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Abstract. The Trajectory-Adaptive Multilevel Sampling (TAMS) is a promising method to determine probabilities of noise

induced transition in multi-stable high-dimensional dynamical systems. In this paper, we focus on two improvements of the

current algorithm related to (i) the choice of the target set and (ii) the formulation of the score function. In particular, we

use confidence ellipsoids determined from linearized dynamics in the choice of the target set. Furthermore, we define a score

function based on empirical transition paths computed at relatively high noise levels. The suggested new TAMS method is5

applied to two typical problems illustrating the benefits of the modifications.

1 Introduction

Systems from various areas of physics exhibit multiple stable states. In such multi-stable systems, transitions between states

can occur as a result of small-scale processes, usually referred to as noise-induced transitions (Ashwin et al., 2012). Typical

elements in the Earth’s system which show multistability include the Greenland Ice Sheet (Ridley et al., 2010; Robinson et al.,10

2012), the Amazon Rainforest (Higgins and Scheiter, 2012; Lasslop et al., 2016) and the Atlantic Meridional Overturning

Circulation (AMOC). In particular, the latter can undergo transitions to a collapsed state due to fluctuations in the surface

freshwater forcing (Castellana et al., 2019).

A central issue in models of these multi-stable systems is the computation of transition probabilities between different states.

If we exclude very special classes of systems, analytical results are generally not available. The Eyring-Kramers formula15

(Eyring, 1935; Kramers, 1940), which allows the computation of transition rates for reversible processes in the zero noise

limit, has been recently generalised to non-gradient systems (Bouchet and Reygner, 2016). However, this method involves the

calculation of quasi-potentials, which are generally hard to compute from their variational characterization. From the numerical

point of view, the naive method would be following a Monte Carlo approach through performing simulations of large ensembles

of trajectories and calculate transition probabilities by counting the number of trajectories which actually undergo a transition.20

However, if the occurrence of a transition is a rare event, such computations are not feasible. For instance, to sample an event

of probability p∼ 10−8, one would need to compute at least N >Nmin = 108 trajectories (Nmin ∼ 1/p), which is currently

impossible to achieve for large-dimensional dynamical systems, where time integrations are expensive.
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In order to sample tails of distributions more effectively, various methods have been developed, generally referred to as

rare-event algorithms. One of the promising methods to compute transition probabilities is the Trajectory-Adaptive Multilevel25

Sampling (TAMS) method (Lestang et al., 2018). Its underlying idea is to perform a selection/mutation process that discards

trajectories going away from a certain target set and splits/branches from those that get closer to this set. A very similar algo-

rithm (Adaptive Multilevel Splitting or AMS), based on the same approach, has been used in the study of transitions in Jupiter’s

turbulent dynamics (Bouchet et al., 2019) and in molecular dynamics to compute the expected dissociation time between a pro-

tein and its ligand (Teo et al., 2016). In these studies, AMS proved to be a powerful tool that reduced computational costs30

by several orders of magnitude. Indeed, the required minimum number of computed trajectories scales like Nmin ∼ 1/ logp

(Cérou et al., 2016), which is exponentially better than that for the Monte Carlo estimation. The aforementioned selection and

mutation process of discarding and branching trajectories is carried out according to a score function, which allows to rank

trajectories. Rolland and Simonnet (2015) have shown that the choice of the score function plays an important role for the

performance of the algorithm, even for systems with only two degrees of freedom. When using non-optimal score functions,35

especially near phase transitions, the variance of the estimated probability can peak and the convergence of the algorithm can

be slow.

The aim of this work is to propose improvements to the use of the TAMS algorithm to be able to compute transitions in

multi-stable systems more efficiently. The first type of improvement is the choice of the target set, which is often determined

from rather arbitrary thresholds. This choice also raises more broadly the question of a precise definition of what we consider a40

noise-induced transition between two (stable) states. In the second type of improvement, we propose a more systematic method

of defining a score function, i.e., based on empirical transition paths. The modified TAMS method is first applied to an idealized

gradient system, and then to a system representing a box model of the AMOC (Castellana et al., 2019).

In section 2, we describe the methods developed to improve the TAMS algorithm. In section 3 we show how to incorporate

these techniques into the definition of the score function and present the results for idealised dynamical systems and the AMOC45

model. A discussion follows in section 4, assessing the strengths and the limitations of the new TAMS method.

