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Abstract. In previous work, it was shown that preservation of physical properties in the data assimilation framework can

significantly reduce forecasting
::::::
forecast

:
errors. Proposed data assimilation methods, such as the quadratic programming en-

semble (QPEns) that can impose such constraints on the calculation of the analysis, are computationally more expensive,

severely limiting their application to high dimensional prediction systems as found in earth sciences. In order to produce from

a less computationally expensive, unconstrained analysis, a solution that is closer to the constrained analysis, we
:::
We

::::::::
therefore5

propose to use a convolutional neural network (CNN) trained on analyses produced by the QPEns
::
the

:::::::::
difference

::::::::
between

::
the

::::::::
analysis

::::::::
produced

:::
by

:
a
::::::::
standard

::::::::
ensemble

:::::::
Kalman

:::::
Filter

:::::::
(EnKF)

::::
and

:::
the

::::::
QPEns

::
to

:::::::
correct

:::
any

:::::::::
violations

::
of

::::::::
imposed

:::::::::
constraints. In this paper, we focus on conservation of mass and show in an idealized setup that the hybrid of a CNN and the

ensemble Kalman filter
:::::
EnKF is capable of reducing analysis and background errors to the same level as the QPEns. To obtain

these positive results, it was in one case necessary to add a penalty term to the loss function of the CNN training process.10

Copyright statement.

1 Introduction

The ensemble Kalman Filter (EnKF Evensen, 1994; Burgers et al., 1998; Evensen, 2009) and versions thereof are powerful

data assimilation algorithms that can be applied to problems that need an estimate of a high dimensional model state, as in

weather forecasting. An important condition for a successful application of the EnKF to a large system is the use of localisation.15

Any localisation method aims to diminish sampling errors caused by the computational limitation of
::
the

:
ensemble size. By

doing so, mass conservation as guaranteed by a numerical model is violated during the data assimilation (Janjić et al., 2014).

It was shown in Janjić et al. (2014), Zeng and Janjić (2016), Zeng et al. (2017) and Ruckstuhl and Janjić (2018) that failing to

conserve certain background properties
::::::::
quantities like mass, energy and enstrophy can be highly detrimental to the estimation

of the state. Janjić et al. (2014) proposed a new data assimilation algorithm, the Quadratic Programming Ensemble (QPEns),20

which replaces the analysis equations of the EnKF with an ensemble of minimization
:::::::::::
minimisation problems subject to physical

constraints. Zeng et al. (2017) showed in an idealized
:::::::
idealised setup with a two week forecast generated by a two dimensional
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shallow water model that error growth is significantly reduced if the enstrophy is constrained. Similarly Ruckstuhl and Janjić

(2018) illustrated the benefit of constraining the total mass and positivity of precipitation on a simple test case for convective

scale data assimilation. The obstacle that remains for applying the QPEns on large systems is the computational demand of25

the constrained minimization problems that have to be solved
::::::
solving

:::
the

::::::::::
constrained

:::::::::::
minimisation

::::::::
problems

::::
that

::::::
appear for

each ensemble member at each assimilation cycle.
::
For

::
a
:::::::
detailed

:::::::::
discussion

::
on

:::
the

:::::::::::::
computational

::::
costs

:::
of

:::
the

::::::
QPEns

::
we

:::::
refer

::
to

:::::::::::::::::::::
Janjic et al. (under review)

:
.
:
In this work we propose to use an artificial neural network

::::
(NN)

:
to correct the unconstrained

solution, instead of solving the constrained minimization
:::::::::::
minimisation problems.

Artificial neural networks (NN),
:::
NNs

:
are powerful tools to approximate arbitrary non-linear

::::::::
nonlinear functions (Nielsen,30

2015). A NN learns to recognize patterns based on example
::::::::
examples, rather than being explicitly programmed. An impor-

tant advantage is that no direct knowledge of the function is needed. Instead, a data set consisting of input-output pairs is

used to train the NN to predict the output corresponding to a given input. Especially in the fields of image recognition and

natural language processing, NNs are state-of-the-art and have become a standard tool (LeCun Yann et al., 2015). In numer-

ical weather prediction NNs are not yet fully integrated, though interest is rising quickly (Reichstein et al., 2019). Recent35

review of
:
A

::::::
recent

::::::
review

::
of

:::
the

:
use of NNs in meteorology can be found in McGovern et al. (2019). Explored applica-

tions include (but are not limited to) post processing of raw model output based on observations (McGovern et al., 2017;

Rasp and Lerch, 2018), representing subgrid processes in weather and climate models using high resolution model simulations

(Krasnopolsky et al., 2013; Rasp et al., 2018; Brenowitz and Bretherton, 2019), combining
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Krasnopolsky et al., 2013; Rasp et al., 2018; Brenowitz and Bretherton, 2019; Yuval and O’Gorman, 2020)

:
,
::::::::
combining

::
a NN with a knowledge based model as a hybrid forecasting approach (Pathak et al., 2018b)

::::::::::::::::::::::::::::::
(Pathak et al., 2018b; Watson, 2019)40

and replacing the numerical weather prediction model all together (Dueben and Bauer, 2018; Pathak et al., 2018a; Weyn et al., 2020; Scher and Messori, 2019; Rasp et al., 2020)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dueben and Bauer, 2018; Pathak et al., 2018a; Weyn et al., 2020; Scher and Messori, 2019; Rasp et al., 2020; Rasp and Thuerey, 2020)

:
.
::
A

::::::
general

:::::::::
challenge

:::::
when

:::::::
applying

:::::
NNs

::
in

::::::::
numerical

:::::::
weather

:::::::::
prediction

::
is
::::
that

:::
the

:::::::
training

::::
data

:::::
often

:::::::
consists

::
of

::::::
sparse

:::
and

:::::
noisy

::::
data,

::::::
which

::::
NNs

:::
are

:::
ill

::::::::
equipped

::
to

:::::::
handle.

