
Dear Editor, 

 

We have revised the manuscript by following the suggestion of the reviewers. We provide a new version of our                   

study where figures have been improved, notation has been improved and the additional analyses proposed               

have been integrated. When changing figures and taking into account comments, we have been in the need to                  

redo more realisations for our experiments. Of course, the new realizations included in some of the figures of                  

this paper show statistically the same results, but they can be slightly visually different then the previous                 

version. Furthermore, we have edited some of the answers initially proposed to the referees to reflect the                 

changes in the manuscript. We believe that when reviewing the new version of the manuscript, the referees                 

should find in the present answer letter a more detailed description of changes made in the manuscript than the                   

answers previously published. We regret that reviewer 2 did not provide useful references or suggestions to                

improve the quality of the manuscript. A marked-up version of the manuscript showing the implemented               

changes is attached at the end of this answer letter. 

Finally we believe that our editing efforts are reflected in the general improvement of the quality of the paper,                   

which is now more readable and scientifically sound. In particular, new figure 10 shows a clear evidence of the                   

improvement in forecast of atmospheric fields obtained with the filtering procedure. 

 

Best Regards 

Davide Faranda (on behalf of all the authors)  

 

 

RC1 Anonymous Reviewer 

 

This manuscript explores the effectiveness of echo-state-networks for a hierarchy of problems. It explores 3 “toy” 

dynamical systems and then applies the methodology to a data driven weather prediction task. They evaluate both 

the equilibrium distribution (using a Xi-squared analysis) and initial value forecasts using root-mean-squared error 

based metrics. By these metrics, they claim that filtering the data before training an ESN generally improves these 

metrics in cases where the underlying dynamics are “intermittent” or show strong “coupling between timescales”. 

For all the problems except for Lorenz 96 (L96), they pre-filter with moving averages, whereas for L96 they take 

advantage of the built-in scale separation between the large-scale and small-scale variables. Overall, I thought the 

results were interesting and relevant to geophysical problems which often feature intermittent and multiscale 

dynamics, but was not convinced that their claims were valid. See my comments below. 

 

We thank the reviewer for the appreciation of our work. In the new version of the manuscript we have fully 

addressed the recommendations. A detailed answer is provided below  

 

MAJOR COMMENTS 

 

 1. The quality of presentation should be improved  

(a) In a few cases, the color schemes used were not intelligible to colorblind readers, which significantly hampered 

my ability to understand their results. There are many multi-panel figures, which are explained only briefly in the 

text.  

 

We have taken great care in changing the color scales for colorblind users and we are sorry the reviewer had 

trouble in understanding some of the results. Multi Panels figures have beeen discussed in more  details in the 

text. 



 

(b) Notation is used inconsistently and unclearly in some places. Also, this paper introduces redundant notation. 

Vector and scalar quantities are not differentiated clearly.  

 

Following the suggestion of the reviewer (see also answers to technical comments), we have used a more 

compact and consistent notation. The main confusion probably originated by the misuse of u(t) in the formula of 

ESN. Indeed for the training we use the vectors x(t) of the dynamical systems, while the observable u(t) is a 

scalar quantity for a given time. Also in section 2.2 and 2.3 we have replaced u(t) with x(t) because the MA filter 

is operated on the signal and not on the observable. It is now clearly stated what observable is taken for the 

computation of the metrics used as diagnostic 

 

(c) The literature review in the introduction was incomplete in a few places. Also, for an article in a geophysical 

science journal, concepts like CNNs, RNNs, ESNs should all be clearly defined and differentiated from one another. 

The introduction sometimes incorrectly conflates these concepts.  

 

We have taken great care to differentiate CNN from RNN and ESN in the new version of the manuscript.  

 

(d) The conclusion contains many helpful motivations that could have helped guide me through the introduction 

and the methods sections. 

 

We have moved some of the key concepts presented in the conclusions, in the introduction section and 

rephrased a few sentences to make the purpose of the study clearer. 

 

 

 2. Their ESNs appear to fail to meaningfully reproduce the time series of the Pomeau-Manneville (fig 5) or Lorenz 

96 (fig 8) examples. As with any negative result, it is unclear whether some minor methodological improvement 

could fix it, so I am not sure what insights these examples provides. In particular, some authors have demonstrated 

substantially nearly optimal performance with data driven techniques for Lorenz 96 (Gagne, et. al. 2020) and with 

ESNs for similar Kuramoto-Shivashinksy model (Pathak, et. al 2018). Were the authors able to replicate the success 

of these previous studies?  

 

Indeed we are able to reproduce the previous results obtained with ESN for the models outlined by the 

reviewer. However, in this paper we decide to use the simplest possible ESN (i.e. not the tuned one which 

indeed provides better performances to the single cases) to perform sensitivity studies on noise level and 

coarse-graining, in an extended, comprehensive and parameters controlled way.  As pointed out by the other 

referee, a deterministic ESN with smooth, continuous activation function cannot be expected to produce 

trajectories that look spiking/stochastic/rapidly changing. Most previous studies on ESNs were handling 

relatively smooth signals, and not such rapidly changing signals.  Although  it does not come as a surprise that 

utilizing the ESN on the time averaged dynamics and then adding a stochastic residual improves performance, 

the main insights is the intricate dependence of the ESN performance on the noise structure and the fact that, 

even for non-smooth signal, ESN with hyperbolic tanh  functions can be used to study systems that have a 

multiscale dynamics. In the new version of the manuscript we have added these considerations to the discussion 

section of the articles. 

 

 



3. The Xi-squared testing procedure seems suspect. It mixes a parametric test (Xisquared) with a boot-strapping 

based test. Is there any support for this technique in the literature? It would be preferable to use a more 

well-known statistical test for this problem (e.g. Wilcoxon Rank sum, Kolmogorov-Smirnov).  

 

We are aware of the limitations of the procedure we decided to adopt, but after considering different strategies,                  

including those suggested by the referee, we decided to still keep this approach. There are two aspects playing a                   

role in this choice: why to use a chi-squared test and why to conduct a Monte Carlo experiment to determine                    

the critical value. 

 

The reasons for the choice of the chi-squared test reside mainly in the construction of the test statistics: this is                    

built to compare the probability distribution, considering differences between the empirical probability density             

functions (pdf) over the entire domain, in practice the histograms. Under the null hypothesis that the two                 

distributions are the same, their differences in the bins are i.i.d normal random variables, and the chi-squared                 

statistics follows indeed a chi-square distribution with M degrees of freedom, with M the number of bins. 

Other examples of tests that consider the shape of the entire distribution are the Anderson Darling and the                  

Cramer-von-Mises tests. We did see an advantage in using the chi-squared because it is based not on a distance,                   

but on an asymmetric divergence that gives more weight to the reference distribution: since we are not                 

comparing two sample distributions, but a sample distribution and the true distribution of the dynamical system                

observable, we are willing to place more weight on the latter. These explanations have been added to the new                   

version of the paper. 

 

Procedures based on ranks such as the Wilcoxon Rank sum, on the other hand, test more specific null                  

hypotheses. The Wilcoxon rank sum tests the null hypothesis of identical distribution against the specific               

alternative that one of the two distributions exhibits stochastic dominance (this degenerates to a test on the                 

median in case of Gaussian homoskedastic variables); however, this test could end up not rejecting the null                 

hypothesis in case of pdfs with sensibly different shape, but not clear stochastic dominance or shift in median. In                   

the case of the KS, the test is indeed useful for testing if two distributions are identical in a more general way.                      

However, in our experience the KS test tends, at large sample sizes, to over-reject the null hypothesis in                  

presence of very small differences between the distributions.  

 

Concerning the experiment design, we need to clarify that we did not use a bootstrap test, which relies on                   

resampling. Instead, we adopt a Monte Carlo simulation approach to approximate the distribution of the test                

statistics, and then the critical rejection value. Each of the 10000 samples is generated under the null hypothesis,                  

which is possible because we are considering simulated systems, for which we can obtain as many independent                 

samples as we want.  

 

We made this choice because, even simulating relatively long trajectories, we cannot observe the entire               

invariant distribution of the process, and therefore we cannot use the theoretical chi2(M) distribution of the test                 

statistic. This situation would happen in any case, independently on the chosen test, because the problem                

resides in our inability to observe the invariant distribution. In other words, we run a simulation to obtain                  

tabulated values of the distribution of the test statistics under H0 specific to our study, and we would do this for                     

any adopted statistical test, as using the exact or asymptotic distribution (depending on the test) would make                 

fixing the level of the test not sufficient to control the probability of Type 1 error. 

 

 

4. The sea-level pressure example was compelling.  



 

We thank the referee for the appreciation of the results for the sea-level pressure.  

 

SPECIFIC COMMENTS 

 

Title: “Boosting performance” This is a quibble, but “boosting” has a rather specific meaning in the machine 

learning literature https://en.wikipedia.org/wiki/Boosting_(machine_learning). This could be misleading.  

 

Thank you for this remark, if possible, we have changed the wording “boosting” with “enhancing” 

 

L8: “with an optimal choice of spatial coarse grain and time filtering” With an optimal choise of spatial 

coarse-graining  

 

Corrected 

 

L20. Buchanan. How does this PhD dissertation relate to the previous assertion. Please be more specific. 

 

We have corrected this reference which corresponds to a journal article and not to a Phd dissertation as 

previously stated. 

 

 L26. Gentine There are many other articles on parameterizations which should be mentioned e.g. (Brenowitz and 

Bretherton 2018, 2019; Yuval and O’Gorman 2020; Kransopalky 2005, 2013; Gettleman et. al 2020).  

 

After revising them, we agree that these references contain relevant information for the cited step and we have 

added them to the new version of the manuscript 

 

L27. This introduction should also mention (Rasp et. al 2020; Weyn et.al 2019) for the pure weather prediction 

problem  

 

We have added these references to the new version of the manuscript 

 

L40. “Recent examples include. . . convolutional neural ntworks, . . . ” C3 With the previous sentence in mind, this 

wording implies that convolutional neural networks are a type of RNN. I believe the references all used 

feed-forward architectures.  

 

Thank you. This have been corrected in the new version of the manuscript 

 

L65. “Previous results (Scher, 2018; Dueben and Bauer, 2018; Scher and Messori, 2019) suggest that RNN 

simulations” Again, I don’t think these papers all studied RNNs. At least some used feed-forward architectures.  

We have rephrased this in the new version of the manuscript 

 

L73-90. Overall, this description does not clarify what ESNs are, and why they work outperform traditional RNNs 

for some problems (e.g. the vanishing gradients problem).  

 

Again, we have stated clearly the specificity of the ESN at the beginning of the methods section: “In our study 

we particularly use ESN, a particular case of  RNN  where the output and the input have the same dynamical 



form.  In the ESN approach, neuron layers are replaced by a sparsely connected network, with randomly 

assigned fixed weights. we harvest reservoir states via a nonlinear transform of the driving input and compute 

the output weights to create reservoir-to-output connections.” 

 

L90: “We estimate w_out via a ridge regression with lambda=” How was this parameter chosen? ESNs are very 

sensitive to this parameters, and the optimal parameter may vary from problem to problem. This could potentially 

explain the poor performance on the L96 and Pomeau-Manneville examples below.  

 

Ridge minimizes the residual sum of squares plus a shrinkage penalty of lambda multiplied by the sum of 

squares of the coefficients. As lambda increases, the coefficients approach zero. The coefficients are 

unregularized when lambda is zero. We have tested the dependence on the ridge regression parameter for the 

Pomeau Manneville map and found that the dependence is small. 

 

The figure above shows the dependence of \phi, log(\tau_s=1) and log(\eta) from the value of the ridge 

parameter. No particular dependence is shown, so we stick to the small value \lambda=10^(-8) for the 

computations shown in this article. 

 



 

 

L98. “Let, U be . . . ” For readibility, try to re-use previously introduced notation to avoid introducing too many new 

symbols. For instance “v” is the same as “r” in eq 1-4. Are theses tests univariate? The equations are multivariate.  

 

We believe that the confusion originated by our wrong use of the notation. Now, for each system we have 

specified the observable used. The tests are all univariate, for the Lorenz 1963 we consider the variable x only. 

For the  Lorenz 1996 we consider one of the variables, since they are all dynamically and statistically equivalent. 

For the SLP, we consider the spatial average as observables for the test.  