2 Methods

2.1 Transition probabilities using TAMS

We consider finite-dimensional dynamical systems described by stochastic differential equations (SDEs), of the following

form:50

dXt = F (Xt)dt+GdWt, (1)

where Xt ∈ Rn and F : Rn→ Rn is the drift field. The noise term Wt ∈ Rm consists of m independent Wiener processes with

the matrix G : Rn×Rm being the noise matrix.
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A prominent example of such a system is a model of a free particle moving in a two-dimensional double-well potential (with

n=m= 2). The drift term in the time-evolution equation for the variables x and y is in this case55

F (x,y)≡−∇V (x,y) = (x−x3,−y), (2)

where V (x,y) represents the potential (Fig. 1(a)). In the deterministic case (i.e. G= 0), the stable steady states of the system

are XA = (−1,0) and XB = (+1,0), while the unstable steady state is XC = (0,0). Without fluctuations, a particle starting in

XA stays in XA. However, because of the presence of unresolved processes (such as thermal fluctuations), modelled by the

noise term in the SDE, the particle can move away from XA and in some cases make the transition to the state XB . An example60

of such transition is shown in Fig. 1(b).

Figure 1. (a) Iso-potential contours corresponding to the double-well potential (2). The two stable steady states XA = (−1,0) and XB =

(+1,0) are marked with a filled circle and a cross, respectively. The saddle XC = (0,0) is indicated by a circle. (b) Example of a noise-

induced transition from XA to XB for a particle moving in the double-well potential in (a). The noise matrix in the general SDE (1) is chosen

as G= σI , with σ = 0.32. The red circle denotes an arbitrarily defined target set B.

The transition probability that a trajectory starting in XA reaches a neighbourhood B around XB before time T is indicated

by P (τB < T |X0 = XA). Here, τB denotes the stopping time associated with reaching B. The TAMS algorithm is based on

a selection and mutation process of discarding and branching trajectories, which are ranked according to a score function

φ : Rn×R→ R. For a given state (X, t) ∈ Rn×R, φ(X, t) is supposed to measure how likely it is to start in (X, t) and reach65

B before time T . As a consequence, if the choice of score function is successful, the probability that a trajectory reaches the

target set B keeps increasing at each iteration of the algorithm, which is why this method is more efficient than brute-force

techniques. A visual representation of the algorithm is given in Fig. 2 and a step-by-step description is provided in Appendix

A (more details can be found in Lestang et al. (2018)).
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Figure 2. Illustration of the TAMS algorithm. First, simulate N trajectories starting in XA. (N=3 blue trajectories in the figure). The

trajectories are ranked according to their score φi, which is the maximum value of the score function φ along the trajectory. Then, at each

iteration, the trajectory with lowest score (1 in the figure, with score φ1) is discarded. It is replaced by picking a trajectory uniformly at random

from the other ones (2 in the figure), then computing the earliest position at which it reaches a higher score than the discarded trajectory

(orange dot) and finally using this position as the branching point for the new trajectory (1′). This is repeated until all the trajectories reach

B or the number of iterations reaches a predefined limit.

2.2 Score functions70

Consider a general SDE (1) and two stable states XA and XB of the corresponding deterministic system. The TAMS algorithm

(cf. Appendix A) needs a score function to be defined, which allows to rank trajectories, and select the ones to discard. The

optimal score function φcom(X, t), i.e. the score function that minimises the variance of the probability estimator, is called the

static committor. Its generic expression is given by the following conditional probability (Lestang et al., 2018):

φcom(X, t) = P (τB < T |X, t), (3)75

where T is again the fixed duration of the trajectories and τB is the stopping time associated with reaching the target set B. In

other words, φcom(X, t) is the probability that a trajectory starting in X at time t reaches B before time T . This expression is

quite natural because ideally, the score of (Y,s) should be higher than the score of (X, t), i.e., φ(X, t)≤ φ(Y,s), if and only if

P (τB < T |X, t)≤ P (τB < T |Y,s). This condition is clearly satisfied by φcom (and in fact any increasing function of φcom).

However, the expression given in eq. (3) is generally unusable because it is the very quantity that we want to compute. For80

instance, φcom(XA,0) is precisely the transition probability that TAMS estimates. As a conditional probability of the form

P (Y,s|X, t), the committor φcom(X, t) satisfies the backward Fokker Planck equation (Lestang et al., 2018):

∂φ

∂t
+F · ∇φ+

1

2

∑
i,j

Gij
∂2φ

∂Xi ∂Xj
= 0, with boundary conditions

∀X ∈ ∂B, ∀t ∈ [0,T ], φ(X, t) = 1,

∀X ∈ Rn \B, φ(X,T ) = 0.
(4)
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However, solving the backward Fokker Plank equation in systems with many degrees of freedom is computationally infeasible.

Moreover, even if the committor is available on a grid used for the discretization of (4), using interpolation to evaluate it during85

a TAMS loop can also have a prohibitive computational cost.

