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Abstract. In previous work, it was shown that preservation of physical properties in the data assimilation framework can

significantly reduce forecasting errors. Proposed data assimilation methods, such as the quadratic programming ensemble

(QPEns) that can impose such constraints on the calculation of the analysis, are computationally more expensive, severely

limiting their application to high dimensional prediction systems as found in earth sciences. In order to produce from a less

computationally expensive, unconstrained analysis, a solution that is closer to the constrained analysis, we propose to use a5

convolutional neural network (CNN) trained on analyses produced by the QPEns. In this paper, we focus on conservation of

mass and show in an idealized setup that the hybrid of a CNN and the ensemble Kalman filter is capable of reducing analysis

and background errors to the same level as the QPEns. To obtain these positive results, it was in one case necessary to add a

penalty term to the loss function of the CNN training process.

1 Introduction

The ensemble Kalman Filter (EnKF Evensen, 1994; Burgers et al., 1998; Evensen, 2009) and versions thereof are powerful

data assimilation algorithms that can be applied to problems that need an estimate of a high dimensional model state, as in

weather forecasting. An important condition for a successful application of the EnKF to a large system is the use of localisation.

Any localisation method aims to diminish sampling errors caused by the computational limitation of ensemble size. By doing15

so, mass conservation as guaranteed by a numerical model is violated during the data assimilation (Janjić et al., 2014). It was

shown in Janjić et al. (2014), Zeng and Janjić (2016),Zeng et al. (2017) and Ruckstuhl and Janjić (2018) that failing to conserve

certain background properties like mass, energy and enstrophy can be highly detrimental to the estimation of the state. Janjić

et al. (2014) proposed a new data assimilation algorithm, the Quadratic Programming Ensemble (QPEns), which replaces

the analysis equations of the EnKF with an ensemble of minimization problems subject to physical constraints. Zeng et al.20

(2017) showed in an idealized setup with a two week forecast generated by a two dimensional shallow water model that error

growth is significantly reduced if the enstrophy is constrained. Similarly Ruckstuhl and Janjić (2018) illustrated the benefit
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of constraining the total mass and positivity of precipitation on a simple test case for convective scale data assimilation. The

obstacle that remains for applying the QPEns on large systems is the computational demand of the constrained minimization

problems that have to be solved for each ensemble member at each assimilation cycle. In this work we propose to use an25

artificial neural network to correct the unconstrained solution, instead of solving the constrained minimization problems.

Artificial neural networks (NN), are powerful tools to approximate arbitrary non-linear functions (Nielsen, 2015). A NN

learns to recognize patterns based on example, rather than being explicitly programmed. An important advantage is that no

direct knowledge of the function is needed. Instead, a data set consisting of input-output pairs is used to train the NN to predict

the output corresponding to a given input. Especially in the fields of image recognition and natural language processing, NNs30

are state-of-the-art and have become a standard tool (LeCun Yann et al., 2015). In numerical weather prediction NNs are not

yet fully integrated, though interest is rising quickly (Reichstein et al., 2019). Recent review of use of NNs in meteorology can

be found in McGovern et al. (2019). Explored applications include (but are not limited to) post processing of raw model output

based on observations (McGovern et al., 2017; Rasp and Lerch, 2018), representing subgrid processes in weather and climate

models using high resolution model simulations (Krasnopolsky et al., 2013; Rasp et al., 2018; Brenowitz and Bretherton,35

2019), combining NN with a knowledge based model as a hybrid forecasting approach (Pathak et al., 2018b) and replacing the

numerical weather prediction model all together (Dueben and Bauer, 2018; Pathak et al., 2018a; Weyn et al., 2020; Scher and

Messori, 2019; Rasp et al., 2020).

Fully replacing data assimilation by a NN has been attempted by Cintra and de Campos Velho (2014) in the context of

a simplified atmospheric general circulation model. They trained on a cycling data set produced by the Localized Ensemble40

Transform Kalman Filter (LETKF, Bishop et al., 2001; Hunt et al., 2007) and show that the trained NN performs nearly as

good as the LETKF with significantly reduced computational effort. Other applications of NNs in context of data assimilation

are for observational bias correction (Jin et al., 2019) and tuning of covariance localization (Moosavi et al., 2019). Similarly,

in this paper we take an approach that combining the NN with a data assimilation algorithm will allow extracting the most

information from sparse and noisy observations, as argued in Brajard et al. (2019). We aim to produce better results than45

standard data assimilation algorithms at minimal additional computational costs, by training on data produced by the QPEns.

