

values. Therefore, m = 5 was used for the computation of maximal Lyapunov exponent.

2.4 Maximal Lyapunov Exponent (MLE)

The Maximal Lyapunov Exponent (MLE) is one of the most popular nonlinear dynamics tool used
for detecting chaotic behaviour in a time series data. It describes how small changes in the state of
a system grow at an exponential rate and eventually dominate the behaviour. An important
indication of chaotic behavior of a dissipative deterministic system is the existence of a positive
Lyapunov Exponent. A positive MLE signifies divergence of trajectories in one direction or
expansion of an initial volume in this direction. On the other hand, a negative MLE exponent
implies convergence of trajectories or contraction of volume along another direction. The
algorithm proposed by Wolf et al. (1985) for estimating MLE is employed to compute the chaotic
behavior of the Dy, and V B time series at minor, moderate and major geomagnetic storm. Other
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methods of determining MLE includes Rosenstein’s method, Kantz’s method and so on. In this
study, the MLE at minor, moderate and major geomagnetic storms periods was computed with
m = 5 and T = 15hr as shown in figures (5 & 6-bar plots) for D, and VB. The calculation of
MLE is explained as follows: given a sequence of vector x(t), an m-dimensional phase space is

formed from the observational time series through embedding theorem as
{x(®),x(t + 7)., x(t+ (m —1)71)} (6)

Where m and 7 are as defined earlier, after reconstructing the observational time series, the
algorithm locates the nearest neighbour (in Euclidean sense) to the initial point {x(t,), ..., x(t, +
(m — 1)t} and denote the distance between these two points L(t,). At a later point ¢, the initial

length will have evolved to length L'(t;). Then the MLE is calculated as:

_ 1 M L' (ty)
A= ty—to kzll 2 L(tr-1) (7)

M is the total number of replacement steps. \We look for a new data point that satisfies two criteria
reasonably well: its separation, L(t;), from the evolved fiducial point is small. If an adequate
replacement point cannot be found, we retain the points that were being used. This procedure is

repeated until the fiducial trajectory has traversed the entire data

2.5 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is one of the nonlinear dynamics tools that measure the dynamical
complexity in observational time series. The concept was proposed by Pincus, (1991) which
provides a generalized measure of regularity, such that it accounts for the logarithm likehood in
the observational time series. For instance, a dataset of length, N, that repeat itself for m points

within a boundary will again repeat itself for m + 1 points. Because of its computational
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advantage, ApEn has been widely used in many areas of disciplines to study dynamical complexity
(Pincus and Kalman (2004); Pincus and Goldberger (1994); McKinley et al. (2011); Kannathan et
al. (2005); Balasis et al. (2009); Shujuan and Weidong, (2010); Moore and Marchant (2017)). The

ApEn is computed using the formula below:

ApEn(m,r,N) = 1 N ogC™(r) — ﬁzliv:_lmlog cl(r) (8)

N-m+1

1

where C*(r) = ——

YA O (r — ||x; — x5]|) is the correlation integral, m is the embedding

dimension and r is the tolerance. To compute the ApEn for the Dy; and V B, time series classified
as minor, moderate and major geomagnetic storm from 2008 to 2016, we choose (m = 3,7 =
1hr). We refer the works of Pincus, (1991); Kannathal et al. (2005); and Balasis et al. (2009) to
interested readers where all the computational steps regarding ApEn were explained in details.

Figures (5 & 6) depict the stem plot of ApEn for Dy, and (V B;) from 2008 to 2016.
2.6 Delay Vector Variance (DVV) analysis

The Delay Vector Variance (DVV) is a unified approach in analyzing and testing for nonlinearity
in a time series (Gautama et al. 2004; Mandic et al. 2007). The basic idea of the DVV is that, if
two delay vectors of a predictable signal are close to each other in terms of the Euclidean distance,
they should have similar target. For instance, when a time delay () is embedded into a time series
x(k), k =1,2,...,N, then a reconstructed phase space vector is formed which represents a set of

delay vectors (DVs) of a given dimension.

X(k) = [Xk—m‘n ---'Xk—T]T )
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Reconstructing the phase space, a set (4;) is generated by grouping those DVs that are with a
certain Euclidean distance to DVs (X(k)). For a given embedding dimension (m), a measure of

unpredictability o =2 is computed over all pairwise Euclidean distance between delay vector as

d(i,j) = llx@ —xDIl G #)) (10)

Then, sets 1, () are generated as the sets which consist of all delay vectors that lie closer to x (k)

than a certain distance ry.