Bouchet et al. (2019) made use of a score function based on the distances of the state X from the starting state XA and the

destination equilibrium XB , respectively: it is defined as

φdist(X)≡

dA/2dB if dA < dB

1− dB/2dA otherwise
with dA ≡ ‖X−XA‖, dB ≡ ‖X−XB‖ (5)

Alternatively, a Gaussian-shaped score function φgauss was proposed in Baars (2019). It is defined as:90

φgauss(X)≡ η− ηe−β‖X−XA‖2/‖XC−XA‖2 + (1− η)e−β‖X−XB‖2/‖XC−XB‖2 (6)

with η ≡ ‖XC −XA‖/‖XA−XB‖. Here β ∈ R is a parameter controlling the decay and XC is the saddle state of the system.

Due to the general expressions of φgauss and φdist, these score functions can be used in systems of any dimension.

2.3 Definition of the target set

Once the score function has been chosen, a threshold needs to be defined for the TAMS algorithm to converge, so that the95

occurrence of a transition can be detected. In other words, we do not expect each trajectory that undergoes a transition to reach

exactly the destination equilibrium XB , but rather a neighbourhood of it (B). The target set B can then be defined according

to a level set φ target of the score function φ:

B = {X ∈ Rn | φ(X)> φ target} (7)

However, different score functions φ and different level sets φ target correspond to different target sets B, which can differ in100

volume and in shape. Moreover, often the level set φ target is defined somewhat arbitrarily. For example, by using φgauss with

target score φ target = 0.85,0.9 or 0.95, we found that the average of the transition probability estimator for a two-dimensional

double-well potential system (2) can vary up to 30%. This may not be a concern if one only cares about the order of magnitude

of the transition probability but it will be problematic if quantitative comparisons are needed. Moreover, a poor choice of target

set can lead to inaccuracies when a trajectory has a score greater than φ target without actually making the transition in all105

the degrees of freedom. Thus, there is a need for defining a canonical choice of a target set B, which needs to fundamentally

address what is considered to be a noise-induced transition.

For this purpose, we use the concept of confidence ellipsoid. This is an ellipsoidal neighbourhood around a stable equilibrium

state, inside which a trajectory subject to the locally linearized dynamics stays, within a certain confidence level (Cowan,

1998). Consider a general SDE system given by (1). Because the drift vanishes at an equilibrium state F (XB) = 0, its first110

order approximation around the equilibrium state XB via Taylor expansion is:

F (X) =A(XB)(X−XB) +O(‖X−XB‖2), (8)
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Figure 3. Confidence ellipsoids for the two-dimensional double-well potential system (2), with confidence level 1−α= 0.95 and noise

matrixG= 0.25I , where I is the identity matrix in R2. Two trajectories of duration T = 200 are shown: one (blue) is initialised at the initial

state and one (orange) at the target state. 93% of the points composing a trajectory are inside their corresponding ellipsoid. This is lower than

the presribed confidence level because away from the equilibrium, the first order dynamics from which the confidence ellipsoids are derived

does not hold.

where A(XB) =∇F (XB) ∈ Rn×n is the Jacobian matrix of F at XB . Using a translation X̃ = X−XB , the first order approx-

imation of the SDE is then:

dX̃t =A(XB)X̃tdt+GdWt. (9)115

Because the drift term has been linearized, this is the equation for an n-dimensional Ornstein-Uhlenbeck process. The stationary

probability density function (PDF) f of the approximating process is Gaussian (Cowan, 1998) and given by

f(X) =
1

(2π)
n
2 |CB |

1
2

e
− 1

2‖X−XB‖2
C
−1
B , (10)

where CB ∈ Rn×n is the covariance matrix of the system calculated in XB and ‖.‖C−1
B

the norm induced by its inverse

C−1B , defined by ‖X‖2
C−1

B

≡ X>C−1B X. The covariance matrix CB can be thought heuristically as the matrix containing the120

correlations E(xixj) (with X = (x1, . . . ,xn)), which generalises the notion of variance in n-dimensions. CB is obtained by

solving the Lyapunov equation (see Kuehn, 2012, for the full derivation):

A(XB)CB +CBA(XB)>+GG> = 0 (11)

We then define the confidence ellipsoid, which has C−1B as shape matrix, as follows

E = {X ∈ Rn | ‖X−XB‖2C−1
B

≡ (X−XB)>C−1B (X−XB)<Qα}, (12)125
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where Qα is the quantile of confidence level 1−α of the n-dimensional χ2 distribution (Cowan, 1998); usually 1−α= 0.95.

The directions of symmetry of the ellipsoids are given by the eigenvectors of the covariance matrix CB and the radii are given

by the corresponding eigenvalues and the confidence level 1−α. Intuitively, the greater the eigenvalue, the more a trajectory

fluctuates in the given direction.

