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Abstract. A method for objectively extracting the displace-
ment signals associated with coherent eddies from La-
grangian trajectories is presented, refined, and applied to a
large dataset of 3770 surface drifters from the Gulf of Mex-
ico. The method, wavelet ridge analysis, is a general method
for the analysis of modulated oscillations, here modified to
be more suitable to the eddy-detection problem. A means for
formally assessing statistical significance is introduced, ad-
dressing the issue of false positives arising by chance from
an unstructured turbulent background, and opening the door
to confident application of the method to very large datasets.
Significance is measured through a frequency-dependent
comparison with a stochastic dataset having statistical and
spectral properties that match the original, but lacking orga-
nized oscillations due to eddies or waves. The application
to the Gulf of Mexico reveals major asymmetries between
cyclones and anticyclones, with anticyclones dominating at
radii larger than about 50 km, but an unexpectedly rich pop-
ulation of highly nonlinear cyclones dominating at smaller
radii. Both the method and the Gulf of Mexico eddy dataset
are made freely available to the community for noncommer-
cial use in future research.

1 Introduction

Trajectories from freely-drifting, or Lagrangian, instruments
are one of the major windows into observing the ocean cir-
culation. A perennial theme in oceanography is the study of
long-lived vortex structures, also known as coherent eddies,
and their role in influencing the large-scale circulation. On
account of these two factors, an important data analysis prob-

lem is to be able to accurately, objectively,1 and automati-
cally detect signals in Lagrangian data arising from instru-
ments trapped in eddies, and to use these extracted signals to
estimate the physical properties of the eddies themselves.

Obtaining a satisfactory solution to this problem that could
scale to very large datasets would enable a rigorous eddy
census of the entire surface drifter dataset from NOAA’s
Global Drifter Program (Lumpkin and Pazos, 2007), cur-
rently consisting of about 25000 trajectories. It would also,
significantly, permit one to compare an eddy census from
real-world surface drifters with those from synthetic trajec-
tories in high-resolution numerical models. This type of La-
grangian model/data intercomparison offers considerable po-
tential for refining models, and also for querying the models
to better understand what is being observed in data, but is not
yet possible due to limitations of available analysis methods.

The problem of identifying and estimating the proper-
ties of coherent eddies in Lagrangian trajectories should be
distinguished from the problem of describing the aggregate
forms of trajectories due to the eddies they contain. To help
clarify this, we introduce the term “eddy signal” to mean the
displacement of a particle about an eddy’s center. We would
then see a trajectory as a superposition of different types
of signals: e.g., an eddy signal, a near-inertial signal, and
a mean flow. Whereas methods such as that of Dong et al.
(2011) as well as the spin parameter method of Veneziani

1The term ‘objective’ is used here in its conventional sense of
not being shaped by personal opinion, that is, non-subjective. This
is not to be confused with its more technical definition, used by
e.g. Haller (2005), meaning invariant to variations of an observer’s
frame of reference.
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et al. (2005a,b) are concerned with identifying or modeling
the aggregate trajectory, here we are interested in identifying
and extracting eddy signals themselves. This interest com-
plements examinations of the statistical imprint of eddies on
trajectories using the spin parameter approach (Griffa et al.,
2008; Lumpkin, 2016; Cetina-Heredia et al., 2019).

Identifying eddies is trajectories is sometimes equated
with finding trajectories that execute loops, and indeed the
term “looper” is sometimes used to mean “a trajectory con-
taining an eddy”. However, one must be very cautious about
forming this equivalence as there is not a one-to-one relation-
ship between trajectory loops and particle displacements due
to eddy currents. Simply changing the value of an advecting
flow will alter the appearance of, or even eliminate, trajec-
tory loops for a given eddy signal. Similarly, a trajectory can
form a loop for many reasons that do not involve a coherent
eddy. For these reasons, eddy detections and property esti-
mates based solely on the visual appearance of trajectories
should be considered only as rough approximations.

Various methods have been proposed over the years for
identifying and extracting eddy signals from Lagrangian tra-
jectories (e.g., Kirwan et al., 1984, 1988; Armi et al., 1989;
Flament et al., 2001; Testor and Gascard, 2003; Lankhorst,
2006); see Dong et al. (2011) for a useful review. Generally
speaking, a difficulty faced by such methods is that fact that
the frequency of the eddy signal is not only unknown a pri-
ori, it also tends to vary substantially with time, as seen for
example in Flament et al. (2001). This frequency modula-
tion makes the study of eddy signals substantially more diffi-
cult than, for example, studying tides, which occur at known
and fixed frequencies. Narrowband methods such as band-
passing or complex demodulation would therefore perform
quite poorly. In order to accommodate such frequency mod-
ulation, the above methods generally contain free parameters
that must be chosen by an analyst. Because of the need for
hand tuning for individual trajectories, applications of such
methods to large datasets would be problematic.

A major step in the eddy extraction problem was taken by
Lilly and Gascard (2006). In that paper, an innovative and
powerful method from signal analysis termed wavelet ridge
analysis (Delprat et al., 1992; Mallat, 1999) was modified
for application to Lagrangian trajectories. That method is de-
signed to detect and analyze modulated oscillations, that is,
oscillations whose amplitude and frequency vary as a func-
tion of time. This type of signal accords well with our phys-
ical expectations for the displacement of a particle trapped
in a vortex. The wavelet ridge method is able to automat-
ically extract frequency-modulated signals occurring some-
where within a chosen range of frequencies, without the need
to tune parameters for an individual timeseries. A compelling
aspect of this method is that it begins with the specification
of the type of object we are looking for, namely, a modulated
oscillation, a type of signal for which there exists a solid the-
oretical foundation (Gabor, 1946; Picinbono, 1997).

An application of the wavelet ridge analysis method to tra-
jectories from a numerical model of an unstable jet on a beta
plane (Lilly et al., 2011) showed that the method could ac-
curately and automatically extract eddy signals from a set
of 100 trajectories, and that these could be unambiguously
discriminated from oscillatory signals due to Rossby waves
or jet meander. The wavelet ridge analysis method has been
employed by a number of other authors (e.g., Garreau et al.,
2011; Alpers et al., 2013; Bower et al., 2013; Le Hénaff et al.,
2014; Inoue et al., 2016; Kourafalou et al., 2017; Furey et al.,
2018; de Jong et al., 2018; Le Hénaff et al., 2020) using
the software implementation created by Lilly and Gascard
(2006), and appears to now be the standard method for ex-
tracting eddy signals from Lagrangian data. The method was
further refined and extended in a series of follow-up papers
(Lilly and Olhede, 2009a, 2010b, 2012a), including the treat-
ment of bias errors arising from modulation strength in Lilly
and Olhede (2010a) and Lilly and Olhede (2012a).

The wavelet ridge analysis method allows one to readily
analyze datasets with dozens or perhaps hundreds of trajec-
tories. However, there is a major challenge which prevents it
– or any other eddy-extraction method – from being immedi-
ately applicable to very large datasets consisting of thousands
or tens of thousands of trajectories. This is the problem of
false positive features arising from the interaction of the de-
tection method with the turbulent background flow. For small
to medium-size datasets such events may be readily identi-
fied with a visual scan, but that subjective operation becomes
unwieldy for larger datasets.

In previous work (Lilly et al., 2017), we have shown
that Lagrangian trajectories in forced-dissipative quasi-
geostrophic turbulence can be usefully separated into two
classes, those that contain high-frequency oscillatory signals
associated with trapping within coherent eddies, and those
that do not. Trajectories in the latter class are remarkably
similar to those resulting from a type of damped random
walk, see Figs. 2 and 3 therein. This supports the concep-
tual model that trajectories containing eddies consist of the
sum of an eddy signal, superposed on a stochastic process
that arises from geostrophic turbulence and that may be con-
sidered “noise” from the point of view of detecting eddies.

The stochastic background flow can be the source of spu-
rious features that masquerade as coherent eddies, a phe-
nomenon that can be understood as follows. In the one-
dimensional case, a discrete random walk is intuitively de-
scribed as a drunk staggering between lampposts. In the two-
dimensional case, the drunk has a grid of lampposts avail-
able for their staggering. From time to time the drunk will,
by chance, happen to turn in a circle, or oscillate back and
forth between two lampposts. This illustrates why, in apply-
ing the wavelet ridge analysis to timeseries of stochastic pro-
cesses analogous to the random walk, oscillatory events are
occasionally detected. One would not wish to confuse ran-
dom features arising from the turbulent background with the
organized oscillations due to coherent eddies.
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Figure 1. Surface drifter trajectories in the Gulf of Mexico from
the consolidated dataset of Lilly and Pérez-Brunius (2021a). Colors
correspond to different trajectories, the beginning of each of which
is marked by a black dot. In this and the following plot, the heavy
gray contour is the 500 m isobath, while the heavy black line out-
lines the estimated location of the time-mean Loop Current. Specif-
ically, the black contour marks the location at which the drifter-
estimated time-mean speed from Fig. 3a of Lilly and Pérez-Brunius
(2021a) is equal to 70 cm s−1. The southern edge of the study region
in this figure and in Fig. 2 is delineated by a dotted line extending
east from the Yucatán Peninsula along 21.5◦ N, then turning north
to Cuba at 84.5◦ W; it is mostly obscured by the black dots marking
trajectories entering the region.

This paper has three objectives. Firstly, the ridge analy-
sis method of Lilly and Gascard (2006) is streamlined and
updated with several important refinements, a deeper discus-
sion of the connection to signal processing theory, and with
sufficient background on the wavelet transform itself so as to
be self-contained. Secondly, the method is applied to a set of
several thousand drifter trajectories from the Gulf of Mexico,
see Fig. 1, leading to the identification of a set of statistically
significant eddy signals, shown in Fig. 2. This Gulf of Mex-
ico eddy dataset is freely distributed to the community for
noncommerical uses, as described at the end of the paper,
and is being used in a sequel to investigate the eddy dynam-
ics in this environmentally and societally important region.
Finally, the false-positive problem is solved through the ap-
plication of the ridge analysis method to a synthetically cre-
ated noise dataset matching the basic statistical properties of
the observations, together with the introduction of an inno-
vative frequency-dependent significance criterion.

As motivation for the investment required in learning this
method, the results of the application to the Gulf of Mex-
ico will be briefly described at the outset. The dataset to be
analyzed in this work is a set of 3770 surface drifter trajecto-
ries, compiled from a variety of experiments, processed, and

quality controlled as described in Lilly and Pérez-Brunius
(2021a), shown in Fig. 1. Applying the method developed
here, one is able to extract from the drifter trajectories a
set of contiguous, possibly overlapping displacement signals
consisting of modulated oscillations in two dimensions. The
portion of such signals judged to be statistically significant,
in the sense of occurring at a rate at least 10× greater than
that expected under the noise hypothesis, is identified. These
are visualized in Fig. 2 as a series of ellipses, colored here by
a nondimensional frequency magnitude that when multiplied
by two becomes a measure of Rossby number.

The distributions of cyclonic and anticyclonic events are
completely different. The dense populations of large anti-
cyclonic eddies filling the central Gulf of Mexico are the
well-known Loop Current Eddies (e.g., Elliott, 1982; Lip-
phardt, Jr. et al., 2008; Hall and Leben, 2016). These shed
periodically from the energetic Loop Current, then propagate
westward. Only a handful of small, intense anticyclones are
observed, mostly located between the Loop Current and the
Mississippi outflow region. On the cyclonic side, a hotspot of
activity is seen in the southern Gulf of Mexico, correspond-
ing to a persistent cyclonic eddy known as the Campeche
Gyre (Padilla-Pilotze, 1990; Vázquez De La Cerda et al.,
2005; Pérez-Brunius et al., 2013). On the periphery of the
Loop Current, intense mesoscale cyclones are seen, the Loop
Current Frontal Eddies (LCFEs), see e.g. Le Hénaff et al.
(2014). Similar features occur also in the western Gulf but
are of an unknown origin. In what appears to be a new re-
sult, sub-10 km, submesocale eddies with Rossby numbers
approaching or exceeding unity are found throughout the re-
gion, visible in this plot as small red circles. This figure is an
unprecedented view of the eddy activity in the Gulf of Mex-
ico, and illustrates the potential of the method to illuminate
aspects of the circulation that are otherwise buried in trajec-
tories.

The structure of the paper is as follows. A mathemati-
cal model for the motion of a particle trapped in an eddy
is presented in Sect. 2. The means of extracting such sig-
nals from displacement timeseries that are also influenced by
a turbulent background flow is developed in Sect. 3, build-
ing on Lilly and Gascard (2006) and subsequent work. The
application to the Gulf of Mexico and the creation of a sta-
tistical significance measure are accomplished in Sect. 4. A
brief discussion of the statistically significant eddy events
is then given, followed by the Conclusions. Further exami-
nation of the Gulf of Mexico eddy signals and their impli-
cations for eddy dynamics and life cycles in this region is
left to a sequel. All code developed for this paper is dis-
tributed as a part of a freely available Matlab toolbox, includ-
ing a convenient and self-contained eddy extraction function,
as described following the Conclusions. Finally the Gulf of
Mexico Eddy Dataset (GOMED), which includes the signals
shown in Fig. 2 and their ellipse parameters, is described. Be-
cause a large number of different mathematical symbols are
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Figure 2. Ellipses from all statistically significant eddy signals in the dataset shown in Fig. 1 detected using the method described here, with
anticyclonic events in (a) and cyclonic events in (b). The time interval between successive ellipses is equal to the estimated period of the
oscillation, 2π/|ω(t)|, whereω(t) is the instantaneous frequency defined subsequently in Eq. (35). The colored shading is the nondimensional
instantaneous frequency magnitude |ω∗(t)| ≡ |ω(t)/f�(t)|, in which ω(t) has been normalized by the Coriolis frequency at the latitude of
the ellipse’s center, denoted f�(t). It will be shown that 2|ω∗(t)| is an estimate of the local Rossby number of the oscillatory flow. Ellipses
are plotted in reverse order of their |ω∗(t)| value, thus placing higher-frequency, more nonlinear features on top. The asymmetry between
cyclonic and anticyclonic features is strikingly apparent. Other lines are as in Fig. 1.

used in this paper, Table A1, located after the conclusions,
presents an overview of some of the most important ones.

2 A model for particle motion in an eddy

This section describes a mathematical method for the dis-
placement signal of a particle trapped in coherent eddy,
building on the formulations in Lilly and Gascard (2006),
Lilly et al. (2011), and Lilly and Olhede (2012a).

2.1 The modulated elliptical signal

The displacement signal of an instrument or particle advected
by an eddy, within a moving frame of reference centered on
the eddy’s center – what we refer to as an “eddy signal” for
short – will be modeled as the trajectory traced out by a parti-
cle orbiting a time-varying ellipse. We will use the complex-
valued notation z(t) = x(t)+iy(t), with x(t) and y(t) being
the east-west and north-south displacements from the eddy
center, respectively. Such a signal can be written as

z(t)≡ eiθ(t) [a(t)cosφ(t) + ib(t)sinφ(t)] , (1)

where a(t) and b(t) are the semi-major and semi-minor axes,
θ(t) is the orientation angle of the major axis with respect to

the x-axis, and φ(t) is a phase setting the position of the parti-
cle along the ellipse periphery. While a(t)≥ |b(t)| is always
positive, b(t) can be of either sign and encodes the direction
in which the ellipse is being orbited, with positive b(t) cor-
responding to counterclockwise motion. Equation (1) will be
called the ellipse generation equation.

