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Abstract. The Ms 8.0 Wenchuan earthquake in 2008 and Ms 7.0 Lushan earthquake in 2013 produced thousands of landslides

in the southern region of the Longmen Mountains in China. We conducted field investigations and analyzed remote sensing data

to determine the distribution law of earthquake-triggered landslides. The results show a strong negative power-law relationship

between the size and frequency of landslides in VII, VIII, and IX seismic intensity zones, a weak power law in the X seismic

intensity zone, and a lognormal distribution in the XI seismic intensity zone. Landslide density increases with increasing5

seismic intensity. A sand pile cellular automata model was built under the conceptual framework of self-organized criticality

theory to simulate earthquake-induced landslides. Data from the simulations demonstrate that with increasing disturbance

intensity, the dynamical mechanism of the sand pile model changes from a strong power law to a weak power law and then

to a lognormal distribution. Results from shaking table experiments of a one-sided slope sand pile show that for peak ground

acceleration (PGA) in the range of 0.075 g–0.125 g, the relation between the amount and frequency of sand follows a negative10

power law. For PGA between 0.15 g and 0.25 g, the relation obeys a lognormal distribution. This verifies that the above-

mentioned distribution of earthquake-induced landslides should be a universal law from a physical viewpoint and may apply

to other areas. This new perspective may be used to guide development of an inventory of earthquake-triggered landslides and

provide a scientific basis for their prediction.

1 Introduction15

Earthquakes have triggered numerous landslides. The 1994 Mw 6.7 Northridge earthquake in the USA triggered more than

11,000 landslides (Harp and Jibson, 1995, 1996). The 2008 Mw 7.9 Wenchuan earthquake in China triggered 197,481 land-

slides (Xu et al., 2014). The 2014 Mw 7.0 Port-au-Prince Earthquake in Haiti triggered 30,828 landslides (Xu et al., 2014).

Landslides are one of the most common and dangerous coseismic disasters. In particular, landslides triggered by the 2008

Wenchuan earthquake induced about one-third of total deaths and disappearances (Huang and Li, 2009a).20

An inventory map of earthquake-induced landslides shows many correlations between landslides and seismic factors (e.g.,

distance from the epicenter and major surface rupture, seismic intensity, peak ground acceleration, slope gradient), slope char-

acteristic factors (e.g., gradient, aspect, elevation, lithology), and has been analyzed using statistical methods (Keefer, 2000;
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Rodrıguez et al., 1999; Papadopoulos and Plessa, 2000; Parise and Jibson, 2000; Meunier et al., 2007; Harp et al., 2011; Xu

et al., 2016). Many significant laws, such as the effects of slope aspect, faults, hanging wall, and topography, have been reported25

(Huang and Li, 2009b; Yin et al., 2009; Dai et al., 2011; Meunier et al., 2008). Most studies address the relationship between

landslide frequency and magnitude associated with a trigger (e.g., earthquake) or historical landslide inventory (Malamud et al.,

2004). These studies used statistical models including the Pareto probability model (Frattini and Crosta, 2013), double Pareto

probability model (Stark and Hovius, 2001), and gamma function probability model (Van Den Eeckhaut et al., 2007). The

frequency-magnitude distribution of landslides is typically expressed in a non-cumulative (Carrara et al., 2003; Guzzetti et al.,30

2002) and cumulative form (Hovius et al., 1997; Guthrie and Evans, 2004b). Landslide magnitude is often expressed in terms

of area (Catani et al., 2005; Havenith et al., 2006; Chen et al., 2007) or volume (Brunetti et al., 2009; Jaiswal and van Westen,

2012), both of which are representative of landslide magnitude and have a certain correlation. Area is widely used because it

is easier to obtain than volume.

Several studies have shown that the frequency-magnitude distribution of landslides follows a power-law distribution (Frattini35

and Crosta, 2013; Pelletier et al., 1997; Malamud and Turcotte, 1999; Iwahashi et al., 2003; Guthrie and Evans, 2004a; Dahl

et al., 2013; Harp and Jibson, 1996). Most studies, however, focused on phenomena rather than causes. The size distribution

law of landslides and its physical mechanism remain poorly understood. Hergarten (1998, 2003) compared observed landslide

size distributions with models of self-organized criticality (SOC) and suggested that landsliding in combination with its driving

processes may be considered a SOC phenomenon. Unfortunately, no further work was undertaken owing to the lack of available40

field data.

