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Abstract.

Regional Climate Networks (RCNs) are used to identify heat waves and droughts in Germany and two subregions for the

summer half years and summer seasons of the period 1951 to 2019. RCNs provide information for whole areas (in contrast to

the point-wise information from standard indices), the underlying nodes can be distributed arbitrarily, they are easy to construct

and provide details otherwise difficult to avail of like temporal and spatial extent and localisation of extreme events; this makes5

them suitable for the statistical analysis of climate model output. The RCNs were constructed on the regular 0.25 degree grid

of the E-Obs data set. The season-wise correlation of time series of daily maximum temperature Tmax and precipitation were

used to construct the adjacency matrix of the networks. Based on the results of a sensitivity study, we used as main metrics to

characterise the network structure the edge density, which increases significantly during extreme events. The standard indices

for comparison were the effective drought and heat index (EDI and EHI) respectively, based on the same time series, and10

complemented by other published data. Our results show that the RCNs are generally able to identify severe and moderate

extremes and can differentiate between regions as well as seasons.

1 Introduction

Extreme events such as heat waves, droughts and floods are causing casualities, severe damage and economic losses. It is pre-

dicted that the frequency, duration and intensity of such extremes will increase during this century in several European regions,15

already affected ones such as in the Mediterranean as well as new ones in midlatitudes (Beniston et al., 2007). Knowledge

about the present state and future changes of extremes is of great importance both from the scientific (process understanding)

as well as from a societal standpoint (adaptation and mitigation measures) perspective. It would therefore be very useful to

have a fast and easy-to-apply tool to identify extremes, vulnerable regions and critical seasons.

To identify extreme events, several extreme indices have been developed, like the Standardised Precipitation Index (SPI) for20

floods, the Universal Thermal Climate Index (UTCI) for heat waves and the Palmer Drought Index (PDI) and the Effective

Drought Index (EDI) for droughts, see for instance the WMO guideline for precipitation and temperature extremes (ETCCDI,

http://www.wmo.int/pages/prog/wcp/wcdmp/CA_3.php). These indices are used to produce catalogues of extreme events like

the ones published by the European Drought Observatory (https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000). How-
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ever, these indices differ considerably in purpose, timescales of interest, methods used, thresholds and therefore also in events

considered extreme (Byun and Wilhite, 1999).

We propose here a method to identify extremes based on regional climate networks (RCNs) which can be applied to various

types of extremes, is easy to apply and computationally efficient, has very few tuning parameters and permits a fast analysis for

whole regions instead of single points (as do most commonly used indices). Beyond complementing existing methods, it offers5

several advantages. Applying the method to the results of regional climate models, present day and future vulnerable regions

can be detected. By using community detection methods and studying the temporal dynamics of the network structure (not done

in this paper), the importance of processes affecting the occurence of extremes like weather patterns, continentality, orography

and land use can be assessed. The attribute "regional" means that the nodes of these networks are confined to a geographical

region as opposed to the whole globe, similar to the difference between regional and global climate models; it is indeed our10

ultimate goal to apply the RCNs to the output of regional climate models to produce statistics of extreme events/episodes. We

are interested here in extreme events happening in regions larger than a minimum size, i.e. in the order of 104 to 105 km2 and

are coherent and collective, i.e. most sites in such a region are affected in a similar way, so that the time series (extended over

several months) of the relevant variables (daily maximum temperature, dry days) are highly correlated during extreme events;

therefore, correlation coefficients above a given fixed threshold will be used to construct the RCNs in this study.15

The general idea, then, of climate networks is to consider geographical points, which can be the grid points of reanalysis

data, of a climate model, or a network of observation sites, as nodes of the network. A link between two nodes exists if the

statistical association measure (e.g. the Pearson correlation coefficient) between the time series of the variables exceeds a given

threshold. From this, one obtains the so-called adjacency matrix, which is essentially a list of connected nodes. Metrics of this

adjacency matrix like node degree, edge density and clustering coefiicient can then be used as indicators for extreme events20

like heat waves, floods and droughts (see e.g. Tsonis et al. (2006)).

The study of networks has evolved from graph theory; so-called random networks have been studied mathematically by

Erdös and Renyi (Erdös and Rényi (1959)). Soon they were recognised as a very useful tool to analyse real-world networks

like electricity grids or the internet and assess their vulnerability. An overview over networks in general and their various

applications in different disciplines can be found e.g. in Newman (2003), Newman (2019), Watts and Strogatz (1998) and25

Albert and Barabási (2002).

Climate networks have been increasingly used in recent years, initially mainly in a global context. They were applied to

study global oscillation patterns like El Niño and to reveal teleconnections by Donges et al. (2009) (this paper also contains

definitions of higher-level network metrics). Tsonis and Swanson (2012) used climate networks to study decadal climate

variability, Ludescher et al. (2013) developed a network method to improve El Niño forecasting, and Boers et al. (2014) did so30

for the prediction of extreme floods. It has also been shown that climate networks are able to extract interesting information

about climate processes, e.g. the relation between climate and topography (Peron et al., 2014). Overviews over the application

of networks to climate can be found in Dijkstra et al. (2019) and the review by Donner et al. in Franzke and O’Kane (2017).

There is also an increasing number of applications of climate networks to regional scales. Rheinwalt et al. (2016) studied the

spatial synchronisation of precipitation in Germany using a regional climate network. They calculated precipitation isochrones35
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and could identify fronts along which heavy precipitation events propagated. In a similar vein, Mondal and Mishra (2021) used

a regional network to analyse and predict heat wave clusters and the propagation of heat wave fronts over the United States.