 

L120: “we observed excessive rejection rates” How do you quantify this? 

 

We underline that the sentence is actually: "we would observe excessive rejection rates".  

Here we are underlining that, due to intrinsic limitations, we can construct a chi-squared test, but not use the 

standard critical values for the distribution of the test statistic, which would produce excessive rejection rates. 

Therefore, we construct the test statistic in the usual way, but use Monte Carlo simulation to obtain the 

distribution of the test statistic under the null hypothesis.  

 

L121: “we use 10000 samples” What is “a sample”. Is it a single time step of r(t) above (e.g. a K-dimensional 

vector)? Is it the number of timesteps or is it the number of timesteps times K? This would be clearer if described 

in terms of the notation used in Eqs 1-4. 

 

We have specified in the new version of the manuscript that a sample is a series of a univariate [ as specified in 

the answer for L98]  test observables, and we consider 10000 samples extracted from the total, longer time 

series. 

 

L135: This formula seems odd. I would normally define predictability by computing RMSE versus the truth for a 

single timestep. In this case they compute the average MSE accumulated over several timesteps. Also, this formula 

only makes sense for scalar u and v, but I thought we are in the vector setting?  

 

We thank the referee for the comment. Unlike our previous response in the discussion, we acknowledge that 

Indeed the equation was incorrect, after initially using different error measures, we indeed compute the 

absolute prediction error (APE), and not the RMSE, for each time step. 

 

Section 2.2: It is unclear why this moving average is described here. It would be clearer if the introduction had 

introduced a broad outline of the paper.  

 

We have followed  the suggestion of the reviewer and introduced the moving average in the introduction 

 

 

L248: “Performances are again better when using the exact formula (Figure 4b,e,h) than using the residuals δu 

(Figure 4c,f,i).” It would be helpful to refer to Eq 11 here.  

 

Thank you, we have added Eq 11 there 

 



L250: “ESN simulations do not reproduce the intermittency in the average of the target signal. They only show 

some second order intermittency in the fluctuations.” Is “the average” supposed to mean “the moving average” 

rather than “time average”? Is “second order intermittency?”. Is this a formal concept?  

 

What we mean here is that during the intermittent phases, the PM dynamics oscillate in the range (0.2 1) with 

an average of about 0.6. In the non-intermittent phases, the PM dynamics is stuck near 0. Therefore, the 

intermittency is on average (shift from 0.6 to 0) and in variance. This explanation has been added to the new 

version of the manuscript. 

 

L270. Forward Euler time steppers are notoriously inaccurate. Why not use a more advanced time stepper (e.g. 

Runge Kutta) for better accuracy? There are many convenient software packages for integrating ODEs with better 

schemes (e.g. ode45 in MatLab). What is N? It must be network size, but given all the notational changes it is hard 

to be sure.  

 

We remind that the idea is here to have exemples close to the atmospheric or climate data: when considering 

daily or 6 hourly data, as commonly done in climate sciences and analyses, we hardly are in the case of a smooth 

RK time stepper. We therefore stick to the Euler method for similarity with the actual climate data. This has 

been added to the text. 

 

L331: “We show the results using the residuals (Eq. 9)” Why not show the results with the “exact method” (Eq. 

11)? It seems the earlier results implied this technique was more effective.  

 

Unfortunately the “exact method” cannot be used for the SLP NCEP data. Indeed this dynamics has a spatial 

component that the “exact” method cannot take into account the spatial component. This is now specified in 

the paper 

 

Figure 10 b-d. These panels all look different. I don’t see much reason to prefer panel d to c. Could the authors 

present a more convincing visualization for the claimed improvement of the moving average filter? Maybe a single 

power-spectra plot would be more succinct, especially since the author’s don’t comment on the timing of the 

high-frequency vs low-frequency results.  

 

The wavelet methodology is a more sophisticated representation of a spectrum. We have replaced wavelet 

spectra with conventional spectra (now Figure 10b). For consistency, figure 10a is also replaced with the pdf for 

the observable u , used in figure 9 and in figure 10b. This means that all diagnostic on SLP are now computed 

using u(t)=<SLP(t)>_{lon,lat}, i.e. the time series of the spatial average of SLP 

 

L373. “For the Lorenz 1996 mode, we did not apply a moving average filter to the data,. . . ” It would have been 

nice to see this motivation described in Section 3.  

 

We have added this motivation in Section 3 

 

TECHNICAL CORRECTIONS 

 

L73. ‘Reservoir compution"’ There is a missing quote. 



L74. “The principle of Reservoir computing” Does “Reservoir” need to be capitalized here? If so, I would expect 

“computing” to be capitalized as well. “reservoir” is not always capitalized in this manuscript. L76. “In our study 

ESNs are implemented”  

L77. "The code is given in the appendix  

L97: “to this purpose” –> “for this purpose”  

L239: “we find the best match. . . are obtained for w=3” Correct “are” to “is”. 249: “Figure 5a)” Remove the 

parenthesis  

Line275. “Figure 6.b,d)” This should read “Figure 6 b,d”. 

Figures should be referred to with a consistent convention.  

L288. “distance T”. C6 Do the authors mean Σ? T is the length of the time series. Figure 8: The text in this graphic 

is fuzzy. Please save at a higher resolution.  

Figure 2a: This plot has too many curves. Red-green is bad for colorblind readers. It is hard to see the author’s 

point.  

Figure 3, 4: These colorscales are not legible for colorblind readers. I could not interpret these figures and relied on 

the author’s textual description of the results. I suggesting using “viridis” or another sequential colorbar.  

 

Thank you, technical corrections have  been  implemented. Colorscales replaced as demanded for colorblind 

readers. 
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We thank the reviewer for the references, which have been properly added to the new version of the 

manuscript. 

 

 

RC2 - Anonymous Reviewer 

 

The authors are utilizing Echo State Networks to predict filtered dynamics in the perturbed Lorenz 1963 equations,                 

the Pomeau-Manneville 89 intermittent map, and the Lorenz 1996 equations. A moving average filter is utilized for                 

scale separation in time. The filtered dynamics are smoother and easier to predict. A residual term is added, either                   

sampled from the training data, or based on an analytic formula derived from the moving average filter. Assuming                  

that the filter width is smaller than the associated large timescales of the processes involved, the large scale                  

processes can be successfully predicted. The authors claim that modeling only the spatially coarse grained and                

time averaged state can boost performance of ESN. However, the generalization of this argument to more realistic                 

systems is not sufficiently supported by the results, as elaborated in the comment section below. The idea of                  

utilizing a moving average filter for noise reduction and scale separation, or spatial coarse graining is known. I am                   

not sure that the novelty of the paper to apply ESNs to (spatially/time) filtered dynamics, is enough to guarantee                   

publication in the journal. The effect of the unmodeled dynamics (the information lost during filtering) is not taken                  

into account in the model. In most interesting applications, the effect of the unmodeled modes is the problem, and                   

a field of study by itself (closure models in turbulence, small scale models in weather etc.)  

 

We respect the opinion of the reviewer on our work, but we feel that the motivations provided here and in the                     

following comments for rejection are not supported and sometimes do not contain any element that could help                 

us to improve the manuscript. For example, the reviewer states many times that our results are “known” or                  

“existing in the literature” or “hardly surprising” but not a single reference to previous works which should                 

contain our results is provided. We are therefore unable to assess which part of our work could be not original                    

or to provide an adequate rebuttal to state why our work is instead original. Furthermore, the reviewer says                  

that our results are “not sufficiently supported by the results”, but it is not said in which way this is the case. We                       

stress that, for all cases presented, we have used at least three statistical metrics to assess performances, and                  

scanned a large range of coarse graining and noise intensities, as well as performed several realisations of our                  

systems. If this is not enough to warrant publication, then we would like to know why our suggested metrics are                    

not sufficient to support our conclusion. Besides these remarks on the structure of the proposed comments, we                 

will do our best to answer the reviewer’s comments and thus to improve the manuscript.  

 

1 Comments  

 



1. In the three-dimensional Lorenz system, it is logical that the moving average filter produces better results. By                  

construction, noise is added to the system. It does not come as a surprise that the ESN predicting the filtered                    

dynamics (which are smoother) and augmented with the random residual terms, shows superior performance.              

However, there is no complex multiscale effect taking place, as the whole state information is given to the system                   

(no hidden state, at least nothing is mentioned in the text about it). Moreover, as a reference time-scale, the                   

Lyapunov time of the deterministic system is used, although the system is augmented with noise, which means                 

that the effective Lyapunov time is in essence much shorter, as stochasticity accelerates the divergence of nearby                 

trajectories. In any case, it is important to be critical about the conclusions drawn from this case.  

 

We agree with the reviewer that “it is logical that the moving average filter produces better results” but what                   

we would like to show is that there is a dependence on the noise intensity on the quality of the results obtained                      

and particularly that the moving average filters is very useful for intermediate noise intensity, namely when the                 

stochastic component starts to affect the deterministic dynamics, but not at the same order of magnitude. We                 

disagree with the statement that “ the effective Lyapunov time is in essence much shorter, as stochasticity                 

accelerates the divergence “ as this is also dependent on the noise level. The most interesting performances for                  

the filtered ESN are obtained when the noise is yet 2-3 order of magnitude smaller than the typical scales of the                     

deterministic component, and we expect the perturbation on the lyapunov exponents to be of these orders as                 

well. In the conclusion section we have added: Most previous studies on ESNs were handling relatively smooth                 

signals, and not such rapidly changing signals. Although it does not come as a surprise that utilizing the ESN on                    

the time averaged dynamics and then adding a stochastic residual improves performance, the main insights is                

the intricate dependence of the ESN performance on the noise structure and the fact that, even for non-smooth                  

signal, ESN with hyperbolic tanh functions can be used to study systems that have a multiscale dynamics. In the                   

new version of the manuscript we have added these considerations to the discussion section of the articles. 

 

 

 

2. In the Pomeau-Manneville intermittent map, it is not a surprise that the ESN cannot capture the dynamics, as                   

they are changing very rapidly, even visually they look completely stochastic. A deterministic ESN with tanh                

(smooth, continuous) activation function cannot be expected to produce trajectories that look            

spiking/stochastic/rapidly changing. Most previous studies on ESNs were handling relatively smooth signals, and             

not such rapidly changing signals. At least the nature of the signal has to be taken into account in the selection of                      

the activation function of the reservoir. Thus, it does not come as a surprise that utilizing the ESN on the time                     

averaged dynamics and then adding a stochastic residual improves performance. As expected, the plain ESN               

diverges, as demonstrated also in previous studies with such non-smooth signals.  

 

We thank the reviewer for the comment. Indeed this can be a good explanation of our results. The reviewer says                    

again that “it is not a surprise” or “demonstrated also in previous studies”. However, no references are provided                  

for us to improve the quality of the manuscript or to give credits to those who have already analysed this                    

problem on another angle. We would be more than happy to include and discuss those references in the                  

manuscript. Furthermore, the reviewer makes a confusion between a visual analysis and what signals truly are.                

The PM system is piecewise continuous & differentiable, and is hence "relatively" smooth from the               

mathematical point of view. 

 

3. In the Lorenz 96 system, as demonstrated in Figure 8, the method fails to capture the long-term climate, as the                     

dynamics predicted by the ESN are clearly different from the groundtruth.  

 



We only partially agree with the reviewer about the results obtained for Lorenz96. Although the detailed                

dynamics does look different from that of the original system, there are a few things correctly captured by the                   

ESN, namely the quasiperiodic spatio-temporal oscillations and the fact that ESN produces non-divergent             

dynamics. 

 

4. In the sea-level pressure, the moving average filter ESN does not achieve any significant improvement based on                  

the results in Figure 9.  

 

Here, we would like to gently disagree with the referee comment. The ESN with filter does produce significant                  

improvements, in terms of all the metrics considered, and as noted by the other reviewer.  

 

 

5. In the abstract, the authors claim that "multiscale dynamics and intermittency introduce severe limitations on                

the applicability of recurrent neural networks, both for short-term forecasts, as well as for the reconstruction of                 

the underlying attractor". This is shown for Echo State Networks in the document, but not in general for Recurrent                   

Neural Networks. The argument has to be relaxed to take into account only ESNs, or a relevant reference for other                    

RNN architectures should be given.  