Self-organized criticality theory belongs to the field of nonlinear physics field and is a new concept to explain the behavior

of composite systems developed by Bak et al. (1987, 1988). This kind of system or composite system contains an exceedingly

large number of elements that interact over a short range, naturally evolve toward a critical state, and locked in this state over a

given period of time, or permanently. In the critical state, a minor event can initiate a chain reaction that affects a large number45

of elements in the system and even lead to a catastrophe. Although systems produce more minor events than catastrophes,

chain reactions of all sizes are an integral part of the dynamics. According to theory, the mechanism that leads to minor events

is the same that leads to major events.

A sand pile is a deceptively simple system that serves as a paradigm for SOC. Held and co-workers (1990) devised a precision

apparatus that slowly and uniformly pours sand grain by grain onto a flat, circular surface. The sand pile stops growing when50

the amount of sand added is balanced on average by the amount of sand that falls off the edge, at which point the system has

reached a critical state. When a grain of sand is added to a pile in the critical state, it can initiate an avalanche of any size,

including a catastrophic event, and the size and the frequency are related by a power law. SOC has explained the dynamics of

many catastrophes such as earthquakes (Olami et al., 1992), forest fires (Drossel and Schwabl, 1992; Malamud et al., 1998),

mountain and rock slides, snow avalanches (Hergarten, 2002, 2003), solar and stellar flares (Aschwanden, 2011; Aschwanden55

et al., 2016), and stock market crashes (Sornette, 2003). This paper investigates SOC’s application to landslides triggered by

earthquakes.
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Two great earthquakes struck the Longmen Mountains in 2008 and 2013 and triggered numerous landslides. The Longmen

Mountains, on the eastern edge of the Qinghai-Tibetan Plateau in Sichuan Province, China, have the greatest gradient change

in the surrounding mountain system. At least 5−10 km of material in the Longmen Mountains has been eroded away since the60

Miocene, rising at a rate of about 0.6 mm/y (Li et al., 2006; Liu, 1993). The continuous effects of uplifting and denudation

formed a deep and steep valley landscape with an average slope in the southern and Minjiang River areas above 27◦. According

to Davis’s theory of erosion cycles (Davis, 1899), the Longmen Mountains are in the early maturity of geomorphologic evolu-

tion and their slopes have evolved to a critical stage. Common characteristic of slope disasters include dilapidation of natural

terrain or cut slope, rock avalanches, debris flows, landslides, rock piles, and snowslides, all of which are mainly composed65

of granular mixtures and associated with energy dissipation owing to material instability and slipping during slope accumu-

lation. The sand pile model is ideal for reflecting the energy dissipation process within slope accumulation, and its dynamic

characteristics should therefore be explainable under the conceptual framework of SOC (Yao et al., 2003; Yao and Huang,

2016).

In this study, we aim to better understand the universal behavior of slope disasters from the point of view of SOC. We70

studied the distribution of landslides induced by two earthquakes in the Longmen Mountains by field investigations and remote

sensing interpretation. A sand pile cellular automata model was also built under the conceptual framework of SOC to simu-

late earthquake-induced landslides. Shaking table experiments of a one-sided slope sand pile under seismic excitations were

conducted. The results of this study provide a physical explanation of the general distribution of earthquake-induced landslides.

2 Analysis of landslide inventory data75

2.1 Study area

The 2008 Wenchuan earthquake triggered the largest number of landslides observed in human history. On April 20, 2013, the

Lushan earthquake also triggered a large number of landslides. Both events were caused by thrust faulting in the Longmen

Mountains of China in areas under similar geographical, geological, and geomorphological conditions.

2.2 Data and Methodology80

2.2.1 Landslide field investigation

The majority of our field work was accessed by car, landslides were recorded that were visible along the road, and then followed

by foot for detailed investigation. The landslide investigation of the Wenchuan earthquake began in the rescue time from May

31, 2008 soon after the main shock until June 5, 2008. We collected preliminary survey data by recording the location of the

landslide deposits that covered the road, estimating the landslide volume, and asking the highway department staff for the85

amount of cleaned landslide deposits. We chose to limit the survey to > 10 m3 landslides that blocked roads.