A schematic of an ellipse is presented in Fig. 3. The geo-
metric angle between the major axis and the particle position,
denoted ϕ(t) in this plot, is related to the phase φ(t) that ap-
pears in Eq. (1) by2

tanϕ(t) =
b(t)

a(t)
tanφ(t) (2)

such that ϕ(t) can be recovered from the phase φ(t) via

ϕ(t) = ={log [a(t)cosφ(t) + ib(t)sinφ(t)]} (3)

where ={·} denotes the imaginary part. The combination
={log [·]} is used here to implement the four-quadrant in-
verse tangent function, since =

{
logeiϑ

}
= ϑ.

2The lead author thanks S. Elipot for pointing out an error in
earlier published versions of Fig. 3, in which the angle labeled ϕ
here was incorrectly identified as φ.
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Figure 3. A schematic of a particle orbiting an ellipse, as de-
scribed by Eq. (1). The semi-major axis a(t), semi-minor axis
b(t), orientation angle θ(t), and particle position angle ϕ(t) are
all labeled. The circle denotes the instantaneous particle position.
Here a(t) = 3.5, b(t) = 2, and θ(t) = φ(t) = π/3. These values
imply ϕ(t) = π/4.03 together with κ(t)≡

√
[a2(t) + b2(t)]/2 =

2.85 and ξ(t)≡ 2a(t)b(t)/[a2(t) + b2(t)] = 0.86, with the latter
two quantities defined subsequently in Sect. 2.2.

The type of signal described by Eq. (1) is referred to
as a modulated elliptical signal (Lilly and Gascard, 2006;
Lilly and Olhede, 2010b). A special case of the modulated
elliptical signal is one in which the modulation vanishes,
that is, a purely sinusoidal oscillation in two dimensions.
With the phase linearly increasing at some fixed rate ωo > 0,
φ(t) = ωot+φo, and with the other three ellipse parameters
being the constants ao, bo, and θo, Eq. (1) becomes

zo(t)≡ eiθo [ao cos(ωot+φo) + ibo sin(ωot+φo)] (4)

which describes the sinusoidal orbiting of a fixed ellipse.
The motion is purely circular for ao = |bo| and rectilinear for
bo = 0. (Note that ωo is chosen to be positive because the
convention is adopted that the sign of bo sets the direction of
rotation.) In general the modulated elliptical signal z(t) dif-
fers from a pure sinusoid in that the properties of the ellipse
are allowed to change in time. Thus, the modulated elliptical
signal is a generalization of an AM/FM or amplitude modu-
lated / frequency modulated signal to two dimensions.

The ellipse generation equation of Eq. (1) is purely kine-
matic, yet it accords well with our physical understanding
of potential paths of particles trapped in coherent vortices.
To begin with, even if a vortex is circular, its properties may

change with time through, for example, geostrophic adjust-
ment. Moreover, the observed vortex properties may change
as the measuring instrument shifts position within the vortex
to a new radius. This may be due to slight non-Lagrangian
behavior of the instrument, or to wind-driven motion of the
surface layer that is independent from the vortex motion.
Thus z(t) includes modulation both due to time variation of
the vortex itself, as well due to a possible profiling effect
from an instrument drifting within a fixed vortex.

While oceanic vortices are often nearly circular, there are
several reasons to permit elliptical motion in our concep-
tual model. Material ellipses arise naturally in considering
a second-order Taylor expansion of a two-dimensional flow
(e.g., Kirwan et al., 1984; Lilly, 2018). Moreover, in some
cases the vortex itself may be elliptical. In quasigeostrophic
dynamics, ellipticization is seen as a natural response of a cir-
cular vortex to ambient shear or strain (e.g., Ruddick, 1987;
Meacham and Flierl, 1990; McKiver and Dritschel, 2006),
while a freely evolving, unforced elliptical vortex patch un-
der shallow water dynamics is known to be a good model
for Gulf Stream Rings and other similar large eddies (e.g.,
Cushman-Roisin et al., 1985; Young, 1986; Ripa, 1987).
A more detailed review of elliptical vortex solutions and
their geophysical applications may be found in Lilly (2018).
Moreover, the trajectory of a particle entraining into or de-
training from a vortex in a realistic unsteady flow may ap-
pear as an elliptically polarized oscillation, even if the vortex
itself is circular. For all of these reasons the modulated ellip-
tical signal is preferable to a modulated oscillation having a
purely circular polarization, i.e. with |b(t)|= a(t).

The advection of a particle by a coherent eddy is not, how-
ever, the only type of physical phenomenon giving rise to a
modulated elliptical signal. This model also matches the dis-
placement signal expected for waves, most notably inertial
oscillations. These are expected to have an anticyclonic cir-
cular polarization, i.e. b(t) =−a(t) in the Northern Hemi-
sphere and b(t) = a(t) in the Southern Hemisphere. There-
fore, a method designed to detect eddies will also detect iner-
tial oscillations. As discussed earlier, a background stochas-
tic process – such as is expected due to position fluctuations
from geostrophic turbulence, for example – may, by chance,
also lead to some signals that are locally well described by
Eq. (1). In identifying modulated elliptical signals with the
goal of studying eddies, one must take care to account for
the possibility of such false positives; this is done in Sect. 4.

2.2 Alternate ellipse parameters

It proves convenient to replace the ellipse semi-axes a(t) and
b(t) with measures of the ellipse size and shape,

κ2(t)≡ a2(t) + b2(t)

2
, ξ(t)≡ 2a(t)b(t)

a2(t) + b2(t)
(5)

where κ(t) is the root-mean-square axis length, and ξ(t) is a
signed quantity termed the circularity. Note that |ξ(t)| ≤ 1,
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with ξ(t) = 1 for mathematically positive circular oscilla-
tions, ξ(t) =−1 for mathematically negative circular oscil-
lations, and ξ(t) = 0 for linear oscillations. Thus, highly ec-
centric or elongated ellipses have small values of circularity.3

The ellipse generation equation, Eq. (1), can be rewritten
in terms of two counter-rotating circular signals as

z(t) = a+(t)eiφ+(t) + a−(t)e−iφ−(t) (7)

where these “rotary” amplitudes and phases are given in
terms of the ellipse parameters as (Lilly and Gascard, 2006)

a+(t)≡ 1

2
[a(t) + b(t)] , φ+(t)≡ φ(t) + θ(t) (8)

a−(t)≡ 1

2
[a(t)− b(t)] , φ−(t)≡ φ(t)− θ(t). (9)

In terms of a+(t) and a−(t), one finds the circularity can be
alternately expressed as

ξ(t) =
2a(t)b(t)

a2(t) + b2(t)
=

[a+(t)]
2− [a−(t)]

2

[a+(t)]
2

+ [a−(t)]
2 (10)

which reveals it to be an instantaneous version of the ro-
tary coefficient introduced by Gonella (1971), a fundamen-
tal measure of the normalized difference between positively-
rotating and negatively-rotating signal energy.

2.3 The analytic signal

The ellipse generation equation, Eq. (1), is understood to
mean that if the time-varying ellipse properties a(t), b(t),
θ(t), and φ(t) on the right-hand side are prescribed, the os-
cillatory displacement signal z(t) emerges as a result. How-
ever, the observational problem, in the simplest case of a sin-
gle modulated oscillation and vanishing background flow, is
to work backwards from an observed modulated oscillation
z(t) to determine the unobserved ellipse parameters that cre-
ated it. At first glance this seems impossible, because z(t)
consists of two real-valued numbers at each time and we are
interested in recovering four such numbers. However, this
inverse problem does indeed have a meaningful unique so-
lution using the so-called analytic signal method, which im-
plicitly involves adding some additional constraints.

It is useful at this point to show an example. The signal
in Fig. 4a is synthetically constructed from the ellipse gen-
eration equation, Eq. (1), with parameter choices given in
Appendix A. This anticyclonically-orbiting signal starts out

3The circularity is related to another measure of ellipse shape,
the linearity used by Lilly and Gascard (2006) and Lilly and Olhede
(2010b), defined as

λ(t) = sgn(b(t))
a2(t)− b2(t)

a2(t) + b2(t)
(6)

where sgn(·) is the signum function defined in Eq. (18). The linear-
ity and circularity are related through λ2(t) + ξ2(t) = 1.

circular for the first quarter of its duration, then transitions to
a uniformly precessing ellipse (θ′(t) = constant, where the
prime is a time derivative), with an increasing eccentricity or
decreasing circularity |ξ(t)|, all the while linearly growing in
amplitude κ(t) and also, though not apparent in this plot, in
frequency. Using the analytic signal method discussed subse-
quently, one may assign a time-varying ellipse to this signal,
snapshots of which are shown in Fig. 4b every 50 days begin-
ning on the 25th day of this 1000 day timeseries. The ellipse
properties so inferred, when themselves inserted into the gen-
eration equation, exactly reproduce the original signal.

To develop this method, we first turn to the case of a uni-
variate signal. The modulated elliptical signal is a general-
ization to two dimensions of an amplitude-modulated and
frequency-modulated univariate oscillation

x(t)≡ ax(t)cosφx(t) (11)

where ax(t)> 0 is a time-varying, or instantaneous, ampli-
tude and φx(t) is an instantaneous phase. Signals of this
type include pure sinusoids, with ax(t) = ao and φx(t) =
ωot+φo, as a special case, but are far more general. A simple
example of a modulated oscillation is a wave packet. A wave
packet exhibits amplitude modulation in the form of its en-
velope, and possibly frequency modulation if the frequency
content is not uniform over time. Nevertheless, it is also dis-
tinctly oscillatory. Equation (11) captures the essence of such
oscillatory features that depart from being strictly sinusoidal.

Given x(t), one wishes to recover the ax(t) and φx(t) that
could generate it via Eq. (11). That is, we wish to associate
with x(t) an amplitude ax(t) and a phase φx(t), in order to
conceptualize and describe x(t) as a modulated oscillation.
The association of a physically meaningful amplitude and
phase with a given signal is an underdetermined problem, as
an infinite family of amplitude–phase pairs on the right-hand
side can generate the observed signal on the left-hand side.
However, a meaningful solution to this problem was found
by Gabor (1946) in a landmark paper, by introducing what is
now known as the analytic signal method, see e.g. Picinbono
(1997) and references therein for a more modern treatment.

In the analytic signal method, a particular amplitude–
phase pair, known as the canonical amplitude and phase,
are determined by pairing the real-valued signal x(t) with
an imaginary part consisting of its own Hilbert transform,

ax(t)eiφx(t) ≡ x+(t)≡ [1 + iH]x(t) (12)

whereH is the Hilbert transform operator defined as

Hx(t)≡ 1

π
−
∞∫
−∞

x(u)

t−u
du (13)

with “−
∫

” being the Cauchy principal value integral. The re-
sulting complex-valued signal x+(t), the real part of which
is the same as the original signal, x(t) = <{x+(t)}, is called
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Figure 4. A synthetically constructed modulated elliptical signal (a) together with (b) ellipses inferred from the analytic signal method. See
text for details. The thin gray line in panel (b) is the same as the blue line in panel (a). Dots in panel (b) gives the state of the signal at the
moments at which the ellipses are shown; these are intersection points of the signal curve and the ellipses.

the analytic signal associated with x(t), or its analytic part.
An analytic signal is by definition one whose Fourier trans-
form vanishes on negative frequencies, as will shortly be seen
to be the case for x+(t).

The canonical amplitude is defined uniquely in terms of
the analytic signal by ax(t)≡ |x+(t)|, and the canonical
phase function by φx(t)≡={log [x+(t)]}. For the special
case of a sinusoidal signal x(t) = ao cos(ωot+φo), the ana-
lytic signal is given by, as will be shown shortly,

x+(t)≡ [1 + iH]ao cos(ωot+φo) = aoe
iωot+iφo . (14)

Thus for a sinusoid, the amplitude and phase assigned using
the analytic signal method agree with the obvious choices,
i.e. ax(t) = ao and φx(t) = ωot+φo. This crucial property
is known as harmonic correspondence (Vakman, 1996). The
canonical phase can be differentiated to give the instanta-
neous frequency (Gabor, 1946; Picinbono, 1997),

ωx(t)≡ φ′x(t), (15)

which allows for the objective quantification of the time-
varying frequency content of a modulated oscillation. See
Lilly and Olhede (2010b) and references therein for a discus-
sion of the close connection between the instantaneous fre-
quency and the conventional definition of a mean frequency
from first Fourier-domain moment of the spectrum of x(t).

2.4 Analytic signal details

To better understand the analytic signal, we first note that
the Hilbert transform has a simple action in the frequency
domain. Let X(ω) be the Fourier transform of x(t), from

which x(t) is recovered using the inverse Fourier transform

x(t) =
1

2π

∞∫
−∞

X(ω)eiωtdω. (16)

One may show that the Hilbert transform of x(t) is given by
(e.g., Papoulis, 1962, pp 37–38)

Hx(t) =
−i

2π

∞∫
−∞

sgn(ω)X(ω)eiωtdω (17)

where the signum function

sgn(x)≡

 1 x > 0
0 x= 0
−1 x < 0

(18)

returns the sign of its argument. The Hilbert transform thus
simply changes the sign of Fourier coefficients for negative
frequencies, while lagging all Fourier phases by ninety de-
grees. It follows that the analytic signal can be written as

[1 + iH]x(t) =
1

2π

∞∫
−∞

2U(ω)X(ω)eiωtdω (19)

where U(x)≡ 1
2 [1 + sgn(x)] is the unit step function. The

analytic operator [1 + iH] acts to double the Fourier coeffi-
cients of all positive frequencies, while setting those of neg-
ative frequencies to zero. Thus, it renders a signal analytic.



8 Lilly & Pérez-Brunius: Eddy extraction

Recall that a cosine and sine have the Fourier representa-
tions of

cos(ωot) =
1

2π

∞∫
−∞

π [δ(ω−ωo) + δ(ω+ωo)]e
iωtdω (20)

sin(ωot) =
−i

2π

∞∫
−∞

π [δ(ω−ωo)− δ(ω+ωo)]e
iωtdω (21)

where δ(ω) is the Dirac delta function. From these, Eq. (17)
shows that the action of the Hilbert transform is to decrement
the phases of all sinusoidal components by ninety degrees,
i.e. Hcos(ωot) = sin(ωot) and H sin(ωot) =−cos(ωot).
Harmonic correspondence, Eq. (14), then follows.