We generate our training data by performing twin experiments with the one dimensional modified shallow water model

(Würsch and Craig, 2014) which was designed to mimic important properties of convection. These aspects include an acute

regime switch when convection is triggered (conditional instability) and a significant time lag between the onset of convection

and its observation. The model is briefly introduced in section 2.1, followed by the settings of the twin experiments in section50

2.2. Section 2.3 provides a report on the generation of the training data. Since both our input and output are full model states,

the obvious choice is to train a convolutional neural network (CNN), as the convolution with kernels naturally acts as a form of

localisation. The CNN architecture we use for this application is described in section 2.4. The results are presented in section

3, followed by the conclusion in section 4.
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2 Experiment setup55

2.1 Model

The modified shallow water model (Würsch and Craig, 2014) consists of the following equations for the velocity u, rain r and

water height level of the fluid h respectively:

∂u

∂t
+u

∂u

∂x
+
∂(φ+ γ2r)

∂x
= βu +Du

∂2u

∂x2
, (1)

with60

φ=




φc if h > hc

gh else,
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∂x < 0

0, else,
(3)

∂h

∂t
+
∂(uh)
∂x

=Dh
∂2h

∂x2
. (4)65

Here, hc represents the level of free convection. When this threshold is reached the geopotential φ takes on a lower, constant

value φc. The parameters Du, Dr, Dh are the corresponding diffusion constants, γ :=
√
gh0 is the gravity wave speed for

the absolute fluid layer h0 (h0 < hc). The small stochastic Gaussian forcing βu is added at random locations to the velocity

at every model time step, in order to trigger perturbations that lead to convection. Parameters δ and α are the production and

removal rate of rain respectively. When h reaches the rain threshold hr (hr > hc), rain is ’produced’ by adding rain water mass70

to the potential, leading to a decrease of the water level and of buoyancy. The model conserves mass, so the spatial integral

over h is constant in time.

For the numerical implementation of the model, the one dimensional domain, representing 125 km is discretised with n=

250 points, yielding the state vector x = [uThT rT ]T ∈ R750. The time variable is discretised into time steps of 5 seconds. The

Gaussian stochastic forcing βu has a half width of 4 grid points and an amplitude of 0.002 m/s. This model was used for testing75

data assimilation methods in convective scale applications in Haslehner et al. (2016); Ruckstuhl and Janjić (2018).

2.2 Twin experiments

The nature run which mimics the true state of the atmosphere is a model simulation starting from an arbitrary initial state.

The ensemble is chosen to be of small size with Nens = 10, and, like the nature run, each member starts from an arbitrary

initial state. Observations are assimilated every dT model time steps and are obtained by adding a Gaussian error to the wind80
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u and height h field of the nature run at the corresponding time with a standard deviation of σu = 0.001 m/s and σh = 0.01

m, and a lognormal error is added to the rain r field with parameters µ=−8 and σ = 1.5. For all variables the observation

error is roughly 10% of the maximum deviation from the variable mean. To mimic radar data, observations for all variables are

available only on grid points where rain above a threshold of 0.005 dBZ is measured. A random selection, amounting to 10%

of the remaining grid points, of additional wind observations are assimilated, which represents additional data available (for85

example obtained from aircraft).

To deal with undersampling, covariance localization using 5-th order polynomial function (Gaspari and Cohn, 1999) is

applied with a localisation radius of four grid points. This corresponds to the localisation radius for which the EnKF yields

minimum analysis RMSE values of the rain variable for an ensemble size of ten. An interior point method is used to solve the

quadratic minimization problems of the QPEns. The constraints that are applied are mass conservation, i.e. eT (ha−hf ) =90

eT δh = 0, and positivity of precipitation, i.e. ra = δr+ rf ≥ 0. Here, the superscript f denotes the background and a the

analysis, and e is a vector of size 3n containing only values of one. For the EnKF negative values for rain are set to zero if they

occur.

When the assimilation window dT is large enough, the accumulation of mass leads to divergence for the EnKF, that is, the

analysis error is larger than that of an arbitrary model state. The QPEns converges for all dT , due to its ability to conserve95

mass. We therefore distinguish two cases, one where the EnKF converges (dT = 60, equivalent to 5 minutes real time), and

one where the EnKF diverges (dT = 120, equivalent to 10 minutes real time).