A relatively detailed reconnaissance field study was conducted from August 2 to 27, 2009. After two rainy seasons, the

loose material on the slope was nearly washed away, revealing a complete sliding bed or collapsed back wall. We measured
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Figure 1. Landslides triggered by the 2008 Wenchuan and 2013 Lushan earthquakes

the spatial position coordinates of the sliding bed and compared with a 1 : 2000 topographic map along the highway from

Dujiangyan to Yingxiu, which is a section of Chinese national highway 213. A three-dimensional digital figure of the landslide90

was generated to obtain the landslide volume and depth. According to the slope engineering design scheme of the highway, the

landslide depth can be estimated more accurately by measuring the length of exposed anchors after the earthquake.

After the Lushan earthquake, we conducted landslide field surveys along the road from April 26 to August 26, 2013. We

accumulated survey routes exceeding 500 km in length, including the China national highway 318, provincial highways 210

and 211, country town roads from Leyin to Rongjin, Longmen to Taiping, Renjia to Shuangshi, Shuangshi to Linguan, and95

Taiping to Dachuan. We focus on landslide volume, which is mainly obtained from field measurements and the amount of

cleaned landslide deposits by the highway department during the rescue time.

2.2.2 Landslide inventory mapping

Landslides triggered by earthquake are usually large in number and widespread in distribution, and detailed coseismic landslide

data cannot be based on field investigations alone. At present, the visual interpretation of high-resolution remote sensing images100

is the primary method to obtain large-area earthquake-induced landslide data.
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We collected pre- and post-earthquake high-resolution remote sensing data to facilitate the landslide analysis. The Wenchuan

earthquake data included TM satellite images (pre-earthquake), ALOS satellite images (10-m spatial resolution, taken on

June 4, 2008), and Quick-Bird satellite images (0.61-m spatial resolution, taken on May 30, 2008). The Lushan earthquake

data included LANDSAT-5, SPOT4, and SPOT4 satellite images (pre-earthquake), aerial photographs (0.4-m and 2-m spatial105

resolution, taken on April 20 and 21, 2013) provided by the Institute of Remote Sensing and Digital Earth of the Chinese

Academy of Sciences, aerial photographs (Baoshen, Longmen, and Taipin towns, 0.16-m spatial resolution, taken on April 20,

2013) provided by the State Bureau of Surveying and Mapping, and ZY3 satellite images (2.1-m spatial resolution, taken on

May 13, 2013).

The color and shape characteristics of landslides (e.g., morphology, hue, shadow, texture) of the optical remote sensing110

images is clearly distinguishable from the surrounding area, especially shortly after the earthquake. Following the criteria

proposed by Harp et al. (2011) and Xu et al. (2016), we manually mapped the earthquake-triggered landslides using the GIS

platform.

Coseismic landslides are easily detected on high-resolutions images (∼ 1−10 m or higher). Many coseismic landslides may

overlap in areas of high landslide density, which makes them difficult to uniquely distinguish and subject to the interpreter’s115

discretion. The higher resolution of the images used, the easier individual landslides are separated and the more objective

landslide inventory maps prepared. Densely vegetated areas also pose a problem because vegetation is often destroyed during

landsliding and “tadpole” traces appear on the image. Special care must be taken to distinguish the landslide from the vegetation

damage range and the identified landslide inventory map must be validated to improve the interpretation accuracy. To address

these problems, first of all, the landslides of the study area were mapped using visual interpretation of high-resolution satellite120

images and aerial photographs. Secondly, we removed landslides in areas with slopes less than 20◦ because landslide events

require certain terrain conditions. Because some farmland, bare land, quarries, sand and gravel yards, old landslides, and

other traces of human activities are difficult to distinguish from coseismic landslides on the images, we performed detailed

field investigations and combined pre-earthquake satellite images to exclude inaccurate assessments. Finally, we converted the

projected landslide area identified in the remote sensing image with the slope gradient to obtain the final landslide area.125

2.3 Results and discussion

Although the distribution of earthquake-induced landslides is controlled by a variety of factors (e.g., slope aspect, faulting,

topography, lithology) that have been discussed in several studies, we believe that the most important control factor is seismic

intensity. Therefore, in this study, we analyze landslide distribution according to seismic intensity zone. The range of seismic

intensity zones is based on official seismic intensity distribution maps published by the China Earthquake Administration.130