A compelling argument in favor of the analytic signal
method is due to Vakman (1996); see also Huang and Yang
(2011). Consider assigning a time-varying amplitude and
phase by pairing the real-valued signal x(t) with some other
imaginary part than its Hilbert transform. That is, in Eq. (12)
we replace [1 + iH] with [1 + iL] where L is some yet-to-be-
determined linear operator. Vakman proves that the Hilbert
transform H is the only linear operator that leads to an am-
plitude and phase pair with the following three properties: (i)
harmonic correspondence; (ii) amplitude continuity, mean-
ing that small variations δx(t) of the signal x(t) should cor-
respond to small variations δax(t) of the amplitude; and
(iii) phase invariance to scaling, such that the instantaneous
phase of x(t) and that of a rescaled signal cx(t), where c > 0,
should be identical. Vakman’s conditions leave little choice
but to accept that the analytic signal method is the natural
way to solve this inverse problem.

Note that there are actually two different sets of
amplitude–phase parameters: those used to generate a signal
via the right-hand side of Eq. (11), which are unobservable,
and the canonical amplitude and phase that are assigned to an
observed signal using Eq. (12). Here we have used the same
symbols to denote both sets in order to avoid a cumbersome
notation. While both sets of parameters generate the same
signal, and while they are guaranteed to be identical for the
case of a sinusoidal signal by harmonic correspondence, in
general, they need not be the same.

A condition for when the generating amplitude and phase
are identical to the canonical amplitude and phase was found
in a remarkable paper by Bedrosian (1963). The so-called
Bedrosian condition for a real-valued univariate signal can
be viewed as a type of slow variation condition, in which the
frequency-domain support for the amplitude function ax(t)
exists on strictly lower (that is, smaller magnitude) frequen-
cies than the support of cosφx(t). Broadly speaking, the dif-
ference between the generation parameters and the canonical
parameters is expected to become larger as the strength of
modulation specified by the generation parameters increases.

2.5 Inferring ellipse properties

The analytic signal method of assigning a time-varying am-
plitude and phase to a univariate signal x(t) was general-
ized to the multivariate signals by Lilly and Olhede (2010b),
which we will simplify and build on in this section. In vector
notation, the ellipse generation equation, Eq. (1), becomes

x(t) =

[
x(t)
y(t)

]
= R(θ(t))

[
a(t)cosφ(t)
b(t)sinφ(t)

]
(22)

where R(ϑ) is the rotation matrix through some angle ϑ,

R(ϑ)≡
[
cosϑ −sinϑ
sinϑ cosϑ

]
. (23)

The analytic version of the bivariate signal x(t) is given by

x+(t)≡ [1 + iH]x(t) (24)

in terms of which the canonical ellipse parameters may be
defined via

eiφ(t)R(θ(t))

[
a(t)
−ib(t)

]
≡ x+(t). (25)

This assignment is readily verified to satisfy harmonic cor-
respondence for the special case of a sinusoidal ellipse with
fixed geometry, that is, with a(t) = ao, b(t) = bo, θ(t) = θo,
and φ(t) = ωot+φo.

To infer the ellipse parameters from x+(t), it is convenient
to use a set of matrices introduced by Lilly (2018). Define

J≡
[
0 −1
1 0

]
, K≡

[
1 0
0 −1

]
, L≡

[
0 1
1 0

]
(26)

where J = R(π/2) is recognized as the ninety-degree coun-
terclockwise rotation matrix, and K and L are the reflection
matrices about the lines y = 0 and x= y, respectively. K and
L are found to transform under rotations by some angle ϑ as

RT (ϑ)KR(ϑ) = cos2ϑK− sin2ϑL (27)

RT (ϑ)LR(ϑ) = cos2ϑL+ sin2ϑK (28)

as shown in Lilly (2018), with the superscript “T ” denoting
the matrix transpose.

Using for convenience κ(t) and ξ(t) rather than a(t) and
b(t), one finds that the definition in Eq. (25) implies

κ2(t) =
1

2
‖x+(t)‖2 (29)

ξ(t) =
=
{
x+H(t)Jx+(t)

}
‖x+(t)‖2

(30)

θ(t) =
1

2
=
{

log
[
x+H(t)Kx+(t) + ix+H(t)Lx+(t)

]}
(31)

φ(t) =
1

2
=
{

log
[
x+T (t)x+(t)

]}
(32)



Lilly & Pérez-Brunius: Eddy extraction 9

for the values of the canonical ellipse parameters expressed
in terms of the analytic signal x+(t). Here “H” is the Her-
mitian or conjugate transpose, ‖x‖ ≡

√
xHx is the norm of

some vector x, and we have made use of the rotation formu-
las, Eqs. (27) and (28), in the expression for θ(t). Finally

a(t) = κ(t)

√
1 +

√
1− ξ2(t) (33)

b(t) = κ(t)

√
1−

√
1− ξ2(t) × sgn(ξ(t)) (34)

recovers the semi-axes lengths from κ(t) and ξ(t), as are ob-
tained by inverting Eq. (5).

Equations (29)–(32) will be called the ellipse inversion
equations, in the sense of going backwards from an observed
signal to ellipse parameters. These expressions are more di-
rect than those given in Lilly and Gascard (2006) and Lilly
and Olhede (2010b), which use the rotary amplitudes and
phases as an intermediate step in the inversion. Returning
to the synthetic example, grouping the x(t) and y(t) signals
shown in Fig. 4 into a vector x(t) = [x(t) y(t)]T , taking its
analytic part, and inserting the result into the inversion equa-
tions, Eqs. (29)–(32), leads to the ellipses in Fig. 4b.

As in the case of a univariate signal, there is a distinction
between the generating and the inferred, or canonical, ellipse
parameters, both of which lead to the same time-varying el-
lipse. These sets of parameters are identical for a sinusoidally
orbited fixed ellipse, and are expected to become increasingly
different as the modulation strength increases. Further exam-
ination of the conditions for exact recovery of the generating
ellipse parameters is outside the scope of this paper.

The generalization of the univariate instantaneous fre-
quency, Eq. (15), to the multivariate case is called the joint
instantaneous frequency

ω(t)≡
=
{
x+H(t)x+′(t)

}
‖x+(t)‖2

(35)

as introduced by Lilly and Olhede (2010b). For the case of a
bivariate signal this can be rewritten as

ω(t) =
a2
x(t)ωx(t) + a2

y(t)ωy(t)

a2
x(t) + a2

y(t)
(36)

which is seen to be the power-weighted average of the x-
and y-component instantaneous frequencies. Note that this
definition of ω(t) implies that it will generally be positive,
and that its power-weighted integral is guaranteed to be non-
negative. This is most apparent from its frequency-domain
form, see Eqs. (48) and (50) in Lilly and Olhede (2010b).

The bivariate instantaneous frequency can be written in
terms of the ellipse parameters as (Lilly and Olhede, 2010b)

ω(t) = φ′(t) + ξ(t)θ′(t) (37)

and thus involves contributions from the rates of change of
both the phase φ(t) and the orientation angle θ(t). Variations
in φ(t) correspond to a particle orbiting a fixed ellipse, while
variations in θ(t) capture the precession of the ellipse itself.

3 Ellipse extraction

In the previous section, it was shown that given a trajec-
tory consisting of only a single modulated elliptical signal,
a unique assignment of time-varying ellipse parameters that
could have generated it may be found by forming the asso-
ciated analytic signal. Real-world eddies, however, do not
occur in isolation, but rather are superposed onto flows due
to large-scale turbulence, other eddies, waves, and any self-
propagation tendency of the eddy itself. To adapt the analytic
signal method to handle realistic trajectories, we therefore
need to incorporate a filtering step. This is accomplished us-
ing the continuous wavelet transform, as described next. We
remind the reader that the notation list in Table A1 is avail-
able as a resource.

3.1 A model for Lagrangian trajectories

A Lagrangian instrument records a time-varying longitude
Θ(t) and latitude Φ(t), both taken to be in radians. For small
deviations about some fixed point (Θo,Φo), the trajectory
can be locally approximated as

x(t)≡
[
x(t)
y(t)

]
=

[
(Θ−Θo)R♁ cosΦo

(Φ−Φo)R♁

]
, (38)

where x(t) and y(t) are the east-west and north-south dis-
placements in a plane tangent to the earth at (Θo,Φo) un-
der the small angle approximation, and R♁ is the mean ra-
dius of the earth. For trajectories lying within a small do-
main such as the Gulf of Mexico, the errors on estimated
eddy properties resulting from neglecting the full spheri-
cal geometry are quite minor. The Coriolis frequency corre-
sponding to latitude Φ(t) isf(t)≡ 2Ω♁ sinΦ(t), where Ω♁ =
7.292× 10−5 rad s−1 is the Earth’s angular rotation rate.

The displacement signal x(t) is assumed to be composed
of two portions

x(t) = xε(t) +

M?∑
m=1

xm? (t) (39)

with the xm? (t) being modulated elliptical signals of the form
given in Eq. (22), and xε(t) being a background displace-
ment field that will be described as a stochastic process. The
modulated oscillations xm? (t) capture the displacement of
a particle orbiting the center of a possibly elliptical eddy,
as well as the motion of particles within inertial oscilla-
tions, while the background xε(t) represents motions due
to such processes as geostrophic turbulence and the wind-
forced flow, as well as translation due to a possible mean
flow or systematic drift, and finally any measurement noise.
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The corresponding model for the latitude and longitude
signals is

Φ(t) = Φε(t) +

M?∑
m=1

∆Φm? (t) (40)

Θ(t) = =
{

logei[ Θε(t)+
∑M?
m=1 ∆Θm? (t)]

}
. (41)

Here ∆Φm? (t) and ∆Θm
? (t) are respectively latitude and

longitude deviations associated with the modulated oscil-
lations, related to xm? (t) via small-angle expansions as in
Eq. (38). The combination =

{
logeiϑ

}
accounts for the case

in which the longitude crosses the antimeridian at ±π. Note
that Eq. (40) would require modification for trajectories in
the vicinity of the poles.

Each of the modulated oscillations xm? (t) is nonzero only
over a continuous interval within the time window over
which x(t) is defined. The total number of oscillatory com-
ponents present in a timeseries is denoted byM?, which may
be zero, one, or more than one. The number of nonzero os-
cillatory components present at any one time is an important
quantity M(t)≤M?, referred to as the multiplicity. As with
M?, the multiplicity M(t) may be zero, one, or more than
one at each time. Examples in which the multiplicityM(t) is
equal to two are an eddy superposed on an inertial oscillation,
or an eddy advected by another eddy.

The conceptual model of Eq. (39) is an example of an un-
observed components model (e.g., Nerlove, 1967; Harvey,
1989), meaning that one believes the observations to be the
sum of several components which cannot be observed indi-
vidually, but only as part of an aggregate process. We may
refer to the xm? (t) as latent oscillations, in the sense of be-
ing present but obscured. The goal of this section is present
a method for extracting, as accurately as is possible, oscil-
latory displacement signals xm? (t) associated with coherent
eddies from an observed trajectory x(t) in the presence of a
background flow xε(t), and then to link these displacements
to the physical properties of eddies.

3.2 A motivational example

The analytic signal method presented in Section 2 is intended
for the case in which only a single modulated oscillation, and
nothing else, is present in a timeseries. It is not intended to
work in the case of a composite signal such as in the unob-
served components model of Eq. (39), and performs poorly
in such cases.

To illustrate this, and to motivate the approach developed
in this section, we return to synthetic signal shown in Fig. 4a.
We write x(t) = xε(t)+x?(t) with the synthetic signal cho-
sen to be x?(t), and set the background process xε(t) to con-
sist of a uniform westward drift at 0.5 cm s−1 plus a stochas-
tic component. The latter has a red velocity spectrum with
a velocity standard deviation of 0.25 cm s−1, constructed as
described in Appendix A. The sum of the westward drift and

stochastic displacement forms xε(t), shown as the red line in
Fig. 5a. The full signal x(t) is the blue curve in Fig. 5a.

Applying the analytic signal method of the previous sec-
tion to a detrended version of the total displacement sig-
nal x(t), one obtains the ellipses shown in Fig. 6a. Even
though the stochastic signal is small compared to the oscil-
latory signal, the inferred ellipses are nothing like those we
found earlier in Fig. 4b. The reason is that the analytic signal
method treats the entire timeseries as an aggregate, lumping
the stochastic signal together with the oscillation. By con-
trast, the ellipses inferred using the wavelet-based method,
developed subsequently and shown in Fig. 6b and also in
Fig. 5b, are very close to those seen earlier in Fig. 4b for the
analytic signal method applied to the isolated oscillatory sig-
nal. The wavelet-based method essentially combines the ana-
lytic operator with an adaptive filtration, minimizing, though
not entirely removing, the influence of the other variability.

3.3 Wavelet analysis basics

The extraction of unobserved modulated elliptical signals
from the observed position signal x(t) can be accomplished
using a method called multivariate wavelet ridge analysis
(Lilly and Olhede, 2009a, 2012a). This is a generalization to
multiple timeseries of the wavelet ridge analysis method in-
troduced by Delprat et al. (1992), which was extended and re-
fined by Mallat (1999) and later by Lilly and Olhede (2010a).
The starting point of wavelet ridge analysis is the choice
of a family of oscillatory, time-localized functions, called
wavelets, that will serve as the basis for detecting modulated
oscillations. The choice of a suitable wavelet function, con-
ventionally denoted ψ(t), involves a tradeoff between time
resolution – the ability to resolve sudden changes in an oscil-
latory signal – and frequency resolution, the ability to distin-
guish between variability in different frequency bands.

Systematic examination of continuous-time wavelets in
common use by Lilly and Olhede (2009b) and Lilly and
Olhede (2012b) pointed to the generalized Morse wavelets
(Daubechies and Paul, 1988; Olhede and Walden, 2002) as
an ideal wavelet family, encompassing all other commonly
used forms. These are defined in the frequency domain as

Ψβ,γ(ω)≡ U(ω)aβ,γ ω
βe−ω

γ

(42)

where U(x)≡ 1
2 [1 + sgn(x)] is again the unit step function,

β and γ are two controlling parameters, and aβ,γ is a normal-
izing constant defined as

aβ,γ ≡ 2(eγ/β)β/γ (43)

for reasons to be seen shortly. The time-domain wavelets
ψβ,γ(t) are given in terms of Ψβ,γ(ω) via the inverse Fourier
transform,

ψβ,γ(t)≡ 1

2π

∞∫
−∞

Ψβ,γ(ω)eiωtdω. (44)
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Figure 5. Panel (a) shows the signal from Fig. 4a, modified through the addition of a uniform westward drift together with a stochastic
component. The sum of the westward drift and the stochastic component is the red curve, which defines the moving center for the modulated
elliptical signal. Panel (b) presents ellipses inferred using the wavelet ridge method. The thin black line in both panels is the estimated
background displacement curve x̂ε(t) from the wavelet ridge analysis, an estimate of the red curve in (a).

Figure 6. Ellipses inferred from the composite signal in Fig. 5a using (a) the analytic signal method directly or (b) the wavelet ridge method
of Sect. 3. The gray line in each panel is the estimated modulated elliptical signal using that method, while the dots are as in Fig. 4b.



12 Lilly & Pérez-Brunius: Eddy extraction

On account of the unit step function in Eq. (42), these
wavelets have vanishing support at negative frequencies and
are therefore said to be analytic.