The (1−α)-covariance ellipsoid represents the n-dimensional volume where a trajectory is confined with confidence level130

1−α, provided its dynamics is well approximated by the first order expansion at the equilibrium point. An illustration of the

0.95-confidence ellipsoid for the double-well potential is shown in Fig. 3. The confidence ellipsoid E constitutes a way to

meaningfully define the target set B with minimal arbitrary parameters. As shown in Fig. 3, when initializing a trajectory at

XA or XB in the two-dimensional double-well system, it stays inside the correspondent ellipsoid with a certain confidence

1−α= 0.95. In the next section, we show how to incorporate this choice of target set in the score function φ.135

2.4 Estimating the typical transition path using histograms

The second line of improvement of the score function concerns the estimation of typical transition paths of the dynamical

system. In the zero noise limit, the Freidlin-Wentzell theory of large deviations predicts that transition paths cluster around the

most probable transition path, called the instanton (Freidlin and Wentzell, 1984). On the other hand, in the finite noise regime,

transition paths may deviate from the instanton. Moreover, instantons may be computationally inaccessible for systems with140

many degrees of freedom. Therefore, it can prove more relevant to estimate empirically the typical transition path that the

system follows at a given finite noise level, which is the approach we follow here.

The idea is to first accumulate transition paths at a noise level where transitions are frequent enough (typically p > 10−3)

so that any sampling method (direct Monte Carlo or TAMS with naive score functions) can be used. Then, we compute

the spatial histogram of the transition paths over a discretized phase space using n−dimensional boxes. This provides the145

spatial distribution of the transition paths, which is concentrated around a typical transition path, reminiscent of an instanton

phenomenology, which was also observed in more complex systems (Bouchet et al., 2019). From the spatial histogram, we

extract a typical transition path.

The main steps of the path-finding algorithm are listed below:

(i) the trajectory of the typical transition path starts in the box of the histogram containing the initial state XA;150

(ii) the next box in this trajectory corresponds to the neighbour which has the highest nonzero histogram value but which has

not already been visited by the typical transition path;

(iii) the algorithm stops if it reaches the box containing the target state XB .

In addition, the full typical path estimation algorithm uses a self-correcting method to avoid dead ends when there are no valid

neighbours to be the next point in the trajectory. The spirit of the path-finding algorithm is similar to the depth-first search155

algorithm (Cormen et al., 2009). We found that, as long as the histogram is not fragmented, i.e., there is a sufficient number of

accumulated trajectories or large enough histogram bins, the algorithm converges. Possible artefacts created by this estimation
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include spiralling near the initial equilibrium (because of the concentric shell structure of the local probability density function

(10) and zigzagging at the histogram box size. They can be both addressed by a clean-up algorithm: starting from the first box,

at each box Xj , if the trajectory goes back to one of its neighbours at a later time, with Xj+k being the latest neighbour visit,160

we erase the points Xj+1, . . . ,Xj+k from the trajectory.

In a general system, transitions induced at high noise do not necessarily follow similar transitions paths at lower noise levels.

However, high-noise estimates are robust as long as there is no drastic change in the behavior of the system at an intermediate

noise level, which would signal a physical phase transition in the system (Rolland and Simonnet, 2015). Moreover, we can

check a posteriori if such a transition occurs by starting at high noise, gradually decrease the noise level and apply the empirical165

estimation of the typical path or simply compare histograms each time the noise level is decreased.

3 Results

In this section, we apply both modifications to TAMS (ellipsoids in the score function and typical path estimation) to different

problems.

3.1 Incorporating ellipsoids in the score function170

First, we apply the modified TAMS method to the two-dimensional double-well system defined by (1). As outlined in Sec-

tion 2.3, given any score function φ, we want the target set B = {X ∈ Rn | φ(X)> φ target} to coincide with the 0.95-

confidence ellipsoid E associated with the equilibrium state XB . However, because the contour levels of φ, in general, do

not have the shape of an ellipsoid, there is no suitable choice of φ target such that B coincides with E . Here, we propose a

general method to modify any score function φ so that we are able to choose the target set B to be exactly the 0.95-confidence175

ellipsoid E of XB . We first compute the level φ̃ target, defined as the minimum of the score function φ on the confidence

ellipsoid E :

φ̃ target ≡min
X∈E

φ(X) (13)

such that the set {X ∈ Rn | φ(X)> φ̃ target} contains the ellipsoid E and is tangent to E . This can be done numerically by

generating a mesh of points around XB , then selecting the points inside E by comparing their norm ‖X−XB‖2C−1
B

with the180

quantile Qα and finally computing the minimum φ̃ target of φ on these points. Then, define the modified score function φ̃ in

the following way:

φ̃(X)≡


1 if X ∈ E i.e. ‖X−XB‖2C−1

B

<Qα

φ̃ target if φ(X)> φ̃ target and X 6∈ E

φ(X) otherwise

(14)
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Figure 4. (a) Contour levels of the modified score function φ̃gauss, for the two-dimensional double-well system represented in (1), according

to the procedure described in eq. 14. The level set φtarget (dotted blue line) of the former score function φgauss is tangent to the ellipsoid.