 

We agree with this comment of the referee, in the new version of the manuscript we have clearly restricted our                    

attention to ESNs. 

 

6. There is a contradiction in the text, in page 3, the authors state that "We aim at understanding this sensitivity in                      

a deeper way, while assessing the possibility to reduce its impact on prediction through simple noise reduction                 

methods", although one sentence before, they claim that they choose the ESN framework for "...its ability to                 

forecast chaotic time series and its stability to noise". These sentences are contradicting each other. Later in the                  

text, the authors state "Since Echo State Networks are known to be sensitive to noise (see e.g. [34]), ...".  

 

What we mean here is that ESN are less sensitive to noise than other techniques, but also that our goal is                     

precisely to evaluate such sensitivity and the improvement coming from noise reduction techniques. 

 

7. The analysis of the performance of the proposed method based on different parameters e.g. intermittency of                 

dynamics/degree of coarse graining, etc. is interesting. However, this is not adequate to warrant publication.  

 

We are delighted to see that the reviewer admits that our results are interesting. This encourages us to pursue                   

their publication. 
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Abstract. Recent advances in statistical and machine learning have opened the possibility to forecast the behavior of chaotic

systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical

flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale

dynamics and intermittency introduce severe limitations on the applicability of recurrent neural networks, both for short-term

forecasts, as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such5

limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test

these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short

and long term
:::::
short-

:::
and

:::::::::
long-term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse

grain
::::::::::::
coarse-graining

:
and time filtering.

Copyright statement. TEXT10

1 Introduction

The advent of high-performance computing has paved the way for advanced analyses of high-dimensional datasets (Jordan and

Mitchell, 2015; LeCun et al., 2015). Those successes have naturally raised the question of whether it is possible to learn the

behavior of a dynamical system without resolving or even without knowing the underlying evolution equations. Such an interest

is motivated on one side by the fact that many complex systems still miss a universally accepted state equation — e.g. brain15

dynamics (Bassett and Sporns, 2017), macro-economical and financial systems (Quinlan et al., 2019) — and, on the other, by

the need of reducing the complexity of the dynamical evolution for the systems of which the underlying equations are known

— e.g. on geophysical and turbulent flows (Wang et al., 2017). Evolution equations are difficult to solve for large systems

such as the geophysical flows, so that approximations and parameterizations are needed for meteorological and climatological

1



applications (Buchanan, 2019). These difficulties are enhanced by those encountered in the modelling of phase transitions20

that lead to cloud formation and convection, which are major sources of uncertainty in climate modelling (Bony et al., 2015).

Machine Learning techniques capable of learning geophysical flows dynamics would help improve those approximations and

avoid running costly simulations resolving explicitly all spatial/temporal scales.

Recently, several efforts have been made to apply machine learning to the prediction of geophysical data (Wu et al., 2018), to

learn parameterizations of subgrid processes in climate models (Krasnopolsky and Fox-Rabinovitz, 2006; Rasp et al., 2018; Gentine et al., 2018)25

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Krasnopolsky et al., 2005; Krasnopolsky and Fox-Rabinovitz, 2006; Rasp et al., 2018; Gentine et al., 2018; Brenowitz and Bretherton, 2018, 2019; Yuval and O’Gorman, 2020; Gettelman et al., 2020; Krasnopolsky et al., 2013)

, to the forecasting (Liu et al., 2015; Grover et al., 2015; Haupt et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2015; Grover et al., 2015; Haupt et al., 2018; Weyn et al., 2019)

and nowcasting (i.e. extremely short-term forecasting) of weather variables (Xingjian et al., 2015; Shi et al., 2017; Sprenger

et al., 2017), and to quantify the uncertainty of deterministic weather prediction (Scher and Messori, 2018). One of the greatest

challenge
:::::::::
challenges is to replace equations of climate models with neural network

:::::::
networks

:
capable to produce reliable long30

and short term forecast
::::
long-

::::
and

:::::::::
short-term

::::::::
forecasts of meteorological variables. A first great step in this direction was the

use of Echo State Networks (ESN, (Jaeger, 2001)),
:
a particular case of Recurrent Neural Networks (RNN),

:
to forecast the

behavior of chaotic systems, such as the Lorenz (1963) and the Kuramoto-Sivashinsky dynamics (Hyman and Nicolaenko,

1986). It was shown that RNN
:::
ESN

:
predictions of both systems attain performances comparable to those obtained with the

real
::::
exact equations (Pathak et al., 2017, 2018). Good performance of regularized RNN

::::::::::
performances

:::::
were

:::::::
obtained

::::::::
adopting35

:::::::::
regularized

::::
ESN

:
in the short-term prediction of multidimensional chaotic time serieswas obtained, both from simulated and real

data (Xu et al., 2018). This success motivated several follow-up studies with a focus on meteorological and climate data. These

are based on the idea of feeding various statistical learning algorithms with data issued from dynamical systems of different

complexity, in order to study short-term predictability and
::::::::
capability

::
of
::::::::

machine
:::::::
learning

::
to

:::::::::
reproduce long-term capabilities

of RNN in producing a surrogate dynamics of
::::::
features

::
of

:
the input data

::::::::
dynamics. Recent examples include equation-informed40

moment-matching for the Lorenz96 model (Lorenz, 1996; Schneider et al., 2017), multi-layer perceptrons to reanalysis data

(Scher, 2018), or convolutional neural networks to simplified climate simulation models (Dueben and Bauer, 2018; Scher and

Messori, 2019). All these learning algorithms were capable to provide some short-term predictability, but failed in
::
at obtaining

a long-term behavior coherent with the input data.

In this article we specifically focus on how to improve the performance of ESN in simulating long trajectories of large-scale45

climate fields. With respect to
:::
The

::::::::::
motivation

::
for

::::
this

:::::
study

::::
came

:::::
from

:::
the

:::::::
evidence

::::
that

:
a
:::::::::::::
straightforward

:::::::::
application

::
of

:::::
ESN

::
to

::::
high

::::::::::
dimensional

::::::::::
geophysical

::::
data

::::
does

:::
not

:::::
yield

::
to

:::
the

::::
same

:::::
result

:::::::
quality

:::::::
obtained

:::
by

::::::::::::::::
Pathak et al. (2018)

:::
for

:::
the

::::::
Lorenz

::::
1963

::::
and the results presented in Pathak et al. (2018), we aim at going beyond the predictability horizon and investigate the

ability of machine learning algorithms in shadowing the dynamics of observed data. Such applications would avoid the use of

general circulation models based on primitive equations to reproduce the evolution of a subset of variables and therefore obtain50

surrogates dynamics of existing datasets with little computational power. Previous results (Scher, 2018; Dueben and Bauer, 2018; Scher and Messori, 2019)

suggest that RNN
::::::::::::::::::
Kuramoto-Sivashinsky

:::::::
models.

:::::
Here

:::
we

::::
will

:::::::::
investigate

:::
the

::::::
causes

:::
for

::::
this

::::::::
behavior.

:::::::
Indeed,

::::::::
previous

:::::
results

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Scher, 2018; Dueben and Bauer, 2018; Scher and Messori, 2019)

::::::
suggest

:::
that

:
simulations of large-scale climate fields

::::::
through

::::
deep

::::::::
learning

:::::::::
algorithms are not as straightforward as those of the chaotic systems considered by (Pathak et al., 2018)
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::::::::::::::::
Pathak et al. (2018). We identify two main mechanisms responsible for these limitations: (i) the non-trivial interactions with55

small-scale motions carrying energy at large scale and (ii) the intermittent nature of the dynamics. Intermittency triggers large

fluctuations of observables of the motion in time and space (Schertzer et al., 1997) and can result in non-smooth trajectories

within the flow, leading to local unpredictability and increasing the number of degrees of freedom needed to describe the

dynamics (Paladin and Vulpiani, 1987).

By applying ESN to multiscale and intermittent systems, we investigate how scale separation improves ESN predictions.60

Our goal is to reproduce a surrogate of the large-scale dynamics of global sea-level pressure fields, a proxy of the atmo-

spheric circulation. We begin by analysing three different dynamical systems: we simulate the effects of small scales by

artificially introducing small-scale dynamics in the Lorenz 1963 equations (Lorenz, 1963) via additive noise. We investigate

the Pomeau-Manneville equations (Manneville, 1980) stochastically perturbed with additive noise to have an example of inter-

mittent behavior. We then analyse the performance of ESN in the Lorenz 1996 system (Lorenz, 1996). This system dynamics65

:::
The

::::::::
dynamics

:::
of

:::
this

::::::
system

:
is meant to mimic that of the atmospheric circulationand feature ,

::::::::
featuring

:
both large-scale and

small-scale variables with an intermittent behavior. For all of those systems, as well as for the sea-level pressure data, we

show how the performance of ESN in predicting the behavior of the system deteriorates rapidly when small-scale dynamics

feedback to large scale is important. The idea of using moving average for scale separation is already established for meteo-

rological variables (Eskridge et al., 1997). We choose the ESN framework following the results of Pathak et al. (2017, 2018),70

and an established literature about its ability to forecast chaotic time series and its stability to noise. For example, Shi and

Han (2007); Li et al. (2012) analyse and compare the predictive performance of simple and improved ESN on simulated and

observed one-dimensional chaotic time series. We aim at understanding this sensitivity in a deeper way, while assessing the

possibility to reduce its impact on prediction through simple noise reduction methods.

The remaining of this article is organised as follows: first
:
in
:::::::
section

:
2, we give an overview of the ESN method and provide75

the description of the systems used . Then,
:::::
(2.1),

::::
then

:::
we

::::::::
introduce

:::
the

::::::
metrics

::::
used

:::
to

:::::::
evaluate

::::
ESN

:::::::::::
performance

::::
(2.2)

::::
and

::::::::
introduce

:::
the

:::::::
moving

::::::
average

:::::
filter

::::
used

:::
to

:::::::
improve

:::::
ESN

::::::::::
performance

::::::
(2.3).

::::::
Results

::::::::
(Section

::
3)

:::
are

:::::::::
organised

:::::::::
presenting

::
the

::::::
results

:::
by

:::
the

::::::
system

::::::::
analysed.

::::
First

:
we show the results for the perturbed Lorenz 1963 equations,

:::
then

:
for the Pomeau-

Manneville intermittent map, and for the Lorenz 1996 equations.
::::::
Finally We discuss the improvement in short-term prediction

and the long-term attractor reconstruction obtained with the moving average filter. We conclude by testing these ideas on80

atmospheric circulation data.

2 Methods

Reservoir computing ” is a variant of recurrent neural networks (RNN) in which the input signal is connected to a fixedand

random ,
:::::::::

randomly
:::::::
assigned

:
dynamical system called reservoir (Hinaut, 2013). The principle of Reservoir computing

:::
first

consists in projecting first the input signal to a space of high dimension
::::::::::::::
high-dimensional

:::::
space

:
in order to obtain a non-linear85

representation of the signal; and then perform
::
in

:::::::::
performing

:
a new projection (linear regression or ridge regression) between the

high-dimensional space and the output units,
::::::
usually

:::
via

:::::
linear

:::::::::
regression

::
or

::::
ridge

:::::::::
regression. In our studyESN are implemented

3



as follows.
:
,
::
we

::::
use

::::
ESN,

::
a
::::::::
particular

::::
case

::
of

:::::
RNN

:::::
where

:::
the

::::::
output

:::
and

:::
the

:::::
input

::::
have

:::
the

:::::
same

::::::::
dynamical

:::::
form.

:::
In

::
an

:::::
ESN,

::::::
neuron

:::::
layers

:::
are

:::::::
replaced

:::
by

:
a
:::::::
sparsely

:::::::::
connected

:::::::
network

:::
(the

:::::::::
reservoir),

::::
with

::::::::
randomly

::::::::
assigned

::::
fixed

:::::::
weights.

:::
We

:::::::
harvest

:::::::
reservoir

:::::
states

:::
via

::
a
::::::::
nonlinear

:::::::::
transform

::
of

:::
the

:::::::
driving

::::
input

::::
and

:::::::
compute

::::
the

:::::
output

:::::::
weights

:::
to

:::::
create

::::::::::::::::
reservoir-to-output90

::::::::::
connections.