Weimer et al. (2016) used a regional climate network to predict future heat periods in Europe on decadal time scales; they

found that the network approach is in some regions and decades superior to the standard approach to estimate the occurence of

heat periods. More applications (regional, oceanic and atmospheric studies) can be found in the overviews mentioned above.5

In the present study, we use RCNs to analyse the occurence of past heat and drought extremes in Germany and show that they

have the potential to describe the occurence frequency and spatial extent of droughts and heat waves. Our working hypothesis

is that extremes like heat waves and droughts are characterised by spatial and temporal coherence which is reflected in the

metrics of suitably constructed regional climate networks. We will focus mainly on the edge density as the most immediate

metric, which we expect to peak for seasons where extremes occur.10

If one has such a tool, it can be integrated routinely and efficiently into the postprocessing of climate simulations to establish

climatologies of extremes (specifically heat waves and droughts) on regional scales for a given season at yearly or decadal

resolution; it could also be used to routinely analyse regional climate model results (especially climate prognoses) to identify

vulnerable regions, seasons prone to extremes and trends in extremes, for example. From the process understanding perspective,

studying the structure of the adjacency matrix permits assessing "noise" factors like orography, land use, continentality and15

weather patterns.

This study should be considered a proof-of-concept study; we will study the sensitivity of the RCN to its construction and then

apply the RCN to comparisons with present-day observations; our ultimate goal (not presented in this paper) is to apply RCNs

to projections of regional climate models in various regions to assess future changes of extremes.

This paper is structured as follows: in section 2, we describe the construction of networks and introduce the metrics used.20

We also present the data and reference extreme catalogues used as well as the regions considered. In section 3, we study the

sensitivity of the network to the choice of the correlation threshold. In section 4, we present comparisons of heat waves and

drought extremes identified with RCNs with standard indices and discuss the effects of chosen regions and season. A summary

is given in section 5.

2 Methods and data25

2.1 Construction of RCNs and metrics used

We describe here only those aspects of climate networks which are relevant to our study; for more information on networks

in general, the reader is referred to e.g. Newman (2003), Newman (2019), Watts and Strogatz (1998) or Albert and Barabási

(2002); climate networks are described e.g. in Tsonis et al. (2006), Dijkstra et al. (2019), Donner et al. in Franzke and O’Kane

(2017) and Donges et al. (2009). For the definition of edges, i.e. the construction of the adjacency matrix, the pairwise statistical30

similarity of the nodes must be quantified. For this purpose, several measures are available; frequently used ones are the Pearson

correlation coefficient, event synchronisation (Boers et al. (2014)) and mutual information (e.g. Donner et al. in Franzke and

O’Kane (2017)). In this study, we used the Pearson correlation coefficient ρ. We construct our RCNs, i.e. adjacency matrices,
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as undirected graphs with grid points of a regular lon-lat grid as nodes; two nodes are connected by an edge if the correlation

ρ of time series of the daily maximum temperature Tmax for heat waves and dry days for droughts, respectively between the

two nodes exceeds a predefined threshold value ρ0. The effect of the choice of ρ0 will be discussed in section 3.

The structure of our RCN is thus determined by the strength of the correlation between the nodes which has to exceed

the prescribed and fixed correlation threshold, so that all metrics can vary from year to year. This approach is different from5

some approaches described in the literature where the edge density is (approximately) fixed. We consider fixing the correlation

threshold rather than the edge density to be more in accordance with our working hypothesis, where we expect a high and

widespread correlation between the nodes during extreme seasons, which will be reflected in significant increases of the edge

density and other metrics; it is the change of these metrics which will characterise extreme seasons.

In order to assess the impact of the time scales on the identification of extremes, we consider heat waves and droughts10

occuring in the summer half year (SHY, May to October) and summer season (June to August, JJA), so that the length of the

time series for each year is 184 days and 92 days, respectively. Although droughts are known to occur also in winter, we only

consider SHY and JJA droughts here. If we denote the number of nodes by n and the edge density by e, the maximum possible

number of edges is emax =
(
n
2

)
= n(n−1)/2. The adjacency matrix A is then an n×n matrix with aij = 1 if node i and node

j are connected and 0 otherwise. The degree of node k, i.e. the number of nodes connected to it, will be denoted by dk and the15

average degree of the network will be denoted by d̄. To analyse the adjacency matrix and to identify extremes, we considered

the following metrics (see e.g. Newman (2003) or Donges et al. (2009)):

– the edge density e, defined as the number of edges in the network, divided by emax; this can be considered a measure of

the spatial extent and "connection strength" of the extreme event. To identify extremes, we will also use the normalised

edge density, defined as ε= (e− ē)/σe where ē is the average over the years 1951 to 2019 and σe is the corresponding20

standard deviation.

– the global (triangle) clustering coefficient c̄, defined as the average of the local clustering coefficients ck = ∆k/∆max,k,

where ∆k is the number of triangles connected to node k and ∆max,k =
(
dk

2

)
is the number of all triangles centered at

node k (see Newman (2003), Watts and Strogatz (1998)). Normalised values were calculated in the same way as for the

edge densitiy.25

– the distribution of the node degrees dk, k = 0 · · ·n− 1.

We found that in the framework of this study, these metrics and especially the edge densitiy are sufficient to identify extremes

(see section 3) and therefore did not consider more elaborated metrics like path length, betweenness etc. as described e.g. in

(Donges et al., 2009). As already mentioned, the time series of the yearly SHY and JJA metrics were normalised by their

average and standard deviation over the period 1951 to 2019; if the normalised metric of a period is larger than one standard30

deviation, this period is considered extreme; values close to 1 (about 1±0.2) are considered "border cases", possibly indicating

moderate, small scale or short lived extremes.
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2.2 Data used for building the CNs

Several time series of gridded temperature and precipitation data are freely available, e.g E-Obs (Cornes et al., 2018), ERA

reanalyses (Hersbach et al., 2020) and data sets from national weather services, e.g. the German Weather Service DWD;

differences between these data sets are due to spatial and temporal resolution, observations used and statistical/interpolation

methods. A comparison of such data sets can be found in (Skok et al., 2016).5

In this study, we used the E-Obs V21.0e daily maximum temperature (Tmax) and precipitation gridded daily data sets

(https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php). This data set has a spatial resolution of 0.25 degrees and

covers the period from 1950 to 2019; it is updated continuously. The selected region was 5 to 16 degrees longitude East and 47

to 56 degrees latitude North, covering Germany (henceforth called GE region, see Fig. 6). We selected E-Obs for its relatively

high resolution, its long time coverage and also for comparability due to its frequent use in other studies; but note that only10

data for land surfaces are provided by E-Obs. We focus here on Germany due to the high density of stations for interpolation

and the availability of extreme event catalogues for comparison. For droughts, from the precipitation time series a 0-1 time

series of dry days was calculated as follows: if for a given day, the daily precipitation sum was less than 1 mm, this day was a

dry day and assigned a 1, otherwise, it was assigned a 0. Two nodes were connected if their correlation coefficient exceeded a

given threshold (see section 4). We adopted here the E-Obs definition of a dry day as a day with a daily precipitation sum less15

than 1 mm/day (see https://www.ecad.eu/FAQ/index.php#5).