A(ra) = x@llx(k) — x|l < 74} (11)
For every set A, (1), the variance of the corresponding target o *2 (ry) is

1 vN 2
N 2k=19k(Ta)

o %% (1g) = o

(12)

where o %2 (r;) is target variance against the standardized distance indicating that Euclidean
distance will be varied in a manner standardized with respect to the distribution of pairwise
distance between DVs. Iterative Amplitude Adjusted Fourier Transform (IAAFT) method is used
to generate the surrogate time series (Kugiumtzis, 1999). If the surrogate time series yields DV
plots similar to the original time series and the scattered plot coincides with the bisector line, then
the original time series can be regarded as linear (Theiler et al. 1992; Gautama et al.2004; Imitaz,
2010; Jaksic et al. 2016). On the other hand, if the surrogate time series yield DV plot that is not
similar to that of the original time series, then the deviation from the bisector lines indicates
nonlinearity. The deviation from the bisector lines grows as a result of the degree of nonlinearity

in the observational time series.
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where a;lz (r,) is the target variance at the span r, for the i*" surrogate. To carry out the test for
nonlinearity in the Dg; signals, m = 3 and n; = 3, the number of reference DVs=200, and number

of surrogate, Ny = 25 was used in all the analysis. Then we examined the nonlinearity response at

minor, moderate and major geomagnetic storm.
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3.0 Results

In this study, Dy, and V B time series from January to December was analyzed for the period of
nine years (2008 to 2016) to examine the chaotic and dynamical complexity response in the
magnetospheric dynamics during the month of minor, moderate and major geomagnetic storms
activity. Figures (1) & (2), display the samples of fluctuation signatures of Dy, and VB signals
classified as (a): the month of minor, (b): the month of moderate and (c): the month of major
geomagnetic storm activity. The plot of Average Mutual information against time delay (7) shown
in Figure (3) depicts that the first local minimum of the AMI function was found to be roughly at
T = 15hr. Furthermore, we notice that the values of t near this value of (~15hr) maintain constancy
for both VB, and Dg,. Also, in Figure (4), we display the plot of the percentage of false nearest
neighbour against embedding dimension (m). It is obvious that a decrease in false nearest
neighbour when increasing the embedding dimension drop steeply to zero at the optimal
dimension(m = 5), thereafter the false neighbours stabilizes at that m =5 for VB, and D,.
Therefore, m = 5 and T = 15hr was used for the computation of MLE at different categories of

geomagnetic storm, while m = 3 and T = 1hr are applied for the computation of ApEn values.

The results of MLE (bar plot) and ApEn (stem plot) for Dy, at the month of minor, moderate and
major geomagnetic storms activity are shown in Figure 5. During the month of minor geomagnetic
storms activity, we notice that the value of MLE ranges between 0.07 and 0.14 for most of the
months classified as minor geomagnetic storm. Similarly, the ApEn (stem plot) ranges between
0.59 and 0.83. It is obvious that strong chaotic behaviour with high dynamical complexity are
associated with minor geomagnetic storms. During the month of moderate geomagnetic storm
activity, (see b part of Figure 5), we observe a reduction in MLE values (0.04~0.07) compared
to minor geomagnetic storm periods. Within the observed values of MLE during the month of
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moderate geomagnetic storms activity, we found a slight rise of MLE in the following months
(Mar 2008), (Apr 2011), (Jan 2012, Feb 2012, Apr 2012), (Jul 2015, Aug 2015, Sept 2015,
Oct2015, Nov 2015) and (Nov 2016). Also, the ApEn revealed a reduction in values between 0.44
and 0.57 at the month of moderate geomagnetic storms activity. The lowest values of ApEn were
noticed in the following months: May 2010, Mar 2011, and Jan 2016. During major geomagnetic
storm as shown in Figure 5, the minimum and maximum value of MLE is respectively 0.03 and
0.04 implying a very strong reduction of chaotic behaviour compared with the month of minor and
moderate geomagnetic storm activity. The lowest values of MLE were found in the months of Jul
2012, Jun 2013 and Mar 2015. Interestingly, further reduction in ApEn value (0.29~0.40) was as
well noticed during this period. Thus, during the month of major geomagnetic storm activity,

chaotic behaviour and dynamical complexity subsides significantly.

We display in Figure 6, the results of MLE and ApEn computation for the VB which has been
categorized according to the month of minor, moderate and major geomagnetic storm activity. The
values of MLE (bar plot) were between 0.06 and 0.20 for V B,. The result obtained indicate strong
chaotic behaviour with no significant difference in chaoticity during minor, moderate and major
geomagnetic storm. Similarly, the results obtained from computation of ApEn (stem plot) for VB,
depict a minimum value of 0.60 and peak value of 0.87 as shown in Figure 6. The ApEn values of
VB, indicates high dynamical complexity response with no significant difference during the

periods of the three categories of geomagnetic storm investigated.