:
The code is given the in appendix

::
in

::::::::
appendix,

:
and it shows the parameters used for the computations. Let u(t)

:::
We

::::
now

:::::
briefly

::::::::
describe

:::
the

::::
ESN

::::::::::::::
implementation.

::::::
Vectors

::::
will

::
be

:::::::
denoted

::
in

::::
bold

::::
and

:::::::
matrices

::
in

:::::
upper

:::::
case.

:::
Let

::::
x(t)

:
be

the K-dimensional observable consisting of t= 1,2 . . . ,T time iterations, originating from a dynamical systemand r(t) ,
::::
and

:::
r(t)

:
be the N -dimensional reservoir state, then:

rr(t+ dt) = tanh(WrW
::

r(t) +Winux(t)), (1)95

whereW is the adjacency matrix of the reservoir: its dimensions areN×N , andN is the number of neurons of
::
in the reservoir.

In ESN, the neuron layers of classic deep neural networks are replaced by a single layer consisting of a sparsely connected

random network, with coefficients uniformly distributed in [−0.5;0.5].Win, with dimensions
:::
TheN×K,

::::::::::
-dimensional

::::::
matrix

::::
Win is the weight matrix of the connections between the input layer and the reservoir,

:
and the coefficients are randomly

sampled, as for W . The output of the network at time step t+ dt is100

Woutrr(t+ dt) = vy(t+ dt) (2)

where v(t+ dt)
::::::::
y(t+ dt) is the ESN prediction,Wout with dimensionsK×N , is the weight matrix of the connections between

the reservoir neurons and the output layer. We estimate Wout via a ridge regression (Hastie et al., 2015):

Wout = vy(t+dt< T
:::

)rr(t+dt< T
:::

)T [rr(t+dt< T
:::

)rr(t+dt< T
:::

)T −λI]−1 (3)

with λ= 10−8.
:::
Note

::::
that

:::
we

:::::
have

::::::::::
investigated

::::::::
different

::::::
values

:::
of

::
λ

::::::::
spanning

:::::::::::::::
10−8 < λ < 10−2

::::
and

:::::
found

:::
no

::::::::
sensitive105

:::::::::
differences

::
in

:::
the

::::::::::
performance

:::
of

::::
ESN.

:
In the prediction phase we have a recurrent relationship:

rr(t+ dt) = tanh(WrW
::

r(t) +WinWoutrr(t)). (4)

2.1 ESN performance indicators

In this paper, we use three different indicators of performance of the ESN:
:
a
::::::::
statistical

:::::::::::
distributional

:::
test

:::
to

:::::::
measure

::::
how

:::
the

::::::::::
distributions

::
of

::::::::::
observables

::::::
derived

::::
from

:::::
ESN

:::::
match

:::::
those

::
of

:::
the

::::
target

:::::
data,

:
a
:::::::::::
predictability

:::::::
horizon

:::
test

:::
and

:::
the

:::::
initial

:::::::
forecast110

::::
error.

:::::
They

:::
are

::::::::
described

::::::
below.

Statistical distributional test

As a first diagnostic of the performance of ESN, we aim at assessing whether the marginal distribution of the forecast values

for a given dynamical system is significantly different from the invariant distribution of the system itself. To this purpose, we115

conduct a χ2 test (Cochran, 1952), designed as follows. Let U be a system observable
:
,
:::::
linked

::
to

:::
the

:::::::
orginal

:::::::
variables

:::
of

:::
the
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::::::
systems

:::
via

::
a
:::::::
function

::
ζ
::::
such

::::
that

:::::::::::::
u(t) = ζ(x(t)) with support RU and probability density function fU (u), and let u(t) be

a sample trajectory from U .
::::
Note

::::
that

::::
u(t)

::::
does

:::
not

::::::::::
correspond

::
to

:::::
x(t),

:
it
::

is
::::::::::

constructed
:::::
using

:::
the

::::::::::
observable

:::::
output

:::
of

:::
the

::::::::
dynamical

:::::::
system. Let now f̂U (u) be an approximation of fU (u), namely the histogram of u over i= 1, . . . ,M bins. Note that,

if u spans the entire phase space, f̂U (u) is the numerical approximation of the Sinai-Ruelle-Bowen measure of the dynamical120

system (Eckmann and Ruelle, 1985; Young, 2002). Let now V be the variable generated by the ESN forecasting, with support

RV =RU , v(t) the forecast sample, gV (v) its probability density function and ĝV (v) the histogram of the forecast sample.

We test the null hypothesis that the marginal distribution of the forecast sample is the same as the invariant distribution of the

system, against the alternative hypothesis that the two distributions are significantly different:

H0 : fU (u) = gV (v) for every u ∈RU125

H1 : fU (u) 6= gV (v) for any u ∈RU

Under H0, f̂U (u) is the expected value for ĝV (v), which implies that observed differences (ĝV (v)− f̂U (u)) are due to random

errors, and are then independent and identically distributed Gaussian random variables. Statistical theory shows that, given H0

true, the test statistics

Σ =

M∑
i=1

(ĝV (v)− f̂U (u))2

f̂U (u)

(ĝiV (v)− f̂ iU (u))2

f̂ iU (u)
:::::::::::::::

(5)130

is distributed as a chi-squared random variable with M degrees of freedom, χ2(M). Then, to test the null hypothesis at the

level α, the observed value of the test statistics Σ is compared to the critical value corresponding to the 1−α quantile of the

chi-square distribution, Σc = χ2
1−α(M): if Σ> Σc, the null hypothesis must be rejected in favour of the specified alternative.

In our setup, we encounter two limitations in using the standard χ2 test. First, problems may arise when f̂U (u), i.e. if

the sample distribution does not span the entire support of the invariant distribution of the system. We observe this in a135

relatively small number of cases; since aggregating the bins would introduce unwanted complications, we decide to discard the

pathological cases, controlling the effect empirically as described below. Moreover, even producing relatively large samples,

we are not able to actually observe the invariant distribution of the considered system, which would require much longer

simulations. As a consequence, we would observe excessive rejection rates when testing samples generated under H0.

We decide to control these two effects by using a Monte Carlo approach. To this purpose, we use 10000 samples using the140

system equations
:::::::
generate

:::
105

:::::::
samples

::::::::::::
u(t) = ζ(x(t))

:
under the null hypothesis, and we compute the test statistic for each one

according to Eq. (5). Then, we use the (1−α) quantile of the empirical distribution of Σ — instead of the theoretical χ2(M) —

to determine the critical threshold Σc. As a last remark, we notice that we are making inference in repeated tests setting, as the

performance of the ESN is tested 10000
:::
105 times. Performing a high number of independent tests at a chosen level α increases

the observed rejection rate: in fact, even if the samples are drawn under H0, extreme events become more likely, resulting in145

an increased probability to erroneously reject the null hypothesis. To avoid this problem, we apply the Bonferroni correction

(Bonferroni, 1936), testing each one of the m= 10000
:::::::
m= 105

:
available samples at the level α′ = α

m , with α= 0.05.

Averaging the test results over several sample pairs u(t), v(t) we obtain a rejection rate 0< φ < 1 that we use to measure

5



the adherence of a ESN trajectory v(t) to trajectories obtained via the equations. If φ= 0, almost all the ESN trajectories can

shadow original trajectories, if φ= 1 none of the ESN trajectories resemble those of the systems of equations.150

Predictability Horizon

As a measure of the predictability horizon of the ESN forecast compared to the equations, we use the root mean square error

(RMSE):
::::::
absolute

:::::::::
prediction

::::
error

:::::::
(APE):

RMSEAPE
::::

(τt) =

√√√√1

τ

τ∑
t=1

(u(t)− v(t))2|u(t)− v(t)|
::::::::::

(6)

and we define the predictability horizon τs as the first time that RMSE
::::
APE

:
exceeds a certain threshold s. We link s to the

average separation of observations in the observable U
:
u
:
and we fix

s=
1

T − 1

T−1∑
t=2

[u(t)−u(t− 1)].

We have tested the sensitivity of results against the exact definition of s.155

We interpret τs as a natural measure of the Lyapunov time ϑ, namely the time it takes for an ensemble of trajectories of a

dynamical system to diverge (Faranda et al., 2012; Panichi and Turchetti, 2018).

Initial Forecast Error

The initial error is given by η =RMSE(t= 1)
::::::::::::::
η =APE(t= 1), for the first time step after the initial condition at t= 0. We

expect η to reduce as the training time increases.In this phase, the the smaller the initial error will be.160

2.2 Moving average filter

Equipped with these indicators, we analyze two sets of simulations performed with and without smoothing, which was imple-

mented using a moving average filter. The moving average operation is the integral of u(t) between t and t−w, where w is the

window size of the moving average. The simple moving average filter can be seen as a nonparametric time series smoother(see165

e.g. (Brockwell and Davis, 2016), chapter 1.5)
::::::::::::::::::::::::::::::::::::::::
(see e.g. Brockwell and Davis, 2016, chapter 1.5). It can be applied to smooth

out (relatively) high frequencies in a time series, both to de-noise the observations of a process or to estimate trend-cycle

components, if present. Moving averaging consists, in practice, of replacing the observation u(t)
:
in

::::::::
replacing

:::
the

:::::::::
trajectory

::::
x(t) by a value u(f)(t)

::::::
x(f)(t), obtained by averaging the previous w observations. If the time dimension is discrete (like in

the Pomeau-Manneville system) it is defined as:170

ux(f)(t) =
1

w

w−1∑
i=0

ux(t− i), (7)

6



while for continuous time systems (like the Lorenz 1963 system), the sum is formally replaced by an integral:

ux(f)(t) =
1

w

∫
t
t−wu

t+w
t
:::

x(ς)dς. (8)

We can define the residuals as:

δux(t) = ux(f)(t)−u−
:
x(t). (9)175

In practice, the computation always refers to the discrete time case, as continuous time systems are also sampled at finite time

steps. Since Echo State Networks are known to be sensitive to noise (see e.g. Shi and Han (2007))
:::::::::::::::::::::::
(see e.g. Shi and Han, 2007)

, we exploit the simple moving average filter to smooth out high-frequency noise and assess the results for different smoothing

windows w. We find that the choice of the moving averaging window w must respect two conditions: it should be large enough

to smooth
::
out

:
the noise but smaller than the characteristic time τ of the large-scale fluctuations of the system. For chaotic180

systems, τ can be derived knowing the rate of exponential divergence of the trajectories, a quantity linked to the Lyapunov

exponents (Wolf et al., 1985), and τ is known as the Lyapunov time.

We also remark that we can express explicitly the original variable u(t)
:::::::
variables

::::
x(t)

:
as a function of the filtered variable

u(f)(t)
:::::::
variables

:::::::
x(f)(t) as:185

ux(t) = w(ux(f)(t)−u−
:
x(f)(t− 1)) +ux(t−w). (10)

we
:::
We will test this formula for stochastically perturbed systems to evaluate the error introduced by the use of residuals

δu
::
δx.

2.3 Testing ESN on filtered dynamics

Here we describe the algorithm used to test ESN performance on filtered dynamics:190

1. Simulate the reference trajectory u(t)
::::
x(t) using the equations of the dynamical systems, where u(t) has been standardized

:::
and

:::::::::
standardize

:::::
x(t) by subtracting the mean and dividing by its standard deviation.

2. Perform the moving average filter to obtain u(f)(t)
::::::
x(f)(t).

3. Extract from u(f)(t)
::::::
x(f)(t) a training set u(f)train(t)

:::::::
x
(f)
train(t)

:
with t ∈ {1,2, . . . ,Ttrain}.

4. Train the ESN on u(f)train(t)
::::::::
x
(f)
train(t) dataset.195

5. Obtain the ESN forecast v(f)(t)
::::::
y(f)(t) for t ∈ {Ttrain + 1,Ttrain + 2, . . . ,T}.

6. Add residuals (Eq. 9) to v(f)(t) sample as v(t) = v(f)(t) + δu, where δu
::::::
y(f)(t)

::::::
sample

::
as

:::::::::::::::::
y(t) = y(f)(t) + δx,

::::::
where

::
δx

:
is randomly sampled from the δu(t) with t ∈ {1,2, ...,Ttrain}:::::

δx(t)
::::
with

:::::::::::::::::
t ∈ {1,2, . . . ,Ttrain}.
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7. Compare v(t) and u(t > Ttrain) using
::::::::
Compute

:::
the

:::::::::
observables

:::::::::::::
v(t) = ζ(y(t))

:::
and

:::::::::::::::::::::
u(t) = ζ(x(t > Ttrain)).

