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1 General Comments

This manuscript explores the effectiveness of echo-state-networks for a hierarchy of
problems. It explores 3 “toy” dynamical systems and then applies the methodology
to a data driven weather prediction task. They evaluate both the equilibrium distribu-
tion (using a Xi-squared analysis) and initial value forecasts using root-mean-squared
error based metrics. By these metrics, they claim that filtering the data before train-
ing an ESN generally improves these metrics in cases where the underlying dynamics
are “intermittent” or show strong “coupling between timescales”. For all the problems
except for Lorenz 96 (L96), they pre-filter with moving averages, whereas for L96 they
take advantage of the built-in scale separation between the large-scale and small-scale
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variables.

Overall, I thought the results were interesting and relevant to geophysical problems
which often feature intermittent and multiscale dynamics, but was not convinced that
their claims were valid. See my comments below.

1. The quality of presentation should be improved

(a) In a few cases, the color schemes used were not intelligible to colorblind
readers, which significantly hampered my ability to understand their results.
There are many multi-panel figures, which are explained only briefly in the
text.

(b) Notation is used inconsistently and unclearly in some places. Also, this
paper introduces redundant notation. Vector and scalar quantities are not
differentiated clearly.

(c) The literature review in the introduction was incomplete in a few places. Also,
for an article in a geophysical science journal, concepts like CNNs, RNNs,
ESNs should all be clearly defined and differentiated from one another. The
introduction sometimes incorrectly conflates these concepts.

(d) The conclusion contains many helpful motivations that could have helped
guide me through the introduction and the methods sections.

2. Their ESNs appear to fail to meaningfully reproduce the time series of the
Pomeau-Manneville (fig 5) or Lorenz 96 (fig 8) examples. As with any nega-
tive result, it is unclear whether some minor methodological improvement could
fix it, so I am not sure what insights these examples provides. In particular, some
authors have demonstrated substantially nearly optimal performance with data-
driven techniques for Lorenz 96 (Gagne, et. al. 2020) and with ESNs for similar
Kuramoto-Shivashinksy model (Pathak, et. al 2018). Were the authors able to
replicate the success of these previous studies?
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3. The Xi-squared testing procedure seems suspect. It mixes a parametric test (Xi-
squared) with a boot-strapping based test. Is there any support for this technique
in the literature? It would be preferable to use a more well-known statistical test
for this problem (e.g. Wilcoxon Rank sum, Kolmogorov-Smirnov).

4. The sea-level pressure example was compelling.

2 Specific Comments

Title: “Boosting performance”

This is a quibble, but “boosting” has a rather specific meaning in the machine learn-
ing literature https://en.wikipedia.org/wiki/Boosting_(machine_learning). This could be
misleading.

L8: “with an optimal choice of spatial coarse grain and time filtering”

With an optimal choise of spatial coarse-graining

L20. Buchanan.

How does this PhD dissertation relate to the previous assertion. Please be more spe-
cific.

L26. Gentine

There are many other articles on parameterizations which should be mentioned
e.g. (Brenowitz and Bretherton 2018, 2019; Yuval and O’Gorman 2020; Kransopalky
2005, 2013; Gettleman et. al 2020).

L27. This introduction should also mention (Rasp et. al 2020; Weyn et.al 2019) for the
pure weather prediction problem

L40. “Recent examples include. . . convolutional neural ntworks, . . . ”
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With the previous sentence in mind, this wording implies that convolutional neural net-
works are a type of RNN. I believe the references all used feed-forward architectures.

L65. “Previous results (Scher, 2018; Dueben and Bauer, 2018; Scher and Messori,
2019) suggest that RNN simulations”

Again, I don’t think these papers all studied RNNs. At least some used feed-forward
architectures.

L73-90. Overall, this description does not clarify what ESNs are, and why they work
outperform traditional RNNs for some problems (e.g. the vanishing gradients problem).

L90: “We estimate w_out via a ridge regression with lambda=”

How was this parameter chosen? ESNs are very sensitive to this parameters, and the
optimal parameter may vary from problem to problem. This could potentially explain
the poor performance on the L96 and Pomeau-Manneville examples below.

L98. “Let, U be . . . ”

For readibility, try to re-use previously introduced notation to avoid introducing too many
new symbols. For instance “v” is the same as “r” in eq 1-4.

Are theses tests univariate? The equations are multivariate.

L120: “we observed excessive rejection rates”

How do you quantify this?

L121: “we use 10000 samples”

What is “a sample”. Is it a single time step of r(t) above (e.g. a K-dimensional vector)?
Is it the number of timesteps or is it the number of timesteps times K? This would be
clearer if described in terms of the notation used in Eqs 1-4.

L135: This formula seems odd. I would normally define predictability by computing
RMSE versus the truth for a single timestep. In this case they compute the average
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MSE accumulated over several timesteps. Also, this formula only makes sense for
scalar u and v, but I thought we are in the vector setting?

Section 2.2: It is unclear why this moving average is described here. It would be clearer
if the introduction had introduced a broad outline of the paper.

248: “Performances are again better when using the exact formula (Figure 4b,e,h) than
using the residuals δu (Figure 4c,f,i).”

It would be helpful to refer to Eq 11 here.

Line 250: “ESN simulations do not reproduce the intermittency in the average of the
target signal. They only show some second order intermittency in the fluctuations.”

Is “the average” supposed to mean “the moving average” rather than “time average”?
Is “second order intermittency?”. Is this a formal concept?

L270. Forward Euler time steppers are notoriously inaccurate. Why not use a more
advanced time stepper (e.g. Runge Kutta) for better accuracy? There are many con-
venient software packages for integrating ODEs with better schemes (e.g. ode45 in
MatLab).

What is N? It must be network size, but given all the notational changes it is hard to be
sure.

Line331: “We show the results using the residuals (Eq. 9)”

Why not show the results with the “exact method” (Eq. 11)? It seems the earlier results
implied this technique was more effective.

Figure 10 b-d. These panels all look different. I don’t see much reason to prefer panel d
to c. Could the authors present a more convincing visualization for the claimed improve-
ment of the moving average filter? Maybe a single power-spectra plot would be more
succinct, especially since the author’s don’t comment on the timing the high-frequency
vs low-frequency results.
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Line 373. “For the Lorenz 1996 mode, we did not apply a moving average filter to the
data,. . . ”

It would have been nice to see this motivation described in Section 3.

3 Technical corrections

L73. ‘Reservoir compution"’

There is a missing quote.

L74. “The principle of Reservoir computing”

Does “Reservoir” need to be capitalized here? If so, I would expect “computing” to be
capitalized as well. “reservoir” is not always capitalized in this manuscript.

L76. “In our study ESNs are implemented”

L77. "The code is given in the appendix

L97: “to this purpose” –> “for this purpose”

L239: “we find the best match. . . are obtained for w=3”

Correct “are” to “is”.

249: “Figure 5a)”

Remove the parenthesis

Line275. “Figure 6.b,d)”

This should read “Figure 6 b,d”. Figures should be referred to with a consistent con-
vention.

L288. “distance T”.
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Do the authors mean Σ? T is the length of the time series.

Figure 8: The text in this graphic is fuzzy. Please save at a higher resolution.

Figure 2a: This plot has too many curves. Red-green is bad for colorblind readers. It
is hard to see the author’s point.

Figure 3, 4: These colorscales are not legible for colorblind readers. I could not in-
terpret these figures and relied on the author’s textual description of the results. I
suggesting using “viridis” or another sequential colorbar.
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