The test for nonlinearity in the Dy signals during the month of minor, moderate and major
geomagnetic storms activity was analyzed through the DVV analysis. Shown in Figure 9 is the
DVV plot and DVV scatter plot during minor geomagnetic storm for January 2009 and January

2014. We found that the DVV plots during the month of minor geomagnetic storms activity reveals
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a slight separation between the original and surrogate data. Also, the DVV scatter plots shows a
slight deviation from the bisector line between the original and surrogate data which implies
nonlinearity. Also, during the month of moderate geomagnetic storm activity, we notice that the
DVV plot depicts a wide separation between the original and the surrogate data. Also, a large
deviation from the bisector line between the original and the surrogate data was also noticed in the
DVV scatter plot as shown in Figure (8) thus indicating nonlinearity. In Figure (9), we display
samples of DVV plot and DVV scatter plot during major geomagnetic storm for Oct 2011 and Dec
2015. The original and the surrogate data showed a very large separation in the DVV plot during
the month of major geomagnetic storm activity. While the DVV scatter plot depict the greatest
deviation from the bisector line between the original and the surrogate data which is also an
indication of nonlinearity. The DVV analysis of the VB, time series during the month of minor,
moderate and major geomagnetic storm activity shown in Figures (10-12) revealed a slight
separation between the original and surrogate data with no significant difference between the

month of minor, moderate and major geomagnetic activity.

4.0 Discussion of Results

4.1 The chaotic and dynamical complexity response in D¢, at minor, moderate and major

geomagnetic storms

Our result shows that the values of MLE for Dy, during the month of minor geomagnetic storm
activity are higher, indicating significant chaotic response during minor geomagnetic stormy
periods (bar plot, Figure 5). This increase in chaotic behaviour for Dy, signals during minor
geomagnetic storm may be as a result of asymmetry features in the longitudinal distribution of
solar source region for the Corotating Interaction Regions (CIR) signatures responsible for the

development of geomagnetic storms (Turner et al. 2006; Kozyra et al. 2006). CIR generated
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magnetic storms are generally weaker than ICME/MC generated storms (Richardson and Cane,
2011). Therefore, we suspect that the increase in chaotic behaviour during minor geomagnetic
storm is strongly associated with the asymmetry features in the longitudinal distribution of solar
source region for the Corotating Interaction Regions (CIR) signatures. For most of these periods
of moderate geomagnetic storms, the values of MLE decreases compared to the month of minor
geomagnetic storms activity. This revealed that as geomagnetic stormy events build up, the level
of unpredictability and sensitive dependence on initial condition (chaos) begin to decrease
(Lorentz, 1963; Stogaz, 1994). The chaotic behaviour during the month of major geomagnetic
storm decreases significantly compared with the month of moderate geomagnetic storm activity.
The reduction in chaotic response during the month of moderate and its further declines at major
geomagnetic storm activity may be attributed to the disturbance in the interplanetary medium
driven by sheath preceding an interplanetary coronal mass ejection (ICME) or combination of the
sheath and an ICME magnetic cloud (Echer et al. 2008; Tsurutani et al. 2003; Meng et al. 2019).
Notably, the dynamics of the solar wind-magnetospheric interaction are dissipative chaotic in
nature (Pavlos, 2012); and, the electrodynamics of the magnetosphere due to the flux of
interplanetary electric fields had a significant impact on the state of the chaotic signatures. For
instance, the observation of strong chaotic behaviour during the month of minor geomagnetic
storm activity suggests that the dynamics was characterized by a weak magnetospheric
disturbance. While the reduction in chaotic behaviour at moderate and major geomagnetic storm
period reveals the dynamical features with regards to when a strong magnetospheric disturbance
begins to emerge. Therefore, our observation of chaotic signatures at different categories of
geomagnetic storm has potential capacity to give useful diagnostic information about monitoring

space weather events. It is important to note that the features of D; chaotic behaviour at different
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categories of geomagnetic storm has not been reported in the literature. For example, previous
study of Balasis et al. (2009, 2011) investigate dynamical complexity behaviour using different
entropy measures and revealed the existence of low dynamical complexity in the magnetospheric
dynamics and attributed it to ongoing large magnetospheric disturbance (major geomagnetic
storm). The work of Balasis et al. (2009, 2011) where certain dynamical characteristic evolved in
the Dy, signal was revealed was limited to one year data (2001). It is worthy to note that the year
2001, according to sunspot variations is a period of high solar activity during solar cycle 23. It is
characterized by numerous and strong solar eruptions that were followed by significant magnetic
storm activities. This confirms that on most of the days in year 2001, the geomagnetic activity is
strongly associated with major geomagnetic storm. The confirmation of low dynamical complexity
response in the D, signal during major geomagnetic storm agree with our current study. However,
the idea of comparing the dynamical complexity behaviour at different categories of geomagnetic
storm and reveal its chaotic features was not reported. This is the major reason why our present
investigation is crucial to the understanding of the level of chaos and dynamical complexity
involved during different categories of geomagnetic storm. As an extension to the single-year
investigation done by Balasis et al. (2009, 2011) during a major geomagnetic storm, we further
investigated nine years data of Dy; that covered minor, moderate and major geomagnetic storm
(see Figure 5, stem plots) and unveiled their dynamical complexity behaviour. During major
geomagnetic stormy periods, we found that the ApEn values decrease significantly, indicating
reduction in the dynamical complexity behaviour. This is in agreement with the low dynamical
complexity reported by Balasis et al. (2009, 2011) during a major geomagnetic period. Finally,
based on the method of DVV analysis, we found that test of nonlinearity in the Dg; time series