8.
:::::
Using

::::
u(t)

:::
and

::::
v(t),

::::::::
compute the metrics φ, τ and η

:::
and

:::::::
evaluate

:::
the

::::::::
forecasts.200

As an alternative to step 6, one can also use Eq. (10) and obtain:

v(t) = w(v(f)(t)− v(f)(t− 1)) + v(t−w), (11)

that does not require the use of residuals δu(t)
:::::
δx(t).

3 Results

The systems we analyze are the Lorenz 1963 attractor (Lorenz, 1963) with the classical parameters, discretized with a Euler205

scheme and a dt= 0.001, the Pomeau-Manneville intermittent map (Manneville, 1980), the Lorenz 1996 equations (Lorenz,

1996) and the NCEP sea-level pressure data (Saha et al., 2014).

Lorenz 1963 equations

The Lorenz (Lorenz, 1963) system is a simplified model of Rayleigh-Benard convection, derived by E.N. Lorenz
::::::::::::
(Lorenz, 1963)210

. It is an autonomous continuous dynamical system with three variables u ∈ {x,y,z}
:::::::
{x,y,z} parametrizing respectively the

convective motion, the horizontal temperature gradient and the vertical temperature gradient. It writes:

dx

dt
= σ(y−x) + εξx(t)

dy

dt
= −xz+ %x− y+ εξy(t),

dz

dt
= xy− bz+ εξz(t), (12)215

where σ, % and b are three parameters, σ mimicking the Prandtl number and % the reduced Rayleigh number
:::
and

:
b
:::
the

::::::::
geometry

::
of

:::::::::
convection

::::
cells. The Lorenz model is usually defined using Eq. (12), with σ = 10, %= 28 and b= 8/3. A deterministic tra-

jectory of the system is shown in Figure 1a). It has been obtained via integrating numerically the Lorenz equations with an Euler

scheme (dt= 0.001).
::
We

::::
are

:::::
aware

:::
that

:::::::::
advanced

::::
time

::::::
stepper

::::
(e.g.

::::::
Runge

::::::
Kutta)

::::::
would

::::::
provide

:::::
better

::::::::
accuracy.

:::::::::
However,

::::
when

::::::::::
considering

:::::
daily

::
or

::::::::
6-hourly

::::
data,

::
as

:::::::::
commonly

:::::
done

::
in

:::::::
climate

:::::::
sciences

:::
and

::::::::
analyses,

:::
we

::::::
hardly

:::
are

::
in

:::
the

::::
case

::
of

::
a220

::::::
smooth

::::
time

:::::::
stepper.

:::
We

::::::::
therefore

::::
stick

::
to

:::
the

:::::
Euler

::::::
method

:::
for

::::::::
similarity

:::::
with

::
the

:::::::
climate

::::
data

::::
used

::
in

:::
the

:::
last

:::::::
section

::
of

:::
the

:::::
paper. The systems is perturbed via additive noise: ξx(t), ξy(t) and ξz(t) are random variable all drawn from a Gaussian distri-

bution. The initial conditions are randomly selected within a long trajectory of 5·106 iterations. First, we study the dependence

of the ESN on the training length in the deterministic system (ε= 0, Figure 1b-d). We analyse the behavior of the rejection rate

φ (panel b), the predictability horizon τs (panel c) and the initial error η (panel d) as a function of the training sample size. Our225

analysis suggests that t∼ 102 is a minimum sufficient choice for the training window. We compare this time to the typical time

8



scales of the motion of the sytems, determined via the maximum Lyapunov exponent λ. For the Lorenz 1963 system, λ= 0.9,

so that the Lyapunov time ϑ≈O
(
1
λ

)
≈ 1.1. From the previous analysis we should train the network at least for t > 100ϑ. For

the other systems analysed in this article, we take this condition as a lower boundary for the training times.

230

To show
::::::::
exemplify

:
the effectiveness of the moving average filter in boosting the machine-learning performanceswe produce

::::::::
improving

:::
the

::::::::
machine

:::::::
learning

::::::::::::
performances,

::
in
::::::

Figure
::

2
:::
we

:::::
show

:
10 ESN trajectories obtained without moving average

(Figure 2-green
::::
green) and with (Figure 2-red

:::
red) a moving average window w = 0.01 and compare them to the reference

trajectory (blue) obtained with ε= 0.1. The value of w = 10dt= 0.01 respects the condition w� ϑ. Indeed, the RMSE
::::
APE

averaged over the two groups of trajectories (Figure 2-b) shows an evident gain of accuracy (a factor of ∼ 10) when the235

moving average procedure is applied. We now study in a more systematic way the dependence of the ESN performance on

noise intensity ε, network size N and for three different averaging windows w = 0, w = 0.01, w = 0.05. We produce, for each

combination, 100 ESN forecasts. Figure 3 shows φ (a), log(τs=1) (b) and log(η) (c) computed setting u≡ x variable of the

Lorenz 1963 system (results qualitatively do not depend on the chosen variable). In each panel from left to right the moving

average window is increasing, upper sub-Panels are obtained using the exact expression in Eq. 11 and lower panels using the240

residuals in Eq 9. For increasing noise intensity and for small reservoirs sizes, the performances without moving average (left

subpanels) rapidly get worse. The moving average smoothing withw = 0.01 (central sub-panels) improves the performance for

log(τs=1) (b) and log(η) (c), except when the noise is too large (ε= 1). When the moving average window is too large (right

panels), the performances of φ decrease. This failure can be attributed to the fact that residuals δu
::
δx

:
(Eq.9) are of the same

order of magnitude of the ESN predicted fields for ε large. Indeed, if we use the formula provided in Eq. 11 as an alternative245

to step 6, we can evaluate the error introduced in the residuals. The results shown in Figure 3 suggest that residuals can be

used without problems when the noise is small compared with the dynamics. When ε is close to one, the residuals overlay the

deterministic dynamics and ESN forecast are poor. In this case, the exact formulation in Eq. 11 appears much better.

Pomeau-Manneville intermittent map

Several dynamical systems, including Earth climate, display intermittency, i.e., the time series of a variable issued by the system250

can experience sudden chaotic fluctuations, as well as a predictable behavior where the observables have small fluctuations. In

atmospheric dynamics, such a behavior is observed in the switching between zonal and meridional phases of the mid-latitude

dynamics if a time series of the wind speed at one location is observed: when a cyclonic structure passes through the area,

the wind has high values and large fluctuations, when an anticyclonic structure is present the wind is low and fluctuations are

smaller (Weeks et al., 1997; Faranda et al., 2016). It is then of practical interest to study the performance of ESN in Pomeau255

Manneville predictions as they are a first prototypical example of the intermittent behavior found in climate data.

In particular, the Pomeau-Manneville (Manneville, 1980) map is probably the simplest example of intermittent behavior,

produced by a 1D (here u= x) discrete deterministic map given by:

xt+1 = mod(xt +x1+at ,1) + εξ(t), (13)

9



where 0< a < 1 is a parameter. We use a= 0.91 in this study and a trajectory consisting of 5×105 iterations. The systems260

is perturbed via additive noise ξ(t) drawn from a Gaussian distribution. It is well known that Pomeau-Manneville systems

exhibit sub-exponential separation of nearby trajectories and then the Lyapunov exponent is λ= 0. However, one can define

a Lyapunov exponent for the non-ergodic phase of the dynamics and extract a characteristic time scale (Korabel and Barkai,

2009). From this latter reference, we can derive a value λ' 0.2 for a= 0.91, implying w < τ ' 5.
:::
For

:::
the

:::::::::::::::::
Pomeau-Manneville

::::
map,

:::
we

:::
set

::::::::::
u(t)≡ x(t). We find that the best match between ESN and equations in terms of the φ indicator are obtained for265

w = 3.

Results for the Pomeau-Manneville map are shown in Figure 4. We first observe that the ESN forecast of the intermittent

dynamics of the Pomeau-Manneville map is much more challenging than for the Lorenz system as a consequence of the inter-

mittent behavior of this system. For the simulations performed with w = 0, the ESN cannot simulate an intermittent behavior,270

for all noise intensities and reservoir sizes. This is reflected in the behavior of the indicators. In the deterministic limit, the ESN

fails to reproduce the invariant density in 80% of the cases (φ' 0.8). For intermediate noise intensities φ > 0.9 (Figure 4-a).

The predictability horizon log(τs=0.5) for the short term forecast is small (Figure 4d) and the initial error large (Figure 4g). The

moving average procedure with w = 3 partially improves the performances (Figure 4b,c,e,f,h,i) and it enables ESN to simulate

an intermittent behavior (Figure 5). Performances are again better when using the exact formula
::
in

:::
Eq.

::
11

:
(Figure 4b,e,h) than275

using the residuals δu
::
δx

:
(Figure 4c,f,i). Figure 5a) shows the intermittent behavior of the data generated with the ESN trained

on moving averaged data of Pomeau-Manneville system (red) and compare to the target time series (blue). ESN simulations

do not reproduce the intermittency in the average of the target signal. They ,
::::::

which
::::
shift

:::::
from

:::::
x∼ 0

::
in

:::
the

::::
non

::::::::::
intermittent

:::::
phase

::
to

::::::::::
0.2< x < 1

::
in

:::
the

::::::::::
intermittent.

::::
ESN

::::::::::
simulations only show some second order intermittency in the fluctuations

:::::
while

::::::
keeping

::
a
:::::::
constant

:::::::
average. Figure 5b) displays the power spectra showing in both cases a power law decay, which are typi-280

cal of turbulent phenomena. Although the intermittent behavior is captured, this realization of ESN shows that the values are

concentrated around x= 0.5 for the ESN prediction, whereas the non-intermittent phase peaks around x= 0 for the target data.

The Lorenz 1996 system

Before running the ESN algorithm on actual climate data, we test our idea in a more sophisticated, and yet still idealized, model285

of atmospheric dynamics, namely the Lorenz 1996 equations (Lorenz, 1996). This model explicitly separates two scales and

therefore will provide a good test for our ESN algorithm. The Lorenz 1996 system consists of a lattice of large-scale resolved

variablesX , coupled to small-scale variables Y , whose dynamics can be intermittent, so that u ∈ {X,Y }. The model is defined

10



via two
:::
sets

:::
of equations:

dXi

dt
= Xi−1(Xi+1−Xi−2)−Xi +F − hc

b

J∑
j=1

Yj,i,290

dYj,i
dt

= cbYj+1,i(Yj−1,i−Yj+2,i)− cYj,i +
hc

b
Xi

(14)

where i= 1, . . . , I and j = 1,2, . . . ,J denote respectively the number of large-scale X and small-scale Y variables. Large-

scale variables are meant to represent the meanders of the jet-stream driving the weather at mid-latitudes. The first term on

the right-hand side represents advection, the second diffusion, while F mimics an external forcing. The system is controlled295

via the parameters b and c (the time scale of the the fast variables compared to the small variables) and via h (the coupling

between large and small scales). From now on, we fix I = 30,J = 5 and F = b= 10 as these parameters are typically used to

explore the behavior of the system (Frank et al., 2014). We integrate the equations with an Euler scheme (dt= 10−3) from the

initial conditions Yj,i =Xi = F , where only one mode is perturbed as Xi=1 = F +ε and Yj,i=1 = F +ε2. Here ε= 10−3. We

discard about 2 · 103 iterations to reach a stationary state on the attractor, and we retain 5 · 104 iterations. When c and h vary,300

different interactions between large and small scales can be achieved. A few examples of simulations of the first mode X1 and

Y1 are given in Figure 6. Figure 6a,c show simulations obtained for h= 1 by varying c: the larger c the more intermittent the

behavior of the fast scales. Figure 6.b,d) show simulations obtained for different coupling h at fixed c= 10: when h= 0, there

is no small-scale dynamics.

305

In
:::
For

:
the Lorenz 1996 modelwe can

:
,
:::
we

:::
do

:::
not

::::
need

:::
to

:::::
apply

:
a
:::::::

moving
:::::::
average

::::
filter

:::
to

:::
the

::::
data,

:::
as

:::
we

:::
can

:::::
train

:::
the

::::
ESN

::
on

:::
the

::::::::::
large-scale

:::::::
variables

:::::
only.

