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ABSTRACT

In this paper, the influence of quadric shear basic Zonal flows and β on the

downstream development of unstable chaotic baroclinic waves is studied from

the two-layer model in wide channel controlled by quasi geostrophic potential

vorticity equation. Through the obtained Lorentz equation, we focused on

the influence of the quadric shear zonal flow (the second derivative of the

basic zonal flow is constant) on the downstream development of baroclinic

waves. In the absence of zonal shear flow, chaotic behavior along feature

points would occur, and the amplitude would change rapidly from one feature

to another, that is, it would change very quickly in space. When zonal shear

flow is introduced, it will smooth the solution of the equation and reduce the

instability, and with the increase of zonal shear flow, the instability in space

will increase gradually. So the quadric shear zonal flow has great influence on

the stability in space.

Keyword: β effect; quadric shear zonal flow; baroclinic instability; Lorentz

dynamics
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1. Introduction25

The downstream development of linear and nonlinear instability has a long history in hydrody-26

namics. In the actual atmosphere, the great development of general large-scale motion is often27

related to the baroclinic nature of the atmosphere. Therefore, it is necessary to discuss the in-28

stability conditions of baroclinic air flow (Stewartson and Stuart, 1971; Hocking et al., 1972).29

Charney (1947) and Eady (1949) formulated a model baroclinic instability, they indicated that the30

disturbance viewed in the atmosphere and ocean could be interpreted as a manifestation of baro-31

clinic instability of the basic zonal flows. A simple two-layer model with small vertical scale to32

remove interference was first introduced by Phillips (1945). Lin (1955) and Drain et al.(1981) s-33

tudied the stability of undirectional flows when β is zero. Drazin et al. (1982) have shown Rossby34

waves modified by the basic shear in bartropic model. In recent decades, many meteorologists35

(Pedlosky, 1976; Polvani and Pedlosky, 1988) have made a lot of discussions on it and obtained a36

broad research topic. In this paper, the influence of zonal shear flow and β on the development of37

the downstream of the slope is studied. Generally, chaotic behavior appears in the unstable baro-38

clinic system, and its performance needs to be studied in the unstable development environment.39

Although in Lorenz’s work (1963), Lorenz equation is used as the truncation model of thermal40

convection, they can be directly derived in the weak nonlinear baroclinic flow, so for the complete41

solution of Fourier, no arbitrary truncation is needed, so in the similar problems in the future it42

can be used at ease. Through the spatial and temporal development of the baroclinic instability43

waves studied by Pedlosky (2011, 2019), we can see how the sudden spatial variation of the devel-44

oping disturbance amplitude is caused by the characteristics of Lorentz dynamics. In the chaotic45

parameter domain, the time change of the system shows that it is extremely unstable to the initial46

data, so from the perspective of time change alone, the initial data that we evolved for each feature47
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according to the Lorenz model has slightly different adjacent characteristics.When the adjacent48

features of chaos along time and the dynamic development in the downstream coordinate system49

are introduced into it, we will get the first-order divergent solution. Because the fast change of the50

behavior in the downstream coordinate system is not caused by the range of the system character-51

istics developing from parallel to chaos, the impact of chaos is different from the common impact52

in the hydrodynamics. Because in the β effect, the unstable solution at the origin of the solution53

phase plane tends to be shielded from the trajectory, so for the small value of β , the solution is also54

asymptotic to the periodic solution. The β parameters are regarded as a smally but importment55

disturbance to the dynamic. Without the β effect, the two-layer model with uniform vertical shear56

is unstable. The stronger the vertical wind shear is, the more favorable it is toproduce the baro-57

clinc instability. The basic zonal flow of baroclinic atmosphere with a certain vertical structure58

can show the dynamics instability to the disturbance. Section 2 of the paper derives the governing59

equations. Section 3 of the paper gives an example of hypothetical behavior. In the concluding60

section, section 4, the implication of the results is discussed.61

2. Formulation62

The standard, two-layer, quasi-geostrophic potential vorticity nondimensional equations (Ped-63

losky, 1987; Matthew Spydell et al, 2002; Vallis, 2006)64

∂
∂ t

[∇2ψn +F(−1)n(ψ1−ψ2)]+ J[ψn,∇2ψn +F(−1)n(ψ1−ψ2)+βy] =−r∇2ψn, (2.1)

where n = 1,2, the rotational Froude number can be expressed as F = f 2L2/g′D, f is the Cori-65

olis parameter, L represents a characteristic length and g′ is the reduced gravity, D is the equal66

depth of layers. β = d f
dy is a constant. r = (v f /2)1/2L/(UD) represents dissipation parameter.67