during major geomagnetic storm reveals the strongest nonlinearity features.
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4.2 The chaotic and dynamical complexity behaviour in the VB as input signals.

The results of the MLE values for VB revealed a strong chaotic behaviour during the three
categories of geomagnetic storm. Comparing these MLE values during the month of minor to those
observed during moderate and major geomagnetic storm activity, the result obtained did not
indicate any significant difference in chaoticity (bar plots, Figure 6). Also, the ApEn values of
VB, during the periods associated with minor, moderate and major geomagnetic storm revealed
high dynamical complexity behaviour with no significant difference between the three categories
of geomagnetic storm investigated. These observation of high chaotic and dynamical complexity
behaviour in the dynamics of IV B; may be due to interplanetary discontinuities caused by the abrupt
changes in the interplanetary magnetic field direction and plasma parameters (Tsurutani et al.
2010). Also, the indication of high chaotic and dynamical complexity behaviour in V B signifies
that the solar wind electric field is stochastic in nature. The DVV analysis for VB; revealed
nonlinearity features with no significant difference between the month of minor, moderate and
major geomagnetic storm activity. It is worth mentioning that the dynamical complexity behaviour
for VB is different from what was observed for D,; time series data. For instance, our results for
D, times series revealed that the chaotic and dynamical complexity behaviour of the
magnetospheric dynamics are high during minor geomagnetic storm, reduce at moderate
geomagnetic storm and further decline during major geomagnetic storm. While the V B; signal
revealed a high chaotic and dynamical complexity behaviour at all the categories of geomagnetic
storm period. Therefore, these dynamical features obtained in the V B as input signal and the Dy,
as the output in describing the magnetosphere as a non-autonomous system further support the
finding of Donner et al. (2019) that found increased or not changed in dynamical complexity

behaviour for VB and low dynamical complexity behaviour during storm using recurrence
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method. Thus, suggesting that the magnetospheric dynamics is nonlinear and the solar wind

dynamics is consistently stochastic in nature.

5.0 Conclusions

This work has examined the magnetospheric chaos and dynamical complexity behaviour in the
disturbance storm time (D,;) and solar wind electric field (V B;) as input during different categories
of geomagnetic storm. The chaotic and dynamical complexity behaviour at the month of minor,
moderate and major geomagnetic storm activity for solar wind electric field (V' By) as input and
Dy, as output of the magnetospheric system were analyzed for the period of 9 years using nonlinear
dynamics tools. Our analysis has shown a noticeable trend of these nonlinear parameters (MLE
and ApEn) and the categories of geomagnetic storm (minor, moderate and major). The MLE and
ApEn values of the Dy, have indicated that the chaotic and dynamical complexity behaviour are
high during the month of minor geomagnetic storm, low during moderate geomagnetic storm and
further reduced during major geomagnetic storm activity. The values of MLE and ApEn obtained
from VB, indicate that chaotic and dynamical complexity are high with no significant difference
during the periods of minor, moderate and major geomagnetic storm. Finally, the test for
nonlinearity in the D,; time series during major geomagnetic storm reveals the strongest
nonlinearity features. Based on these findings, the dynamical features obtained in the V B, as input
and D, as output of the magnetospheric system suggest that the magnetospheric dynamics is

nonlinear and the solar wind dynamics is consistently stochastic in nature.
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Figure 2: Samples of (VBy) during (a) Month of Minor, (b) Month of Moderate and (c) Month of
Major geomagnetic storm activity.
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665  Figure 7: The DVV plot and Scatter plot for Dy, during the month of minor geomagnetic storm
666  for January 2009 and January 2014.
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669  Figure 8: The DVV plot and Scatter plot for Dy, during the month of moderate geomagnetic storm
670  for March 2011 and January 2015.
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673  Figure 9: The DVV plot and Scatter plot for Dg; during the month of major geomagnetic storm
674  for October 2011 and December 2015.
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682  Figure 11: The DVV plot and Scatter plot for VB, during the month of moderate geomagnetic
683  storm for March 2011 and January 2015.
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687  Figure 12: The DVV plot and Scatter plot for VB, during the month of major geomagnetic storm
688  for October 2011 and December 2015.
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