:::::::
Indeed,

::
we

::::
can explore what happens to the ESN performances if we turn on and off

intermittency and/or the small-to-large-scale coupling, without introducing any additional noise term. Moreover, we can also

learn the Lorenz 1996 dynamics on the X variables only, or learn the dynamics on both X and Y variables. The purpose of

this analysis is to assess whether the ESN are capable of learning the dynamics of the large-scale variables X alone, and how310

this capability is influenced by the coupling and the intermittency of the small-scale variables Y . Using the same simulations

presented in Figure 6, we train the ESN on the first 2.5 · 104 iterations, and then perform, changing the initial conditions 100

different ESN predictions for 2.5 ·104 more iterations. We apply our performance indicators not to the entire I-dimensional X

variable (X1, . . . ,XI), as the χ2 test becomes intractable in high dimensions, but rather to the spatial average of the large-scale

variables X .
::::::::::
Consistently

::::
with

:::
our

::::::::
notation,

::
it
::::::
means

::::
that

::::::::::::::::
u(t)≡

∑I
i=1Xi(t) The behavior of each variable Xi is similar,315

so the average is representative of the collective behavior. The rate of failure φ is very high (not shown) because even when

the dynamics is well captured by the ESN the variables are not scaled and centered as those of the original systems. For the

following analysis, we therefore replace φ with the χ2 distance T
::
Σ (Eq. (5)). The use of T

:
Σ

:
allows for better highlighting the

differences in the ESN performance with respect to the chosen parameters. The same considerations also apply to the analysis

of the sea-level pressure data reported in the next paragraph.320
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Results of the ESN simulations for the Lorenz 1996 system are reported in Figure 7. In Figure 7a,c,e) ESN predictions are

obtained by varying c at fixed h= 1, while in Figure 7b,d,f) by varying h at fixed c= 10. The continuous lines refer to results

obtained feeding the ESN with only the X variables, dotted lines with both X and Y . For the χ2 distance T
:
Σ

:
(Figure 7a,b),

performances show a large dependence on both intermittency c and coupling h. First of all, we remark that learning both X325

and Y variables lead to higher distances T
:
Σ, except for the non intermittent case, c= 1. For c > 1, the dynamics learnt on both

X and Y never settles on a stationary state resembling that of the Lorenz 1996 model. When c > 1 and only the dynamics of

the X variables is learnt, the dependence on N when h is varied is non monotonic and better performances are achieved for

800<N < 1200. For this range, the dynamics settles on stationary states whose spatio-temporal evolution resembles that of

the Lorenz 1996 model, although the variability of time and spatial scales is different from the target. An example is provided330

in Figure 8, for N = 800.

Let us now analyse the two indicators of short-term forecasts. Figure 7c,d) display the predictability horizon τs with s= 1.

The best performances are achieved for the non-intermittent case c= 1 and learning both X and Y . When only X is learnt, we

again get better performances in terms of τs for rather small network sizes. The performances for c > 1 are better when only X335

variables are learnt. The good performance of ESN in learning only the large-scale variables X are even more surprising when

looking at initial error η (Figure 7), which is one order of magnitude smaller when X,Y are learnt. Despite this advantage in

the initial conditions, the ESN performances on (X,Y ) are better only when the dynamics of Y is non-intermittent. We find

clear indications that large intermittency (c= 25) and strong small-to-large scale variables coupling (h= 1) worsen the ESN

performances, supporting the claims made for the Lorenz 1963 and the Pomeau-Manneville systems.340

The NCEP sea-level pressure data

We now test the effectiveness of the moving average procedure in learning the behavior of multiscale and intermittent systems

on climate data issued by reanalysis projects. We use data from the National Centers for Environmental Prediction (NCEP)

version 2 (Saha et al., 2014) with a horizontal resolution of 2.5◦. We adopt the global 6 hourly sea-level pressure (SLP) field345

from 1979 to 31/08/2019 as the meteorological variable proxy for the atmospheric circulation. It traces cyclones (resp. anti-

cyclones) with minima (resp. maxima) of the SLP fields. The major modes of variability affecting mid-latitudes weather are

often defined in terms of the Empirical Orthogonal Functions (EOF) of SLP and a wealth of other atmospheric features (Hur-

rell, 1995; Moore et al., 2013), ranging from teleconnection patterns to storm track activity to atmospheric blocking can be

diagnosed from the SLP field.350

:::
The

::::::
dataset

:::::::
consists

::::::::
therefore

::
of

:
a
:::::::
gridded

::::
time

:::::
series

::::::::
SLP (t),

::::::::
consisting

:::
of

::
∼

:::::
33000

::::
time

:::::::::
realization

::
of
:::

the
::::::::
pressure

::::
field

:::
over

::
a
::::
grid

::
of

::::::
spatial

:::
size

:::
72

:::::::::
longitudes

::::
×73

:::::::
latitudes.

::::
Our

:::::::::
observable

::::::::::::::::::::
u(t)≡ 〈SLP (t)〉lon,lat :::::

where
:::::::
brackets

:::::::
indicate

::::::
spatial

:::::::
average. In addition to the time moving average filter, we also investigate the effect of spatial coarse-graining the SLP fields

by a factor c and perform the learning on the reduced fields. We use the nearest neighbor approximation, which consist in355
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taking from the original dataset the closest value to the coarse grid. Compared with methods based on averaging or dimension

reduction techniques such as EOFs, the nearest neighbors approach has the advantage of not removing the extremes (except

if the extreme is not in one of the closest gridpoint) and preserve cyclonic and anticyclonic structures. For c= 2 we obtain

a horizontal resolution of 5◦ and for c= 4 a resolution 10◦. For c= 4 the information on the SLP field close to the poles is

lost. However, in the remaining of the geographical domain, the coarse grained fields still capture the positions of cyclonic and360

anticyclonic structures. Indeed, as shown in (Faranda et al., 2017)
:::::::::::::::::
Faranda et al. (2017), this coarse grain field still preserves

the dynamical properties of the original one. There is therefore a certain amount of redundant information on the original 2.5◦

horizontal resolution SLP fields.

The dependence of the quality of the prediction for the sea-level pressure NCEPv2 data on the coarse graining factor c and

on the moving average window size w is shown in Figure 9. We show the results obtained using the residuals (Eq. 9)
::
as

:::
the365

::::
exact

:::::::
method

:
is
:::
not

:::::::::::::::
straightforwardly

::::::::
adaptable

::
to

:::::::
systems

::::
with

::::
both

:::::
spatial

::::
and

:::::::
temporal

:::::::::::
components. Figure 9a-c ) show the

distance from the invariant density, using the χ2 distance T
:
Σ. Here it is clear that by increasing w, we get better forecast with

smaller network sizes N . A large difference for the predictability expressed as predictability horizon τs, s= 1.5 hPa (Figure

9d-f) emerges when SLP fields are coarse grained. We gain up to 10h in the predictability horizon with respect to the forecasts

performed on the original fields (c= 0). This gain is also reflected by the initial error η (Figure 9g-i). From the combination370

of all the indicators, after a visual inspection, we can identify the best-set of parameters: w = 12 h, N = 200 and c= 4. Indeed

this is the case such that, with the smallest network we get almost the minimal χ2 distance T , the highest predictability (32 h)

and one of the lowest initial errors. We also remark that, for c= 0 (panels (c) and (i)), the fit always diverges for small network

sizes.

We compare in details the results obtained for two 10-year predictions with w = 0h and w = 12h at N = 200 and c= 4375

fixed. At the beginning of the forecast time (Supplementary Video 1), the target field (panel a) is close to both that obtained

with w = 0h (panel b) and w = 12h (panel c). When looking at a very late time (Supplementary Video 2), of course we do not

expect to see agreement among the three datasets. Indeed we are well beyond the predictability horizon. However, we remark

that the dynamics for the run with w = 0h is steady: positions of cyclones and anticyclones barely evolve with time. Instead,

the run with w = 12h shows a richer dynamical evolution with generation and annihilation of cyclones. A similar effect can be380

observed in the ESN prediction of the Lorenz 96 system shown in Figure 8b) where the quasi-horizontal patterns indicate less

spatial mobility than the original system (Figure 8a).

In order to assess the performances of the two ESNs with and without moving average in a more quantitative way, we

present the space-time distributions
:::::::::
probability

::::::
density

::::::::
functions

:::
for

::::::::::::::::::::
u(t)≡ 〈SLP (t)〉lon,lat in Figure 10a). The distribution

obtained for the moving average w = 12h has more realistic tails and matches better than the run w = 0h that of the target data.385

Figure 10b-d ) shows the wavelet spectrograms (or scalograms) (Hudgins et al., 1993). The scalogram is the absolute value

of the continuous wavelet transform of a signal, plotted as a function of time and frequency. The target data spectrogram (b)

presents a rich structure at different frequencies and some interannual variability. The wavelet spectrogram of non-filtered ESN

run w = 0 h (c) shows no short time variability and too large interseasonal and interannual variability. The spectrogram of the

target data is better matched by the run
:::::
shows

:::
the

::::::
Fourier

:::::
power

:::::::
spectra

::
for

:::
the

:::::
target

:::::
data,

::::
with

:::
the

::::::
typical

:::::
decay

::
of

::::::::
turbulent390
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::::::
climate

::::::
signal.

::::
The

::::::::::
non-filetered

:::::
ESN

:::::::::
simulation

::::::
W = 0

:::::
show

::
a
::::::::
spectrum

::::
with

::::
very

::::
low

::::::
energy

:::
for

::::
high

:::::::::
frequency

:::
and

:::
an

::::::
absence

::
of
:::
the

:::::
daily

:::::
cycle

:::
(no

::::
peak

::
at

:::::
value

::::
100).

::::
The

:::::::::
simulation with w = 12h (d) which shows that, on time scalesof days to

weeks, there is a larger variability
:::
also

:::::
shows

::
a
:::::
lower

::::::
energy

::
for

:::::::
weekly

::
or

:::::::
monthly

:::::::::
time-scales

:::
but

::
it
::
is

:::
the

::::::
correct

::::
peak

:::
for

:::
the

::::
daily

:::::
cycle

:::
and

:::
the

::::
right

::::::
energy

::
at

:::::::
subdaily

::::
time

::::::
scales.

:::::::::
Therefore,

::::
also

:::
the

::::::
spectral

:::::::
analysis

::::::
shows

:
a
::::
real

::::::::::
improvment

::
in

:::::
using

::::::
moving

:::::::
average

::::
data.395

4 Discussion

We have analysed the performance of ESN in reproducing both the short and long-term dynamics of observables of geophysical

flows. The motivation for this study came from the evidence that a straightforward application of ESN to high dimensional

geophysical data (such as the 6 hourly global gridded sea-level pressure data) does not yield to the same results quality obtained

by (Pathak et al., 2018) for the Lorenz 1963 and the Kuramoto-Sivashinsky models. Here we have investigated the causes for400

this behavior and identified two main bottlenecks: (i) intermittency and (ii) the presence of multiple dynamical scales, which

both appear in geophysical data. In order to illustrate this effect, we have first analysed two low dimensional systems, namely

the Lorenz (1963) and the Manneville (1980) equation. To mimic multiple dynamical scales, we have added noise terms to

the dynamics. The performance of ESN in predicting rapidly drops when the systems are perturbed with noise. Filtering the

noise allows to partially recover predictability. It also enables to simulate some qualitative intermittent behavior in the Pomeau-405

Manneville dynamics. This feature could be explored by changing the degree of intermittency in the Pomeau-Manneville map

as well as performing parameter tuning in ESN. This is left for future work.
::::
Our

::::
study

::::
also

::::::::
suggests

:::
that

:::::::::::
deterministic

:::::
ESN

::::
with

:::::::
smooth,

:::::::::
continuous

:::::::::
activation

:::::::
function

::::::
cannot

:::
be

:::::::
expected

:::
to

:::::::
produce

:::::::::
trajectories

::::
that

::::
look

::::::::::::::::::::::
spiking/stochastic/rapidly

::::::::
changing.

:::::
Most

:::::::
previous

:::::::
studies

::
on

::::::
ESNs

:::::::::::::::::::::
(e.g., Pathak et al., 2018)

::::
were

::::::::
handling

::::::::
relatively

:::::::
smooth

::::::
signals,

::::
and

:::
not

:::::
such

::::::
rapidly

::::::::
changing

::::::
signals.