Frequency-area (or volume) distribution of a landslide event often exhibits power-law scaling over a limited scale range

(Guzzetti et al., 2002; Stark and Hovius, 2001). The relationship can be represented by Eq. (1):

N(A) = a×A−b (1)
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where a,b is constants, b is the exponent power that describes the statistical features of the landslide distribution.A is landslide

size, characterized by area and volume, even depth. N(A) is the number of landslides beyond a given A.135

2.3.1 Landslide volume (depth)-frequency distributions in different seismic intensity zones

We performed detailed field investigations of 105 landslides triggered by the Wenchuan earthquake and 261 landslides triggered

by the Lushan earthquake. The data were fitted by Eq. (1) where q is landslide volume and N(q) is the number of landslides

beyond a given volume q,h is landslide depth and N(h) is the number of landslides beyond a given depth h. The power-law

formula is fitted by a least-squares regression where R2 represents the goodness of fit (i.e., larger R2 reflect a better fit). The140

results of field survey are listed in Table 1 .

Table 1. Landslide volume (depth)-frequency distributions in different seismic intensity zones

seismic intensity Landslides number volume -frequency fitting (depth)-frequency fitting

Lushan earthquake

VII 108 N(q) = 485.69q−0.529, R2 = 0.9647 -

VIII 108 N(q) = 413.97q−0.518, R2 = 0.9864 -

IX 45 N(q) = 214.58q−0.611, R2 = 0.9465 -

Wenchuan earthquake

IX 61 N(q) = 223.14q−0.483, R2 = 0.9639 N(h) = 22.38q−1.037, R2 = 0.9871

X 29 N(q) = 260.76q−0.565, R2 = 0.8940 N(h) = 11.18q−1.243,R2 = 0.8963

XI 15 - -

In the VII, VIII, and IX seismic intensity zones of the Lushan earthquake, the landslides volume-frequency distribution

follows a strong power-law relationship. In the IX seismic intensity zone of the Wenchuan earthquake, the volume-frequency

distribution and depth-frequency distribution all follow a power-law relationship. The X seismic intensity zone of the Wenchuan

earthquake shows similar yet weak power-law characteristics, even though the number of landslides is small (29 sites). A145

substantial number of large landslides are observed in the XI seismic intensity zone of the Wenchuan earthquake and are

connected in a single mass, which is not easy to distinguish into individual sites. Almost two-thirds of the mountains show

evidence of mountain peeling. Of the 15 landslides surveyed, the minimum volume is 20 m3 and the maximum is 16800 m3.

The minimum depth is 0.3 m and the maximum is 5 m. Although the number of samples is insufficient to draw statistical

conclusions, large landslide events appear to dominate. A power-law relationship is not observed between the volume (or150

depth) and frequency in the XI seismic intensity zone.

2.3.2 Landslide frequency-area distributions in different seismic intensity zones

We identified 20,236 coseismic landslides of the Wenchuan earthquake and 1608 coseismic landslides of Lushan earthquake

by manual image interpretation, as shown in Figs. 2 and 3, respectively. The statistics of the landslide area were fitted by Eq.
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(1), where A is landslide area and N(A) is the number of landslides beyond a given area A. To eliminate the influence of map155

resolution and undersampling of smaller landslides, we statistically analyze landslides over 1000 m2. The power-law formula

is fitted by a least-squares regression. We also test the lognormal relationship of the data by the chi-square test method. The

results of remote sensing interpretation are listed in Table 2.

Figure 2. Distribution map of landslides triggered by the Wenchuan earthquake

Figure 3. Distribution map of landslides triggered by the Lushan earthquake
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Table 2. Landslide frequency-area distributions in different seismic intensity zones