2.3 Training data

We aim to produce initial conditions of the same quality as the ones produced by the QPEns by upgrading the initial conditions

produced by the EnKF using a CNN. To that end, we generate QPEns cycling data {(Qf
t ,Q

a
t ) : t= 1,2, ...,T}, where Q stands100

for QPEns, the superscript f denotes the background and a the analysis. In parallel we create the data set {Xat : t= 1,2, ...,T},
where Xat is the unconstrained solution calculated from Qf

t . Note that by using the same Qf
t as the constrained solution we

train the CNN only to focus on differences in the minimization process and not on the possible differences in the background

error covariances that could have accumulated during cycling. Later we validate this approach during cycling. Both data sets

contain the entire ensemble of Nens = 10 members, such that (∗)(∗)t ∈ RNens×n×3, where the last dimension represents the 3105

variables (u,h,r) and n is the number of grid points.

The output of our training set Ytr ∈ RNensT×n×3 is simply a reshaped and normalized version of the data set {Qa
t : t=

1,2, ...,T}. For the input of our training set Xtr we choose to use an index vector indicating the position of the radar observa-

tions {It : t= 1,2, ...,T} in addition to the unconstrained solutions {Xat : t= 1,2, ...,T}, yielding Xtr ∈ RNensT×n×4, where

the index vector It is copied Nens times to obtain I∗t ∈ RNens×n×3. For u and h the input and output data set is normalized110

by subtracting the climatological mean before dividing by the climatological standard deviation. For r, we do not subtract the

climatological mean to maintain positivity.
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A validation data set Xvalid and Yvalid is created to monitor the training process exactly as the training data set but with

a different random seed number. For both the training and validation data set we set T = 4800, which amounts to a total of

NensT = 48000 training and validation samples respectively.115

2.4 Convolutional neural network architecture

We choose to use a CNN with 4 convolutional hidden layers, consisting of 32 filters each with kernels of size 3 and the “selu"

activation function

g(x) = λ




x, for x≥ 0

α(ex− 1) , for x < 0
,

where λ= 1.05070098 and α= 1.67326324. The output layer is a convolutional layer as well, where the number of filters

is determined by the desired shape of the output of the CNN, which is a model state (u,h,r) ∈ Rn×3. The output layer has

therefore 3 filters and the kernel size is again 3. Note that the “localisation radius", that is, the maximum influence radius of

a variable as assumed by the CNN is (3− 1)/2 ∗ 5 = 5, where 5 is number of layers and 3 the kernel size. We use a linear

activation function for u and h and the “relu" activation function for r to ensure non-negativity of rain. We set the batch size

to 96 and do 100 epochs. Unless stated otherwise, the loss function is defined as the root mean squared error (RMSE) over the

grid points, averaged over the variables:

J
(
ypj (w)

)
=

1
3

3∑

v=1

√√√√ 1
n

n∑

i=1

(
ypj,i,v − yj,i,v

)2
, j = 1, . . . ,NensT

where ypj,i,v and yj,i,v are the prediction and output for the vth variable of the jth sample at the ith grid point respectively.

The Adam algorithm is used to minimize 1
NensT

∑NensT

j=1 J
(
ypj (w)

)
over the weights w of the CNN. The training is done with

python library Keras (Chollet et al., 2015).

3 Results120

We assign the name dT5 to the experiment corresponding to a cycling period of 5 minutes, and dT10 to the experiment

corresponding to a cycling period of 10 minutes. Figure 1 shows the evolution of the loss function averaged over the samples

for the training and validation data set for dT5 and dT10 respectively. Table 1 summarizes what the CNN has learned for each

variable separately in the two cases. As the training data is normalized, we can conclude from the RMSE of the input data with

respect to the output data (first row in Table 1 panels) that the mass constraint on h and the positivity constraints on r impacts125

the solution of the minimization problem for all variables with the same order of magnitude. Given our choice of loss function

it is not surprising that the relative reduction of the gap between the input and output by the CNN is proportional to the size

of the gap. By aiming to minimize the mean RMSE of all variables, the CNN reduced the violation of the mass constraint by

about 20% for both experiments. However, for dT5 the reduction in the bias of the height field is 100%, while for dT10 it is a

mere 30%.130
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Figure 1. Value of the loss function J averaged over samples for the training (red) and validation (blue) data set as function of epochs for

dT5 (left) and dT10 (right).