::::::::::::::::::
Brajard et al. (2020a)

:::
and

::::::::::::::::::
Bocquet et al. (2020)

:::::::
proposed

::
to
::::

use
::::
data

::::::::::
assimilation

::
in

:::
the

:::::::
training

::::::
process

:::
of

:::
the

:::
NN

::
to

::::
deal

::::
with

::::
this

:::::
issue.

::::
This

::::::::
approach

:::
has

:::::::::::
successfully

::::
been

:::::::
applied

::
to

::::::
reduce45

:::::
model

::::::
errors

::::::::::::::::::::::::::::::::::
(Brajard et al., 2020b; Farchi et al., 2020).

Fully replacing data assimilation by a NN has been attempted by Cintra and de Campos Velho (2014) in the context of a

simplified atmospheric general circulation model. They trained on a cycling data set produced by the Localized
::::
Local

:
Ensemble

Transform Kalman Filter (LETKF, Bishop et al., 2001; Hunt et al., 2007) and show that the trained NN performs nearly as

good as the LETKF with significantly reduced computational effort. Other applications of NNs in context of data assimilation50

are for observational bias correction (Jin et al., 2019) and tuning of covariance localization (Moosavi et al., 2019). Similarly, in

:::::::::
localisation

::::::::::::::::::
(Moosavi et al., 2019)

:
.
::
In this paper we take an approach that combining the NN with a data assimilation algorithm

will allow extracting the most information from sparse and noisy observations, as argued in
:::
for

:::::::
example Brajard et al. (2020a).

We aim to produce better results than standard data assimilation algorithms at minimal additional computational costs, by

training on data produced by the QPEns.55

We generate our training data by performing twin experiments with the one dimensional modified shallow water model

(Würsch and Craig, 2014) which was designed to mimic important properties of convection. These aspects include an acute
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regime switch when convection is triggered (conditional instability) and a significant time lag between the onset of convection

and its observation. The model is briefly introduced in section 2.1, followed by the settings of the twin experiments in section

2.2. Section 2.3 provides a report on the generation of the training data. Since both our input and output are full model states,60

the obvious choice is to train a convolutional neural network (CNN), as the convolution with kernels naturally acts as a form of

localisation. The CNN architecture we use for this application is described in section 2.4. The results are presented in section

3, followed by the conclusion in section 4.

2 Experiment setup

2.1 Model65

The modified shallow water model (Würsch and Craig, 2014) consists of the following equations for the velocity u, rain r and

water height level of the fluid h respectively:

∂u

∂t
+u

∂u

∂x
+
∂(φ+ γ2r)

∂x
= βu+Du

∂2u

∂x2
, (1)

with

φ=

φc if h > hc

gh else,
(2)70

∂r

∂t
+u

∂r

∂x
=Dr

∂2r

∂x2
−αr−

δ
∂u
∂x , h > hr and ∂u

∂x < 0

0, else,
(3)

∂h

∂t
+
∂(uh)

∂x
=Dh

∂2h

∂x2
. (4)

Here
:::::
Above, hc represents the level of free convection. When this threshold is reached the geopotential φ takes on a lower,75

constant value φc. The parameters Du, Dr, Dh are the corresponding diffusion constants
::::::::
diffusion

::::::::
constants

::::::::::::
corresponding

::
to

::
u,

:
r,

::
h,

:::::::::::
respectively.

:::::::::
Coefficient

:
γ :=

√
gh0 is the gravity wave speed for the absolute fluid layer h0 (h0 < hc). The small

stochastic Gaussian
::::::::
Gaussian

::::::
shaped forcing βu is added at random locations to the velocity

:
u
:
at every model time step,

:
.
::::
This

:
is
:::::
done

:
in order to trigger perturbations that lead to convection. Parameters δ and α are the production and removal rate of

rain respectively. When h reaches the rain threshold hr (hr > hc), rain is ’produced’by adding rain water mass to the potential,80

leading to a decrease of the water level and of buoyancy. The model conserves mass, so the spatial integral over h is constant

in time.

For the numerical implementation of the model, the one dimensional
:::
The

:::
one

::::::::::
dimensional

::::::
model domain, representing 125

km is discretised with n= 250 points, yielding the state vector x= [uThT rT ]T ∈ R750. The time variable is discretised into
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time steps of
::::
step

::
is

::::::
chosen

::
to

:::
be 5 seconds. The Gaussian stochastic forcing βu has a

::::::::
Gaussian

:::::
shape

::::
with

:
half width of85

4 grid points and an amplitude of 0.002 m/s. This model was used for testing data assimilation methods in convective scale

applications in Haslehner et al. (2016); Ruckstuhl and Janjić (2018).

2.2 Twin experiments

The nature run which mimics the true state of the atmosphere is a model simulation starting from an arbitrary initial state.

The ensemble is chosen to be of small size with Nens = 10, and, like the nature run, each member starts from an arbitrary90

initial state. Observations are assimilated every dT model time steps and are obtained by adding a Gaussian error to the wind

u and height h field of the nature run at the corresponding time with a standard deviation of σu = 0.001 m/s and σh = 0.01 m,

and a lognormal error is added to the rain r field with parameters
::
of

:::
the

:::::::::
underlying

::::::
normal

::::::::::
distribution

:
µ=−8 and σ = 1.5.

For all variables the observation error is roughly 10% of the maximum deviation from the variable mean. To mimic radar

data, observations for all variables are available only on grid points where rain above a threshold of 0.005 dBZ is measured.95

A random selection, amounting to 10% of the remaining grid points, of additional wind observations are assimilated, which

represents additional data available
:::::::
available

::::
data (for example obtained from aircraft).