Velocities have been by a characteristic velocity U of the initial basic flow, v is the kinematic68
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viscosity. J(a,b) = axby−aybx is the nondimensional Jacobian operator, where subscripts denote69

differentiation. The coordinate x is in the downstream direction while y measures distance across70

the stream.71

In order to facilitate, use the barotropic stream functions ψB = 1
2(ψ1 +ψ2) and baroclinic stream72

functions ψT = ψ1−ψ2 to describe the equations. In the problem to be considered, the basic state73

is composed of the quadric shear basic zonal flows with a barotropic and baroclinic component in74

each layer, the streamfunctions are75

ψB =−
∫ y

0
UB(y′)dy′+ϕB(x,y, t), (2.2a)

ψT =−
∫ y

0
UT (y′)dy′+ϕT (x,y, t). (2.2b)

Where UB and UT are related to latitude y and the functions ϕB and ϕT are the barotropic and76

baroclinic perturbation streamfunctions. From equations (2.1), the perturbations ϕB,ϕT satisfy77

(
∂
∂ t

+UB
∂
∂x

)∇2ϕB +
UT

4
∂
∂x

∇2ϕT +(β − d2UB

dy2 −
1
2

d2UT

dy2 )
∂ϕB

∂x
+ J(ϕB,∇2ϕB)+

1
4

J(ϕT ,∇2ϕT )

=−r∇2ϕB, (2.3a)

(
∂
∂ t

+UB
∂
∂x

)(∇2ϕT −2FϕT )+UT
∂
∂x

(∇2ϕB +2FϕB)+(β − d2UB

dy2 −
1
2

d2UT

dy2 )
∂ϕB

∂x

+J(ϕT ,∇2ϕB)+ J(ϕB,∇2ϕT −2FϕT ) =−r∇2ϕT . (2.3b)

where since the upper and lower basic zonal flow are quadric shear, d2UB
dy2 and d2UT

dy2 are constants.78

F and Fc are the same as employed in Pedlosky(2019), give the critical curve of instability in the79

form of lowest order as a relation between Fc, the critical value of F , that is,80

Fc =
K2

2
+

rK2/k
2UT

. (2.4)

where the wave number K2 = k2 + l2.81

For small values of r the minimum occurs at very long wavelengths and we need to consider the82

scale of the problems variables. The following assumptions:83
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(i) The basic flow is only slightly super-critical with respect to F so that84

F = Fc +∆,∆≤ 1,

(ii) The absolute potential vorticity gradient of the layer model and dissipation are also small,

β − d2UB

dy2 −
1
2

d2UT

dy2 = O(∆
1
2 ),

(Samuel. F. Potter et al, 2013; Mathew T. Gliatto et al, 2019),

r = O(∆).

If UB,UT are constants, β = O(∆
1
2 )(Pedlosky,2019).85

(iii) The processes of the generated disturbance systems, such as the slowly varying trough systems86

and cyclones after being generated in the real atmosphere and ocean, are carried on more slowing87

than their generating processes, therefore the solution of the equations (2.3a,b) will be a function88

of “fast” and “slow” space and time variables. In such case, using ξ to represent a new fast spatial89

coordinate, X to represent a new slow space coordinate, τ to represent a new fast time coordinate90

and T to represent a slow time coordinate, each defined by91

ξ = ∆
1
2 x,X = ∆x, (2.5a)

τ = ∆
1
2 t,T = ∆t, (2.5b)

We have92

∂
∂x

= ∆
1
2

∂
∂ξ

+∆
∂

∂X
, (2.6a)

∂
∂ t

= ∆
1
2

∂
∂τ

+∆
∂

∂T
. (2.6b)

6
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The perturbations streamfunctions ϕB,ϕT will expand the progressive series in the small ampli-93

tude, ε = O(∆1
2) of the perturbation(Pedlosky, 2019, Vallis, 2006)94

ϕB = ε(ϕ(0)
B + εϕ(1)

B + ε2ϕ(2)
B + ...), (2.7a)

ϕT = ε(ϕ(0)
T + εϕ(1)

T + ε2ϕ(2)
T + ...). (2.7b)