The level set φ̃target (dotted red) of the modified score function φ̃gauss coincides with the ellipsoid. (b) Same plot, for the score function

φ̃dist.

The target set B = {X ∈ Rn | φ̃(X)> φ̃ target} for the modified score function φ̃ turns out to coincide with E . We apply this

procedure on both the score functions φgauss and φdist and the results for the improved score functions φ̃dist and φ̃gauss are185

shown in Fig. 4.

3.2 Designing a score function based on a typical transition path

In order to show how to design a score function based on a typical transition path, we consider a two-dimensional system

slightly less trivial than the double-well system, i.e. a two-dimensional system with the following potential:

V (x,y) = 0.1x2 + 0.05y2︸ ︷︷ ︸
global confinement

+30e−(x/2)
2

(1 + tanh(15− y))︸ ︷︷ ︸
potential barrier at y<15, x=0

+

− 10e((x+6)/2)2−(y/2)2︸ ︷︷ ︸
left potential well

−10e−((x−6)/2)
2−(y/2)2︸ ︷︷ ︸

right potential well

, (15)190

depicted in Fig. 5(a). It consists in two energy minima at XA ≈ (−5.77,0) and XB ≈ (5.77,0) and a potential barrier spanning

y < 15 and at x= 0. The dynamics is then given by the SDE (1), with drift F (Xt) =−∇V (Xt).

The dynamics of the system is quite interesting, as it exhibits two distinct regimes for transition paths, depending on the noise

level σ (assumingG= σI). At high noise (σ2�∆V , where the potential barrier height is ∆V = V (0,0)−VA), trajectories are
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likely to cross the potential barrier. At low noise (σ2�∆V ), trajectories are not likely to cross the barrier and the trajectories195

which undergo the transition instead go through the upper channel at y ∼ 15. Typical examples of such trajectories are shown

in Fig. 5(b). Rolland and Simonnet (2015) investigated the convergence properties of AMS using a triple-well potential system,

which also exhibits two regimes of preferred transition paths depending on the noise. They found a strong dependency of the

statistics of the rare-event algorithm (e.g., the number of iterations) and the duration of reactive trajectories on the choice of

score function. We expect the same behaviour when applying TAMS to the system with potential (15) and that this system200

reveals differences in performance between various score functions.
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Figure 5. (a) Potential landscape of the two-dimensional gradient system defined by eq. (15). Two energy minima are located at XA ≈

(−5.77,0) and XB ≈ (5.77,0). They are separated by a potential barrier spanning y < 15 and at x= 0. (b) Typical transition paths from XA

to XB for two noise levels σ. At high noise, trajectories can cross the potential barrier (σ = 10, blue). At low noise, trajectories go through

the upper channel (σ = 3, red).

Fig. 6(a) shows an histogram computed with 300 transition paths for the system with the potential given by eq. (15), with

noise level set at σ = 3. We need enough trajectories so that the histogram gives an accurate representation of all possible

transitions paths and that fluctuations along the typical path can be effectively averaged out by the path estimation algorithm.

One way to verify that there are enough trajectories is to check that the histogram near the equilibria is similar to the Gaus-205

sian stationary distribution that arises from locally linearized Ornstein-Uhlenbeck dynamics. For example, starting from an

equilibrium point and picking any direction, then if for the first few histogram cells the histogram value is not decreasing (as

would be the case for a Gaussian distribution) this would mean that too few trajectories were used. The typical transition path

was estimated using the algorithm sketched in section 2.4. As already mentioned, some artefacts created by the estimation

(such as spiraling or zigzagging) can be corrected using a clean-up algorithm. The result is shown in Fig. 6(b): the empirical210

estimation of the typical path resembles the instanton around which the transition paths are clustered at lower noise (Fig. 6(b)).
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The instanton was calculated by implementing the geometric minimum action method (Heymann and Vanden-Eijnden, 2008).