To deal with undersampling, covariance localization
::::::::::
localisation using 5-th order polynomial

::::::::
piecewise

::::::
rational

:
function

(Gaspari and Cohn, 1999) is applied with a localisation radius of four grid points. This corresponds to the localisation ra-

dius for which the EnKF yields minimum analysis RMSE values of the rain variable for an ensemble size of ten. An in-100

terior point method is used to solve the quadratic minimization
::::::::::
minimisation

:
problems of the QPEns. The constraints that

are applied are mass conservation, i.e. eT (ha−hf ) = eT δh= 0
:::::::::::::::::::::
eT (ha−hb) = eT δh= 0, and positivity of precipitation, i.e.

ra = δr+ rf ≥ 0
::::::::::::::
ra = δr+ rb ≥ 0. Here, the superscript f

:
b denotes the background and a the analysis, and e is a vector of

size n containing only values of one. For the EnKF negative values for rain are set to zero if they occur.

When the assimilation window dT is large enough, the accumulation of mass leads to divergence for the EnKF, that is, the105

analysis error is larger than that of an arbitrary
::
the

::::::::::::
climatological

:::::::
standard

::::::::
deviation

::
of

:::
the

:
model state. The QPEns converges

for all dT , due to its ability to conserve mass. We therefore distinguish two cases, one where the EnKF converges (dT = 60,

equivalent to 5 minutes real time), and one where the EnKF diverges (dT = 120, equivalent to 10 minutes real time).
::
We

:::::
refer

::
to

:::::::::::::::::::::::
Ruckstuhl and Janjić (2018)

::
for

::
a

:::::::::
comparison

:::
of

::
the

:::::::::::
performance

::
of

:::
the

:::::
EnKF

::::
and

::
the

::::::
QPEns

:::
as

:
a
:::::::
function

::
of

::::::::
ensemble

::::
size

::
for

::::::::
different

:::::::::
localisation

:::::
radii,

::::::::::
assimilation

::::::::
windows

:::
and

::::::::::
observation

::::::::
coverage.

:
110

2.3 Training data

We aim to produce initial conditions of the same quality as the ones produced by the QPEns by upgrading the initial conditions

produced by the EnKF using a CNN. To that end, we generate QPEns cycling data {(Qf
t ,Q

a
t ) : t= 1,2, ...,T}

:::::::::::::::::::::
{(Qb

t ,Q
a
t ) : t= 1,2, ...,T},

where Q stands for QPEns, the superscript f
:
b
:
denotes the background and a the analysis. In parallel we create the data set

{Xat : t= 1,2, ...,T}, where Xat is the unconstrained solution calculated from Qf
t ::

Qb
t . Note that by using the same Qf

t ::
Qb
t:as115

the constrained solution we train the CNN only to focus on differences in the minimization
:::::::::::
minimisation

:
process and not on

the possible differences in the background error covariances that could have accumulated during cycling. Later
:
In

::::::
section

::
3 we

4



validate this approach during cycling
::
by

:::::::
applying

:::
the

:::::
CNN

::
to

:::
the

::::::
EnKF

:::::::
analysis

:::
for

:::
180

::::::::::
subsequent

:::
data

:::::::::::
assimilation

:::::
cycles.

Both data sets contain the entire ensemble of Nens = 10 members, such that (∗)(∗)t ∈ RNens×n×3, where the last dimension

represents the 3 variables (u,h,r) and n is the number of grid points.120

The output of our training set Ytr ∈ RNensT×n×3 is simply a reshaped and normalized version of the data set {Qa
t : t=

1,2, ...,T}. For the input of our training set Xtr we choose to use an index vector indicating the position of the radar observa-

tions {It : t= 1,2, ...,T} in addition to the unconstrained solutions {Xat : t= 1,2, ...,T}, yielding Xtr ∈ RNensT×n×4, where

the index vector It is copied Nens times to obtain I∗t ∈ RNens×n×3. For u and h the input and output data set is normalized

by subtracting the climatological mean before dividing by the climatological standard deviation. For r, we do not subtract the125

climatological mean to maintain positivity.

A validation data set Xvalid and Yvalid is created to monitor the training process exactly as the training data set but with a

different random seed number
:
is
:::::::
created

::
to

:::::::
monitor

:::
the

:::::::
training

::::::
process. For both the training and validation data set we set

T = 4800, which amounts to a total of NensT = 48000 training and validation samples respectively.

2.4 Convolutional neural network architecture130

We choose to use a CNN with 4 convolutional hidden layers, consisting of 32 filters each with kernels of size 3 and the “selu"

activation function

g(x) = λ

x, for x≥ 0

α(ex− 1) , for x < 0
,

where λ= 1.05070098 and α= 1.67326324

g(x) = λ1

x, for x≥ 0

λ2 (e
x− 1) , for x < 0

:::::::::::::::::::::::::::::

(5)135

:::::
where

:::::::::::::::
λ1 = 1.05070098

:::
and

::::::::::::::::
λ2 = 1.67326324.

:::::
These

::::::
values

:::
are

::::::
chosen

:::::
such

:::
that

:::
the

:::::
mean

::::
and

:::::::
variance

:::
of

:::
the

::::::
inputs

:::
are

::::::::
preserved

:::::::
between

::::
two

::::::::::
consecutive

:::::
layers

::::::::::::::::::::
(Klambauer et al., 2017). The output layer is a convolutional layer as well, where

the number of filters is determined by the desired shape of the output of the CNN, which is a model state (u,h,r) ∈ Rn×3.

The output layer has therefore 3 filters and the kernel size is again 3. Note that the “localisation radius", that is, the maximum

influence radius of a variable as assumed by the CNN is (3− 1)/2 ∗ 5 = 5, where 5 is the number of layers and 3 the kernel140

size. We use a linear activation function for u and h and the “relu" activation function for r to ensure non-negativity of rain. We

set the batch size to 96 and do
:::
run 100 epochs. Unless stated otherwise, the loss function is defined as the root mean squared

error (RMSE) over the grid points, averaged over the variables:

J
(
ypj (w)

)
=

1

3

3∑
v=1

√√√√ 1

n

n∑
i=1

(
ypj,i,v − yj,i,v

)2
, j = 1, . . . ,NensT
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Figure 1. Value of the loss function J averaged over samples for the training (red) and validation (blue) data set as function of epochs for

dT5 (left) and dT10 (right).