2.3 Identification of extreme events using EDI/EHI and other sources

There exist several indices to identify and to quantify the severity of extremes, like SPI, WASP index, SDI, PDI and several

others for drought; they differ among each other in purpose, definition of extreme, method employed, spatial and temporal

scales, focus on meteorology (precipitation) or hydrology (soil moisture, runoff); a discussion of such differences for droughts20

can be found in Byun and Wilhite (1999). Therefore, each choice of index is somewhat arguable and mainly owned to the need

for a reference.

In this study, extreme events are identified by using spatial (over the region considered) and temporal (over the season

considered) averages of the effective drought index (EDI, Byun and Wilhite (1999)) and an analogous metric defined for heat,

the effective heat index (EHI, Sedlmeier et al. (2016)), which are basically time series of effective temperature and precipitation,25

normalised by mean and standard deviation. Therefore, (relative) extremes occur when these indices deviate markedly (usually

one standard deviation) from zero. EDI and EHI are relatively easy to calculate, use a minimum of assumptions, need no

correction for trends and take the memory effect of the soil and the atmosphere into account, which is important for the

assessment of the severity of heat waves and droughts. Being aware that there is no "best index", we will also have a look at

other extreme event indices (see section 4).30

We describe here the calculation of the effective drought index (EDI), the effective heat index (EHI) is calculated similarly

by using Tmax (see Sedlmeier et al. (2016)). The EDI was proposed by (Byun and Wilhite, 1999) and describes drought

extremes at a site as deviations from a climatological mean state; it uses the concept of effective precipitation (EP), which
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takes the memory effect of the soil into account. It correlates highly with soil moisture, which makes it well suited for studying

droughts.

The effective precipitation EP for a given day d is calculated as follows:

EP (d) =

365∑
k=1

ωk ·Sk(d)

where the weights are ωk = 1/k,k = 1, · · · ,365 and5

Sk(d) =

k∑
i=1

P (d− i)

is the precipitation sum over the last k days before day d. From EP (d), the (daily) EDI(d) is calculated as

EDI(d) = (EP (d)−EP )/σ(EP )

where EP and σ(EP ) are the mean and standard deviation of EP for SHY and JJA over the period 1951 to 2019.

An analogous measure can be defined for temperature, called the effective heat index (EHI) with the daily maximum tem-10

perature Tmax and k = 49 instead of k = 365 days. For the effective temperature, the value of 49 was determined as the lag

where the autocorrelation function equals 0.5 (see Sedlmeier et al. (2016)).

One problem in connection with EDI/EHI and many other extreme indices is that they are defined at points, whereas for

extremes, one is interested in area information. As mentioned in the introduction, this is one of the advantges of RCNs. For

the comparison of the (area-wise) RCN metrics with the (point-wise) EDI/EHI, we calculated an area and seasonal average of15

the EDI from the area averaged effective precipitation and of the EHI from the area averaged effective Tmax; to account for

the smoothing of extremes due to this averaging, for a given year, season and region we define droughts as extreme when the

spatially and temporally averaged EDI is less than -1, and heat events as extreme when the spatially and temporally averaged

EHI is larger than +1. We are aware that there is a certain arbitrariness in this definition. We try to reduce this arbitrariness by

considering also other indices when there are large differences between EDI/EHI and RCN metrics or by relaxing the threshold20

in cases where EDI/EHI or RCN metrics are close to the threshold ("border cases").

Valuable sources of information on the occurence of extremes are Hannaford et al. (2011), Parry et al. (2012) and Spinoni

et al. (2015). Hannaford et al. (2011) provide a detailed analysis, based on precipitation and runoff observations, of drought

events (meteorological and hydrological) for several regions in Europe, among them subregions of Germany for the period

1961 to 2005. We will refer mainly to this dataset to complement our comparison with EDI. For heat waves, we will refer25

to Kornhuber et al. (2019), Vautard et al. (2007),Vautard et al. (2020), Zschenderlein et al. (2019), Russo et al. (2015) and

Luterbacher et al. (2004).

3 Sensitivity of the metrics to correlation thresholds

The choice of the correlation threshold of the time series determines the entries of the adjacency matrix, which characterises

the network and determines all metrics like edge density, degree distribution, local and global clustering coefficient and other30
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derived metrics; it is the only adjustable parameter in our setup of the RCN. One can either fix the correlation threshold resulting

in varying edge densities or fix the edge density by adjusting the correlation threshold, as done e.g in Weimer et al. (2016);

both possibilities require a decision of which values to choose. We decided to use a fixed correlation threshold, since a high

correlation above a fixed threshold on long (e.g. seasonal) time scales and over an extended area is an indication of a strong

persistent coupling between nodes, which is what we are looking for - we let the structure of the network reflect the given5

climatic situation. To see how the choice of the correlation threshold affects the metrics of the RCN, we conducted a series of

sensitivity runs for drought and heat extremes. Essential criteria to judge the suitability are i) the edge density e which should

be not to small in order to have enough data for calculating the metrics, but also not too large in order to have a sufficiently

large spread (e values in the literature are in the order of 0.1), and ii) the ability of the network to detect significant differences

between normal and extreme years. We varied the correlation threshold ρ0 for ρ0 = 0.70,0.80,0.85,0.90,0.95,0.99 for the GE10

region over the years 1951 to 2019. The results are discussed now separately for drought and heat.