::::::::
Although

::
it
::::
does

::::
not

::::
come

:::
as

:
a
:::::::
surprise

::::
that

:::::::
utilizing

:::
the

::::
ESN

:::
on

:::
the

::::
time

::::::::
averaged

::::::::
dynamics

::::
and410

:::
then

::::::
adding

::
a
::::::::
stochastic

:::::::
residual

::::::::
improves

:::::::::::
performance,

:::
the

::::
main

:::::::
insights

::
is

:::
the

:::::::
intricate

::::::::::
dependence

::
of

:::
the

::::
ESN

:::::::::::
performance

::
on

:::
the

:::::
noise

:::::::
structure

::::
and

:::
the

:::
fact

::::
that,

:::::
even

::
for

::::::::::
non-smooth

::::::
signal,

:::::
ESN

::::
with

:::::::::
hyperbolic

::::
tanh

::::::::
functions

:::
can

:::
be

::::
used

::
to

:::::
study

::::::
systems

::::
that

::::
have

::
a

::::::::::
intermittent

::
or

:::::::::
multiscale

::::::::
dynamics.

:
Here we have used a simple moving-average filter and shown that a

careful choice of the moving-average window can enhance predictability. As an intermediate step between the low-dimensional

models and the application to the sea-level pressure data, we have analysed the ESN performances on the Lorenz (1996) system.415

This system was introduced to mimic the behavior of the atmospheric jet at mid-latitude, and features a lattice of large-scale

variables, each connected to small-scale variables. Both the coupling between large and small scales and intermittency can be

tuned in the model, giving rise to a plethora of behaviors. For the Lorenz 1996 model, we did not have to apply a moving

average filter to the data, as we can train the ESN on the large-scale variables only. Our computations have shown that, when-

ever the small scales are intermittent, or the coupling is strong, learning the dynamics of the coarse grained variable is more420

effective, both in terms of computation time and performances. The results also apply to geophysical datasets: here we analysed

the atmospheric circulation, represented by sea-level pressure fields. Again we have shown that both a spatial coarse-graining

14



and a time moving-average filter improve the ESN perfomances.

Our results may appear rather counter-intuitive, as the weather and climate modelling communities are moving towards425

extending simulations of physical processes to small scales. As an example, we cite the use of highly-resolved convection-

permitting simulations (Fosser et al., 2015) as well as the use of stochastic (and therefore non-smooth) parameterizations in

weather models (Weisheimer et al., 2014). We have, however, a few heuristic arguments on why the coarse-gaining and fil-

tering operations should improve the ESN performances. Firstof all, the moving-average operation helps both in smoothing

the signal and by providing the ESN with a wider temporal information. In some sense, this is reminiscent of the embedding430

procedure (Cao, 1997), where the signal behavior is reconstructed by providing not only information on the previous time

step, but on previous times depending on the complexity. The filtering procedure can also be motivated by the fact that the

active degrees of freedom for the sea-level pressure data are limited. This has been confirmed by Faranda et al. (2017) via

coarse-graining these data and showing that the active degrees of freedom are independent on the resolution, in the same range

explored in this study. In other words
::::::::
Therefore, including small scales in the learning of sea-level pressure data, does not pro-435

vide additional information on the dynamics and push towards over-fitting and saturating the ESN with redundant information.

The latter consideration poses also
:::
also

:::::
poses some caveats on the generality of our results: we believe that this procedure is

not beneficial whenever a clear separation of scales is not achievable, e.g. in non-confined 3-D turbulence. Moreover, in this

study, note that three sources of stochasticity were present: (i) in the random matrices and reservoir, (ii) in the perturbed initial

conditions and (iii) in the ESN simulations when using moving average filtered data with sampled δu
::
δx components. The first440

one is inherent to the model definition. The perturbations of the starting conditions allow characterizing the sensitivity of our

ESN approach to the initial conditions. The stochasticity induced by the additive noise δu
::
δx

:
provides a distributional forecast

at each time t. Although this latter noise can be useful to simulate multiple trajectories and evaluate their long-term behaviour,

in practice, i.e., in the case where a
::
an

:
ESN would be used operationally to generate forecasts, one might not want to employ a

stochastic formulation with an additive noise, but rather the explicit and deterministic formulation in Eq. 11. This exemplifies445

the interest of our ESN approach for possible distinction between forecasts and long-term simulations, and therefore makes it

flexible to adapt to the case of interest.

In future work, it will be interesting to use other learning architectures and other methods of separating large- from small-

scale components (Wold et al., 1987; Froyland et al., 2014; Kwasniok, 1996). For example, our results give a more formal450

framework for applications of machine learning techniques on geophysical data. Deep-learning approaches have proven useful

in performing learning at different time and spatial scales whenever each layer is specialized in learning some specific features

of the dynamics (Bolton and Zanna, 2019; Gentine et al., 2018). Indeed, several difficulties encountered in the application

of machine learning on climate data could be overcome if the appropriate framework is used, but this requires a critical

understanding of the limitations of the learning techniques.455
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Figure 1.
:
a)

::::::
Lorenz

::::
1963

:::::::
attractor

:::::::
obtained

::::
with

:
a
:::::

Euler
::::::
scheme

::::
with

:::::::::
dt= 0.001,

::::::
σ = 10,

::::::
r = 28

:::
and

:::::::
b= 8/3.

::::::
Panels

:::
b-d)

:::::
show

:::
the

::::::::::
performances

:::::::
indicator

::
as

:
a
:::::::
function

::
of

:::
the

::::::
training

::::
time.

::
b)

:::
the

:::::::
rejection

:::
rate

:
φ
::

of
:::

the
:::::::
invariant

::::::
density

:::
test

:::
for

::
the

::
x
:::::::
variable;

::
c)

::
the

::::
first

:::
time

:
t
::::

such
::::

that
::
the

:::::::
APE>1;

::
d)
:::

the
:::::
initial

::::
error

::
η.

::::
The

::::
error

:::
bar

:::::::
represents

:::
the

::::::
average

::::
and

::
the

:::::::
standard

:::::::
deviation

::
of
:::

the
:::::
mean

:::
over

::::
100

:::::::::
realizations.
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Figure 2.
:
a)

:::::::::
Trajectories

::::::::
predicted

::::
using

::::
ESN

:::
on

::
the

::::::
Lorenz

::::
1963

:::::::
attractor

:::
for

:::
the

::::::
variable

::
x.

::::
The

::::::
attractor

::
is
::::::::
perturbed

:::
with

::::::::
Gaussian

::::
noise

:::
with

:::::::
variance

::::::
ε= 0.1.

::::
The

::::
target

::::::::
trajectory

:
is
:::::
shown

::
in
::::
blue.

:::
10

::::::::
trajectories

:::::::
obtained

::::::
without

::::::
moving

::::::
average

:::::
(black)

::::
show

:::
an

:::::
earlier

::::::::
divergence

::::::::
compared

::
to

::
10

:::::::::
trajectories

:::::
where

::
the

::::::
moving

:::::::
average

:
is
::::::::

performed
::::

with
::

a
::::::
window

:::
size

:::
of

:::::::::::::
w = 10dt= 0.01

::::
(red).

:::::
Panel

:::
(b)

::::
shows

:::
the

:::::::
evolution

::
of

:::
the

::::::::
log(APE),

::::::
averaged

::::
over

:::
the

::::::::
trajectories

:::
for

::
the

::::
cases

::::
with

:::::::
w = 0.01

::::
(red)

:::
and

:::::
w = 0

::::::
(green).

::::
The

::::::::
trajectories

:::
are

::
all

::::::
obtained

::::
after

::::::
training

:::
the

::::
ESN

::
for

:::
105

:::::::::
time-steps.

::::
Each

:::::::
trajectory

::::::
consists

::
of

:::
104

::::
time

::::
steps.
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Figure 3.
:::::
Lorenz

::::
1963

::::::
analysis

:::
for

::::::::
increasing

:::::
noise

::::::
intensity

::
ε
:::::::
(x-axes),

:::
and

::::::
number

::
of
:::::::

neurons
::
N

:::::::
(y-axes).

:::
The

::::::::
colorscale

:::::::::
represents:

:
φ
:::
the

::::
rate

::
of

:::::
failure

::
of
:::

the
:::
χ2

:::
test

:::::
(size

::::::::
α= 0.05)

:::
(a);

:::
the

::::::::
logarithm

::
of

::::::::::
predictability

::::::
horizon

::::::::
log(τs=1)

::::
(b);

:::
the

::::::::
logarithm

::
of

:::::
initial

:::
error

::::::
log(η)

:::
(c).

:::::
These

:::::::::
diagnostics

::::
have

::::
been

:::::::
computed

:::
on

:::
the

::::::::
observable

::::::::::
u(t)≡ x(t).

:::
All

::
the

::::::
values

::
are

:::::::
averages

::::
over

::
30

::::::::::
realizations.

:::
Left

::::::::
sub-panels

::::
refer

::
to

:::::
results

::::::
without

::::::
moving

:::::::
average,

:::::
central

:::::::::
sub-panels

:::
with

::::::::
averaging

::::::
window

::::::::
w = 0.01,

::::
right

::::::::
hand-side

:::::
panels

::::
with

:::::::
averaging

::::::
window

::::::::
w = 0.03.

:::::
Upper

::::::::
sub-panels

:::
are

::::::
obtained

:::::
using

::
the

::::
exact

:::::::::
expression

:
in
:::
Eq.

::
11

::::
and

::::
lower

::::::::
sub-panels

::::
using

:::
the

:::::::
residuals

::
in

::
Eq

::
9.

:::
The

::::::::
trajectories

:::
are

::
all

:::::::
obtained

::::
after

::::::
training

::
the

::::
ESN

:::
for

:::
105

::::::::
time-steps.

::::
Each

::::::::
trajectory

::::::
consists

::
of

:::
104

::::
time

::::
steps.
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Figure 4.
::::::
Analysis

::
of

:::
the

:::::::::::::::
Pomeau-Manneville

::::::
system

:::
for

::::::::
increasing

::::
noise

:::::::
intensity

:
ε
:::::::
(x-axes),

:::
and

:::::::
number

::
of

::::::
neurons

::
N

:::::::
(y-axes).

::::
The

:::::::
colorscale

:::::::::
represents:

:
φ
:::

the
::::

rate
::
of

:::::
failure

::
of

:::
the

:::
χ2

:::
test

::::
(size

::::::::
α= 0.05)

::::
(a-c);

:::
the

::::::::
logarithm

::
of

::::::::::
predictability

::::::
horizon

:::::::::
log(τs=0.5)

:::::
(d-f);

::
the

::::::::
logarithm

::
of

::::
initial

::::
error

::::::
log(η)

::::
(g-i).

:::::
These

::::::::
diagnostics

::::
have

::::
been

:::::::
computed

:::
on

::
the

:::::::::
observable

:::::::::
u(t)≡ x(t)

:::
All

::
the

:::::
values

:::
are

:::::::
averages

:::
over

::
30

::::::::::
realizations.

:::::
Panels

::::
a,d,g)

::::
refer

::
to

:::::
results

::::::
without

::::::
moving

::::::
average,

::::::::
b,c,e,f,h,i)

::::
with

:::::::
averaging

:::::::
window

:::::
w = 3,

::::
c,f,i).

::::::
Panels

::::
b,e,h)

:::
are

::::::
obtained

:::::
using

::
the

:::::
exact

::::::::
expression

::
in

::
Eq.

::::
(11)

:::
and

::::
c,f,i)

::::
using

:::
the

:::::::
residuals

::
δx

::
in
:::
Eq

:::
(9).

:::
The

:::::::::
trajectories

::
are

:::
all

::::::
obtained

::::
after

::::::
training

:::
the

:::
ESN

:::
for

:::
105

::::::::
time-steps.

::::
Each

::::::::
trajectory

::::::
consists

::
of

:::
104

::::
time

::::
steps.
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Figure 5.
:::::::::::::::
Pomeau-Manneville

::::
ESN

::::::::
simulation

::::
(red)

::::::
showing

::
an

:::::::::
intermittent

:::::::
behavior

:::
and

:::::::
compared

::
to

:::
the

::::
target

::::::::
trajectory

:::::
(blue).