145

J
(
ypj (w)

)
=

1

3

3∑
v=1

√√√√ 1

n

n∑
i=1

(
ypj,i,v − yj,i,v

)2
, j = 1, . . . ,NensT

:::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

where ypj,i,v and yj,i,v are the prediction and output for the vth variable of the jth sample at the ith grid point respectively.

The Adam algorithm is used to minimize 1
NensT

∑NensT

j=1 J
(
ypj (w)

)
over the weights w of the CNN. The training is done with

python library Keras (Chollet et al., 2015)
::::::::::::
(Chollet, 2017).

3 Results150

We assign the name dT5 to the experiment corresponding to a cycling period of 5 minutes, and dT10 to the experiment

corresponding to a cycling period of 10 minutes. Figure 1 shows the evolution of the loss function averaged over the samples

for the training and validation data set for dT5 and dT10 respectively. Table 1 summarizes what the CNN has learned for each

variable separately in the two cases. As the training data is normalized, we can conclude from the RMSE of the input data with

respect to the output data (first row in Table 1 panels) that the mass constraint on h and the positivity constraints on r impacts155

the solution of the minimization problem for all variables with the same order of magnitude. Given our choice of loss function

it is not surprising that the relative reduction of the gap between the input and output by the CNN is proportional to the size

of the gap. By aiming to minimize the mean RMSE of all variables, the CNN reduced the violation of the mass constraint by
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Validation loss u h r mass h mass r bias h

dT5

Input 4.9e-2 4.2e-2 4.6e-2 5.9e-2 1.8e-2 4.0e-3 1.4e-2

Prediction 3.6e-2 4.1e-2 3.9e-2 2.7e-2 1.4e-2 2.9e-3 0.0

Improvement (%) 27 2.8 15 55 22 28 100

dT10

Input 9.6e-2 7.9e-2 9.0e-2 1.2e-1 3.6e-2 8.0e-3 3.3e-2

Prediction 6.5e-2 7.3e-2 6.9e-2 5.4e-2 2.9e-2 7.1e-3 2.3e-2

Improvement (%) 32 7.8 24 55 20 11 30
Table 1. The loss function, the mean RMSE of the variables u,h,r, the absolute mass error divided by the number of grid points n for h and r,

and the bias of h (columns) calculated for the input Xvalid (top row) and the CNN prediction (middle row) with respect to the output Yvalid

for the validation data sets. The last row shows the improvement of the prediction towards the output compared to the input in percentage.

The top table corresponds to dT5, the bottom table to dT10.

about 20% for both experiments. However, for dT5 the reduction in the bias of the height field is 100%, while for dT10 it is a

mere 30%.160

Next, we are interested in how the CNNs perform when applied within the data assimilation cycling. In Figure 2, we

compare the performance of the EnKF, QPEns and the hybrid of CNN and EnKF, where CNN is applied as correction to the

initial conditions computed by the EnKF. To avoid having to train a CNN for the spin-up phase where the increments are larger,

we start the data assimilation for the EnKF and the CNN from the initial conditions produced by the QPEns at the 20th cycle.

The RMSEs shown in Figure 2 are calculated through time against nature values for both background and
::
the

::::::
nature

:::
run

:::
for165

::::
both

:::
the

::::::::::
background

::::
and

:::
the analysis.

With respect to RMSEs, for dT5 the CNN performs as well as the QPEns, despite having learned during training only

27% of the difference between the EnKF and QPEns analysis in terms of the loss function. For dT10 the CNN does perform

significantly better than the EnKF, but clearly remains inferior to the QPEns. Given that in terms of the RMSE over the grid

points, the CNN for dT10 is slightly better than the one for dT5, we hypothesize that the key to good performance of the CNN170

applied within the data assimilation cycling lies with preventing the accumulation of mass in h. When mass accumulates in

clear regions, that is regions where for the nature run holds h < hc, it has a snowball effect not only on h itself but also on r, see

Figure 3. After all, clouds, and later rain, are produced whenever h > hc. For dT5 the CNN does not score much better than for

dT10 in terms of absolute mass error. However it was able to effectively remove all bias in h (with a residual of O(10−5)), in

contrast to the CNN for dT10. In addition, when distinguishing between clear and cloudy regions, the absolute mass error for175

the CNN corresponding to dT5 is reduced by 80% in the clear regions, as opposed to a mere 30% for the CNN corresponding

to dT10 (not shown).
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Figure 2. RMSE of the ensemble mean
::::::

averaged
:::
over

::::
500

:::::::::
experiments of the variables (columns) for the background (top rows) and analysis

(bottom rows) as function of assimilation cycles for the EnKF (blue), the QPEns (red) and the CNN (green). The panels in a) corresponds to

dT5 and in b) to dT10.
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Figure 3. Absolute mass error
:::::::
averaged

::::
over

:::
500

:::::::::
experiments

:
of h (left) and r (right) for the analysis ensemble mean for the EnKF (blue),

QPEns (red) and CNN (green). The plots in a) correspond to dT5 and in b) to dT10.