The frequency at which Ψβ,γ(ω) obtains its peak magni-
tude is readily found, from differentiating Eq. (42), to oc-
cur at ωβ,γ ≡ (β/γ)1/γ , called the peak frequency. Another
key quantity is the normalized curvature of the wavelet at the
peak frequency (Lilly and Olhede, 2009b),

Pβ,γ ≡

√
−ω2

β,γ

Ψ′′β,γ(ωβ,γ)

Ψβ,γ(ωβ,γ)
=
√
βγ. (45)

The frequency-domain wavelets can be approximated in the
vicinity of their peak frequency as a Gaussian

Ψβ,γ(ω) = Ψβ,γ(ωβ,γ)e
− 1

2P
2
β,γ

(
ω

ωβ,γ
−1
)2

+fβ,γ(ω)
(46)

as shown in Lilly and Olhede (2012a); here fβ,γ(ω) is a de-
viation function, the form of which is given in that reference.
1/Pβ,γ plays the role of the standard deviation, and is conse-
quently a nondimensional measure of the frequency-domain
width of the wavelets about their peak frequency. Pβ,γ itself
is therefore a nondimensional measure of the wavelet tem-
poral width. Lilly and Olhede (2009b) show that Pβ,γ/π is
roughly the number of oscillations spanned by the central
portion time-domain wavelet, defined as |t| ≤ Pβ,γ/ωβ,γ .

With γ held fixed, β controls the time/frequency trade-
off. Increasing β increases the number of oscillations in
the wavelet, decreasing the temporal resolution but increas-
ing the frequency resolution. As to the choice of γ, Lilly
and Olhede (2009b) and Lilly and Olhede (2012b) find
that the γ = 3 wavelets are nearly symmetric about their
peak in the frequency domain, nearly Gaussian in their
frequency-domain shape, and have a standard measure of
time–frequency concentration – the Heisenberg area – that is
nearly optimal for fixed β and any γ. On account of these de-
sirable properties, the γ = 3 wavelets are recommended for
general use, and we will follow that recommendation here.

The generalized Morse wavelet we will use in this pa-
per, β = 2 and γ = 3, is shown in Fig. 7. Here time and fre-
quency have been rescaled, with t̆≡ ωβ,γt and ω̆ ≡ ω/ωβ,γ ,
such that the peak frequency occurs at ω̆ = 1. This is a quite
time-localized wavelet, with at most only two full oscilla-
tions visible in the time domain. In the frequency domain,
we see that the Gaussian approximation, Eq. (46) with the
deviation term fβ,γ(ω) neglected, is a good approximation
to the wavelet and is indistinguishable from it in a broad re-
gion around the peak. The frequencies ω̆ = 1± 1/Pβ,γ cor-
respond to one standard deviation of the Gaussian about the
peak, values at which the exponential in Eq. (46) is equal
to e−1/2. In the time domain, we see slightly less than one
full oscillation within the window

∣∣t̆∣∣< Pβ,γ , in agreement
with Pβ,γ/π =

√
6/π = 0.8 being the number of oscillations

within the central window.

Next we use many rescaled versions of the wavelet to filter
a univariate signal x(t), leading to the wavelet transform

wx(t,s)≡
∞∫
−∞

1

s
ψ∗β,γ

(
τ − t
s

)
x(τ)dτ (47)

where the asterisk denotes the complex conjugate, and with
s being called the scale. The scale s transform amounts to
a complex-valued bandpass centered on the rescaled wavelet
peak frequency ωβ,γ/s, and thus filters oscillations having a
period in the vicinity of 2πs/ωβ,γ . Here we use the 1/s scale
normalization for the wavelet transform, following Lilly and
Olhede (2009b). Note that the important dependence of the
transform on the controlling parameters of the wavelet, β and
γ, is suppressed to avoid cumbersome notation. However, it
is important to bear in mind that the wavelet transform is
not an intrinsic property of a timeseries. Rather, it is a joint
function of a timeseries and a particular wavelet.

In the frequency domain, the wavelet transform can be ex-
pressed as

wx(t,s) =
1

2π

∞∫
0

Ψβ,γ(sω)X(ω)eiωt dω (48)

on account of the convolution theorem. This is derived by
substituting into Eq. (47) the inverse Fourier transforms of
the signal and the wavelet, Eqs. (16) and (44) respectively4.
Due to the analyticity of the wavelets, the lower limit of inte-
gration may be set to zero. From this expression one sees that
wx(t,s) consists of a set of versions of x(t) that have been
bandpassed using rescaled wavelets, Ψβ,γ(sω), as the band-
pass filters. It is also clear that the wavelet transform using
an analytic wavelet is itself analytic, i.e. supported only on
non-negative frequencies, for any fixed scale s.

With these definitions, the wavelet transform of a phase-
shifted sinusoid

xo(t)≡ ao cos(ωot+φo) (49)

is found to be

wo(t,s) =
1

2
aoe

iωot+iφoΨβ,γ(sωo) (50)

using Eq. (48) together with Eq. (20). We see that wo(t,s)
obtains its maximum magnitude at the scale s= ωβ,γ/ωo.
Moreover, if one chooses a normalization such that the max-
imum value of the wavelet is Ψβ,γ(ωβ,γ) = 2, we have

wo (t,ωβ,γ/ωo) = aoe
iωot+iφo = [1 + iH]xo(t) (51)

such that the wavelet transform at the maximizing scale
s= ωβ,γ/ωo recovers the analytic version of the signal xo(t).
Owing to the choice aβ,γ ≡ 2(eγ/β)β/γ for the normalizing
constant in Eq. (42), we have Ψβ,γ(ωβ,γ) = 2 as desired.

4The complex conjugate that would normally appear on the
wavelet’s Fourier transform Ψβ,γ(sω) after applying the convolu-
tion theorem has been dropped because these particular wavelets are
real-valued in the frequency domain.
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Figure 7. A generalized Morse wavelet ψβ,γ(t) with the choice (β,γ) = (2,3) in (a) the time domain and (b) its Fourier transform Ψβ,γ(ω).
Both time and frequency have been nondimensionalized, as t̆≡ ωβ,γt and ω̆ ≡ ω/ωβ,γ , respectively. In panel (a), the blue and orange lines
are the real and imaginary parts, respectively, of ψβ,γ

(
t̆
)
, while the thin gray lines are plus or minus the wavelet modulus |ψβ,γ

(
t̆
)
|. Here

the time-domain wavelet has been rescaled to have unit amplitude. In panel (b), the thin gray line is the Gaussian approximation in Eq. (46).
Vertical dashed lines in both panels are measures of the wavelet half-width based on Pβ,γ , as described in the text, while dots in (b) are the
wavelet value at ω̆ = 1± 1/Pβ,γ . Dotted lines mark t̆= 0 and zero magnitude in (a), and the wavelet peak frequency of ω̆ = 1 in (b).

3.4 Oscillation detection using wavelet ridge analysis

Turning now to a vector-valued signal x(t), its wavelet trans-
form will be a vector-valued function of time and scale,

w(t,s)≡
∞∫
−∞

1

s
ψ∗β,γ

(
τ − t
s

)
x(τ)dτ =

[
wx(t,s)
wy(t,s)

]
. (52)

A ridge of this vector-valued wavelet transform w(t,s) is a
time-varying scale curve ŝ(t) along which

∂

∂s
‖w (t,s)‖= 0,

∂2

∂s2
‖w (t,s)‖< 0 (53)

such that ŝ(t) marks a local maximum of the wavelet trans-
form magnitude with respect to variations in scale s. This
is the multivariate ridge definition introduced by Lilly and
Olhede (2009a) and Lilly and Olhede (2012a), building on
earlier work on univariate wavelet ridge analysis by Delprat
et al. (1992), Mallat (1999), and Lilly and Olhede (2010a). It
was shown by Lilly (2017) that a ridge can be interpreted as
a maximum with respect to scale of the local signal energy
density, or power, see Section 2(c) therein. The principle of
wavelet ridge analysis is therefore not one of minimizing an
error, but rather of maximizing the power of a projection.5

5The first author thanks G. Sutyrin for asking the question, with
respect to this method, “What is the principle?”.

For a vector-valued signal with only a single modulated
oscillation present, x(t) = x?(t), it can be demonstrated that
a wavelet ridge approximates the location of the instanta-
neous frequency curve ω(t), that is,

ŝ(t)≈ ωβ,γ
ω(t)

(54)

while the analytic signal associated with x(t) is approxi-
mately recovered by simply taking the value of the wavelet
transform along the ridge,

x̂+(t)≡w (t, ŝ(t))≈ x+(t). (55)

These equations are derived in Lilly and Olhede (2012a),
their Eq. (86) and Eq. (61) respectively, wherein the explicit
forms for next-order terms in the approximations are given.
Those terms, omitted for brevity here, represent errors in the
wavelet ridge method arising from the strength of the modu-
lated oscillation itself and therefore are a type of bias error.
Such errors vanish when the modulation strength vanishes,
that is, for the case of a sinusoidal signal.

When applied to a real-world signal x(t), wavelet ridge
analysis leads to a set of ridges, ŝm(t), the corresponding
estimated oscillations x̂m? (t), their associated ellipse param-
eters κ̂m(t), ξ̂m(t), θ̂m(t), and φ̂m(t), and finally the instan-
taneous frequencies ω̂m(t), for m= 1,2, . . . ,M̂?. Here M̂?

is the total number of ridges present after applying any edit-
ing criteria, such as that discussed in the next subsection.
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These estimates are interpreted here in the context of the un-
observed components model, Eq. (39). We would say that the
ridges provide estimates of latent oscillations that appear to
be present in the timeseries, with M̂? being an estimate of the
total number M? of such components. The dependence of all
of these estimates on the wavelet properties (β,γ) is implicit.

Application of the ridge analysis method to surface drifter
trajectories leads to another type of error, namely false pos-
itives arising from the stochastic background xε(t). As dis-
cussed in the Introduction, the ridge analysis will identify
some events that, rather than corresponding to latent oscil-
lations that are actually present, arise by chance due to the
interaction of the wavelets with the background. These are a
major problem because they mean a certain fraction of de-
tected ridges would be expected to be entirely spurious. A
means of addressing the false positives is presented in Sect. 4.

If the multiplicity exceeds one, we may define the time-
varying position of the center of the mth oscillation as

xm� (t)≡ x(t)−xm? (t) = xε(t) +

M?,n 6=m∑
n=1

xn? (56)

which is the difference between the full displacement signal
and the displacement signal associated only with that ridge.
This quantity is estimated by x̂m� (t)≡ x(t)− x̂m? (t). To put
this in terms of latitude and longitude, we first convert x̂m? (t)
and ŷm? (t) into the estimated deviations

∆Θ̂m
? (t)≡ x̂m? (t)

R♁ cosΦo
, ∆Φ̂m? (t)≡ ŷm? (t)

R♁
(57)

where Φo is latitude of the reference point that was used to
create the Cartesian vector x(t) from latitude and longitude
in Eq. (38). Then

Φ̂m� (t)≡ Φ(t)−∆Φ̂m? (t) (58)

Θ̂m
� (t)≡=

{
logei[Θ(t)−∆Θ̂m? (t)]

}
(59)

gives the estimated latitude and longitude position of the cen-
ter of the mth oscillation.

Finally, the background process on the Cartesian plane,
xε(t), is estimated by summing over all ridges and forming
the residual

x̂ε(t)≡ x(t)−
M̂?∑
m=1

x̂m? (t). (60)

The corresponding latitude and longitude signals, Φ̂ε(t) and
Θ̂ε(t), are formed by subtraction after inserting the estimated
deviations ∆Φ̂m? (t) and ∆Θ̂m

? (t) into Eqs. (40) and (41).
For notational convenience, we will henceforth drop the

superscripts “m” on ridge quantities, letting it be understood
that they pertain to a particular latent oscillation.

3.5 A ridge length threshold

Experience shows that it is important to set a threshold for
the minimum length of a ridge. The ridge length is measured
in terms of the number of oscillations executed along the
ridge, which is found by integrating the estimated instanta-
neous frequency ω̂(t)

L≡ 1

2π

tf∫
ti

ω̂(t)dt (61)

from the initial time point of the ridge ti to its final time point
tf . Note that L is nondimensional. For a constant instanta-
neous frequency, ω̂(t) = ωo, observed over a time interval of
duration T = tf − ti, we have L= T/(2π/ωo) which is the
number of periods executed over time interval T .6

A threshold on L is found to be important for two reasons.
Firstly, when any kind of noise is present, the random gener-
ation of false positives becomes more common as the ridge
length decreases; thus L is important for assessing statistical
significance, as will be seen in more detail shortly. Secondly,
as the ridge length becomes small compared to the number of
oscillations experienced by the wavelet, the very idea that the
wavelet transform is illuminating some aspect of the time-
series becomes suspect. For ridges comparable to or shorter
than the length of the wavelet, isolated noise points or mi-
nor discontinuities in the timeseries lead, via the convolution
theorem, to copies of the wavelet itself being presented in the
wavelet transform. As mentioned earlier, the wavelet trans-
form is a joint function of the wavelet and the signal; ridges
comparable to or shorter than the wavelet duration tend to be
features arising from the former.

A ridge length threshold is therefore employed in which
we keep only ridges with lengths

L > n
2Pβ,γ
π

(63)

for some choice of n, where 2Pβ,γ/π is approximately the
total number of oscillations spanned by the wavelet. We will
set n= 1 so that L > s

√
βγ/π = 2

√
6/π ≈ 1.6 for the β = 2

and γ = 3 wavelet used herein, a choice that we find suffi-
cient to eliminate obviously spurious features.

6In the case of a univariate signal x(t), we have

L≡ 1

2π

tf∫
ti

ω̂x(t)dt=
1

2π

[
φ̂x(tf )− φ̂x(ti)

]
(62)

and L can be interpreted in terms of the phase change along the
ridge. For the multivariate case, the multivariate instantaneous fre-
quency of Eq. (36) is no longer defined as the derivative of some
phase, so it would appear this interpretation no longer holds.



Lilly & Pérez-Brunius: Eddy extraction 15

3.6 A synthetic example

As a simple example, the wavelet ridge analysis for the syn-
thetic composite signal from Fig. 5 is shown in Fig. 8, using
the ψ2,3(t) wavelet from Fig. 7 and the ridge length criterion
L > 2

√
6/π. The white and black lines denote ridge curves

ŝ(t). A clear maximum of the wavelet transform magnitude
‖w(t,s)‖ with respect to scale is observed, marked by the
heavy black line. The white lines are short ridges marking
minor, generally indiscernible maxima of the wavelet trans-
form. These are spurious features arising randomly due to the
stochastic background process xε(t), and are rejected based
on the ridge length criterion. After this rejection, only the
black curve remains. Thus the wavelet ridge analysis sup-
ports the unobserved components model with multiplicity
one, x(t) = xε(t) +x?(t), and we interpret the sole remain-
ing ridge as an estimate of the latent oscillatory signal x?(t).