Note that if, instead, we accumulated trajectories at high noise σ > 10, we would obtain trajectories going from XA to XB in

a straight line, which is the typical path at high noise similar to Rolland and Simonnet (2015). This typical transition path is

then substantially different from the instanton, which goes through the upper channel. Thus, our method can be advantageous215

in multistable systems where the typical transition path depends on the noise level. We can start at high noise and reapply the

empirical estimation of the typical path each time the noise level is decreased.
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Figure 6. (a) Histogram of N = 300 transition paths at noise level σ = 3, using the modified score function φ̃gauss with β = 1.5, defined

by eq. (6) and implemented with (14). The corresponding transition probability (p= 2× 10−3) is high enough so that Direct Monte Carlo

sampling could have been used to produce a similar histogram. The bin resolution (∆x= 1.4, ∆y = 1.75) is coarse for illustration purposes.

The histogram is used as input in the path-finding algorithm which produces the transition path in red. Grid-scale spiralling occurs near the

initial state XA because of the concentric shell structure of the local probability density function given by eq. (10). (b) Same histogram as

the left panel. The estimated typical transition path (red) has been cleaned up from its grid-scale spiraling and zigzags with the clean-up

algorithm and has then been smoothed. It strongly resembles the instanton (blue) which was computed by implementing the geometric action

minimum method (Heymann and Vanden-Eijnden, 2008).

Given a typical transition path C, we present the design of a score function φC which encourages trajectories to follow the

transition path C such that it gives a reasonable approximation of the static committor. Let us consider a trajectory C(s) in Rn

parametrised by arclength s ∈ [0,1]. Then we define the score function φC , called the path-based score function, such that it220

grows from 0 to 1 along the trajectory from XA to XB and decays exponentially along the direction transverse to the trajectory:

φC : Rn→ [0,1]

X 7→ s(X,C)exp
(
−d(X,C)2

d20

)
(16)
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where d(X,C) = infs∈[0,1] ‖X−C(s)‖d is the distance between X and the trajectory C(s), s(X,C) is the curvilinear coordinate

of the position on the trajectory that satisfies the infimum in the definition of d(X,C) and d0 is the characteristic decay length225

(free parameter). The score function φC is shown in Fig. 7 for the estimated transition path C shown in Fig. 6 and two values

of decay length d0 = 20 and d0 = 200. The score function increases from 0 to 1 along the trajectory. Thus, it encodes the
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Figure 7. (a) Contour levels of the score function φC defined in eq. (16), associated with the estimated transition path C shown in Fig. 6 and

with decay length d0 = 20. (b) Same figure for d0 = 200.

preferred direction that the system has to follow. This contrasts with the generic score functions φgauss and φdist which are

symmetrical in y: they do not contain the information that the system has to increase in y in order to make the transition to

XB . Note that the method we developed here can be applied, in principle, to systems of any dimension. As shown in Fig. 7(b)230

the score function φC is discontinuous because the trajectory has positive curvature. The discontinuity is located near the axis

x= 0. Indeed, when crossing the axis x= 0, the closest point on C changes and s(X,C) is discontinuous.

Next, we applied TAMS with the path-based score function φC to the two-dimensional system (15). We compare its perfor-

mance with the previously defined score functions φdist and φgauss. In fact, we use the associated modified score functions,

such that the target set B matches the 0.95-confidence ellipsoid (we drop the tildes for readability). We use the following235

parameters: duration of a trajectory T = 20, time step dt= 0.01, N = 100 trajectories in the ensemble, which we found was

enough to ensure that the interquartile range of the independent realizations spans less than one order of magnitude around the

mean for most noise levels.

We show in Fig. 8(a) the transition probability estimates using the score functions φdist, φgauss (with β = 1.5) and φC

(with decay parameters d0 = 2, 20, 200) averaged over 10 instances of the algorithm. The probability estimates are in good240

agreement between each other and with a Monte Carlo estimation for σ > 2.5. The score function φC is robust with respect to

the choice of the decay length d0.
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The performances of the numerical methods are next measured using the work-normalised relative error ε, which combines

the variance of the algorithm and its computational cost (Glynn et al., 2009):

ε≡ σp̂
µp̂
×ω, (17)245

where µp̂ and σp̂ are the mean and standard deviation of the probability estimate over the different instances, ω is the av-

erage number of time steps calculated in one realisation. In short, ε measures how precise the numerical method is at equal

computational cost. The smaller ε, the better the algorithm performs.

The results are shown in Fig. 8(b). For the system (15), the score functions φdist, φgauss and φC have little difference in

performance. For the lowest noise values, the path-based score function has at most a 30% smaller error ε than the score250

function φgauss. Changing the decay length d0 hardly changes the error ε. When adjusting the parameters of the potential V or

applying the same method to the triple well system used in Rolland and Simonnet (2015), the performance gain, while being

often present, never systematically exceeded 30%. All in all, in this category of two-dimensional systems, using the path-based

score function approach yields little improvement.