To support this claim we trained an additional CNN with the training set corresponding to dT = 10, with a penalty term for

the mass of h in the loss function:

Ĵγ
(
ypj (w)

)
= J

(
ypj (w)

)
+ γ

∣∣∣∣∣
n∑
i=1

ypj,i,2−
n∑
i=1

yj,i,2

∣∣∣∣∣180

Ĵη
(
ypj (w)

)
= J

(
ypj (w)

)
+
η

n

∣∣∣∣∣
n∑
i=1

ypj,i,2−
n∑
i=1

yj,i,2

∣∣∣∣∣
:::::::::::::::::::::::::::::::::::::::::

(7)

where the parameter γ
:
η
:
is tunable. The larger γ

:
η, the better the mass of h is conserved at the expense of the RMSE,

::::
see

:::::
Figure

::
4. We found a good trade-off for γ = 0.01

::::
η = 2. We refer to this experiment as dT10γ :::::::

dT10η=2. The training process

is illustrated in Figure 4. The mass conservation term comprises about 40% of the total loss function Ĵ . Both terms of the loss185

function are decreasing at approximately the same rate throughout the entire training process. Comparing Table 1 with Table

2 we conclude that by adding the penalty term for the mass violation in the loss function, 6%
:::
7%

::
of

:::::::::::
improvement

:
was lost

in terms of loss function J , but 32
::
29% was gained in the conservation of mass. In clear regions, the mass violation reduction
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Figure 4. Value
:::
Left:

::::::
relative

::::::::::
improvement

::
in

::
%

::
of

:::::
RMSE

:::::::
(orange)

:::
and

::::
mass

::::
error

::::::
(green)

::::::
towards

::
the

::::::
output

:::
with

::::::
respect

::
to

::
the

::::
input

::
as
::

a

::::::
function

::
η.

:::::
Right:

::::
value

:
of the loss function Ĵ (solid) and J (dashed) averaged over samples for the training (red) and validation (blue) data

set as function of epochs for dT10γ:::::::
dT10η=2.

even went from 30% for dT10 to 85% for dT10γ (not shown). Table 3 confirms
::::
Table

::
3

:::::::
suggests that the CNN is especially

active in clear regions
::
or

::
at

:::
the

:::::
edge

::
of

:::::
clear

::::::
regions. Indeed, the correlation coefficient between

::
by

:::
far

:::
the

:::::
most

:::::::::
significant190

:::::::::
correlations

:::
are

::::
with

:
hand the increments in all variables is significant and negative , indicating that the prediction increments

are larger
:
,
:
r
:::
and

::::

dh
dx ,

:::::
where

:::
the

:::::::
negative

::::
sign

::::::::
indicates

:::
that

:::
the

:::::
CNN

:::::::
corrects

::::
more

:
in clear regions than in cloudy regions.

validation loss u h r mass h mass r bias h

Input 9.6e-2 7.9e-2 8.9e-2 1.2e-1 3.6e-2 7.8e-3 3.3e-2

Prediction
7.1

:::
7.2e-2 7.6

:::
7.9e-2 8.4

:::
8.2e-2 5.3

:::
5.5e-2

1.8e-2
5.5

:::
7.9e-3 0

:::::
8.9e-4

Improvement (%)
26

::
25

:
4.1

::
0.7 6.6

::
8.1 54

::
53

:
52

::
49

:
29

::
-1 100

::
103

Table 2. As table
::::
Same

::
as

::::
Table

:
1, but for dT10γ :::::::

dT10η=2.

Figure
::::::
Figures 5, 6 and 7 show the data assimilation results for dT10γ :::::::

dT10η=2. It is striking that the CNN performs slightly

better than the QPEns.
:::::
Since

:::
the

::::
CNN

::::
only

:::
has

:::
an

:::::::
influence

::::::
radius

::
of

:
5
::::
grid

:::::
points

:::
and

:::
the

::::::::::
localisation

::::::
cut-off

:::::
radius

::
of

:::
the

::::
data

::::::::::
assimilation

::
is

:
8
::::
grid

::::::
points,

:
it
::
is
:::::::
possible

::::
that

:::
the

:::::
better

::::::
results

::
of

:::
the

:::::
CNN

::::
stem

::::
from

::::
this

::::::
shorter

::::::::
influence

::::::
radius.

::::::::
However,195

:
a
:::::
CNN

::::::
trained

::
on

:::
the

:::::
same

::::
data

:::
but

::::
with

:::::
kernel

:::::
sizes

::
of

:
5
::::::
instead

:::
of

:
3
:::::::
(leading

::
to

:::
an

::::::::
influence

:::::
radius

::
of

:::
10

:::
grid

::::::
points)

::::::
yields

::::::
similar

:::::
results

:::
as

::
in

::::::
Figures

::
5
::::
and

:
6
::::
(not

:::::::
shown). When comparing the input X, output Y and the CNN prediction Yp to the

nature run, we found that for the clear regions Yp is slightly closer to the nature run in terms of RMSE than the QPEns and

10



Figure 5. As
::::
Same

::
as Figure 2

:
,
::
but

:
for dT10γ:::::::

dT10η=2.

Figure 6. As
::::
Same

::
as Figure 3

:
,
::
but

:
for dT10γ:::::::

dT10η=2.
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Figure 7. Ensemble
::::
Truth

:::::
(black)

:::
and

::::::::
ensemble mean snapshot for dT10γ::::

EnKF
:::::
(blue),

::::::
QPEns

::::
(red)

:::
and

:::
NN

::::
with

:::::::
dT10η=2::::::

(green)
:::::
before

::::::
negative

:::
rain

:::::
values

:::
are

::
set

::
to

::::
zero

::
for

:::
the

:::::
EnKF.
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Y−X dT10: Yp−X dT10η=2: Yp−X

u h r u h r u h r

X

u -0.1 0.0 0.0 -0.2 0.0 0.0 -0.1
0.0

::
0.1

0.0

h 0.0 -0.1 -0.1 0.1 -0.2 -0.2
-0.3

:::
0.2 -0.4

:::
-0.5

-0.2

r 0.0 -0.1 -0.3 0.1 -0.2 -0.4
-0.2

:::
0.1 -0.3

:::
-0.4

-0.3

:::
-0.4

dX
dx

u -0.1 0.0 0.0 -0.2 0.1 0.0
-0.1

:::
-0.2

0.1 0.0

h -0.2 -0.1 -0.2 -0.4 -0.2 -0.2
-0.5

:::
-0.4

-0.1

:::
-0.2

-0.2

r -0.1 -0.1 -0.3 -0.2 -0.2 -0.3 -0.2 -0.1
-0.4

:::
-0.3

Table 3. Correlation coefficient for increments of the output (left) and the prediction for dT10 (middle) and dT10γ :::::::
dT10η=2 (right) with

the input (top) and the gradient of the input (bottom).

significantly closer than the EnKF (not shown). We speculate that this is because the QPEns generally lacks mass in regions

where there are no clouds in both the nature run and the QPEns estimate. The EnKF on the other hand, overestimates the mass200

in these regions.
:::
This

::
is

::::::
clearly

::::::
visible

::
in

:::
the

:::::::
snapshot

::
of

::::::
Figure

::
7.