Evaluating the wavelet transform along this ridge curve
ŝ(t) as in Eq. (55) leads to an estimate of the analytic signal
vector x̂+

? (t) associated with the latent oscillation x?(t). Ap-
plication of the ellipse inversion equations, Eqs. (29)–(32),
then gives the estimated ellipses shown in Fig. 5b and Fig. 6b.
Taking the real part of this estimated analytic signal produces
an estimate of x?(t) itself, x̂?(t) = <

{
x̂+
? (t)

}
, the gray line

in Fig. 6b, with its corresponding estimated velocities shown
in Fig. 8a as gray lines. Subtracting the estimated oscilla-
tion from the full signal leads to the estimated background,
x̂ε(t)≡ x(t)− x̂?(t), the black line in Figs. 5a,b.

It is clear from Figs. 4–6 that the wavelet ridge analysis
does an excellent job of extracting the true oscillation x?(t)
from the composite signal x(t), effectively stripping out the
background process xε(t). Note that this signal, like realistic
eddy signals, exhibits substantial frequency modulation, and
thus Fourier-based or narrowband methods such as bandpass-
ing or complex demodulation would not be suitable.

Importantly, we have not needed to specify any properties
of the oscillatory signal apart from the frequency range of the
transform. As mentioned earlier, Lilly and Olhede (2009b)
and Lilly and Olhede (2012b) have established the sensibility
of the choice γ = 3 based on symmetry considerations, thus
the only free parameter of the wavelet transform is β, which
controls the number of oscillations in the wavelet. The choice
of β, it should mentioned, encodes an implicit tradeoff be-
tween resolving temporal variability of detected modulated
oscillations, and separating an oscillation from neighboring
variability in the frequency domain. Smaller values of β are
more suitable for signals exhibiting strong temporal modu-
lation, whereas large values would be more appropriate if it
were necessary to resolve closely spaced oscillations in fre-
quency. The β = 2 value used here, corresponding to quite
narrow wavelets in the time domain, appears to be suitable
for this and many other Lagrangian datasets.

Figure 8. Multivariate wavelet ridge analysis applied to the syn-
thetic composite signal shown in Fig. 5a. Panel (a) is the velocity
corresponding to the displacement signal, with blue for the east-
ward component and orange for the northward component. The
magnitude of the wavelet transform ‖w(t,s)‖ of the displacement
signal using a (β,γ) = (2,3) generalized Morse wavelet is shown
in (b), with the heavy black curve denoting a major ridge and the
white curves denoting short, spurious ridges arising as a result of
the stochastic background process. The period corresponding to the
generating parameters is shown as the gray line, see Appendix A.
The gray lines in panel (a) are the velocity components formed by
differentiating the ridge-based estimate of the oscillatory displace-
ment signal x̂?(t) that is found as the real part of Eq. (55); these are
very close to the original signal, and are not visible for most of the
record because they are overplotted by the blue and orange curves.

3.7 One-sided ridges

Because here we are particularly interested in eddies, which
tend to be destroyed if strained to a high degree of eccen-
tricity, a modification is made to the ridge analysis. In its
general form, the ridge analysis places no constraints on the
polarization, that is, the degree of eccentricity of the signal.
Numerical experiments with noise datasets show that when
ridges emerge, they can be of any polarization, and this polar-
ization tends to wander with time, sometimes even changing
sign across ξ(t) = 0 as the ridge switches from being dom-
inated by positive rotations to dominated by negative rota-
tions. Such transitions are not realistic for real-world eddies,
and permitting them in the ridge analysis leads to a greater
number of false positives which must be sorted out later.

It therefore seems preferable to explicitly exclude sign
transitions across ξ(t) = 0. Such ridges will be said to be
one-sided, and are formed as follows. The Cartesian wavelet
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transforms are converted into a pair of rotary transforms as[
w+(t,s)
w−(t,s)

]
=

1√
2

[
1 i
1 −i

]
w(t,s) (64)

with |w+(t,s)| giving the local magnitude of positive os-
cillations in z(t) = x(t) + iy(t), and |w−(t,s)| giving the
magnitude of negative oscillations, see e.g. Lilly and Gas-
card (2006). As this matrix transformation is unitary, we
have ‖w(t,s)‖=

√
|w+(t,s)|2 + |w−(t,s)|2. We then form

∆w(t,s)≡ |w+(t,s)|−|w−(t,s)|, the difference of the pos-
itive and negative rotary wavelet transform amplitudes.

The wavelet ridge analysis is then performed twice. Ridges
of w(t,s) are first found after masking out regions where
∆w(t,s)> 0, and then again after masking out regions
where ∆w(t,s)< 0. Each of these two sets of ridges lacks
sign transitions. Before applying the ridge length threshold,
Eq. (63), the union of these two sets of ridges contains the
same ridge points as the full set of ridges, with the exception
of any ridge points for which ∆w(t,s) is exactly zero. After
applying the ridge length cutoff, the set based on the one-
sided ridges will be smaller than the full set, because sign
transitions are essentially treated as ridge endpoints.

The net result of this modification is that ridges lacking a
sign transition are unchanged, ridges containing sign transi-
tions are broken into shorter segments, and fewer spurious,
false positive events survive the ridge length threshold. A de-
sirable feature of this approach is that it does not involve set-
ting an ad hoc threshold on the degree of eccentricity, as any
numerical value of the circularity ξ(t) may still be detected
provided the rotation sense does not reverse.

4 Application to the Gulf of Mexico drifter dataset

In this section the wavelet ridge analysis method is applied to
the Gulf of Mexico drifter dataset presented in Fig. 1. Issues
of false positives are addressed, leading to an edited eddy
dataset where such features are believed to be rare. Note that
in this section we omit the “m” superscripts on modulated
oscillation and ridge quantities to avoid excessive notation.

4.1 Choice of frequency band

The first decision to be made is what band of scales, or fre-
quencies, the wavelet transform should be performed over.
The instantaneous frequency ω(t) can be nondimensional-
ized relative to the Coriolis frequency at the center of an os-
cillation, f�(t)≡ 2Ω♁ sinΦ̂�(t), as

ω∗(t)≡ sgn(ξ(t))
ω(t)

f�(t)
(65)

which we construct to be a signed quantity, positive for
cyclonic motion and negative for anticyclonic motion. We
choose to carry out the ridge analysis within a time-varying
frequency band such that the nondimensional instantaneous

frequency is in the broad range 1/64≤ |ω∗(t)| ≤ 2. This
range is expected to capture eddy-related motions from slow
circling on the far flanks of large eddies, up to the rapid os-
cillations within highly nonlinear submesoscale eddies.

It is helpful to examine the physical interpretation of the
nondimensional instantaneous frequency ω∗(t) by referring
to the special case of a steady circular eddy with azimuthal
velocity profile vθ(r). This eddy has vertical vorticity ζ(r)
and angular velocity $(r) profiles given by

ζ(r)≡ k̂ · ∇×v =
vθ(r)

r
+

d

dr
vθ(r) (66)

$(r)≡ k̂ · r×v

‖r‖2
=
vθ(r)

r
(67)

with k̂ being the vertical unit vector. Particle paths about the
eddy center at some fixed radius ro have solutions given by
zo(t) = roe

i$(ro)t+ϕo . Thus for the case of constant angular
velocity in a circular eddy, the angular velocity is the same as
the signed instantaneous frequency,$(ro) = sgn(ξ(t))ω(t).

Let the eddy have a maximum azimuthal velocity at ra-
diusRo with a value of Vo = vθ(Ro). Its nonlinearity may be
measured through the vortex velocity Rossby number,

RoV (t)≡ 2Vo
Rof(t)

(68)

see e.g. D’Asaro et al. (1994). (Note that the function of time
arises because in this simple kinematic model we permit –
unrealistically – the fixed eddy to move meridionally without
adjustment.) One may extend the vortex Rossby number to
measure the local nonlinearity of the flow at each radius via

RoV (r, t)≡ 2vθ(r)

rf(t)
= sgn(ξ(t))

2ω(t)

f(t)
= 2ω∗(t). (69)

The equalities on the right-hand side show that for a steady
circular eddy, the local velocity Rossby number RoV (r, t) is
twice the nondimensional instantaneous frequency ω∗(t) that
would be observed for a particle located at radius r.

Another measure of the bulk nonlinearity of an eddy is its
vorticity Rossby number, defined as

Roζ(t)≡
ζo
f(t)

(70)

with ζo being the vertical vorticity averaged over the radius
Ro. In the case that the eddy core is in solid-body rotation,
then vθ(r) = αr for some constant α with r ≤Ro, and the
core vorticity is ζ(r) = 2vθ(r)/r = 2α from Eq. (66). It fol-
lows that Roζ and RoV are identical for solid-body rotation.

If a time-varying lower boundary is set for the ridge fre-
quency band at ω∗(t) =−1/2, it is believed on dynamical
grounds that that no anticyclonic eddies will be missed, and
also that inertial oscillations will be entirely excluded, as we
now show. It is well known that for anticyclonic, circular,
barotropic eddies, there is a stability boundary at ζ/f =−1;
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see Kloosterziel (2010) for a very useful historical discus-
sion. Eddies having more negative values of relative vortic-
ity would experience a type of instability known as inertial
or centrifugal instability. Consequently such eddies are not
observed in nature, with the most intense documented anti-
cyclones, such as the Lofoten Basin Eddy (e.g., Søiland and
Rossby, 2013; Bosse et al., 2019; Trodahl et al., 2020), hav-
ing vorticities of around ζ =−f . This stability boundary cor-
responds to a nondimensional frequency of ω∗(t) =−1/2.

Inertial oscillations typically occur at a Fourier frequency
of ω =−f or ω∗(t) =−1, with the negative sign indicat-
ing that inertial oscillations turn clockwise in the Northern
Hemisphere and counterclockwise in the Southern Hemi-
sphere. However, in the presence of background vorticity, in-
ertial oscillations experience a frequency shift (Kunze, 1985)
from ω =−f to ω =−f − ζ/2. For the most extreme pos-
sible anticyclonic eddy at the stability boundary ζ/f =−1,
assuming solid-body rotation, the shifted inertial frequency
would then occur at ω =−f/2 or ω∗(t) =−1/2, the same
frequency as the eddy itself. Thus inertial shifting in an anti-
cyclone brings the inertial oscillation frequency away from f
and closer to the eddy frequency, and these become identical
for the most nonlinear anticyclones at ζ/f =−1.

Therefore, both to avoid inertial oscillations and because
no eddies are physically expected, the ridge analysis should
be truncated to exclude events below the time-varying curve
ω∗(t) =−1/2. Yet since there is no corresponding stability
boundary on the cyclonic side, one should anticipate the pos-
sibility of intense cyclonic eddies exceeding ω∗(t) = 1/2.
The truncation to ω∗(t) =−1/2 will therefore be done at
a later stage once we scrutinize the initial results using the
symmetric frequency band 1/64≤ |ω∗(t)| ≤ 2.

4.2 An example from the Bay of Campeche

An example of applying the one-sided ridge analysis to a
drifter trajectory from the Bay of Campeche in the south-
western Gulf of Mexico is presented in Figs. 9 and 10. The
trajectory is shown in Fig. 9a, its latitude timeseries is the
blue line in Fig. 9b, and its zonal and meridional veloci-
ties are presented in Fig. 10a. The trajectory has a com-
plex oscillatory behavior, executing orbits that appear sig-
nificantly non-circular, sometimes even square, and with nu-
merous small cusps or loops. The latitude signal and veloc-
ity timeseries both reveal substantial nonstationarity, with a
transition from low-frequency variability to higher-frequency
variability around yearday 50 of 2013, and to still higher-
frequency variability around yearday 110. The roughness ob-
served in both position and velocity is suggestive of super-
posed variability from smaller temporal scales.

This trajectory is analyzed using the same (β,γ) = (2,3)
generalized Morse wavelet employed previously. The range
of scales in the transform is chosen to encompass the
nondimensional frequency range 1/64≤ |ω∗(t)| ≤ 2 for all
latitudes within the Gulf. The total transform magnitude

‖w(t,s)‖, positive rotary transform magnitude |w+(t,s)|,
and negative rotary transform magnitude |w−(t,s)| are
shown in Fig. 10b–d. The colored lines in Fig. 10b–d are
all the one-sided ridges – that is, scale curves ŝ(t) satisfy-
ing Eq. (53), yet lacking sign transitions of ξ̂(t) – subject to
the minimum ridge length of L= 2

√
6/π ≈ 1.6. Each ridge

is drawn on the rotary transform that is dominant over its
duration, as well as on the total transform in Fig. 10b. The
one-sided ridges are not permitted to cross the white lines,
which mark the locations at which |w+(t,s)|= |w−(t,s)|.

The nonstationarity and multiscale variability that are ap-
parent by eye are seen explicitly in the wavelet transforms.
Small-scale variability is frequently attributable to inertial
oscillations, as well as to a brief high-frequency cyclonic
event around yearday -22. At lower frequencies, a bifurca-
tion is seen around yearday 58, where a low-frequency cy-
clonic ridge splits into two cyclonic ridges, one that descends
to lower frequencies and one that rises to higher frequencies.
Whereas the higher-frequency member of this pair is visi-
ble by eye in the velocity and position timeseries, the lower-
frequency member is not. The two low-frequency ridges
that together span most of the record are notable for hav-
ing relatively high values of eccentricity, unlike the middle-
frequency ridge in the yearday range 58–105, which is seen
to be strongly circularly polarized in the cyclonic sense.

The contributions of the various ridges to the latitude
variability is seen in Fig. 9b, after converting the ridges
to latitude deviations Φ̂?(t) using Eq. (57), as is the lati-
tude residual Φ̂ε(t). Oscillatory variability in the residual is
much reduced compared with the original, particularly dur-
ing the latter portion of the record dominated by the middle-
frequency ridge. An exception is in the middle of the record,
in the vicinity of the gap between the two low-frequency
ridges, where the dominant wavelet polarization is observed
to briefly change sign for a reason that is not readily apparent.

This complex trajectory is a good example of a situation in
which the multiplicity M̂(t) – the apparent number of mod-
ulated oscillations at any moment – is greater than one. The
presence of inertial oscillations superposed on a background
eddy, which accounts for the small cusps seen in Fig. 9a,
is fairly common in this dataset. The superposition of two
lower-frequency ridges, seen during yeardays 60–110, on the
other hand, occurs rarely. A physical hypothesis consistent
with these two ridges is that a particle is trapped in an eddy
that is itself being advected by another eddy, with the lower-
frequency signal arising from advection on the exterior flank
of the second eddy. The superposition of these two signals
accounts for the “wobble” in Fig. 9a, where the center of the
tight loops in the middle of the plot appears to vary over time.