Seismic intensity Number of landslides Fitting formula Hypothesis test result

Lushan earthquake

VII 706 N(A) = 5.5× 105A−1.051
R2 = 0.901, Accept the power law distribution

hypothesis

VIII 477 N(A) = 1.6× 105A−0.993
R2 = 0.917, Accept the power law distribution

hypothesis

IX 425 N(A) = 6.8× 104A−0.955
R2 = 0.916, Accept the power law distribution

hypothesis

Wenchuan earthquake

IX 3775 N(A) = 1.7× 109A−1.543
R2 = 0.913, Accept the power law distribution

hypothesis

X 9615 N(A) = 1.02× 109A−1.304
R2 = 0.873, Accept the power law distribution

hypothesis

XI 6846 N(A) =
1

1.46
√
2πA

e
−(lnA−9.02)2

2×1.462
Accept the lognormal distribution

hypothesis at the significance level of 0.05

In the VII, VIII, and IX seismic intensity zones of the Lushan earthquake, the landslides area-frequency distribution follows

a power-law relationship
(
R2 > 0.9

)
, although none pass the lognormal distribution test. The landslides area-frequency dis-160

tribution follows a power-law relationship
(
R2 > 0.9

)
in the IX seismic intensity zone of the Wenchuan earthquake, a weak

power law in the X seismic intensity zone
(
R2 = 0.873

)
, while a lognormal distribution in the XI seismic intensity zone.

2.3.3 Landslide density in different seismic intensity zones

We define landslide density as the number of landslides per square kilometer. The landslide numbers and calculated densities

in the different seismic intensity zones of the two earthquakes are listed in Table 3.165

Table 3. Landslide concentrations in different seismic intensity zones

Seismic intensity Number of landslides Total area (km2) Landslide concentration (landslides per km2)

Lushan earthquake
VII 706 2068 0.34
VIII 477 1161 0.41
IX 425 189 2.25

Wenchuan earthquake
IX 3775 1645 2.30
X 9615 1627 5.91
XI 6846 1074 6.37
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Landslide density clearly increases with seismic intensity, in agreement with previous studies (Qi et al., 2010).To test if the

statistical results obtained from landslides generated by the Wenchuan and Lushan earthquakes may also apply to landslides in

other areas, we combine cellular automaton simulations with laboratory experiments under the conceptual framework of SOC

to interpret the distribution mechanism of earthquake-triggered landslides from a physical viewpoint.

3 Computer simulation170

Computer models are an integral component of SOC research, mostly from numerical simulations of a sand pile cellular

automaton. The Bak, Tang, and Wiesenfeld (1987) model (BTW) is the earliest and most classic model of sand pile cellular

automata and many other models have been developed based on the BTW model for different physical systems that display

SOC (e.g., earthquakes, forest fires, magnetic vortex motion, interface growth, biological evolution). In this study, we introduce

a sand pile cellular automata model to simulate earthquake-induced landslides.175

3.1 The model

According to the physical features of earthquake-induced landslides, the model has following aspects:

(1) The BTW model is used to study the avalanche size distribution over time of a sand pile under disturbances. Because

earthquake-induced landslides occur simultaneously, the avalanche size distribution of many sand piles must be studied when

they are disturbed by a single event.180

(2) In the BTW model, a system may be partially disturbed and remain strictly energetically conservative. During earthquake-

induced landslides, the slope is disturbed as a whole and its instability must overcome its self-stabilization ability, which

requires input energy. The disturbed disseminate is therefore energetically non-conservative.

(3) The BTW model is used to study the dynamic behavior of a system under the same perturbation conditions. For

earthquake-induced landslides, the disturbance force on the slope is sensitive to the seismic intensity zone and may exceed185

the perturbation level. We must therefore modify the disturbance intensity to simulate this physical process.

According to the above characteristics, we constructed a sand pile cellular automata model to simulate earthquake-induced

landslides. The model is defined on a two-dimensional L×L lattice. The sites were numbered with a pair of sub-indexes

(i, j)(1≤ i, j ≤ L), and each site has four nearest neighbors located in the upper, lower, left, and right directions. The state of

each site is characterized by a non-negative integer variable Fi,j , which is a state value that reflects the stability of site (i, j)190

(equivalent to the site energy) and each site has a threshold Fth. We introduce α as the disturbed transmission parameter for

the four neighbors, which are not larger than 0.25 owing to non-conservative factors. The model is described by the following

algorithm.

Step 1. N sand piles of equal size are built simultaneously but with different initial states. For each sand pile, all sites are

initialized to a random value between 0 and Fth, and Fmax is the maximum value of all sites in the sand pile.195
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Step 2. The N sand piles are simultaneously disturbed. The state value of all sites increases uniformly by the disturbance

intensity F ′.