3.1 Sensitivity droughts

The left hand part of Fig. 1 shows the variation of edge density e (blue circles) and global clustering coefficient c̄ (red circles),

all averaged over the summer half year for the years 1951 to 2019, with the correlation thresholds defined above. Also shown

is the spread, i.e. ratio standard deviation/average for e (blue triangles) and c̄ (red triangles) as a function of the correlation15

threshold. As expected, e and c̄ decrease considerably with increasing ρ0; however, the sensitivity of c̄ is much less pronounced,

although e and c̄ are highly correlated for all ρ0. For ρ0 = 0.70, the edge density is very high, but the spread is low. The other

extreme occcurs for ρ0 = 0.99: the spread is sufficiently large, but the values are based on too few connections, so the statistics

are not reliable (for ρ0 = 0.99, there are only about 90 edges out of almost 900,000 on average). For ρ0 = 0.85,0.90,0.95, edge

densities are around 0.1, which is in the range used for so-called sparse networks in the literature (Radebach et al., 2013), and20

the ratio spread/average is around 0.5, which we consider sufficiently large.

The right hand part of Fig. 1 shows the ratio q of the edge density (blue dots) and global clustering coefficient (red dots)

averaged over extreme years (defined as years with ε > 1) to those averaged over normal years (defined as years with |ε|< 0.3).

High values of this ratio indicate that there is a significant difference between extreme and normal years - the ability of the

RCN we are looking for. The ratio q is low for ρ0 = 0.70 due to the small spread. High values above 1.6 are attained for ρ025

in the range 0.8 to 0.95. A Wilcoxon test indicates that these differences between normal and extreme seasons are significant

above the 99 % level. Concerning the global clustering coefficient c̄, the ratio between extreme to normal years (red dots) is

only slightly above 1, i.e it does not discriminate well between normal and extreme years which makes it less suitable for

extreme detection.

From these results, we infer that suitable values of ρ0 for extreme drought detection are between 0.85 and 0.95, and a good30

separation between normal and extreme years can be achieved using the (normalised) edge density as a metric. We will use this

metric and the range of ρ0 = 0.85,0.90,0.95 for the comparison of the RCN method with data from the literature in section 4.
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Figure 1. Drought GE SHY, left: average (period 1951-2019) edge density e (blue dots) and global clustering coefficient c̄ (red dots) as a

function of the correlation threshold ρ0 for SHY Germany; also shown is the ratio of standard deviation to average for e (blue open triangles)

and c̄ (red open triangles) as a function of the correlation threshold. Right: the same for the ratio q of extreme to normal years, calculated

with e (blue) and c̄ (red).

ρ0 0.85 0.90 0.95

normal years d̄ dmax d̄ dmax d̄ dmax

1953 190 446 60 172 10 40

1970 175 366 57 146 10 28

1980 168 310 57 134 11 43

1994 190 391 58 116 11 37

extreme years d̄ dmax d̄ dmax d̄ dmax

1959 619 1085 187 509 25 70

1976 354 750 106 218 18 41

2003 376 760 105 222 16 50

2018 525 1034 159 428 21 101
Table 1. Drought GE SHY: average and maximum degrees for ρ0 = 0.85,0.90,0.95 for four normal years (1953, 1970, 1980 and 1994) and

four extreme years (1959, 1976, 2003 and 2018).

8



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1953

d/dmax

pc
um 0.85

0.90
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1959

d/dmax

pc
um 0.85

0.90
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1970

d/dmax

pc
um 0.85

0.90
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1976

d/dmax

pc
um 0.85

0.90
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1994

d/dmax

pc
um 0.85

0.90
0.95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

2018

d/dmax

pc
um 0.85

0.90
0.95

Figure 2. Drought GE SHY: dependence of the cumulative distribution of the node degrees for three normal (1953, 1970 and 1994, left) and

three extreme (1959, 1976 and 2018, right) years on the correlation threshold ρ0.

Table 1 shows the average and maximum degrees for ρ0 = 0.85,0.90,0.95 for four normal years (1953, 1970, 1980 and

1994) and four extreme years (1959, 1976, 2003 and 2018). The average degrees decrease like the edge density (see Fig. 1)

with increasing ρ0 for normal as well as extreme years, and do not vary much between the normal years; for extreme years, the

spread is larger. For all ρ0, the average as well as the maximum degree increase considerably from normal to extreme years by

a factor of about two to three; approximately the same factor applies to the ratio maximum to average degree. Thus, the overall5

behavior of the degree distributions is the same for the ρ0 values presented and is similar within the normal and extreme year

groups. The cumulative distribution of the node degrees for GE SHY is shown in Fig. 2 exemplarily for three normal (1953,

1970 and 1994) and three extreme (1959, 1976 and 2018) years, again for ρ0 = 0.80,0.90,0.95; for each year, the degrees

are normalised with the maximum degree for better comparison. Roughly, two kinds of distribution can be discerned: i) more

asymmetric distributions with either a pronounced maximum at low or high degrees (years 1953 and 2018 for ρ0 = 0.95) and10
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ii) more symmetric (years 1976 and 1994 for ρ0 = 0.85,0.90), flat distributions with many low degree as well as high degree

nodes and a less pronounced maximum. However, there are many years which cannot attributed clearly to either type and both

types can appear in normal as well as in extreme years. As Figure 1 and Table 1 showed, the main difference between normal

and extreme years is the higher average (i.e. edge density) and maximum degree which are considerably higher during extreme

years.5

We also found that whereas during extreme years, the distribution of the node degrees is more uniform and has more high-

degree nodes, the distribution during normal years often resembles a Poisson distribution with parameter λ= dk (the average

node degree), which is characteristic for random networks (Newman, 2003). This could be an indication of the presence of

a random or, in our case, a random geometric graph (Penrose, 2003), (Ferrero and Gandino, 2017). A comparison between10

the probability distributions for the normal year 2013 and the extreme year 2018 is shown in Fig. 3 as an example. A more

Poisson-like distribution during normal years could be explained by the higher level of "noise" induced by the higher variability

of weather systems during normal years and the presence of complex orography and varying land use which disturb the organ-

isation process and thus lead to lower correlations and lower edge densities. A detailed study to substantiate this observation is

beyond the scope of this paper.15

Figure 3. Node degree probability distribution for SHY droughts in the GE region for the normal year 2013 (left) and the extreme year 2018

(right). Blue: distribution according to the RCN, red: Poisson distribution with parameter λ= dk (the average node degree).