During the second half of the record, the sum of three os-
cillations – two eddy-like signals and an inertial signal – ac-
counts for most of the variability apart from an over north-
ward drift. This indicates that the unobserved components
model of Eq. (39) can generate quite complex and irregular
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Figure 9. An example of a trajectory decomposed according to the unobserved components model of Eq. (39), using the one-sided wavelet
ridge method. Panel (a) shows the trajectory of drifter ID #80348 from the SGOM experiment, in the Campeche Gyre in the southwestern
Gulf of Mexico. The dark gray shading is the continent and the thick light gray line is the 500 m isobath, as in Fig. 1. In panel (b), the
original latitude signal of this trajectory is shown, along with oscillatory signals extracted from low, medium, and high frequencies, as well
as the inertial band. Also shown is the residual after adding up all the extracted signals and subtracting the result from the original, Eq. (60),
converted back to a latitude. The origins of the various curves are shown in Fig. 10.

trajectories. During the first half, however, the residual curve
exhibits more irregular oscillations, suggesting that during
this time period the variability is less well matched to our
proposed model. The more irregular behavior of the oscilla-
tion that dominates during this time period is suggestive of a
particle that is weakly trapped on the flanks of the eddy rather
than within its solid-body core. In this example, we have
specifically chosen to investigate a complex signal; most of
the detected signals are considerably simpler.

4.3 A noise dataset for a null hypothesis

Because the eddies we are interested in studying do not occur
in isolation, but are embedded within a turbulent background
flow, it is necessary to take into account that the background
flow itself may occasionally, by chance, give rise to features
in the drifter trajectories that appear as modulated oscilla-
tions. Such features would be detected by the ridge analysis
and therefore constitute false positives.

To address this issue, we will compare the results of the
ridge analysis to the results of a parallel analysis applied to
a stochastic or “noise” dataset. The noise dataset will be cre-
ated to match key properties of the observed dataset, but lack-
ing the explicit signatures of any eddies. This will act as a
null hypothesis and enable a level of statistical significance
to be determined. It amounts to an idealized approximation
to the background process xε(t) from the unobserved com-
ponents model of Eq. (39) that is constrained to be isotropic,
in other words, lacking a preference for fluctuations in the
zonal vs. meridional direction as well as in the positive vs.
negative rotational senses.

The noise dataset is constructed as follows. For each
trajectory, we form an estimate of the spectrum of the
complex-valued velocity v(t)≡ vx(t) + ivy(t)≡ z′(t), de-

noted Svv(ω). It is known that Svv(ω) gives contributions to
the velocity variance from positively-rotating Fourier com-
ponents for ω > 0, and from negative-rotating Fourier com-
ponents for ω < 0, see Gonella (1972). Thus Svv(ω) is said to
be the rotary spectrum associated with v(t). We use the mul-
titaper method (Thomson, 1982; Park et al., 1987; Percival
and Walden, 1993) to create an estimated spectrum Ŝvv(ω).
The implicit degree of frequency-domain smoothing is spec-
ified by choosing the taper time-bandwidth product equal to
four, a setting that leads to relatively smooth spectral esti-
mates for this data. Prior to forming the spectra, the temporal
means of the velocity series are removed in order to prevent
leakage from the zero-frequency component, a common pro-
cessing step that has the effect of setting Ŝvv(0) = 0.

At each frequency, we define the spectrum of the complex-
valued noise velocities, which will be denoted ε(t), to be the
minimum of the two sides of the rotary spectrum

Sεε(ω)≡ cεmin
{
Ŝvv(ω), Ŝvv(−ω)

}
(71)

where cε is a normalization factor given by

cε ≡
1

2π

∫∞
−∞ Ŝvv(ω)dω

1
2π

∫∞
−∞min

{
Ŝvv(ω), Ŝvv(−ω)

}
dω

. (72)

This leads to a spectrum Sεε(ω) having the same integrated
value, and therefore corresponding to the same velocity vari-
ance, as Ŝvv(ω), but that has no preference for positive or
negative rotations. Thus rotationally anisotropic peaks, such
as those associated with coherent eddies or inertial oscilla-
tions, do not occur in Sεε(ω).

The basic idea is that since eddies and other oscillatory
components will tend to raise the spectral levels above that
due to the background, taking the minimum tends to isolate
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Figure 10. One-sided wavelet ridge analysis of the signal presented in Fig. 9a. In (a), the zonal and meridional velocities vx(t) and vy(t)
associated with the displacement signal from Fig. 9a are shown as blue and orange curves, respectively. Panel (b) shows the total wavelet
transform magnitude, ‖w(t,s)‖=

√
|w+(t,s)|2 + |w−(t,s)|2, while (c) and (d) show the magnitudes of the positive (or cyclonic) and

negative (or anticyclonic) rotary transforms, |w+(t,s)| and |w−(t,s)|. The y-axis in panels (b)–(d) is scale converted to oscillation period,
2πs/ωβ,γ . The thin, nearly horizontal gray line in panels (b)–(d) marks the time-varying Coriolis period 2π/f(t), while the thin white lines
are curves where the magnitudes of the two rotary transforms are equal, |w+(t,s)|= |w−(t,s)|. The colored lines show all detected ridges
ŝ(t) of ‖w(t,s)‖ using the same color scheme as in Fig. 9b. There are two sets of ridges, those detected in ‖w(t,s)‖ when the positive
rotary transform w+(t,s) dominates, and those detected in ‖w(t,s)‖ when the negative rotary transform w+(t,s) dominates. To show their
different origins, the ridges are superposed on the dominant transform as well as being drawn on the total transform ‖w(t,s)‖. A condition
of the one-sided algorithm is that the ridges terminate when they encounter the thin white lines, prohibiting transitions in rotation sense.
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velocities associated with the background displacement pro-
cess xε(t). At the same time, the spectrum itself is a random
quantity, and thus by always choosing the minimum we are
guaranteeing that we will underestimate the true level of an
isotropic spectrum. Therefore it is necessary to use cε to raise
the overall level of Sεε(ω) somewhat, preserving its shape,
to ensure that Sεε(ω) and Ŝvv(ω) integrate to the same value
and therefore correspond to the same velocity variance.

It is straightforward now to create a stochastic velocity
timeseries ε(t) having identically this spectrum. We simply
take the square root of Sεε(ω), multiply it by an array of unit-
variance complex-valued Gaussian white noise, and inverse
Fourier transform the result. Then to ε(t) we add back the
observed temporal mean velocity that was subtracted earlier
from v(t), and finally we integrate the result on the sphere
from the initial position of the original trajectory, leading to
stochastic trajectories with the specified velocities. One may
show that these velocities are anisotropic in physical space
as well as in terms of their rotary components.

Proceeding in this way for each trajectory, we obtain a
dataset that is the same size as the original dataset. Trajec-
tory by trajectory, the timeseries duration, initial location,
temporal mean velocity,7 velocity variance, and approximate
spectral form all match by construction. One realization of
this dataset is shown in Fig. 11. Comparison with Fig. 1
shows that the noise dataset has a comparable visual de-
gree of roughness to the original, a consequence of having
matched the spectral shape. The gyre-scale circulation and
tendency for systematic rotational motions are absent from
the noise dataset, as intended. The fact that the noise trajec-
tories traverse paths reaching outside the domain, although it
may look wrong, is irrelevant for our application; constrain-
ing particles to remain within the oceanic domain has no ef-
fect in improving the stochastic model for our purposes.

4.4 Physical properties of ridges, and ridge averages

To the various ellipse quantities introduced in Section 2, we
will add several more that are particularly relevant for the
study of eddies. Firstly we note that just as the displacement
signal of a modulated oscillation in two dimensions describes
an ellipse, so too does the associated velocity signal. Follow-
ing Lilly and Gascard (2006), once the ellipse parameters are
known for a displacement signal x?(t), the parameters of the
ellipse on the velocity plane associated with x′?(t) can be
found at once, see Appendix E therein. The semi-axes of the

7Note that the match between the temporal mean velocities ob-
tained by differencing the trajectories is approximate rather than
exact, due to minor differences between differentiating trajectories
and integrating velocities on the sphere in the numerical implemen-
tation used here.

Figure 11. As in Fig. 1 but for trajectories of a noise dataset the
same size as the original dataset. As described in the text, the noise
is constructed on a trajectory-by-trajectory basis to have matching
first- and second-order statistics as well as a similar velocity spec-
trum, with the exception than the velocity spectrum is constrained
to be isotropic. The heavy white contour is the coastline.

velocity ellipse will be denoted ã(t) and b̃(t). Then

R(t)≡
√
a(t)b(t) (73)

V (t)≡ sgn
(
b̃(t)
)√ ã2(t) + b̃2(t)

2
(74)

are respectively the instantaneous geometric mean radius of
the ellipse, and a measure of the ellipse velocity. Here V (t),
which is a signed analogue of κ for the velocity ellipse, is
called the kinetic energy velocity since V 2(t) gives the ki-
netic energy associated with the modulated elliptical motion.

The quantities V (t), b(t), ξ(t), and ω∗(t) can all be of ei-
ther sign. The former three are positive for counterclockwise
motion and negative for clockwise motion, whereas ω∗(t) is
positive for cyclonic motion and negative for anticyclonic
motion. This distinction is not important for our northern
hemisphere study, but is relevant for a global application.

To compactly summarize the results of the ridge analysis,
we will look at properties averaged along the duration of a
ridge. Denote the time average of some quantity q(t) along a
ridge by

〈q〉=
1

tf − ti

tf∫
ti

q(t)dt (75)

where times ti and tf mark the start and end of the ridge.
Then a set of aggregate quantities representing average prop-
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erties along a ridge is

ω∗ ≡
〈
κ2ω∗

〉
〈κ2〉

, ξ ≡
〈
κ2ξ
〉

〈κ2〉
(76)

R≡
√
〈R2〉, V ≡ sgn

(
ξ
)√
〈V 2〉 (77)

where care has been taken to form the average in an ap-
propriate way for each quantity. Thus R

2
reflects the time-

averaged area associated with the elliptical signal, V
2

gives
its time-averaged kinetic energy, and ξ and ω∗ are tem-
poral averages weighted by the instantaneous signal power
κ≡

√
[a2(t) + b2(t)]/2. Note that ξ, V , and ω∗ are all signed

quantities, consistent with their instantaneous versions.

4.5 Ridge analysis initial results

The results of applying the ridge analysis using the settings
described above to both the surface drifter dataset, and to the
noise dataset, is summarized in Fig. 12 through scatter plots
of ridge-averaged quantities. Here the x-axis is the ridge-
averaged geometric mean radius R in all panels. The real-
world data is shown at the left and the noise dataset in the
center column; the right column, discussed later, presents an
edited version of the real-world dataset. In the data, 14471
ridges are found with L≥ 2

√
6. It turns out that the vast ma-

jority of these are due to inertial oscillations, with only 2520
ridges having ω∗ >−1/2. The noise dataset has 2045 ridges,
comparable to the number of noninertial ridges in the drifter
dataset, and reflecting the problem of false positives.

A number of important features in the real-world data are
apparent in the left column of Fig. 12. First, there is large
concentration of long-duration ridges with nondimensional
frequencies ω∗ ≈−1, due to inertial oscillations. Second,
there is a major asymmetry between cyclonic and anticy-
clonic events, as is most apparent from Fig. 12d. From R=
0 km all the way up until about R= 50 km, large-amplitude,
long-duration cyclonic events are observed that have no par-
allel on the anticyclonic side. At still larger radii, the asym-
metry reverses, and there is a tendency for larger-amplitude,
longer-duration anticyclonic events that do not occur on the
cyclonic side, see Fig. 12a. As discussed later, these are the
large eddies shed from the Loop Current (e.g., Elliott, 1982;
Lipphardt, Jr. et al., 2008; Hall and Leben, 2016).

Another presentation of the ridge-averaged properties is
that in Fig. 13, in which the y-axis is the nondimensional
frequency ω∗ while the x-axis is the magnitude of the cir-
cularity |ξ|. These correspond, respectively, to the y-axes in
the second and third rows of Fig. 12. Here, the very high
concentration of inertial oscillation ridges is apparent in the
data in Fig. 13a; these are too stacked on top of each other
in Fig. 12 to stand out. A gap occurs, in the frequency range
between about ω∗ =−0.3 and ω∗ =−0.6, where few events
are seen. This gap, which does not occur on the cyclonic side,
is most likely a manifestation of the stability boundary at
ω∗ =−1/2, which as discussed previously affects only an-

ticyclones. It is striking to see this dynamical feature emerge
so readily from an analysis that treats all frequencies equally.

Inertial oscillations, as expected, are seen to be strongly
circularly polarized in Fig. 13a. Outside of the inertial band,
there is a tendency for longer-duration events to be more
strongly circularly polarized than shorter-duration events. On
the cyclonic side a transition occurs near ω∗ = 1/2. The
longest-duration cyclonic events at higher frequencies, while
still highly circularly polarized, have somewhat lower de-
grees of circularly polarization than the longest-duration cy-
clonic events at smaller frequencies. This is curious because
one might expect high-frequency, highly nonlinear events to
also be strongly circularly polarized, and perhaps reflects the
influence of large-scale strain acting on smaller features.

The central columns of Fig. 12 and Fig. 13 shows the prop-
erties of the ridges from the noise dataset presented earlier in
Fig. 11. In comparison with the left columns, one sees that
the real-world data contains ridges that have higher veloc-
ities, higher frequency magnitudes and thus higher degrees
of nonlinearity, and stronger degrees of circular polarization
than those occurring in the noise. In addition, ridge lengths L
in the data are observed to be frequently much larger than in
the noise. While there are 279 events in the data above the in-
ertial band with lengthsL > 4, only six such events occur in a
typical same-sized noise dataset. However, one also sees that
a cloud of low frequency, weakly circularly polarized events
in the data align well with the noise distribution, suggesting
that such events may not be statistically significant.

A final issue that should be mentioned is the possibility of
contamination by the tides. The semidiurnal tide is excluded
by our chosen frequency range, 1/64≤ |ω∗(t)| ≤ 2, except
in the very northernmost part of the domain, as the M2 tidal
frequency exceeds twice the local Coriolis frequency above
about 28.7◦ N. Aliasing of semidiurnal tidal motions into
eddy-like signals is therefore not expected to be a significant
problem. The diurnal tide, meanwhile, is close to the inertial
frequency over the range of latitudes spanned by the Gulf,
and ranges from about 1.6f at 18◦ N to 1.0f at 30◦ N. Thus,
the band where we might see diurnal tidal motions is ω∗ = 1
to 1.6. A conspicuous tendency of oscillations at the diurnal
frequency is not observed (not shown) and so tidal aliasing
does not appear to a major source of eddy-like variability.
This topic could, however, be given more attention by exam-
ining the spectral signals of detected oscillations, which are
far more narrowband for tidal signals than for eddies.