Substituting(2.7a,b) into (2.3a,b), we obtain at leading order. At the lowest order in O(ε) obtaining95

the results with a linear relationship,96

ϕ(0)
B = A(X ,T )eik(ξ−τc) sinπy+∗,

ϕ(0)
T = 0,c = UB +

1
π2 (

d2UB

dy2 +
1
2

d2UT

dy2 ),Fc =
l2

2
, l = π. (2.8a-e)

where * denotes the complex conjugate of the preceding expression.97

At the next order in O(ε2) we get an expression for the baroclinic perturbation,98

ϕ(1)
T =

4
kUT

[i(
∂

∂T
+UB

∂
∂x

)A+
ir
∆

A+
k

∆
1
2 π2

(β − d2UB

dy2 −
1
2

d2UT

dy2 )A]

× eik(ξ−cτ) sinπy+∗+Φ(X ,y,T ), (2.9)

In (2.9), the final term Φ(X ,y,T ) is the baroclinic correction to the mean flow and is a function of99

only the slow space-time variables X and T , as well as y.100

According to the above expressions, the nonlinear interaction terms, namely the Jacobian of the101

next order, can be calculated and obtain as the governing equation for Φ.102

(
∂

∂T
+UB

∂
∂x

)(
∂ 2Φ
∂y2 −2Fc)Φ+

r
∆

∂ 2Φ
∂y2 =

ε
∆

1
2

4π3

UT
(

∂
∂T

+UB
∂
∂x

+
2r
∆

)|A|2sin2πy. (2.10)

As Pedlosky(2013,2019) gives, as long as ε ≤ ∆ is a basic presumption, which in turn implies103

that a solution to (2.10) proportional to sin2πy , is appropriate. Hence a solution of the form104

Φ = P(X ,T )sin2πy (Pedlosky, 2011,2019) leads to the governing equation for P(X ,T ),105

(
∂

∂T
+UB

∂
∂x

)P+
4r
5∆

P =− ε
∆

1
2

4π
5UT

(
∂

∂T
+UB

∂
∂x

+
2r
∆

)|A|2. (2.11)

7

https://doi.org/10.5194/npg-2020-43
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



After the equation is modified by the baroclinic mean flow, the solvable condition of O(∆3/2)106

can be determined by the evolution governing equation of amplitude A. After we obtain107

(
∂

∂T
+UB

∂
∂x

)2A+
3
2
(

r
∆
− i

k(β − d2UB
dy2 − 1

2
d2UT
dy2 )

∆
1
2 π2

)(
∂

∂T
+UB

∂
∂x

)A−σ2A− ε
∆

1
2

k2UT π
3

AP = 0,

(2.12)

where

σ2 = σ2− ir
∆

k(d2UB
dy2 + 1

2
d2UT
dy2 )

π2∆
1
2

−
k2(d2UB

dy2 + 1
2

d2UT
dy2 )2

2π4∆
,

σ2 =
(2− k2)k2U2

T
8π2 − r2

2∆2 +
ir
∆

kβ
π2∆

1
2

+
k2β

2π4∆
.

Let108

T ′ = σT,X ′ =
σX
UB

,A = A0A′,P = P0P′,b = b−
k(d2UB

dy2 + 1
2

d2UT
dy2 )

σ∆
1
2 π2

,

where (Pedlosky, 2019)109

P0 =
3σ2∆1/2

εk2UT π
,A2

0 =
15σ2∆

4k2ε2π2 ,γ =
r
∆

σ ,b =− kβ
σ∆

1
2 π2

the governing equations (2.11) and (2.12) to be rewritten (after dropping primes from the new110

dependent variables) as111

(
∂

∂T
+

∂
∂X

)2A+
3
2
(γ + ib)(

∂
∂T

+
∂

∂X
)A−A(1+P) = 0, (2.13a)

(
∂

∂T
+

∂
∂X

)P+
4
5

γP =−(
∂

∂T
+

∂
∂X

+2γ)|A|2. (2.13b)

We let P =−|A|2−R, equations (2.13a,b) yielding112

(
∂

∂T
+

∂
∂X

)2A+
3
2
(γ + ib)(

∂
∂T

+
∂

∂X
)A−A+A(|A|2 +R) = 0, (2.14a)

(
∂

∂T
+

∂
∂X

)R+
4
5

γR =
6
5

γ|A|2, (2.14b)

as our final evolution equations. The amplitude A is complex, with real and imaginary parts, so let113

A(X ,T ) = Ar(X ,T )+ iAi(X ,T ), (2.15)
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Substitution of equation (2.15) into equation (2.14a) lead to114

(
∂

∂T
+

∂
∂X

)2Ar +
3
2
(

∂
∂T

+
∂

∂X
)(γAr−bAi)−Ar +Ar(|A|2 +R) = 0, (2.16a)