3.2 Sensitivity heat waves

Figure 4 is the same as Fig. 1, but for heat waves instead of droughts: the left hand part shows the variation of edge density

e and global clustering coefficient c̄, again averaged over the years 1951 to 2019, with the correlation threshold. We chose

here the summer months (JJA) since these months turned out to be more suitable to identify heat waves (see section 4.2).

Again, edge density and clustering coefficient decrease considerably with increasing ρ0. Except for ρ0 = 0.70, edge densities20
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Figure 4. Same as Fig. 1,but for heat waves GE JJA.

are higher than for the drought case; this could be due to the fact that correlations are higher for the continuously varying daily

maximum temperatures compared to the 0-1 time series for droughts. Again, for ρ0 = 0.70 edge density and clustering coeffi-

cient are high, but the spread is low, and for ρ0 = 0.99 the spread is sufficiently large, but there are few connections, making

the statistics unreliable. As for droughts, we calculated the ratio q of the average edge density for extreme years (defined as

normalised edge density ε > 1) to the edge density averaged over normal years (defined as |ε|< 0.3 ). High values around5

1.5 to 1.6 are attained in the range 0.85 to 0.95. According to the Wilcoxon test, the differences between normal and extreme

seasons are significant above the 99 % level. As for droughts, the ratio extreme to normal years is only slightly above 1 for the

global clustering coefficient, i.e it does not discriminate well between normal and extreme years which makes it less suitable

for extreme heat wave detection.

Table 2 shows the average and maximum degrees for ρ0 = 0.85,0.90,0.95 for four normal years (1975, 1991, 2005 and 2009)10

and four extreme years (1978, 2003, 2006 and 2013). The average degrees decrease like the edge density (see Fig. 4) with

increasing ρ0 for normal as well as extreme years, and do not vary much between the years. All values are higher than in the

drought case, and the differences normal to extreme are smaller. For all ρ0, the average as well as the maximum degree increase

from normal to extreme years by about 50 to 100 %; approximately the same factor applies to the ratio maximum to average

degree. Thus, the overall behavior of the degree distributions is the same for the ρ0 values presented and is similar within the15

normal and extreme year groups. The cumulative distribution of the node degrees for GE JJA is shown in Fig. 5 exemplarily
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for three normal (1975, 1991 and 2005) and three extreme (1978, 2003 and 2006) years, again for ρ0 = 0.80,0.90,0.95. As for

droughts, two kinds of distribution can be discerned: i) more asymmetric distributions with either a pronounced maximum at

low or high degrees, and ii) more symmetric, flat distributions with many low degree as well as high degree nodes and a less

pronounced maximum. Compared to the drought case, the latter kind of distribution is the more frequent one, but still, there are

many years which cannot attributed clearly to either type and both types can appear in normal as well as in extreme years. Like5

for droughts, the main difference between normal and extreme years is the higher average (i.e. edge density) and maximum

degree which are considerably higher during extreme years.

ρ0 0.85 0.90 0.95

normal years d̄ dmax d̄ dmax d̄ dmax

1975 370 676 221 373 84 153

1991 389 649 227 354 87 188

2005 379 676 215 407 80 153

2009 389 720 225 421 84 180

extreme years d̄ dmax d̄ dmax d̄ dmax

1978 581 1010 348 681 132 261

2003 534 970 340 533 141 312

2006 643 1036 395 677 157 308

2013 507 919 310 537 122 246
Table 2. Same as Table 1, but for heat waves GE JJA.

From these findings, we conclude that for the detection of heat waves, suitable values of ρ0 are between 0.85 and 0.95. This

is the same range as for droughts, so at least for heat and drought, no adjusting of the threshold ρ0 is necessary. We will use10

these values in the next section, where we compare the RCN results with data from the literature.

We can summarise the findings of this sensitivity study as follows: thresholds ρ0 between 0.85 and 0.95 give reliable results

in terms of extreme detection and significance of the statistics for both drought and heat waves. At least for these extremes, no

adjusting of the threshold is necessary. The exact value of ρ0 seems less important. Node degrees and edge densities are higher15

for heat waves than for droughts. The global clustering coefficient c̄, although highly correlated to e for all ρ0, discriminates

not well between extreme and normal years. In the remaining sections of this paper, we will therefore use the (normalised)

edge density as metric to detect extremes and vary ρ0 for values ρ0 = 0.85,0.90,0.95.
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Figure 5. Same as Fig. 2, but for heat waves GE JJA. Normal years are 1975, 1991 and 2005 (left), extreme years are 1978, 2003 and 2006

(right).

4 Comparison of the RCN results with other extreme indices (mainly EDI and EHI)

In this section, we discuss the comparison between EDI/EHI and RCN edge density for the summer half years (SHY, May till

October) and summer seasons (JJA, June till August) for Germany (GE) and the two subregions northern Germany (GEN) and

southern Germany (GES) with respect to droughts and heat waves during the period 1951 - 2019. EDI and EHI are averaged

spatially over the respective regions and temporally over the respective season. For the reasons given in the previous section,5

we only consider the normalised edge density ε as RCN metrics. Extremes are defined as ε > 1 for the RCN and as EDI <−1

and EHI > 1. (Remark: values ε <−1 would mean that the edge density is considerably below average; this could be caused

either by wet/cool years or by a low correlation due to uncorrelated small scale events. Both possibilities are not a focus of

this study). For comparison, we give the results for the correlation thresholds ρ0 = 0.85,0.90,0.95 as discussed in the previous

section. The GE, GEN and GES regions are shown in Fig. 6.10
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Figure 6. Relief map of Germany with the GE (blue frame) and the subregions southern Germany GES (red frame) and northern Germany

GEN (green frame) considered in this study. The E-Obs grid is marked by blue dots.