:
As a result, the true value of h lies between the QPEns and

EnKF estimates. In these regions it is therefore favourable that the CNN can not completely close the gap between the input

and output data, as it leads to a better fit to the nature run. We also performed an experiment where only the clear regions of

h are
:
is

:
updated by the CNN and the other variables and cloudy regions of h remain equal to the EnKF solution, and similar

results were obtained as in Figure 5 and 6.
:::::
When

::::
only

:::
the

::::
clear

:::::::
regions

::
of

::
h

:::
are

::::::
updated

:::
by

:::
the

:::::
CNN,

:::
the

:::::::
positive

::::::::
influence

::
of205

::
the

:::::
CNN

::
is

:::::::
slightly

:::::::
reduced,

:::
but

::
it

:::
still

:::::::
matches

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
QPEns. We therefore conclude that the success of this

approach lies in the ability of the CNN to correct for errors of h,
:::::::::
especially in clear regions.
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4 Conclusion

Geoscience phenomena have several aspects that are different from standard data science applications, for example governing

physical laws, noisy ,
::::::::::
observations

::::
that

:::
are non-uniform in space and time observations from many different sources, as well as210

:::
and rare interesting events. This makes the use of NNs challenging in particular

:::::::::
particularly

::::::::::
challenging

:
for convective scale

applications, although attempts have been made for predicting rain, hail or tornadoes (McGovern et al., 2019). The approach

taken in this study, combines noisy and sparse observations with a dynamical model using a data assimilation algorithm, but

also uses a NN in order
:::
and

::
in

:::::::
addition

:::
uses

::
a
::::
CNN

:
to improve on conservation of physical laws. In previous work it was shown

in idealized
:::::::
idealised

:
setups that conserving physical properties

:::::::
quantities

:
like mass in the data assimilation framework using215

the QPEns can significantly improve the estimate of the nature run. Here we show that it is possible to obtain similar positive

results by training a CNN to conserve mass in a weak sense. By training on the unconstrained (EnKF)/constrained (QPEns)

input/output pair, the CNN was already
:
is

:
able to reduce the mass violation significantly. However

::::::::
Moreover, we found that

adding a penalty term for mass violation in the loss function was
::
is necessary in one of the two test cases to produce data

assimilation results that are as good as those corresponding to the QPEns.220

These encouraging results prompt the question of the feasibility of this approach applied to fully complex numerical weather

prediction systems. The challenge here lies in the generation of the training data. First,
:
the effectiveness of conserving different

quantities has to be verified in a non-idealized
::::::::::
non-idealised

:
numerical weather prediction framework, where the quantities

to be conserved are not always known
::::
may

:::
not

::
be

::::::
known

::::
and

::::
may

:::
not

:::
be

::::::
exactly

:::::::::
conserved

::::::
within

:::
the

:::::::::
numerical

:::::::
weather

::::::::
prediction

::::::
model

:::::::::::::::
(Dubinkina, 2018). A second consideration is the computational costs. Advances are made in this regard225

(Janjic et al., under review), but effort and collaboration with optimization
::::::::::
optimisation

:
experts is still required to allow the

generation of a reasonably large training data set.
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Review response

December 15, 2020

1 List of relevant changes of the manuscript

• Several additional references are included.

• The penalty term in the loss function has been redefined. The new penalty
term equals the old penalty term divided by the number of grid points.
This has led to re-training the CNN for this experiment and so the tables
and plots have been updated. Conclusion remain mostly unchanged.

• New experiments were conducted to investigate the trade off between mass
conservation and RMSE.

2 Answers to Marc Bocquet

Thank you for taking the time to thoroughly read our manuscript and for
the positive feedback. We agree with your comments and have adjusted the
manuscript accordingly, see below.

Possible improvements

This is a nicely written paper with a clear-cut organisation. The paper is
convincing and well illustrated. Among possible improvements, I would list:

• The manuscript may be a bit short and could benefit from more in-depth
or additional experiments if relevant.
We performed additional experiments to investigate the trade off between
mass conservation and RMSE, which are now summarized in Figure 4.
Note that we have changed the definition of the penalty term by comparing
the mean fields of h, not the sum, so the penalty term is divided by n=250
now.

• A few relevant and more recent references could be added (recent is very
short in this subject).
We added the following references:
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– Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian
inference of chaotic dynamics by merging data assimilation, ma-
chinelearning and expectation-maximization, Foundations of Data
Science, 2, 5580, https://doi.org/10.3934/fods.2020004, 2020.

– Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combin-
ing data assimilation and machine learning to infer unresolved scale
parametri-sation, URL:https://arxiv.org/pdf/2009.04318.pdf, 2020b

– Farchi, A., Laloyaux, P., Bonavita, M., and Bocquet, M.: Using
machine learning to correct model error in data assimilation and
forecastapplications, 2020

– Watson, P. A. G.: Applying Machine Learning to Improve Simula-
tions of a Chaotic Dynamical System Using Empirical Error Correc-
tion,Journal of Advances in Modeling Earth Systems, 11, 14021417,
https://doi.org/https://doi.org/10.1029/2018MS001597, 2019

– Yuval, Janni and OGorman, Paul A: Stable machine-learning param-
eterization of subgrid processes for climate modeling at a range of
resolutions,Nature communications, 11, 1, 1–10, 2020, Nature Pub-
lishing Group

– Stephan Rasp and Nils Thuerey:Data-driven medium-range weather
prediction with a Resnet pretrained on climate simulations: A new
model for WeatherBench, 2020,arXiv preprint arXiv:2008.08626

• It would be much better to make the codes available for the sake of re-
peatability, as is customary in the machine learning community; maybe
not all of them, since that may become tedious, but for instance the model
and the machine learning code pieces.
We will provide the code.