Validation loss u h r mass h mass r bias h

dT5

Input 4.9e-2 4.2e-2 4.6e-2 5.9e-2 1.8e-2 4.0e-3 1.4e-2

Prediction 3.6e-2 4.1e-2 3.9e-2 2.7e-2 1.4e-2 2.9e-3 0.0

Improvement (%) 27 2.8 15 55 22 28 100

dT10

Input 9.6e-2 7.9e-2 9.0e-2 1.2e-1 3.6e-2 8.0e-3 3.3e-2

Prediction 6.5e-2 7.3e-2 6.9e-2 5.4e-2 2.9e-2 7.1e-3 2.3e-2

Improvement (%) 32 7.8 24 55 20 11 30
Table 1. The loss function, the mean RMSE of the variables u,h,r, the absolute mass error divided by the number of grid points n for h and r,

and the bias of h (columns) calculated for the input Xvalid (top row) and the CNN prediction (middle row) with respect to the output Yvalid

for the validation data sets. The last row shows the improvement of the prediction towards the output compared to the input in percentage.

The top table corresponds to dT5, the bottom table to dT10.

Next, we are interested in how the CNNs perform when applied within the data assimilation cycling. In Figure 2, we

compare the performance of the EnKF, QPEns and the hybrid of CNN and EnKF, where CNN is applied as correction to the

initial conditions computed by the EnKF. To avoid having to train a CNN for the spin-up phase where the increments are larger,

we start the data assimilation for the EnKF and the CNN from the initial conditions produced by the QPEns at the 20th cycle.

The RMSEs shown in Figure 2 are calculated through time against nature values for both background and analysis.135
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Figure 2. RMSE of the ensemble mean of the variables (columns) for the background (top rows) and analysis (bottom rows) as function of

assimilation cycles for the EnKF (blue), the QPEns (red) and the CNN (green). The panels in a) corresponds to dT5 and in b) to dT10.
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Figure 3. Absolute mass error of h (left) and r (right) for the analysis ensemble mean for the EnKF (blue), QPEns (red) and CNN (green).

The plots in a) correspond to dT5 and in b) to dT10.

With respect to RMSEs, for dT5 the CNN performs as well as the QPEns, despite having learned during training only

27% of the difference between the EnKF and QPEns analysis in terms of the loss function. For dT10 the CNN does perform

significantly better than the EnKF, but clearly remains inferior to the QPEns. Given that in terms of the RMSE over the grid

points, the CNN for dT10 is slightly better than the one for dT5, we hypothesize that the key to good performance of the CNN

applied within the data assimilation cycling lies with preventing the accumulation of mass in h. When mass accumulates in140

clear regions, that is regions where for the nature run holds h < hc, it has a snowball effect not only on h itself but also on r, see

Figure 3. After all, clouds, and later rain, are produced whenever h > hc. For dT5 the CNN does not score much better than for

dT10 in terms of absolute mass error. However it was able to effectively remove all bias in h (with a residual of O(10−5)), in

contrast to the CNN for dT10. In addition, when distinguishing between clear and cloudy regions, the absolute mass error for

the CNN corresponding to dT5 is reduced by 80% in the clear regions, as opposed to a mere 30% for the CNN corresponding145

to dT10 (not shown).
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Figure 4. Value of the loss function Ĵ (solid) and J (dashed) averaged over samples for the training (red) and validation (blue) data set as

function of epochs for dT10γ .

To support this claim we trained an additional CNN with the training set corresponding to dT = 10, with a penalty term for

the mass of h in the loss function:

Ĵγ
(
ypj (w)

)
= J

(
ypj (w)

)
+ γ

∣∣∣∣∣
n∑

i=1

ypj,i,2−
n∑

i=1

yj,i,2

∣∣∣∣∣

where the parameter γ is tunable. The larger γ, the better the mass of h is conserved at the expense of the RMSE. We found

a good trade-off for γ = 0.01. We refer to this experiment as dT10γ . The training process is illustrated in Figure 4. The

mass conservation term comprises about 40% of the total loss function Ĵ . Both terms of the loss function are decreasing at

approximately the same rate throughout the entire training process. Comparing Table 1 with Table 2 we conclude that by adding150

the penalty term for the mass violation in the loss function, 6% was lost in terms of loss function J , but 32% was gained in the

conservation of mass. In clear regions, the mass violation reduction even went from 30% for dT10 to 85% for dT10γ . Table