4.1 Droughts: GE SHY

Table 3 shows the years which are identified as extreme by the RCN or by the EDI (according to the definitions above) for

the summer half years over Germany for the values of ρ0 indicated above. Six years are identified by both EDI and RCN as

years with extreme droughts, namely 1959, 1964, 1976, 1991, 2003 and 2018. These years are also identified as extreme in

the literature (e.g. Spinoni et al. (2015), Hannaford et al. (2011)), and also the European Drought Reference (EDR) Database5

(https://www.geo.uio.no/edc/droughtdb/edr/DroughtEvents.php), so all extreme years are found by the RCN.

The year 1973, identified extreme by EDI, is just below the RCN threshold of ε > 1. The years 1969, 1986,1989,1990 are not

deemed extreme in EDI, whereas these years are identified as moderately extreme in parts of Germany in Hannaford et al.

(2011); the combination of weaker signal and only regional occurence could be a reason for the non-detection by EDI.

Thus, we can state that the RCN is able to detect the severe and moderately severe SHY drought events quoted in the literature10

14
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including less severe or only regionally severe years.

year 0.85 0.90 0.95 EDI

1959 o o o o

1964 o o o o

1969 o - o -

1973 - - - o

1976 o o o o

1986 o o o -

1989 o o o -

1990 - o o -

1991 o o o o

2003 o o o o

2018 o o o o
Table 3. Comparison of extreme drought summer half years (SHY) between 1951 and 2019 as identified by EDI and the RCN. Bars indicate

SHYs identified as not extreme, open circles indicate SHYs identified as extreme. Years according to EDI are shown in the rightmost column,

years according to the RCN based on the normalised edge density for the correlation thresholds ρ0 = 0.85,0.90,0.95 are shown in columns

two to four.

4.1.1 Droughts: RCN metrics differences between normal and extreme years

To illustrate the differences in the network metrics between normal and extreme years, we calculate the ratio q of the edge

density averaged over extreme years between 1959 and 2019 (defined as ε > 1) to the edge density averaged over normal years5

(defined as |ε|< 0.3). This ratio, together with the edge density, is shown for GE in the second and third column of Table 4. The

edge density decrases from 0.15 to 0.01. The value of q is almost 2 for ρ0 = 0.85,0.90; this difference between extreme and

normal years is significant at the 99% level according to a Wilcoxon test and shows that the RCN is clearly able to differentiate

between normal and extreme years.

10

Table 4 also makes differences between Germany as a whole and the two subregions evident. All q values are quite high,

with the more flat and homogeneous GEN having generally higher values than GES which is affected more by orographical

"noise" (see next section).

The spatial distributions of the network metrics also differ considerably between normal and extreme years. An example

is shown in Fig. 7, which shows the spatial node degree distribution for the normal year 1970 (left) and the extreme year15

1976 (right) for ρ0 = 0.95. In 1976, average degree, maximum degree and edge density are almost double the values of 1970.

Also regional differences (cf. Table 4) become visible: in the flat northern parts of Germany, especially in the northeast with
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GE GEN GES

ρ0 ē q ē q ē q

0.85 0.15 1.98 0.24 2.36 0.27 1.54

0.90 0.05 1.90 0.08 2.49 0.09 1.58

0.95 0.01 1.62 0.01 2.12 0.02 1.46
Table 4. Dependence of the average edge density ē and the ratio q = ēextr/ēnorm (edge density during extreme years to edge density during

normal years) over the period 1951-2019 on the correlation threshold (ρ0 = 0.85,0.90,0.95). Results are shown for droughts during SHY in

the GE, GEN and GES regions.

Figure 7. Comparison of the spatial distribution of the node degree between the normal year 1970 (left) and the extreme year 1976 (right).

Note the different scales.

quite uniform sandy soils (reducing the precipitation recycling rate), node degrees tend to be considerably higher than in the

more rugged, moutaineous and forested southern parts which favor irregular precipitation distribution and thus act as noise in

the adjacency matrix calculation. Mountaineous regions are also often the ones with lower node degree in the 1976 extreme

drought year; however, exceptions occur in some mountaineous regions in the North and East, perhaps due to stronger impact

of blocking highs, increased continentality in the East and less available moisture in the atmosphere.5
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4.1.2 Droughts: SHY extremes in GEN and GES

To illustrate the effect of orography and geographical situation, we compare the identified extreme years of the GEN region

with the ones of the mountaineous GES region of Germany (see Fig. 6). Whereas GES has a complex mountaineous orography

with varying land use, GEN is mostly flat, has more uniform land use with dominant sandy soils and has in its eastern parts

a more continental climate. It is known that there are differences in the occurence and intensity of extreme droughts within5

Germany (see e.g. Samaniego et al. (2013)). Droughts can be quite regional and can occur in different years in the northern

and northeastern parts of Germany than in the southern parts. To see if this is reflected in EDI and the RCN data, we compare

the EDI and the RCN edge density ε for the GES and GEN subregions.

year 0.85 0.90 0.95 EDI

1959 o o o o

1973 - - - o

1976 o o o o

1986 - - o -

1989 o o o o

1990 - - o -

1992 o o o -

1996 - - - o

2003 o o - -

2018 o o o o
Table 5. As Table 3, but for drought GEN SHY.

Table 5 shows the results of the RCN for the different ρ0 and EDI for GEN. EDI identifies the six years 1959, 1973, 1976,

1989, 1996 and 2018 as extreme. EDI and RCN agree in the five years 1959, 1976, 1989 and 2018. In the years 1973 and 1996,10

extreme years in EDI, EDI is just below the threshold (value -1.03), so these years could be considered as "border case" years.

On the other hand, for the years 1992 and 2003, identified as extreme by the RCN, the edge density is just above the threshold,

so these years represent RCN "border cases". In view of this, we can say that there is very good agreement between EDI and

RCN (and also with the literature) for GEN. The years 1964 and 1991 do not appear as extremes for GEN, but do so for GE;

this indicates that regional differences can be accounted for.15

Table 6 shows the results for GES. EDI identifies the seven years 1964, 1971, 1976, 1991, 2003, 2015 and 2018 as extreme.