(
∂

∂T
+

∂
∂X

)2Ai +
3
2
(

∂
∂T

+
∂

∂X
)(γAi +bAr)−Ai +Ai(|A|2 +R) = 0. (2.16b)

We finally obtain five equations,115

(
∂

∂T
+

∂
∂X

)Ar = Ār,

(
∂

∂T
+

∂
∂X

)Ai = Āi,

(
∂

∂T
+

∂
∂X

)Ār +
3
2

γĀr−
3
2

bĀi−Ar +Ar(|A|2 +R) = 0,

(
∂

∂T
+

∂
∂X

)Āi +
3
2

γĀi +
3
2

bĀr−Ai +Ai(|A|2 +R) = 0,

(
∂

∂T
+

∂
∂X

)R+
4
5

γR =
6
5

γ|A|2. (2.17a-e)

Defining the characteristic coordinate s by the differential relations(Pedlosky, 2011, 2019)116

∂
∂T

+
∂

∂X
=

d
ds

, (2.18)

(2.17a-e) can be written as the set of first order ordinary differential equations117

dAr

ds
= Ār,

dAi

ds
= Āi,

dĀr

ds
+

3
2

γĀr−
3
2

bĀi−Ar +Ar(|A|2 +R) = 0,

dĀi

ds
+

3
2

γĀi +
3
2

bĀr−Ai +Ai(|A|2 +R) = 0,

dR
ds

+
4
5

γR =
6
5

γ|A|2. (2.19a-e)

This set of ordinary differential equations with zonal shear flow on the β -plane, are of the form of118

the well known Lorenz equations.119
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3. Results120

Since equation (2.14) is affected by the boundary condition X = 0, we choose as121

A(0,T = T0) = asin2πT/Tperiod (3.1)

Where Tperiod , a, γ , b will be given (Pedlosky, 2019).122

When γ is sufficiently small,the Lorenz dynamics along the characteristics of the partial dif-123

ferential equations of (2.14) produced chaotic solutions. For development problems in space and124

time , resulting in a value of A at a given time, which changes suddenly with X .125

In Fig.1. When b = 0.4, the instability of the real part of A is relatively strong. When b increases126

to 1.2, the instability of the real part of A gradually decreases.When b = 6, it can be seen that when127

b is large enough, the real part of A tends to be stable, indicating that zonal shear flow enhances128

the stability of the real part of A.129

In Fig.2. When b is small, the real part of R tends to be stable, and when R suddenly increases130

to 6, the instability of the real part of R increases, indicating that the zonal shear flow causes the131

instability of the real part of R. When the second derivative of zonal flow is introduced into the132

equation, it can be found that, with the change of time, zonal shear flow reduces the instability of133

the real part A and enhances the instability of the real part R to ensure the balance of the system.134

4. Discussion135

The chaotic behavior of weakly nonlinear and slightly unstable baroclinic instability is strongly136

influenced by the zonal shear flow and planetary β effect. When we introduce zonal shear flow137

it reduces this instability. As can be seen from our diagram, the solution is very smooth for a138

short period of time, but as time goes on and features lengthen, chaos begins to emerge with its139

own features, forcing it to approach a constant after a period of time.The condition of a smooth140
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change at the origin will, after a fixed time, at a certain distance from the origin, the amplitude141

will change rapidly from one feature to another, that is, it will change very rapidly in space. Due142

to the chaotic behavior along the characteristic lines in the downstream coordinate system and143

in the slow coordinate system, the solutions of the adjacent characteristic lines, although very144

close, still diverged in the first order, which led to the abrupt change of the spatial variables of the145

system.Introducing the second derivative of zonal shear flow can eliminate chaos and smooth the146

solution in space.147

Although the suddenness of the solution behavior of (2.14) in space is meaningful for all systems148

controlled by the Lorentz equations, for our weakly nonlinear system, it means the separation149

between the expected slow behavior in space and the slow behavior in time. Therefore, we need150

to carry out further in-depth research, in the future work to promote, research.151

Acknowledgments. This study were supported by Projects 11362012, 11562014 and 41465002 of152

the National Natural Science Foundation of China, Project of 2018LH04005 the Natural Science153

Foundation of Inner Mongolia.154

APPENDIX155

Detailed derivation of the perturbation streamfunctions ϕB and ϕT equations156

This appendix we derive the equation (2.3) in detail. The barotropic and baroclinic steamfunctions157

ψB =
1
2
(ψ1 +ψ2), (A.1a)