3.3 Transition probabilities in a box model of the AMOC255

Finally, as a main application of the modification of the target set B into a confidence ellipsoid E , we consider the dynamical

system in Castellana et al. (2019), which represents a box model of the Atlantic Meridional Ocean Circulation (AMOC).

The system consists of a set of stochastic differential equations, plus one algebraic constraint, the latter representing the salt

conservation in the model (as shown in Appendix B). This model can be formulated as

dYt = F1(Yt,Zt)dt+G dWt

0 = F2(Yt,Zt) (18)260

In the equations above, we split the state of the system Xt into two parts: Yt, which includes salinities of four of the boxes

plus the depth of the pycnocline D, and Zt, which represents the salinity of the deep box (Sd). As the noise is applied only

on the asymmetric component of the atmospheric freshwater flux (Ea), it directly affects only two of the variables Sn and

Ss. Moreover, the stochastic increments associated with the two variables are identical, to make sure that each decrease of

freshwater forcing in the southern box results in the same increase of it in the northern box in the model. Therefore, the265

noise is not spatially independent and the noise matrix G is no longer diagonal: it consists of a (5× 1) row vector, with only

two elements different from zero. For a reasonable choice of the parameters, the deterministic system is in a bistable regime

(Castellana et al., 2019), which means that there are two possible equilibrium states under the same forcing conditions. In

general, we are interested in studying transitions between the present-day AMOC (XA) and the collapsed state (XB).

For a differential-algebraic system of equations (DAEs), such as the system in eq. (18), we need to be particularly careful270

while computing the covariance ellipsoids. First of all, we make use of the Schur complement of the Jacobian of the system,

which allows to calculate the covariance matrix when an algebraic constraint is present (Baars et al., 2017). Nevertheless, the

resulting matrix CB is singular, with two eigenvalues being equal to zero. One of the corresponding eigenvectors is a vector
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Figure 8. (a) Transition probability p as a function of noise parameter σ. Mean estimates and interquartile range (error bars) overNsamples =

10 independent realisations of the TAMS algorithm using the score function φdist (green down triangle) φgauss (with β = 1.5, blue circle)

and φC with decay parameters d0 = 2, 20, 200 (yellow square, pink diamond, purple up triangle) are shown. The Monte Carlo estimate (black

cross) has been run with N = 5× 105 trajectories with target set the confidence ellipsoids around XB , with associated standard deviation

σp =
√
p(1− p)/N (error bars). There is an overall good agreement between the numerical estimations. The path-based score function is

robust to the choice of decay parameter. (b) Performance of the score functions measured by the work-normalised error ε as a function of

noise σ (same markers as left panel). At most, there is a 30% decrease in error when using the path-based score function φC at low noise.

Note that at high noise σ = 3, using a short decay length d0 = 2 with φC leads to poor performance because the greater values of φC are

tightly concentrated around the estimated instanton whereas typical transition paths are not necessarily clustered around it. Otherwise, the

performance of the score functions are roughly similar.

pointing in the direction of the variable D (depth of the pycnocline). The reason behind it is that the differential equation

governing the evolution of D does not contain any of the other variables (see Castellana et al., 2019), when the system is in the275

collapsed state (XB). This results in D not being affected by the noise, as this is imposed only on two of the salinities. Hence,

we compute the covariance matrix CSB relative to the salinities, removing one degree of freedom from the original matrix.

Unfortunately, such matrix still has one zero eigenvalue, which is due to the salinity conservation (the algebraic equation in the

system (18)). To overcome this problem, we compute the Moore-Penrose inverse (or pseudoinverse) of the covariance matrix,

CS+B , by performing a singular value decomposition of CSB and removing the zero eigenvalue, together with the corresponding280

eigenvector (Ben-Israel and Greville, 2003). A two-dimensional projection of the ellipsoid constructed for the box model is

shown in Fig. 9.

For the system (18), the modified score function is more complicated, as the covariance matrix used to construct the ellipsoid

contains only the degrees of freedom related to the salinities of the model, leaving the variable D (depth of the pycnocline)

out. From a geometric point of view, that means that the covariance ellipsoid around XB is degenerated along the D-direction.285
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Fig. 9 shows a projection of the ellipsoid - once the noise amplitude is fixed - on the plane identified by the variables Sn and

Ss (respectively, the salinity of the northern box and the one of the southern box in the model). The projection was obtained

calculating the conditional covariance matrix of the two variables into consideration, given that the other variables are set on

their mean value (Wasserman, 2013). The two-dimensional ellipse contains the large majority of the projected time points (on

the same plane) of a trajectory that wanders around the equilibrium. By construction, the confidence level of the confinement is290

higher than the one prescribed for the full dimensional ellipsoid (in this case 0.95). Clearly the level sets of the score function

φgauss do not coincide with the one of the ellipsoid. Hence, the importance of modifying the score function appears evident.