• The line and equations numbering could/should be corrected/improved.
fixed

Please see below for the details about these suggestions. Overall, I believe the
manuscript only requires minor revisions but that they should be very carefully
addressed.

2 Suggestions and typos:

1. l.4-6: In order to produce from a less computationally expensive, uncon-
strained analysis, a solution that is closer to the constrained analysis, we
propose to use a convolutional neural network (CNN) trained on analyses
produced by the QPEns.: The sentence is difficult to understand because:
(i) there should not be a comma in between expensive, unconstrained (ii)
closer: what do you compare to? This is confusing because of the begin-
ning of the sentence; close may work better here.
We rephrased to We therefore propose to use a convolutional neural net-
work (CNN) trained on the difference between the analysis produced by a
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standard ensemble Kalman Filter (EnKF) and the QPEns to correct any
violations of imposed constraints.

2. l.8-9: To obtain these positive results, it was in one case necessary to add
a penalty term to the loss function of the CNN training process.: This is
too vague a statement for an abstract. In my opinion, you should make
it more precise or remove it (since the abstract is not long, the former is
better).
We removed it.

3. l.17: Janjic (2016),Zeng et: a space is missing.
fixed

4. Artificial neural networks (NN), are powerful tools Artificial neural net-
works (NN) are powerful tools
fixed

5. l.27: non-linear: nonlinear is much more common (check the title of the
journal).
fixed

6. l.28: based on example based on examples?
fixed

7. l.45: Brajard et al. (2019). has actually been accepted as Brajard et al.
(2020a). Can you please update the reference?
fixed

8. l.36: combining NN with a knowledge based model as a hybrid forecasting
approach (Pathak et al., 2018b): I believe Brajard et al. (2020b), which
recently appeared, is also a very relevant citation to your manuscript be-
cause as opposed to Pathak et al. (2018) who rely on only one degree of
freedom in model error and reservoir computing, Brajard et al. (2020b)
have many degrees of model error freedom and rely on CNNs, like you do.
We added the reference

9. l.75: Gaussian stochastic forcing βu has a half width of 4 grid points: Is
this remark about correlation length of the covariance matrix?
No, a Gaussian shaped term βu is added to the wind field at each model
time step at a random location (see line 72 of the new manuscript).

10. l.82: with parameters µ = 8 and σ = 1.5.: You have to be more precise.
What are µ and σ? You know that it can be ambiguous for log-normal
distributions (whether you consider the variable of the log-variable).
Good point. We rephrased: a lognormal error is added to the rain field
with parameters of the underlying normal distribution µ=8 and σ= 1.5

11. l.87: using 5-th order polynomial function (Gaspari and Cohn, 1999): I
believe that what you use is actually a 5-th piecewise rational function, is
it? Thank you. We fixed it.
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12. l.94-95: the analysis error is larger than that of an arbitrary model state.:
Do you mean larger than the climatological standard deviation of the
model state? Its unclear to me.
Yes, we have rephrased.

13. l.117-119: I believe that you should give a reference for the selu activation
function because giving those values would seem strange to typical readers
of Nonlinear Processes in Geophysics (in particular they cannot really
guess that they are meant to be optimal in some sense).
We have added a reference: These values are chosen such that the mean
and variance of the inputs are preserved between two consecutive layers
(Klambauer et al., 2017)

14. l.123-124: We set the batch size to 96 and do 100 epochs. We set the
batch size to 96 and run 100 epochs.?
fixed

15. You should have use the latex package linenofix.sty. Your line numbering
has issues!
We use the Copernicus Publications Manuscript Preparation Template
for LaTeX Submissions. Now that all equations are numbered, the line
numbering is also fixed.

16. Please number all of your equations. This is customary this facilities the
study of your paper by colleagues and students. Systematic numbering
may be avoided in reports and book to avoid cluttering.
Agreed, we have fixed this.

17. p.5: Equation defining the loss function (no number and line numbers
skipped): Why do you take the square root and not the MSE which is
available in TensorFlow/Keras?
Because we also look at RMSE when verifying the data assimilation re-
sults, so this was just an easier direct comparison. We checked that using
the MSE of TensorFlow/Keras yields similar results. However, the tables
look very different when expressed in terms of MSEs instead of RMSEs.
For example, the improvement in terms of RMSE is 32%, whereas in terms
of MSE it is 59%.

18. l.119: The python library Keras (Chollet et al., 2015).: (i) You are actually
using TensorFlow/Keras or TensorFlow 2.x. your statement is a bit weird.
(ii) Please give the reference to Chollets book instead, which is the Keras
bible as well as an excellent introduction to TensorFlow/Keras and more
generally deep learning (Chollet, 2017).
fixed

19. It would be better to provide your codes. Maybe not all pieces, but for
instance the original ones like the convection model and the TensorFlow
code.
We will provide the code.
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20. l.135 and Figure 2: Did you average your RMSEs over several learning
and/or test experiments? It is possible that the curves are significantly
dependent on the initial random seed. If not, I do not expect any unpleas-
ant surprises but more reliable (and less noisy) curves, potentially with
error bars. Please clarify.
We averaged over 500 experiments. This information is now included in
the Figure captions.