3 confirms that the CNN is especially active in clear regions. Indeed, the correlation coefficient between h and the increments

in all variables is significant and negative, indicating that the prediction increments are larger in clear regions than in cloudy

regions.155

validation loss u h r mass h mass r bias h

Input 9.6e-2 7.9e-2 8.9e-2 1.2e-1 3.6e-2 7.8e-3 3.3e-2

Prediction 7.1e-2 7.6e-2 8.4e-2 5.3e-2 1.8e-2 5.5e-3 0

Improvement (%) 26 4.1 6.6 54 52 29 100
Table 2. As table 1, but for dT10γ .
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Figure 5. As Figure 2 for dT10γ .

Figure 6. As Figure 3 for dT10γ .
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Figure 7. Ensemble mean snapshot for dT10γ .
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Y−X dT10: Yp−X dT10γ : Yp−X

u h r u h r u h r

X

u -0.1 0.0 0.0 -0.2 0.0 0.0 -0.1 0.0 0.0

h 0.0 -0.1 -0.1 0.1 -0.2 -0.2 -0.3 -0.4 -0.2

r 0.0 -0.1 -0.3 0.1 -0.2 -0.4 -0.2 -0.3 -0.3

dX
dx

u -0.1 0.0 0.0 -0.2 0.1 0.0 -0.1 0.1 0.0

h -0.2 -0.1 -0.2 -0.4 -0.2 -0.2 -0.5 -0.1 -0.2

r -0.1 -0.1 -0.3 -0.2 -0.2 -0.3 -0.2 -0.1 -0.4
Table 3. Correlation coefficient for increments of the output (left) and the prediction for dT10 (middle) and dT10γ (right) with the input

(top) and the gradient of the input (bottom).

Figure 5, 6 and 7 show the data assimilation results for dT10γ . It is striking that the CNN performs slightly better than the

QPEns. When comparing the input X, output Y and the CNN prediction Yp to the nature run, we found that for the clear regions

Yp is slightly closer to the nature run in terms of RMSE than the QPEns and significantly closer than the EnKF (not shown).

We speculate that this is because the QPEns generally lacks mass in regions where there are no clouds in both the nature run

and the QPEns estimate. The EnKF on the other hand, overestimates the mass in these regions. As a result, the true value of h160

lies between the QPEns and EnKF estimates. In these regions it is therefore favourable that the CNN can not completely close

the gap between the input and output data, as it leads to a better fit to the nature run. We also performed an experiment where

only the clear regions of h are updated by the CNN and the other variables and cloudy regions of h remain equal to the EnKF

solution, and similar results were obtained as in Figure 5 and 6. We therefore conclude that the success of this approach lies in

the ability of the CNN to correct for errors of h in clear regions.165

4 Conclusion

Geoscience phenomena have several aspects that are different from standard data science applications, for example govern-

ing physical laws, noisy, non-uniform in space and time observations from many different sources, as well as rare interesting

events. This makes use of NN challenging in particular for convective scale applications, although attempts have been made

for predicting rain, hail or tornadoes (McGovern et al., 2019). The approach taken in this study, combines noisy and sparse170

observations with a dynamical model using a data assimilation algorithm, but also uses a NN in order to improve on conser-

vation of physical laws. In previous work it was shown in idealized setups that conserving physical properties like mass in the

data assimilation framework using the QPEns can significantly improve the estimate of the nature run. Here we show that it is

possible to obtain similar positive results by training a CNN to conserve mass in a weak sense. By training on the unconstrained

(EnKF)/constrained (QPEns) input/output pair, the CNN was already able to reduce the mass violation significantly. However,175
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we found that adding a penalty term for mass violation in the loss function was necessary in one of the two test cases to produce

data assimilation results that are as good as those corresponding to the QPEns.

These encouraging results prompt the question of the feasibility of this approach applied to fully complex numerical weather

prediction systems. The challenge here lies in the generation of the training data. First the effectiveness of conserving different

quantities has to be verified in a non-idealized numerical weather prediction framework, where the quantities to be conserved180

are not always known. A second consideration is the computational costs. Advances are made in this regard (Janjic et al., under

review), but effort and collaboration with optimization experts is still required to allow the generation of a reasonably large

training data set.
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