Fi,j → Fi,j +F ′ (2)

Step 3. The N sand piles are investigated individually. If all sites in a given sand pile remain less than Fth, nothing happens.

Conversely, if Fi,j ≥ Fth, the site (i, j) becomes unstable and relaxes according to the rule:200

Fi±1,j → Fi±1,j +αFi,j

Fi,j±1→ Fi,j±1 +αFi,j

Fi,j → 0

(3)

The relaxation may cause some of the neighbors to become unstable. If so, step 3 is repeated all sites are less than Fth

(Fi,j < Fth).By changing F ′, we can determine the relationship between avalanche magnitude and occurrence frequency.

It should be noted that when a disturbance is applied, some sand piles will react while others will not depending on F ′.

When F ′ = Fth−Fmax, at least one sand pile will react. When F ′ is small, sometimes only a few sites will be triggered. But205

as F ′ increases, a batch of sites may be triggered, each of which may trigger chain reactions that may ultimately cross paths

in space. Parallel processing is therefore adopted in the algorithm and all disturbed sites react simultaneously in a parallel-

updating manner. We measured avalanche size in terms of the number of sites participating in the relaxation. This property is

called cluster size and is as a measure of the area affected by the avalanche.

3.2 Results and discussion210

In a nondimensional formalism, the model parameter α= 0.2,Fth = 1, and the lattice size L= 50. One million sand piles(
N= 106

)
were generated. Each sand pile was continuously reacted 105 times with a disturbance intensity of F ′ = 1−Fmax

in succession to ensure that each sand pile evolves to a critical state before the formal experiment. Eight groups of simulation

experiments were then carried out by increasing F ′ from 0.00001 to 0.01 , with each group reacted only once. Let the number

of avalanches be S and the frequency of the avalanche size equal to S be f(S). The avalanche density is equal to the number215

of sand piles with avalanche events divided by the total number of sand piles. The statistical results are shown in Table 4 .

Table 4 shows that the disturbance intensity 1−Fmax can be divided into two intervals and the dynamic characteristics of the

sand pile model exhibit different properties. When F ′ < (1−Fmax), the avalanche scale and occurrence frequency basically

obey the same power-law distribution but the avalanche density increases monotonously with increasing F ′ (Fig. 4). When

F ′ > (1−Fmax), the dynamics of the sand pile model exhibit a strong to weak power-law relationship and then to a lognormal220

distribution with increasing F ′ (Fig. 5 ).
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Table 4. Results of cellular automata simulations

No.
disturbance

intensity F ′

Number of

sandpiles with

avalanche event

Sandpile

numbers

avalanche

density (ρ)
Fitting formula Hypothesis test result

1 0.000 01 80049 106 0. 08 f(S) = 0.229S−2.51
R2 = 0.949, Accept the power law distribution

hypothesis

2 0.000 05 286511 106 0.29 f(S) = 0.576S−2.44
R2 = 0.964, Accept the power law distribution

hypothesis

3 0.000 1 468255 106 0.47 f(S) = 1.168S−2.46
R2 = 0.965, Accept the power law distribution

hypothesis

4 0.000 5 936746 106 0.94 f(S) = 1.327S−2.56
R2 = 0.964, Accept the power law distribution

hypothesis

5 1−Fmax 106 106 1 f(S) = 1.267S−2.01
R2 = 0.969, Accept the power law distribution

hypothesis

6 0.001 106 106 1 f(S) = 117.41S−2.94
R2 = 0.901, Accept the power law distribution

hypothesis

7 0.005 106 106 1 f(S) = 1

0.54
√

2πS
e

−(lnS−3.88)2

2×0.542
Accept the lognormal distribution hypothesis at

the significance level of 0.05

8 0.010 106 106 1 f(S) = 1

0.38
√
2πS

e
−(lnS−4.68)2

2×0.382
Accept the lognormal distribution hypothesis at

the significance level of 0.05

Figure 4. The relation between avalanche density ρ and disturbance intensity F ′
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Figure 5. The relation between P (S) and S. The different curves refer to different disturbance intensity.