21. p.9; Table 2 caption: As table 1, but for Same as table 1, but for. Same
remark for Figures 5 and 6, and maybe others(?).
fixed

22. l.156-165: It may be that the CNN is actually correcting for other sources
of model errors such as the impact of localisation. That would explain
why EnKF+CNN can outperform QPEns.
Yes, that is a good point since the CNN has an influence radius of 5 grid
points and the data assimilation a radius of 8 grid points. We therefore
trained an additional CNN with the kernel of all layers of size 5, so that
the influence radius is 10. This gave us however similar results as in Figure
5 and 6. We added this discussion in text: ”Since the CNN only has an
influence radius of 5 grid points and the localisation cut-off radius of the
data assimilation is 8 grid points, it is possible that the better results of
the CNN stem from this shorter influence radius. However, a CNN trained
on the same data but with kernel sizes of 5 instead of 3 (leading to an
influence radius of 10 grid points) yields similar results as in Figures 5 and
6 (not shown).”

23. l.175: the sentences are a bit awkward, I suggest (2 corrections): the CNN
was able to reduce the mass violation significantly. Moreover,
fixed

24. Acknowledgements: There seems to be a useless at the beginning.
fixed

3 Answers to Svetlana Dubinkina

This is a well-written manuscript with very interesting results. My major com-
ment is that this manuscript is rather short and that it could be extended to
give more insightful results.
Thank you for taking the time to thoroughly read our manuscript and for the
positive feedback. We have taken your comments into account and have ad-
justed the manuscript accordingly, see below.

Major comments:

1. I would be in favour to see how the conclusions change depending of the
grid size and the ensemble size.
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The relative improvement of the QPEns over EnKF for different DA set-
tings (including ensemble size) has been covered in Ruckstuhl and Janjic
(2018). We added a sentence at the end of section 2.2: ”We refer to Ruck-
stuhl and Janjic (2018) for a comparison of the performance of the EnKF
and the QPEns as a function of ensemble size for different localisation
radii, assimilation windows and observation coverage.”
We are confident that as long as the CNN can remove the bias in h, the
CNN can match the performance of QPEns for any DA setting. One could
then try to compare the differences in training process of the CNNs (does
one setting require more data than the other?). However, a clean com-
parison among the different settings would require rigorous tuning of the
architecture, the amount of training data needed, and the training process
of the CNN. And this tuning is very tricky because we are interested in the
performance of the CNN in DA context, not the value of the loss function.
Since we are working in a highly idealised setup, we want to be economical
with time spent on fine tuning the CNNs. We therefore feel that we have
exploited the modified shallow water model on this specific topic. Any
further experiments should be done on more complex models. That being
said, we did investigate in addition the trade off between mass and RMSE
as you suggested in the next point and performed additional experiments
that test the relation of the kernel size of the CNN to localisation.

2. There is a trade-off between mass conservation and low RMSE for u and
h. What happens if in the experiments with the additional penalty term
for mass conservation instead of a linear activation function for u and h,
the relu activation function is used for both u and h as well as for r? Is
the trade-off smaller then?
The reason we use the relu function for r is that the rain cannot be nega-
tive. This does not hold for u and h, so using the relu function for these
variables is not an option. We did perform some additional experiments
to investigate the trade off between mass conservation and RMSE, which
is now summarized in Figure 4.

3. Authors remove the climatological mean from u and h. What happens if
the climatological mean is not subtracted? Is the bias too high for the
methods to handle?
We want to clarify that we only subtract the mean to make the problem
better conditioned for the training process. Since the difference between
input and output data for the 3 variables differ in at most 1 order of
magnitude, we do not expect huge problems if the mean is not subtracted.
However, as far as we know, there is no disadvantage to normalizing the
training data, which is why we have not tried training the CNN on the
raw data.

Minor comments:

1. l.8: The last sentence of the abstract is rather vague. Please elaborate.
We have removed this sentence.
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2. l.146: Does the loss function J account for the mass twice: in J and in
the penalty term?
J is the RMSE averaged over the 3 variables. This means that J accounts
for the mass error indirectly (as the RMSE goes to zero, the mass error
also goes to zero). The penalty term directly accounts for mass errors by
first averaging the h field over the 250 grid points for yp and y separately,
and then squaring the difference.

3. Please change γ to something else, since it is already reserved for the
gravity wave speed.
Yes, you are right. We changed it to η.

4. Why is the penalty term chosen in such a way, namely L1 norm and not
L2 as in J?
Note that J takes the norm of a vector of size 250, whereas the penalty
term takes the norm of a scalar (namely the difference of the spatial mean
of h). Therefore the L1 and L2 norm are equivalent for the penalty term.

5. If I look at Fig. 2(a) I see that NN is performing slightly better than
QPEns. Is there an explanation for that?
The QPEns is also not perfect, so it is possible that the CNN performs
better. It is indeed then interesting to speculate why that is. Most of the
last paragraph before the conclusion is dedicated to this (from line 174 to
184 in the new manuscript).

6. l.92: For the EnKF negative values for rain are set to zero if they occur.
This is the variable r, if I understand correctly. However, if I look at Figure
7, I see negative values of r for EnKF. Could authors please explain?
The fields are shown before negative values are set to zero. We have
clarified this in the caption

7. A table consistent of wall-clock time for different methods would be in-
sightful for the computational cost gain.
The costs of applying the NN are negligible with respect to the costs of the
EnKF, as mentioned in line 50 of the new manuscript. So it is about the
difference in computational costs between the EnKF and QPEns. Since
we are working with a cheap model, no effort has been made in the im-
plementation of the algorithms to make them computationally efficient.
Therefore wall-clock times may be misleading. However we agree this
is an important point and we actually have a paper under review that
thoroughly discusses the computational costs of the QPEns. We there-
fore added a sentence in the introduction: ”For a detailed discussion on
the computational costs of the QPEns we refer to Janjic et al. (under
review)”.

8. I do not want to be self-promoted but authors could have a look at Dubink-
ina 2018 and decide if they would like to refer to it in their manuscript.
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Thanks for mentioning this paper. We added now a reference to this
manuscript.
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