4.6 Assessing statistical significance

The plots from the previous section emphasize the impor-
tance of excluding false positives through an assessment of
statistical significance. In doing so, it is desirable to avoid ad
hoc cutoffs that involve the very properties we are most in-
terested in studying, such as the radius, velocity, or Rossby
number. If we consider what is the essence of coherent vor-
tices, we can say that they are (i) long-lived features by def-
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Figure 12. Scatter plots of ridge-averaged quantities for the drifter data (left column), for a noise dataset of the same size (center column),
and for the drifter dataset after the application of the noninertial criterion ω∗ >−1/2 together with a significance criterion described later
in the text (right column), specifically ρX < 0.1 with X = Lξ

4
. In (a)–(c), the location of each ridge in ridge-averaged radius R versus

ridge-averaged velocity V is shown. The color and size both represent the ridge length L, defined to be the number of periods an oscillation
executes along the ridge. In (d)–(f), the y-axis is now the ridge-averaged nondimensional frequency ω∗, while in (g)–(i) it is the ridge-
averaged circularity ξ. Diagonal lines in the upper row, and horizontal lines in the central row, mark lines of constant ω∗ as noted in the
legend. As the ridges are found for 1/64≤ |ω∗(t)| ≤ 2, the magnitudes of ridge-averaged frequencies |ω∗| will generally be within that
range. In the right-hand column, vertical lines at R= 10 km and R= 50 km denote apparent transitions between different regimes.
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Figure 13. As in the lower row of Fig. 12, with the nondimensional frequency ω∗ on the y-axis, but this time with the magnitude of the
ridge-averaged circularity |ξ| on the x-axis. Again the real-world data (a) is on the left, the noise dataset (b) is in the center, and the real-world
data after the application of the noninertial criterion ω∗ >−1/2 and the significance criterion ρX < 0.1 with X = Lξ

4
is on the right (c).

inition and (ii) roughly circular, with the possibility of small
degrees of eccentricity arising due to various dynamical pro-
cesses such as ambient strain. This suggests that L and |ξ|
would be natural measures of significance that are agnostic
to the primary physical properties of the vortex. The last two
figures show that indeed, the data and noise do have different
distributions with respect to these two quantities.

A novel significance criterion is created as follows. Some
to-be-determined quantity characterizing the ridges will be
chosen as the basis for our significance test, denoted X and
referred to as the significance parameter. Assume that the
probability distribution of X is proportional to the function

gX(x;ω) (78)

which we will take to be a function of nondimensional ridge-
averaged frequency, denoted ω in this section for conve-
nience; here, we use “g” rather than the standard notation
“f” because the latter symbol is already being used for the
Coriolis frequency. Whereas probability distributions are de-
fined to integrate to one, here we will make a different choice.
The function gX(x;ω) is normalized such that, for a chosen
nondimensional frequency bandwidth ∆ω, the integral

∞∫
−∞

gX(x;ω)dx=
ridge points with |ω∗−ω| ≤ 1

2∆ω

data points

(79)

gives the ratio of the total number of ridge points within the
band to the total number of data points, accounting for the
possibility of multiplicities greater than one. In other words,
this integral gives average number of ridge points per data
point, or ridge density. Note, this is not quite the same as
the probability of data point being a ridge point, because a
data point could be a member of more than one ridge. The
dependence of gX(x;ω) on the choice of ∆ω is implicit.

The cumulative distribution function corresponding to
gX(x;ω) is obtained by an integration to a particular x value,

GX(x;ω)≡
x∫

−∞

gX(u;ω)du. (80)

Due to our choice of normalization, GX(x;ω) is the density
of all ridge points in the band |ω∗−ω| ≤ 1

2∆ω for which the
significance parameter X takes on a value smaller than or
equal to x. Integrating the density function in the opposite
direction leads to a less familiar function

SX(x;ω)≡
∞∫
x

gX(u;ω)du (81)

which is known as the complementary cumulative distri-
bution function or, more colorfully, the survival function.
SX(x;ω) gives the density of all ridge points in the frequency
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band |ω∗−ω| ≤ 1
2∆ω for which the significance parameter

X takes on a value greater than x.
Comparing the estimated survival function of the data to

that of the noise will allow us to assess whether an event’s
properties are extreme enough to warrant classifying it as sta-
tistically significant. We will chooseX = Lξ

4
, the product of

the ridge length L and the fourth power of the ridge-averaged
circularity ξ, to be the significance parameter, for reasons to
be discussed shortly. The construction of our measure of sig-
nificance is described with reference to Fig. 14. In panel (a),
a black dot is placed marking the joint location of ω∗ andLξ

4

for each ridge in the data, and in (b) the same is done for a
noise dataset of the same size as the original data. These dots
are the sampled expressions of the density function of the
data gX(x;ω) and also that of the noise, denoted gεX(x;ω).

The density functions gX(x;ω) and gεX(x;ω) are then es-
timated by forming histograms of X = Lξ

4
as a function of

nondimensional frequency. These are formed in 1000 over-
lapping nondimensional frequency bands with the bandwidth
set to ∆ω = 1/4, and with 2000 bins between zero and 20
for the values of Lξ

4
. For better resolution of the noise his-

togram, it is computed using ten different realizations, then
divided by ten to ensure that it reflects the average properties
of a dataset of the same size as the original. Cumulatively
summing these two histograms along the y-axis, but from
top-to-bottom instead of the more usual bottom-to-top, leads
to estimates of the survival functions ŜX(x;ω) and ŜεX(x;ω)

for the data and noise for the caseX = Lξ
4
. These are shown

as the colored shading in Fig. 14a and b.
The ratio of the estimated survival function of the noise to

that of the data

ρX(x;ω)≡ Ŝ
ε
X(x;ω)

ŜX(x;ω)
(82)

is a measure of statistical significance that will be called the
density ratio, shown for X = Lξ

4
in Fig. 14c. Consider the

contour ρX(x;ω) = 0.1, the white line in this panel. Ridges
with properties above this line occur in each frequency band
only ten percent as often in the noise dataset as in the orig-
inal data. Therefore, only one in ten events in the data with
properties above this line is expected to be a false positive
under the null hypothesis of the isotropic velocity spectrum.
Similarly, events above the black contour at ρX(x;ω) = 0.01
occur only 1% as often in the noise as in the data, thus only
one in one hundred is attributable to the null hypothesis.

The significance parameter X has been chosen as follows.
Either L or

∣∣ξ∣∣ is a natural choice, since ridges associated
with eddies are distinguished from those arising from the
noise by being generally longer in duration as well as exhibit-
ing polarizations that are more consistently near-circular.
However, the events judged as being significant using ei-
ther X = L or X =

∣∣ξ∣∣ are substantially non-overlapping,
which suggests creating a parameter that combines infor-

mation about both length and polarization. The ridge length
weighted by a power of the circularity, X = L

∣∣ξ∣∣α, consti-
tutes such a combined parameter. Varying α, we find that
α= 4 corresponds to a maximum in the number of total os-
cillations – that is, the sum of L over all ridges – judged to be
significant at the ρ= 0.1 level, indicating that this choice is
efficiently combining information from L and

∣∣ξ∣∣. Thus, we

chooseX = Lξ
4

here. However, because different choices of
significance parameter may be appropriate for different situa-
tions, the distributed dataset includes ρ values forX = L

∣∣ξ∣∣α
for α= 0 through six, as well as for X = |ξ|.

In a previous version of this analysis, we used a signif-
icance criterion computed on the L vs.

∣∣ξ∣∣ plane, grouping
all events together regardless of frequency. However, simula-
tions of noise with different spectral slopes showed that the
generation of ridges due to noise is more efficient for white
noise and less efficient for more strongly sloped processes.
Consequently, our original frequency-independent criterion
tended to exaggerate somewhat the significance of events at
low frequencies, where the velocity spectra are generally flat,
compared to higher frequencies where the spectra are sloped.
The refined criterion developed here corrects this shortcom-
ing, while still including information from both L and

∣∣ξ∣∣.
In establishing a measure of statistical significance, we

have refrained from using the language of statistical hypoth-
esis testing, e.g., significance levels, p-values, etc. In statisti-
cal terminology, the probability under the null hypothesis of
observing a value in a parameter that is more extreme than
a given observation is known as the p-value of that obser-
vation. The ρ-value by contrast, gives the estimated proba-
bility that a detected event is actually a false positive that
has been incorrectly accepted; these are related but different.
The ρ-value could also be seen as being similar to the “false
discovery rate” in multiple hypothesis testing introduced by
Benjamini and Hochberg (1995). Because it seems natural to
approach this problem in terms of the densities of detected
events, our proposed measure of statistical significance dif-
fers from those commonly used in the hypothesis testing lit-
erature. Formally connecting these ideas would be a useful
exercise, but is outside the scope of the present paper.

4.7 Results

Excluding now those ridges having a density ratio below
ρX(x;ω) = 0.1 for X = Lξ

4
(the white contour in Fig. 14c),

as well as those with nondimensional frequencies below
ω∗ <−1/2 (the vertical gray line) in order to reject inertial
oscillations, we obtain 1033 statistically signficant ridges re-
maining, or about 41% of the 2520 noninertial ridges. In the
noise, by construction, there are only about 10% as many
ridges meeting these criteria in a typical dataset of the same
size as the original data. The distribution of events from this
statistically significant, noninertial ridge set, termed the eddy
ridges, will be briefly described in this section.
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Figure 14. A significance criterion for wavelet ridges in the Gulf of Mexico surface drifter dataset. The black dots in panel (a) show the
locations of all ridges on the plane of the ridge-averaged nondimensional frequency |ω∗| versus Lξ

4
, the product of ridge duration and

fourth power of the ridge-averaged circularity. Bin-averaging in nondimensional frequency bins of width ∆ω = 1/4, and then cumulatively
summing along the y-axis from high values to low values, leads to an object called the complementary cumulative distribution function or
survival function SX(x;ω) for X = Lξ

4
, constructed here to be a function of frequency. The logarithm of the survival function is shown as

the colored shading in (a), with white lines being the 10−5 and 10−6 contours. Panel (b) is the same as (a) but for the noise dataset. Since
this dataset is ten times the size of the observations, for display purposes only 10% of the dots are shown, and the histogram is divided by a
factor of 10, thus making these panels (a) and (b) directly comparable. Finally the logarithm of the ratio ρX(x;ω)≡ ŜεX(x;ω)/ŜX(x;ω) is
shown in (c). The heavy white line in this panel marks the ρX(x;ω) = 0.1 contour such that only one out of ten events above this curve is
expected to be a false positive. Similarly, the black line is the ρX(x;ω) = 0.01 contour, above which only one out of 100 events is expected
to be a false positive. Dots in this panel are those of the data, the same as in (a). The black and gray dots mark observed ridges falling above
the 0.01 and 0.1 contours, respectively. Those falling below the ρX(x;ω) = 0.1 contour, shown as white dots, are judged to be statistically
insignificant. The thin vertical gray line in all panels marks ω∗ =−1/2. Events to the left of this line likely represent inertial oscillations,
apparent as the prominent peak in the vicinity of ω∗ =−1, rather than coherent eddies.

Ridge-averaged properties of the eddy ridges are shown in
the right column of Fig. 12. The major feature is the asym-
metry between cyclones and anticyclones noted in the Intro-
duction. Three regimes are apparent: R< 10 km, dominated
by long-lived, highly nonlinear cyclones, with only relatively
weak and short-duration anticyclones; 10 km <R< 50 km,
dominated by nonlinear and very long-lived cyclones with
nondimensional frequencies ω∗ often greater than one-sixth,
again with only relatively brief anticyclones, and with a no-
table lack of anticyclones at strong negative frequencies be-
low ω∗ =−1/6; and R> 50, which is increasingly domi-
nated by long-lived anticyclones as one moves to larger radii.

The ellipses corresponding to these eddy ridges are those
shown in the earlier Fig. 2. The ellipse inversion equations,
Eqs. (29)–(32), are applied to the extracted signals, and the
resulting ellipses are plotted with a temporal spacing equal
to the estimated period 2π/|ω̂(t)|. The center of each ellipse,
with latitude Φ̂m� (t) and longitude Θ̂m

� (t), is then estimated
as the residual after subtracting the ridge from the full tra-
jectory, see Eqs. (58) and (59). Ridges are colored by their
nondimensional instantaneous frequency magnitude |ω∗(t)|,

which when multiplied by two gives an estimate of the mag-
nitude of the Rossby number of the oscillatory flow.

Overall there is a striking difference in geographic distri-
bution between cyclones and anticyclones. Cyclones are con-
centrated in eastern, western, and southern Gulf of Mexico,
generally excluding the shallow shelf regions. The anticy-
clones are concentrated primarily over the Loop Current and
due west of it, corresponding to the deepest part of the basin
(see the bathymetry map in Fig. 1 of Lilly and Pérez-Brunius,
2021a), with a smaller number of events seen north or north-
west of the Loop Current. The two patterns are observed to
be generally complementary, with cyclonic events and anti-
cyclonic events occurring in largely disjoint locations.

The distribution of anticyclonic events exhibits many large
features with R> 50. Although not apparent in the map, one
may observe trains of large ellipses tending to form near the
Loop Current, then drifting westward, filling the central lati-
tudes of the Gulf. Such events are capturing the well-known
Loop Current Eddies (e.g., Elliott, 1982; Lipphardt, Jr. et al.,
2008; Hall and Leben, 2016) that form periodically as pinch-
off events from the Loop Current. From the right column of
Fig. 12, especially in panel (c), one sees that there are many
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more anticyclones than cyclones for R> 50 km, and espe-
cially for R> 100 km. In this size class one also observes a
number of long-lived, highly circular features on the anticy-
clonic side – the orange and red circles in Fig. 12 – but only
a handful of similar features on the cyclonic side.

A cluster of cyclonic activity is seen in Fig. 2 to occur in
the southwestern Gulf of Mexico, a region known as the Bay
of Campeche. The observed ellipses there span a range of
sizes, including a concentration in the large size class with
R> 50 km. This is consistent with the known presence of a
quasi-permanent vortex, the Campeche Gyre, in that region
(Padilla-Pilotze, 1990; Vázquez De La Cerda et al., 2005;
Pérez-Brunius et al., 2013), and suggests tthat the eddy el-
lipses could be employed to usefully study its variability.

Two areas of energetic cyclonic eddy activity with roughly
10 to 50 km radius ellipses – the intermediate size class in the
right-hand column of Fig. 12 – are the vicinity of the Loop
Current and the western Gulf of Mexico. In both areas, one
sees cyclonic ellipses with large nondimensional frequency
magnitudes |ω∗|, hence large Rossby numbers, as well as
long durations L; such events are almost entirely absent from
the anticyclonic side of the distribution. These events corre-
spond in the Fig. 2b to the yellow to orange colors, with many
medium-sized ellipses occurring in long trains. In the east,
these align with the periphery of the Loop Current, and may
be identified with the so-called Loop Current Frontal Eddies
or LCFEs that form in the strong cyclonic shear zone on the
current’s flank (e.g., Le Hénaff et al., 2014). Cyclones with
similar sizes and degrees of nonlinearity are observed in the
west in Fig. 2b, with a notable absence at central longitudes.
Whether this gap is a real feature or the result of a sampling
issue is not immediately clear. Cyclones are known to occur
in the western Gulf of Mexico, although most commonly in
its northwest corner, see e.g. Merrell Jr. and Morrison (1981)
and Hamilton et al. (2002). The similarity with LCFE’s sug-
gests investigating the possibility of a similar origin for the
western cyclones, either in the shear zone of the Loop Cur-
rent or in those of the Loop Current Eddies.