The six years 1964, 1971, 1976, 1991, 2003, and 2018 are identified as extreme years in GES by both RCN and EDI. The

year 2015, an additional extreme year in EDI just below the threshold, is not found by the RCN. For GES, RCN but not EDI

identifies the five years 1959, 1962, 1969, 1986 and 1997 as extreme drought years. Of these, the years 1962, 1969 and 1997 are

also drought years in Hannaford et al. (2011). There are interesting differences in the occurence of extreme years between GES20

and GEN. For example, the year 1989, an extreme year in GEN, does not appear in GES, whereas the year 1991 is extreme in
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year 0.85 0.90 0.95 EDI

1959 o o o -

1961 - - o -

1962 o o o -

1964 o o o o

1969 o o o -

1971 o o o o

1976 o o o o

1986 o o o -

1989 - o - -

1990 - - o -

1991 o o o o

1997 o o o -

2003 o o o o

2005 o o - -

2015 - - - o

2018 o o o o

2019 o - - -
Table 6. As Table 3, but for drought GES SHY.

GES, but not in GEN. These regional differences, which can be seen in the maps in Samaniego et al. (2013), are well captured

by the RCN and indicate that the RCN is able to identify droughts at varying spatial scales. They also illustrate the fact that the

spatial scales of droughts can be down to the order of one hundred kilometers.

4.1.3 Droughts: GE JJA

For hydrology and agriculture it is of interest to know on shorter time scales when droughts are to be expected. It is also5

interesting to see how the RCN behaves on shorter time scales. We therefore compared the appearance of droughts obtained

with EDI with ones obtained by the RCN for the summer (JJA) months.

For JJA, the ratio q of extreme to normal years is above 2 and thus considerably higher than for SHY (not shown). This may

be due to the fact that extreme droughts occur predominantly during the JJA months and are therefore better captured in this

shorter time window. Table 7 compares droughts derived from the RCN for JJA with the corresponding results obtained with10

EDI. The Table shows again good agreement between EDI an RCN. EDI identifies the seven years 1959, 1964, 1973, 1976,

2003, 2015 and 2018 as extreme. Both EDI and RCN identify the five drought years 1964, 1973, 1976, 2003 and 2018, so all

years identified by EDI, except 1959 and 2015, are also identified by the RCN; the latter two years are border case with EDI

just below -1.
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year 0.85 0.90 0.95 EDI

1959 o - - o

1964 o o o o

1973 o o o o

1976 o o o o

1983 o o o -

2003 o o o o

2013 o o o -

2015 - - - o

2018 o o o o

2019 o - - -
Table 7. As Table 3, but for drought GE JJA.

4.2 Heat waves

In this section, we apply our RCN to heat waves and compare the RCN metrics with the EHI for Germany for the summer half

year (SHY) and the summer season (JJA), respectively. Like for droughts, we present the results for ρ0 = 0.85,0.90,0.95 and

use the edge density as the relevant metric.

4.2.1 Heat waves: GE SHY5

year 0.85 0.90 0.95 EHI

1952 o o o -

1964 o o o -

1974 o o o -

1983 - - o -

1991 o o o -

1992 o o o -

1994 o o o -

2003 o o o o

2006 - - - o

2009 - o - -

2010 o o o -

2015 o o o -
Table 8. As Table 3, but for heat waves GE SHY.
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Table 8 shows the SHY years identified as extreme either by the RCN (ε > 1) or by EHI (EHI > 1) for GE and the years

between 1951 and 2019. The years 2003 and 2006 are classified as extreme by the EHI, in line with literature (Luterbacher

et al. (2004), Russo et al. (2015)), but only the year 2003 is an extreme year for RCN. The literature lists several years with

extreme heat events in Germany, namely 1976, 1983, 1994, 1995, 2010, 2013 and 2015 (Vautard et al. (2007), Vautard et al.

(2020), Kornhuber et al. (2019), Zschenderlein et al. (2019)); these years are not identified as extreme by the EHI for SHY, but5

three of them (1994, 2010 and 2015) are identified by the RCN consistently for all ρ0 values. On the other hand, some years

are identified as extreme by the RCN (1952, 1964, 1974, 1991 and 1992) which are not recorded as extreme in the literature,

and the extreme year 2006 is not detected.

4.2.2 Heat waves: GE JJA

year 0.85 0.90 0.95 EHI

1952 - - o -

1957 o - - -

1969 o o o -

1976 - - o -

1978 o o o -

1980 o o - -

1983 o o o -

1986 o o o -

1994 o o o -

1995 o o o -

2003 o o o o

2006 o o o o

2013 o o o -

2015 - - - o

2018 - - - o
Table 9. As Table 3, but for heat waves GE JJA.

The results of section 4.2.1 show that there are discrepancies between heat events listed in the literature and heat events10

identified by the RCN. One reason could be that the averaging period (SHY) is too long to identify heat events in GE. For this

reason, we look at a shorter averaging period in this section, namely JJA. As in SHY, the metrics in JJA are highly consistent.

In contrast to SHY, in JJA EHI identifies four severe heat events (compared to two in SHY), namely in the years 2003, 2006,

2015 and 2018 (Table 9), in accordance with the literature (Kornhuber et al., 2019). Of these, RCN detects the years 2003 and

2006. Whereas the heat event of 2006 is now detected, the 2015 event, detected for SHY, is now missed. The years 1983, 1994,15

1995 and 2013 are identified as heat events by all thresholds of the RCN, in line with literature (Vautard et al. (2007), Russo
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et al. (2015), Zschenderlein et al. (2019), Vautard et al. (2020)). However, the years 1969, 1978 and 1986 are listed as heat

events by the RCN; for these, there is no indication as regionally and seasonally extended extreme events in the literature. In

view of these results we can state that shorter periods improve the detection rate (six out of eight events are detected, three

events are falsely detected), but the detection rate for droughts is considerably better than the one for heat waves. The reasons

for this are not clear; since the network results are quite consistent in themselves (dependence on ρ0, high correlation among5

network metrics), improvements could be achieved by changing the construction of the adjacency matrix, e.g. by using differ-

ent similarity measures as outlined in section 3. However, such a study is beyond the scope of the present paper.