4 Physical experiment

Although cellular automata numerical simulations are the primary way to obtain properties of a SOC system, physical exper-

iments are necessary to verify the validity of its application to earthquake-trigged landslides. A sand pile is a classic example

of SOC. Held et al. (1990) designed a physical experiment to show that a sand pile is indeed a SOC system and subsequent225

studies have carried out on various types of sand pile experiments to determine the mechanism of certain physical systems that

show SOC. To better understand the physical phenomena of earthquake-induced landslides, we performed shaking table tests

to study the dynamic behavior of a sand pile under different earthquake forces.

4.1 Experimental procedure

A landslide triggered by an earthquake is a natural phenomenon that occurs over a tremendously large size range (∼ 102−230

108 m3 ). The purpose of the experiment is to study the dynamic behavior of a sand pile and its evolution trend. The model

sand piles need not simulate a certain prototype. Previous sand pile experiments have shown that the gradation of model

material, physical and mechanical parameters, and model size may influence the collapse size, but there is no influence on

the relationship between collapse size and its occurrence frequency. We therefore did not consider similarity relations in the

tests. Large-scale shaking table experiments were conducted in the Key Laboratory of High-speed Railway Engineering at235

Southwest Jiaotong University in China (Fig. 6). The shaking table is a single-direction table with a size of 2× 4 m, capacity

of 25,000 kg, and loading frequency range of 0.4−15 Hz. In the absence of an applied load, the maximum acceleration is 1.2

g and the displacement ranges from −100 to 100 mm.

The one-side slope sand pile was built in a steel model box with a 3.75−m length, 1.75−m width, and 2.75−m height placed

on the shaking table. The sand pile material was a dried natural sand gravel collected from earthquake-triggered landslides in240
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the Longmen Mountains. Particles larger than 50 mm were removed and the gradation was measured (Fig. 7). When the sand

pile reaches its natural angle (e.g., soil angle of internal friction), it is in a critical stable state. The sand pile has a length of

2.58 m, width of 1.5 m, height of 1.95 m, and total weight of 6800 kg (Fig. 8 ).

Slope responses under the excitation of field seismic waves were recorded at the Wolong seismic station of the 2008

Wenchuan earthquake (WL wave, Fig. 9). The input WL wave was proportionally scaled to its peak value.245

To study the variation of sand pile dynamic characteristics with increasing disturbance intensity, we designed five sets of

tests with input peak accelerations of 0.075 g to 0.250 g. After inputting the excitation, the weight of the sand gravel collapse

was measured as a test value. After each test, sand gravel was added from the top of the slope to ensure that the slope remained

in a critical stable state. Each set of tests was run no less than 60 times.

Figure 6. Schematic diagram of the shaking table experimental setup

Figure 7. Gradation curve of the sand sample
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Figure 8. Photo of the sand pile model

Figure 9. Acceleration history of the WL wave with a peak value of 976 gal
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4.2 Results and discussion250

Let the collapse weight be x and the collapse weight frequency equal to be f(x). The analysis results are shown in Table 5.

The collapse density is equal to the number of tests with collapse events divided by the total number of tests.

Table 5. Statistical results of sand pile tests

No.
Peak

acceleration

Number

of tests

Number of

tests with

collapse event

collapse

density
Fitting formula Hypothesis test result

1 0.075g 90 49 0.54 f(x) = 500.2x−0.774
R2 = 0.901, accept the power law

distribution hypothesis

2 0.100 g 90 52 0.58 f(x) = 579.3x−0.783
R2 = 0.917, accept the power law

distribution hypothesis

3 0.125g 150 118 0.79 f(x) = 3887.6x−1.059
R2 = 0.963, accept the power law

distribution hypothesis

4 0.150g 60 60 1 f(x) = 1

0.59
√
2πx

e
−(lnx−7.36)2

2×0.592

Accept the lognormal distribution

hypothesis at the significance level

of 0.05

5 0.250g 60 60 1 f(x) = 1

0.32
√
2πx

e
−(lnx−8.33)2

2×0.322

Accept the lognormal distribution

hypothesis at the significance level

of 0.05

Note: When the PGA is 0.075 g, 0.1 g, and 0.125 g, some tests occurred without collapse events and the number of tests was increased.

The other groups were repeated 60 times.

When the peak acceleration input was between 0.075 g and 0.125 g, some tests occurred without collapses. When collapses

did occur, small collapses were significantly more common than large collapses and the results obey a power-law distribution.