Cyclone vs. anticyclone asymmetries at the mesoscale are
expected on theoretical grounds (Matsuura and Yamagata,
1982; Cushman-Roisin and Tang, 1990; Arai and Yamagata,
1994; Cho and Polvani, 1996), and have also been reported in
observations in studies that apply the spin parameter method
to surface drifters (Griffa et al., 2008; Lumpkin, 2016). The
details of this asymmetry would be expected to vary region-
ally. In our Gulf of Mexico eddy census, the occurrence of
intense mesoscale cyclones that are much smaller than the
anticyclones is perhaps not surprising, since at least some of
the cyclones are believed to form from instabilities on the
periphery of larger anticyclonic structures. Further investi-
gation of the reasons behind the observed asymmetry, and
the extent to which it generalizes to other parts of the ocean,
would be a promising topic for future investigation.

Finally, the small-radius (R< 10 km), highly nonlinear
cyclones seen in the right-hand column of Fig. 12 are visi-

ble as the small red circles distributed throughout the Gulf of
Mexico. Far fewer events in this size class occur on the anti-
cyclonic side. In particular, events with |ω∗|> 1/2 are pop-
ulous on the cyclonic side, but dynamically forbidden (and
excluded from the census) on the anticyclonic side. While
it is well known through remote sensing and sun-glint pho-
tographs that small cyclonic eddies are ubiquitous in the up-
per ocean (Munk et al., 2000; Eldevik and Dysthe, 2002),
in situ observations of these so-called “spiral eddies” have
proved elusive. See Lumpkin and Elipot (2010) for a rare
example of a submesoscale vortex observed through surface
drifters, their Fig. 6, due to “an exceptional and extremely
anomalous case” of two drifters trapped in the same 10 km
eddy. The results here, in which we can detect submesoscale
features in individual trajectories, suggests that the fact that
they are not more commonly seen in drifter trajectories is the
result of a technical limitation in existing analysis methods,
and not because they are not present or not resolved.

5 Conclusions

This paper has presented a method for extracting the dis-
placement signals associated with coherent eddies, and for
estimating the properties of the features that generated those
signals, from large Lagrangian datasets. The method is
rooted in ideas taken from the signal analysis literature, such
as the analytic signal, modulated oscillations, and wavelet
analysis. As these ideas are not yet all widely known in
oceanography, they were introduced in some detail and dis-
cussed in the context of the eddy-detection problem.

A modification of an existing analysis method, multivari-
ate wavelet ridge analysis, to prohibit sign transitions be-
tween cyclonic and anticyclonic polarizations renders it more
suitable for this application. The main innovation, however,
is a means of determining statistical significance, which is
done through the creation of a null hypothesis in the form of
a noise dataset constructed to match the basic statistical prop-
erties of the real-world data, yet lacking organized oscillatory
features arising from spectral peaks. A significance criterion
is proposed in which the distribution of a combined param-
eter, reflecting both the number of oscillations executed as
well as the degree of circular polarization, in the data is com-
pared with that of the noise as a function of frequency, in
order to identify parameter regimes in which the noise is un-
likely to have generated the observed features.

The statistically significant features emerging from an ap-
plication to a large surface drifter dataset from the Gulf of
Mexico were briefly discussed. It is clear that there is much
to be learned about the Gulf of Mexico eddy field through
studying these eddy ellipses. Here, in order to maintain a fo-
cus on the analysis method, the attention paid to physical re-
sults is intentionally kept to a minimum. These will be thor-
oughly investigated in a follow-on paper.
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The incorporation of a criterion for determining statisti-
cal significance makes possible the application of the eddy-
extraction method to very large datasets. This has great po-
tential not only for studying eddies in real-world data with a
new level of detail, but also for providing a novel means of
comparing eddy characteristics from numerical models with
those from observations. In particular, the eddy census for the
Gulf of Mexico indicates that large-scale studies of subme-
soscale cyclonic vortices from in situ data are now possible
for the first time. The distribution of a self-contained analysis
routine, discussed below, is aimed to help facilitate the usage
of this method by other investigators.

It is intended that this paper provide the groundwork for a
multi-paper effort to solve the eddy extraction and property
estimation problem as completely and rigorously as possible.
Future efforts will include (i) examining the behavior of the
method with regard to exact analytic vortex solutions such
as those reviewed in Lilly (2018); (ii) exploring the poten-
tial of ridge analysis in the light of the connections estab-
lished by Lilly (2018) between Lagrangian ellipse properties
and the kinematic flow properties of vorticity, strain, and di-
vergence; (iii) understanding the bias estimate of Lilly and
Olhede (2012a) in terms of eddy dynamics through applica-
tions to idealized numerical models as well as to analytic so-
lutions; and finally (iv) connecting this Lagrangian trajectory
perspective to the rigorous Lagrangian field theory of Haller
and Beron-Vera (2012) and related works.

Code availability. A freely available software package

All numerical code required for the analysis carried out
in this paper is distributed to the community as a part
of jLab, the lead author’s open source data analysis tool-
box for Matlab, available at GitHub (https://github.com/
jonathanlilly/jLab, last access: 16 March 2021) and Zenodo
(https://doi.org/10.5281/zenodo.4547006, Lilly, 2021) and
with extensive documentation found at http://www.jmlilly.
net/doc/jLab.html (last access: 16 March 2021).

The centerpiece needed for this work is a new function,
eddyridges, that implements the one-sided multivariate
wavelet ridge analysis on an entire multi-instrument La-
grangian dataset. This may be applied either to latitude–
longitude trajectories, as we have done here, or to trajec-
tories on the x–y plane such as may be output from a nu-
merical model. This function extends and greatly simplifies
the approach used in Lilly and Gascard (2006) and Lilly
et al. (2011), which involved directly calling the lower-level
ridgewalk function implementing the ridge analysis. Con-
struction of the noise dataset is done through the use of the
function noisedrifters, and the significance levels are
then assessed through eddylevels. Assorted other func-
tions for computing ellipse properties, integration and differ-
entiation on the sphere, and so forth are also included; see the
jEllipses and jOceans modules. Finally, the toolbox

contains scripts for creating the gomed.nc dataset, called
make_gomed, and for generating all figures in this paper,
called makefigs_gulfcensus.

Whereas for simplicity the handling of spherical geom-
etry has been discussed herein using a small angle expan-
sion about a fixed point, the numerical implementation in
eddyridges takes a different approach that offers better
performance for trajectories covering large distances on the
surface of the earth. This algorithm, using a routine called
spheretrans, which works as follows. First, latitudes and
longitudes are converted to a position in three-dimensional
space, and the wavelet transform of that displacement signal
in three dimensions is taken. The wavelet transform is then
projected back onto a plane tangent to the earth, centered on
the time-varying center of the oscillation in each band of the
transform considered separately. The multivariate ridge anal-
ysis is then applied to the resulting bivariate wavelet trans-
form vector. Thus the method uses a projection about a mov-
ing point that is suitable for each oscillation considered sep-
arately, rather than a single fixed point for an entire dataset.

Data availability. The Gulf of Mexico Eddy Dataset (GOMED)

The dataset utilized in this paper is the consolidated
surface drifter dataset created by Lilly and Pérez-Brunius
(2021a) and referred to as GulfDriftersAll therein. While
a subset of this data is proprietary and unfortunately can-
not be redistributed, the bulk of that dataset is publicly-
available and is released to the community as the NetCDF
file GulfDriftersFree, available at https://doi.org/10.5281/
zenodo.3985916 (Lilly and Pérez-Brunius, 2021b).

The results of applying the multivariate wavelet ridge anal-
ysis to GulfDriftersAll is distributed to the community as the
Gulf of Mexico Eddy Dataset (GOMED) at https://doi.org/
10.5281/zenodo.3978803 (Lilly and Pérez-Brunius, 2021c).
In keeping with conditions stipulated by the primary funding
agent, this dataset is made freely available for academic use
with the agreement that it shall not be sold, profited from, or
redistributed. Table A1 provides an overview of all variables
contained in GOMED, which is distributed as the NetCDF
file gomed.nc. Variables include extracted eddy displace-
ment signals for all ridges, significant or not, detected using
the settings described herein, as well as the time-varying el-
lipse parameters and estimated ellipse center location. The
data includes eddy displacement signals for all ridges, as
well as the time-varying ellipse parameters and estimated el-
lipse center locations. The instantaneous frequency is also in-
cluded, as is the instantaneous bias estimate derived by Lilly
and Olhede (2012). The data are organized as appended tra-
jectory data that can be readily separated through the use of
the ids field, or by calling the jLab function ncload. The
ridge length L and ridge-averaged circularity ξ are also in-
cluded, as is the measure of statistical significance ρ.

https://github.com/jonathanlilly/jLab
https://github.com/jonathanlilly/jLab
https://doi.org/10.5281/zenodo.4547006
http://www.jmlilly.net/doc/jLab.html
http://www.jmlilly.net/doc/jLab.html
https://doi.org/10.5281/zenodo.3985916
https://doi.org/10.5281/zenodo.3985916
https://doi.org/10.5281/zenodo.3978803
https://doi.org/10.5281/zenodo.3978803
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Appendix A: Construction of the synthetic signal

The synthetic signal shown in Fig. 4a is formed using the
ellipse generation equation, Eq. (1), with parameters

φ(t) = ωot(1 + t/T ) (A1)

θ(t) =
π

2
−ωot/10 (A2)

κ(t) = κo (1 + 5t/T ) (A3)

ξ(t) =−

{
1 t < T/4√

1−
[

1
3 (4t/T − 1)

]2
t≥ T/4

(A4)

where ωo = 0.05 rad day−1, κo = 10 km, and T =
1000 days, the latter being the signal duration. The semi-axes
lengths are recovered via Eq. (33) and (34). These choices
lead to a clockwise circulating ellipse with a linearly grow-
ing amplitude, κ(t), that increases sixfold over the signal
duration T , and also a linearly increasing orbital frequency,
ωφ(t) = φ′(t) = (1 + 2t/T )ωo, that doubles. The ellipse is
purely circular for the first quarter of its duration, |ξ(t)|= 1.
After that, it begins to become increasingly elliptical, reach-
ing a vanishing circularity ξ(t) = 0 at t= T , while steadily
precessing in the clockwise direction at a rate that is 10% of
its initial orbital frequency, ωθ(t) = θ′(t) =−ωo/10.

The time-varying period corresponding to this signal,
shown in Fig. 8b as the thin gray line, is computed
by differentiating the generating ellipse parameters as
2π/ [φ′(t) + ξ(t)θ′(t)]. This is based on the form of Eq. (37)
for the instantaneous frequency in terms of the canonical el-
lipse parameters.

The composite signal shown in Fig. 5 is constructed by
adding the elliptical signal generated above to (i) a uniform
westward drift at 0.5 cm s−1 plus (ii) a stochastic com-
ponent. For the latter, we use a Matérn velocity process,
shown by Lilly et al. (2017) to be equivalent to damped frac-
tional Brownian motion, as implemented by the jLab func-
tion maternoise. Referring to Eq. (47) in that reference,
the velocity standard deviation σ is set to σ = 0.25 cm s−1,
the spectral slope parameter α is chosen as α= 1 giving a
high-frequency decay of ω−2, and the damping parameter λ
is set to λ= 0.1 days−1. This velocity process is then cumu-
latively summed to generate a displacement signal.
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Symbols used in this paper and in GOMED dataset

Symbol Variable Meaning
Wavelet-related symbols
β,γ — Wavelet order parameter β and shape parameter γ, set here to γ = 3 Eq. (42)
ψβ,γ(t) — Time-domain generalized Morse wavelet Eq. (44)
Ψβ,γ(ω) — Frequency-domain generalized Morse wavelet Eq. (42)
ωβ,γ — Peak frequency ωβ,γ ≡ (β/γ)1/γ at which |Ψβ,γ(ω)| is maximized Eq. (44)
Pβ,γ — Nondimensional wavelet duration Pβ,γ =

√
βγ Eq. (45)

aβ,γ — Normalizing constant aβ,γ ≡ 2(eγ/β)β/γ giving Ψβ,γ(ωβ,γ) = 2 Eq. (43)
w(t,s) — Wavelet transform of a univariate signal Eqs. (47)–(48)
w(t,s) — Wavelet transform of a vector-valued signal Eq. (52)
Per-ridge quantities
— ridge_id Ridge ID number —
— segment_id ID of segment number from within GulfDriftersAll —
— drifter_id ID of originating drifter from within GulfDriftersAll —
— row_size Number of observation points within each ridge —
L L Ridge length in number of oscillations Eq. (62)
ω∗ omega_ast_bar Ridge-averaged nondimensional instantaneous frequency ω∗(t) Eq. (76)
ξ xi_bar Ridge-averaged circularity ξ(t) Eq. (76)
R R_bar Ridge-averaged geometric mean radius R(t) Eq. (77)
V V_bar Ridge-averaged kinetic energy velocity V (t) Eq. (77)
ρ rho Ridge significance levels computed using L, L|ξ|, L|ξ|4, ..., L|ξ|6, and |ξ| Eq. (82)
Along-ridge timeseries
— ids Ridge ID number, same as ridge_id, repeated for all data points —
— time Time in days since 00/00/0000 —
— drogue Drogue status as reported in GulfDriftersAll dataset —
— filled Data fill status as reported in GulfDriftersAll dataset —
Φ(t) lat Observed latitude of trajectory segment during ridge Eq. (38)&(40)
Θ(t) lon Observed longitude of trajectory segment during ridge Eq. (38)&(41)
Φ̂�(t) latres Estimated time-varying central latitude of ridge Eq. (58)
Θ̂�(t) lonres Estimated time-varying central longitude of ridge Eq. (59)
x?(t) x_star Eastward displacement associated with eddy ellipse Eqs. (39)&(55)
y?(t) y_star Northward displacement associated with eddy ellipse Eqs. (39)&(55)
κ(t) kappa Root-mean-square ellipse radius κ≡

√
[a2(t) + b2(t)]/2 Eq. (5)

ξ(t) xi Signed ellipse circularity ξ(t)≡ 2a(t)b(t)/
[
a2(t) + b2(t)

]
, |ξ(t)| ≤ 1 Eq. (5)

θ(t) theta Orientation angle of ellipse major axis counterclockwise from x-axis Eq. (1)
φ(t) phi Phase indicating particle location with respect to major axis Eq. (1)
ω(t) omega Instantaneous frequency, given by ω(t) = φ′(t) + ξ(t)θ′(t) Eqs. (35)–(37)
ω∗(t) omega_ast Nondimensional instantaneous frequency, ω∗(t)≡ sgn(ξ(t))ω(t)/f�(t) Eq. (65)
R(t) R Geometric mean radius R(t)≡

√
a(t)b(t) Eq. (73)

V (t) V Ellipse kinetic energy velocity, with sgn(V (t)) = sgn(b(t)) Eq. (74)
χ(t) chi Estimated nondimensional bias error, Eq. (62) of Lilly and Olhede (2012a) —

Table A1. Some important symbols used in this paper, together with variables from the GOMED dataset. The quantities in the second and
third sections of the table are all the variables appearing in GOMED.
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