158

ψB =
1
2
(ψ1 +ψ2), (A.1b)
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where159

ψB =−
∫ y

0
UB(y′)dy′+ϕB(x,y, t), (A.2a)

ψT =−
∫ y

0
UT (y′)dy′+ϕT (x,y, t). (A.2b)

When n = 1,2 Eq.(2.1)160

∂
∂ t

[∇2ψ1−F(ψ1−ψ2)]+ J[ψ1,∇2ψ1−F(ψ1−ψ2)+βy] =−r∇2ψ1, (A.3a)

161

∂
∂ t

[∇2ψ2 +F(ψ1−ψ2)]+ J[ψ2,∇2ψ2 +F(ψ1−ψ2)+βy] =−r∇2ψ2. (A.3b)

We insert Eqs.(A.1) into Eq.(A.3) to obtain the perturbation streamfunctions ϕB,ϕT , respectively,162

∂
∂ t

[∇2ϕB +
1
2

∇2ϕT −FϕT ]+ (UB +
1
2

UT )
∂
∂x

∇2ϕB +(
1
2

UB +
1
4

UT )
∂
∂x

∇2ϕT

−(
d2UB

dy2 +
1
2

d2UT

dy2 )
∂ϕB

∂x
− (

1
2

d2UB

dy2 +
1
4

d2UT

dy2 )
∂ϕT

∂x
+ J(ϕB,∇2ϕB)+

1
4

J(ϕT ,∇2ϕT )

+
1
2

J(ϕB,∇2ϕT )+
1
2

J(ϕT ,∇2ϕB)−FJ(ϕB,ϕT )−FUB
∂ϕT

∂x
+FUT

∂ϕB

∂x
+β (

∂ϕB

∂x
+

1
2

∂ϕT

∂x
)

=−r(∇2ϕB +
1
2

∇2ϕT −
dUB

dy
− 1

2
dUT

dy
), (A.4a)

163

∂
∂ t

[∇2ϕB−
1
2

∇2ϕT +FϕT ]+ (UB−
1
2

UT )
∂
∂x

∇2ϕB− (
1
2

UB−
1
4

UT )
∂
∂x

∇2ϕT

−(
d2UB

dy2 +
1
2

d2UT

dy2 )
∂ϕB

∂x
+(

1
2

d2UB

dy2 +
1
4

d2UT

dy2 )
∂ϕT

∂x
+ J(ϕB,∇2ϕB)+

1
4

J(ϕT ,∇2ϕT )

−1
2

J(ϕB,∇2ϕT )− 1
2

J(ϕT ,∇2ϕB)+FJ(ϕB,ϕT )+FUB
∂ϕT

∂x
−FUT

∂ϕB

∂x
+β (

∂ϕB

∂x
− 1

2
∂ϕT

∂x
)

=−r(∇2ϕB−
1
2

∇2ϕT −
dUB

dy
+

1
2

dUT

dy
). (A.4b)

Eq.(A.4a) and Eq.(A.4b) are added and subtracted respectively164

(
∂
∂ t

+UB
∂
∂x

)∇2ϕB +
UT

4
∂
∂x

∇2ϕT + J(ϕB,∇2ϕB)

+
1
4

J(ϕT ,∇2ϕT )+(β − d2UB

dy2 −
1
2

d2UT

dy2 )
∂ϕB

∂x
=−r(∇2ϕB−

dUB

dy
), (A.5a)
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165

(
∂
∂ t

+UB
∂
∂x

)(∇2ϕT −2FϕT )+UT
∂
∂x

(∇2ϕB +2FϕB)+ J(ϕT ,∇2ϕB)

+J(ϕB,∇2ϕT −2FϕT )+(β − d2UB

dy2 −
1
2

d2UT

dy2 )
∂ϕT

∂x
=−r(∇2ϕT −

dUT

dy
), (A.5a)

In Eqs.(A.5)

O(r∇2ϕi)� O(r
dUi

dy
)

(Mathew Spydeil and Paola Cessi, 2002; Meng Lu, Lv Ke-li, 2002), where i = B,T . Therefore,166

Eqs. (A.5) can be reduced to Eqs.(2.3).167
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(a) pic1. (b) pic2.

(c) pic3. (d) pic4.

FIG. 1. When b is equal to 0.4,.0.8,1.2 and 6,the real part graph of A.
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(a) pic1. (b) pic2.

(c) pic3. (d) pic4.

FIG. 2. When b is equal to 0.4,.0.8,1.2 and 6,the real part graph of R.
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