When the PGA was between 0.15 g and 0.25 g, no tests occurred with zero collapses, the power-law relationship was weakened,255

and the results followed a lognormal distribution. The collapse density increases with increasing peak acceleration.

Studying the dynamic response of sand pile with seismic waves as disturbance sources is a unique experimental method

to study SOC characteristics. Previous results have shown that the disturbance mode does not affect the sand pile dynamics

characteristics, but does influence the power-law relationship parameters (Yao and Fang, 1998; Yao et al., 2003; Yang et al.,

2007). The shaking table sand pile model tests show that changes in disturbance intensity lead to a shift in system dynamics.260

The physical process of the shaking table sand pile test is close to the prototype problem of earthquake-induced landslides,

even though the number of experiments remains limited, and provides good support for the universality of earthquake-triggered

landslides in different intensity zones.
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5 Conclusions and discussion

(1) We analyzed data from landslides triggered by the 2013 Lushan and 2008 Wenchuan earthquakes. The results show a265

negative power-law relationship between landslide size and frequency in the VII, VIII, and IX seismic intensity zones. The

relationship becomes a weak power law in the X seismic intensity zone and changes into a lognormal distribution in the XI

seismic intensity zone. Landslide density increases gradually with increasing seismic intensity. Cellular automaton simulations

reveal that with increasing disturbance intensity, the dynamical mechanism of the sand pile model changes from a strong power

law to a weak power law and then to a lognormal distribution, and the avalanche density increases. The results of the shaking270

table sand pile model tests verify these findings. The overall landslide distribution law is therefore constrained, even though

these landslides are complex and very random, and the evolution mechanism of the distribution law in different intensity zones

is clarified. Although there are some possible limitations of samples size in this study, the distribution probability model of

earthquake-triggered landslides and evolution model with increasing seismic intensity presented here exceed the statistical

relation level of a typical sample, which is the significance of this study.275

(2) SOC was founded in 1987 as a branch of non-equilibrium thermodynamics and study of its phenomenology and precise

definition continues. SOC has highlighted that thresholds, metastability, and large-scale fluctuations play a decisive role in the

spatiotemporal behavior of a large class of multi-body systems. However, the influence of disturbance intensity on the system

dynamics behavior of SOC has not received much attention. The disturbance intensity range of a catastrophic event may span

several orders of magnitude (e.g. the energy difference between a magnitude 9 earthquake is 32,768 times more powerful than280

a magnitude 6 earthquake). In the case of the 2008 Wenchuan and 2013 Lushan earthquakes, the dynamic characteristics of

the SOC system undergo a strong power law, weak power law, and lognormal distribution evolution process with increasing

disturbance intensity. This constraint on the evolution pattern of a SOC system behavior goes beyond the traditional field of

SOC and makes a strong impetus to further develop basic SOC theory.

(3) Compared with chaos theory, SOC does not greatly emphasize the initial conditions and system details, which facilitates285

the experimental and analytical procedures. The sand pile example tends to explain nearly everything from mountain forma-

tion to stock market volatility. But if many of the unique details of mountain systems can be understood by simple cellular

automata numerical simulations, it may not be realistic for most geographers and requires further validation. For example, slope

structures (e.g., joints, fracture surfaces) in nature are non-uniformly distributed and natural granular materials often exhibit a

wide gradation. The nonuniformity of components is one of the important characteristics of a mountain system, however, the290

influence of non-uniform components on the dynamics is not considered here. We briefly discuss the effect of nonuniformity

on dynamics in a previous study (Guo et al., 2017). However, the heterogeneity of cell geometry, arrangement randomness,

and interaction anisotropy can be considered to investigate the unique details of how nonuniformity property affects system

dynamics. Further research will therefore aim to determine the deep-seated law of earthquake-induced landslides.

(4) In the IX seismic intensity zone, the cumulative number-area distribution of landslides triggered by the earthquakes ex-295

hibits a negative power-law relationship but with different power exponents: 1.543 for the Wenchuan earthquake and 0.955 for
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the Lushan earthquake. The difference of different seismic characteristics and the earthquake affected area, such as geological

and topographical conditions, may affect the power-law exponents, which should be investigated in future studies.
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