4.2.3 Heat waves: RCN metric differences between normal and extreme heat years in GE, GES and GEN

In order to investigate the impact of orography and geographical situation on extreme heat events, the edge density ē and the10

ratio q = ēextr/ēnorm (extreme/normal years) are compared for GE and the GES and GEN subregions. Table 10 shows this

comparison. The q values show that the edge densities increase considerably in extreme years compared to normal years, which

indicates a clear separation between normal and extreme years. In contrast to droughts, there is no marked metrics difference

between GEN and GES. It is interesting to observe that the edge densities are larger for the subregions than for GE, which

could be an indication of GEN and GES belonging to different communities (e.g. Newman (2019)); this is however speculative15

and would require a detailed study. As already discussed in section 3, heat wave edge densities are considerably higher than

drought edge densities, especially in the GEN and GES subregions.

GE GEN GES

ρ0 ē q ē q ē q

0.85 0.28 1.51 0.42 1.51 0.47 1.38

0.90 0.16 1.57 0.26 1.66 0.30 1.50

0.95 0.06 1.59 0.10 1.59 0.12 1.61
Table 10. Heat waves JJA: comparison of edge density and ratio q = ēextr/ēnorm (extreme/normal years) for GE, GEN,GES and correlation

threshold ρ0 = 0.85,0.90,0.95.

5 Summary

We used Regional Climate Networks (RCNs) to identify heat waves and droughts in Germany and two subregions for the20

summer half years (SHY, May-October) and summer seasons (JJA, June-August) during the period 1951 to 2019. The RCNs

were constructed from maximum daily temperature and precipitation data, respectively, on the regular 0.25 degree grid of the

EObs data set. The season-wise correlation of time series of these daily data was used to construct the adjacency matrix of the

network. Nodes were connected by an edge if the Pearson correlation coefficient of the time series was above a fixed threshold
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ρ0. Candidate metrics to identify extremes were the edge density ε and the average clustering coefficient c̄, which turned out

to be highly correlated. A sensitivity study showed that ρ0 = 0.85,0.90,0.95 together with the edge density as metric gave

reasonable results. The extreme indices for comparison were the effective drought (EDI) and heat (EHI) index respectively,

based on the same time series, and complemented by other published event catalogues.

Our results show that the RCNs are able to identify extremes and also to distinguish, to a certain extent, between severe and5

moderate events. For droughts, there is a very good agreement between EDI and RCN results. The results for heat waves,

although giving reasonable agreement, are less satisfactory than the ones for droughts: some events are not detected, while

others are detected, but not identified as extreme neither by EHI nor elsewhere in the literature. Reasons could be that some

events are too local, too short lived, are centered outside the regions considered, are only in the season considered or are

not intense enough. It could also be necessary to construct the adjacency matrix of the network differently either by using a10

different statistical association measure, e.g. event synchronisation. Finding the reasons for the disagreement would require a

detailed analysis of the regional and temporal temperature and precipitation conditions in the respective years, which is beyond

the scope of the present paper.

Varying the size of the region considered showed that the occurence of extreme events found by the RCN varies with the region,

in accordance with observations. Furthermore, it turned out that the applicability of RCNs to identify summertime heat events15

depends on the averaging period; this dependence is much less for droughts, probably due to the longer time scales. All metrics

increase significantly during extreme events. Degree probability distributions vary considerably between more flat uniform

ones and those with pronounced maxima, but cannot be attributed to normal or extreme years. An interesting observation is

that for normal years, the distribution of the node degrees often resembles a Poisson distribution, characteristic of random

networks, while for extreme years the distribution is more uniform.20

There are several advantages of RCNs over conventional methods: they provide information for whole areas (in contrast to the

point-wise information from standard indices) and the extent of affected areas, they can be applied to arbitrary regions, the

underlying nodes can be distributed arbitrarily, they are easy to construct and they provide details otherwise difficult to avail of

(e.g. regional and seasonal differences, vulnerable regions and impact of orography). An additional advantage of the method is

that it is very fast, which makes it suitable for postprocessing climate model data. The RCN for Germany had 1338 nodes, i.e.25

an adjacency matrix with about 1.8 million entries; a run takes less than 4 seconds per year on a laptop, i.e. less than 5 minutes

for the whole period 1951 to 2019 when coded in Fortran 95. The algorithm could possibly be accelerated further by taking

advantage of the sparsity of the adjacency matrix, since only a few percent of its entries are nonzero.

In this paper, we compared our RCN results with observations over the last 69 years in a year-to-year way, and we could show

that the RCN approach yields useful information on extremes which can complement more conventional methods. Our ultimate30

goal is to use the RCN method to investigate possible future changes of the frequency and seasonal distribution of extreme

events in the future. For climate model projections, one can expect that the years of occurence will vary among the models, so

there is no point in year-to-year comparisons. However, our present results let us expect that statistics e.g. over decades can be

established reliably. One of our next goals will therefore be to apply RCNs on projections of regional climate models to assess

the future development of extremes and their statistics. From the application perspective it is interesting to use other data sets,35
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to investigate the impact of spatial resolution and size of the region considered, to apply the RCNs to other regions and to other

extremes like floods, and to investigate the relation of the network structure to weather patterns and orography, for example.

Also, the incorporation of other relevant information as input like soil moisture and statistics of weather patterns could provide

interesting insights.

In this proof-of-concept study we only made use of the most basic properties of networks. Apart from improving the detection5

of heat waves and other extremes as mentioned above, we also plan to look in more detail at more sophisticated metrics, degree

distributions and the appearance and size of communities within the network. From a physics/climatology point of view it is

important to understand in more detail why the network measures are able to represent climate dynamics and why their success

varies in order to improve the RCN method.

Code and data availability. Codes and data will be made available within the ClimXtreme project10
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