:::
The

::::
ESN

:::::::
trajectory

::
is

::::::
obtained

::::
after

:::::::
training

::
the

::::
ESN

:::
for

:::
105

::::::::
time-steps

:::::
using

:::
the

::::::
moving

::::::
average

::::
time

::::
series

::::
with

::::::
w = 3.

:
It
:::::::
consists

::
of

:::
104

::::
time

::::
steps.

:::::
Cases

:::::
w = 0

::
are

:::
not

:::::
shown

::
as

:::::::::
trajectories

:::::
always

::::::
diverge.

::::::::
Evolution

::
of

::::::::
trajectories

::
in

::::
time

::
(a)

:::
and

::::::
Fourier

:::::
power

:::::
spectra

:::
(b).
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Figure 6.
:::::

Lorenz
::::
1996

:::::::::
simulations

::
for

:::
the

::::::::
large-scale

:::::::
variable

:::
X1 :::

(a,b)
::::

and
::::::::
small-scale

:::::::
variable

:::
Y1,1:::::

(c,d).
:::::
Panels

::::
(a,c)

::::
show

:::::::::
simulations

:::::
varying

::
c
:
at
::::
fixed

:::::
h= 1.

::::
The

::::
larger

::
c,

::
the

::::
more

:::::::::
intermittent

:::
the

::::::
behavior

::
of

:::
the

:::
fast

:::::
scales.

:::::
Panels

::::
(b,d)

::::
show

:::::::::
simulations

:::::
varying

:::
the

:::::::
coupling

:
h
:::
for

::::
fixed

:::::
c= 10.

:::::
When

:::::
h= 0,

::::
there

::
is
::
no

:::::::::
small-scale

::::::::
dynamics.

:::::
y-axes

::
are

::
in
:::::::
arbitrary

::::
units,

:::::::::
time-series

::
are

::::::
shifted

::
for

:::::
better

:::::::
visibility.
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Figure 7.
:::::
Lorenz

::::
1996

::::
ESN

::::::::
prediction

::::::::::
performance

::
for

::::::::::::::::
u(t)≡

∑I
i=1Xi(t).

:::
a,b)

:::
χ2

::::::
distance

:::
Σ;

::::
(c,d)

::
the

:::::::::::
predictability

::::::
horizon

::
τs::::

with

::::
s= 1.

::::
(e,f)

:::
the

:::::
initial

::::
error

::
η

::
in

:::
hPa.

::
In
::::::

(a,c,e)
::::
ESN

::::::::
predictions

:::
are

:::::
made

::::::
varying

:
c
::
at

::::
fixed

:::::
h= 1.

:::
In

:::::
(b,d,f)

::::
ESN

::::::::
predictions

:::
are

:::::
made

:::::
varying

::
h
::
at

::::
fixed

::::::
c= 10.

::::::::
Continuous

::::
lines

:::::
show

:::
ESN

::::::::
prediction

::::::::::
performance

::::
made

:::::::::
considering

::
X

:::::::
variables

::::
only,

:::::
dotted

::::
lines

:::::::::
considering

:::
both

::
X

:::
and

::
Y
::::::::
variables.
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Figure 8.
:::::::
Example

::
of

::
(a)

:::::
target

::::::
Lorenz

::::
1996

:::::::::::
spatio-temporal

::::::::
evolution

::
of

::::::::
large-scale

:::::::
variables

::
X

:::
for

:::::::::
c= 1,h= 1

:::
and

:::
(b)

::::
ESN

::::::::
prediction

::::::
realized

:::
with

::::::::
N = 800

::::::
neurons.

::::
Note

:::
that

:::
the

:::::
colors

::
are

:::
not

::
on

:::
the

::::
same

::::
scale

:::
for

::
the

::::
two

:::::
panels.
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Figure 9.
::::::::
Dependence

:::
of

::
the

::::::
quality

::
of

:::
the

:::::
results

:::
for

::
the

::::::::
prediction

::
of
:::

the
:::::::
sea-level

:::::::
pressure

:::::::
NCEPv2

:::
data

::
on

:::
the

:::::
coarse

:::::::
graining

:::::
factor

:
c
:::
and

::
on

:::
the

::::::
moving

::::::
average

::::::
window

::::
size

::
w.

:::
The

::::::::
observable

::::
used

::
is
::::::::::::::::::
u(t)≡ 〈SLP (t)〉lon,lat:

.
:::
a-c)

:::
χ2

::::::
distance

::::::
log(Σ);

::::
d-f)

::::::::::
predictability

:::::
horizon

:::
(in

:::::
hours)

:::
τs,

::::::
s= 1.5

::::
hPa;

:::
g-i)

:::::::
logarithm

:::
of

::::
initial

::::
error

::
η.
::::::::

Different
:::::
coarse

::::
grain

:::::
factor

:
c
:::
are

:::::
shown

::::
with

:::::::
different

:::::
colors.

:::::
a,d,g)

:::::
w = 0,

:::::
b,e,h)

:::::
w = 12

::
h,
::::
c,f,i)

::::::
w = 24

::
h.
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Figure 10.
::
a)

::::::::
probability

::::::
density

::::::
function

:::
and

::
b)

::::::
Fourier

:::::
power

:::::
spectra

:::
for

::::::::::::::::::
u(t)≡ 〈SLP (t)〉lon,lat::

for
:::
the

:::::
target

::::::
NCEPv2

::::
SLP

::::
data

:::::
(blue),

::
an

::::
ESN

:::
with

:::::
c= 4

:::
and

:::::
w = 0

:
h
::::
(red),

:::
and

:::
an

:::
ESN

::::
with

:::::
c= 4

:::
and

::::::
w = 12

:
h
::::::
(black).
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Appendix A: Numerical code

We report here the MATLAB code used for the computation of the Echo State Network. This code is adapted from the original

code available here: https://mantas.info/code/simpleesn

A1 ESN Training

function [Win, W, Wout]=ESN_training(data,Nres)460

%This function train the Echo State network using the data provided.

%INPUTS:

%data: a matrix of the input data to train, arranged as space X time

%Nres: the number of neurons N to be used in the training

%OUTPUTS:465

%Win: the input weight matrix which consists of random weights

%W: the network of neurons

%Wout: the output weights, they are adjusted to match the next iterations

inSize = size(data,1);

trainLen= size(data,2);470

Win = (rand(Nres,1+inSize)-0.5) .* 1;

W = rand(Nres,Nres)-0.5;

% normalizing and setting spectral radius

opt.disp = 0;

rhoW = abs(eigs(W,1,’LM’,opt));475

W = W .* ( 1.25 /rhoW);

% memory allocation

X = zeros(1+inSize+Nres,trainLen-1);

Yt = data(:,2:end)’;

x = zeros(Nres,1);480

for t = 1:trainLen-1

u = data(:,t);

x = tanh( Win*[1;u] + W*x );

X(:,t) = [1;u;x];

end485

reg = 1e-8; % regularization coefficient

Wout = ((X*X’ + reg*eye(1+inSize+Nres)) \ (X*Yt))’;

end

26
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A2 ESN Prediction

function [Y_pred]=ESN_prediction(data,Win, W, Wout)490

% This function returns the recurrent Echo State Network prediction

%INPUT:

%data: the full data matrix of the data to predict in the form (space*time)

%Win: input weights

%W: neurons matrix495

%Wout: output weights

%OUTPUT:

%Y_pred: the ESN prediction

Y_pred = zeros(size(data,1),size(data,2) );

x = zeros(size(W,1),1);500

u=data(:,1);

for t = 1:size(data,2)

x = tanh( Win*[1;u] + W*x );

y = Wout*[1;u;x];

Y_pred(:,t) = y;505

u = y;

end

end

Code and data availability. The numerical code used in this article is provided in Appendix A
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a) Lorenz 1963 attractor obtained with a Euler scheme with dt= 0.001, σ = 10, r = 28 and b= 8/3. Panels b-d) show the

performances indicator as a function of the training time. b) the rejection rate φ of the invariant density test for the x variable;640

c) the first time t such that the RMSE>1; d) the initial error η. The error bar represents the average and the standard deviation

of the mean over 100 realizations.

a) Trajectories predicted using ESN on the Lorenz 1963 attractor for the variable x. The attractor is perturbed with Gaussian

noise with variance ε= 0.1. The target trajectory is shown in blue. 10 trajectories obtained without moving average (green)

show an earlier divergence compared to 10 trajectories where the moving average is performed with a window size of645

w = 10dt= 0.01 (red). Panel (b) shows the evolution of the log(RMSE), averaged over the trajectories for the cases with

w = 0.01 (red) and w = 0 (green). The trajectories are all obtained after training the ESN for 105 time-steps. Each trajectory

consists of 104 timesteps.

Lorenz 1963 analysis for increasing noise intensity ε (x-axes), and number of neuronsN (y-axes). The colorscale represents:

φ the rate of failure of the χ2 test (size α= 0.05) (a); the logarithm of predictability horizon log(τs=1) (b); the logarithm650

of initial error log(η) (c). All the values are averages over 30 realizations. Left sub-panels refer to results without moving

average, central sub-panels with averaging window w = 0.01, right hand-side panels with averaging window w = 0.03. Upper

sub-panels are obtained using the exact expression in Eq. 11 and lower sub-panels using the residuals in Eq 9. The trajectories

are all obtained after training the ESN for 105 time-steps. Each trajectory consists of 104 timesteps.

Analysis of the Pomeau-Manneville system for increasing noise intensity ε (x-axes), and number of neurons N (y-axes).655

The colorscale represents: φ the rate of failure of the χ2 test (size α= 0.05) (a-c); the logarithm of predictability horizon

log(τs=0.5) (d-f); the logarithm of initial error log(η) (g-i). All the values are averages over 30 realizations. Panels a,d,g) refer

to results without moving average, b,c,e,f,h,i) with averaging window w = 3, c,f,i). Panels b,e,h) are obtained using the exact

expression in Eq. 11 and c,f,i) using the residuals in Eq 9. The trajectories are all obtained after training the ESN for 105

time-steps. Each trajectory consists of 104 timesteps.660

Pomeau-Manneville ESN simulation (red) showing an intermittent behavior and compared to the target trajectory (blue).

The ESN trajectory is obtained after training the ESN for 105 time-steps using the moving average time series with w = 3. It
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consists of 104 timesteps. Cases w = 0 are not shown as trajectories always diverge. Evolution of trajectories in time (a) and

Fourier power spectra (b).

Lorenz 1996 simulations for the large-scale variableX1 (a,b) and small-scale variable Y1,1 (c,d). Panels (a,c) show simulations665

varying c at fixed h= 1. The larger c, the more intermittent the behavior of the fast scales. Panels (b,d) show simulations varying

the coupling h for fixed c= 10. When h= 0, there is no small-scale dynamics. y-axes are in arbitrary units, time-series are

shifted for better visibility.

Lorenz 1996 ESN prediction performance for the large-scale variables X only. a,b) χ2 distance T ; (c,d) the predictability

horizon τs with s= 1. (e,f) the initial error η in hPa. In (a,c,e) ESN predictions are made varying c at fixed h= 1. In (b,d,f)670

ESN predictions are made varying h at fixed c= 10. Continuous lines show ESN prediction performance made considering X

variables only, dotted lines considering both X and Y variables.

Example of (a) target Lorenz 1996 spatio-temporal evolution of large-scale variables X for c= 1,h= 1 and (b) ESN

prediction realized with N = 800 neurons. Note that the colors are not on the same scale for the two panels.

Dependence of the quality of the results for the prediction of the sea-level pressure NCEPv2 data on the coarse graining675

factor c and on the moving average window size w. a-c) χ2 distance T ; d-f) predictability horizon (in hours) τs, s= 1.5 hPa;

g-i) logarithm of initial error η. Different coarse grain factor c are shown with different colors. a,d,g) w = 0, b,e,h) w = 12 h,

c,f,i) w = 24 h.

a) Distributions of 10 years of 6h spatial and temporal data at all grid points obtained for the target NCEPv2 SLP data

(blue), an ESN with c= 4 and w = 0 h (red), and an ESN with c= 4 and w = 12 h (orange). b-d) wavelet spectrograms for the680

NCEPv2 SLp target data (b), a run with c= 4 w = 0 h (c), and with c= 4 and w = 12 h (d).
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