When constructing an improved score function, in order to evaluate if a state belongs to the neighbourhood of XB , we need to

Figure 9. Level sets of the score function φgauss, in proximity of the collapsed equilibrium state XB of the system in Castellana et al. (2019),

projected on the plane identified by the variables Sn and Ss (respectively, the salinity of the northern box and the one of the southern box

in the model). A trajectory of the system, initiated in the collapsed state, has been projected on the same plane (blue circles). The red ellipse

is the two-dimensional projection of the covariance ellipsoid constructed by using the matrix CS
B and a confidence level of 0.95; 98% of the

points composing the trajectory are inside the ellipsoid.

check two conditions: (i) whether the state of the system is inside the salinity covariance ellipsoid drawn around the destination

equilibrium, and (ii) we need to verify that the variable D of the state is the same as the one of XB . Hence, the improved score295

function for the box model reads

φ̃box(X)≡


1 if XS ∈ ES and XD =XD

B

φ̃ target if φgauss(X)> φ̃ target and (XS 6∈ ESor XD 6=XD
B )

φgauss(X) otherwise

(19)
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where XS indicates the part of the state vector representing the set of the salinities, whereas XD represents the variable D. As

already mentioned, to check whether a certain state belongs to the salinity ellipsoid, we made use of the pseudo-inverse of CSB
in the definition (12).300

To be able to assess the relevance of a proper definition of the target set in the TAMS algorithm, and hence the importance of

using the improved version of the score function, we computed transition probabilities of the AMOC from the present-climate

state to the collapsed state for reasonable values of the atmospheric forcing and noise. In particular, we chose Ēa = 0.20Sv

and fσ = 0.16. This last value represents the ratio between the standard deviation of the noise in the atmospheric forcing and

its mean value (Castellana et al., 2019). The number of trajectories used in the algorithm was set to 100, and the time scale at305

which the probabilities were evaluated was chosen to be 1,000 and 10,000 years, respectively. For each transition probability,

we used three different versions of the algorithm, based on three different settings for the score function. The first two versions

were implemented using φgauss in (6), with two different choices for the threshold φ target. In the third version, we used φ̃box

as defined in (19), where the starting score function was φgauss. Each probability was calculated running 15 instances of the

algorithm, and then computing the median and the interquartile range (IQR). The results are shown in the Table 1 below.310

Score function p at 1000 years [IQR] p at 10000 years [IQR]

φgauss, φtarget = 1− 10−4 < 10−9 < 10−9

φgauss, φtarget = 1− 10−2 (1.1 [0.6 : 1.2])× 10−3 (5.3 [4.7 : 6.0])× 10−2

φ̃box < 10−9 (2.0 [0.7 : 3.0])× 10−3

Table 1. Results of the transition probabilities for the AMOC model using different score functions

When running TAMS to compute transition probabilities between two states of the Atlantic Circulation in this model, with

different versions of the score function, we found a considerable discrepancy between the obtained values. In particular, it

appears that setting a very high threshold in the Gaussian score function makes the algorithm detect no transitions (we set up

the algorithm so that it stops when the probabilities involved are smaller than 10−9): the reason behind this is that, because of315

the presence of the noise, we don’t expect the state of the system to stay indefinitely close to the destination equilibrium, but

rather to wander around it. Therefore, the score function, which assigns the maximum score only to a very small neighbourhood

of the equilibrium, is not able to properly recognise transitions. Moreover, it is not surprising that, when using φgauss with a

smaller value of φ target (0.99) or φ̃box, we obtain different results: as the shape of the covariance ellipsoid is not spherical

(see Fig. 9), we expect φgauss to detect transitions even though the state is actually still far from the destination equilibrium, at320

least in certain directions. As a general rule, we expect φgauss to give results different from φbox as long as the ellipsoid of the

system is not spherical, regardless of the choice of the threshold φ target.
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4 Summary and discussion

We presented and applied several improvements to the TAMS rare-event algorithm, when used to compute transitions in

multistable systems. The first improvement was based on a more rigorous criterion to define noise-induced transitions involving325

confidence ellipsoids E to formalise this criterion. In turn, this led to the rigorous choice of the target set B = EB which was

traditionally set by rather arbitrary thresholds. We then showed how to incorporate this definition of B into the score function

φ̃. For certain classes of systems, like the ones containing algebraic constraints in addition to differential equations, or when

the noise does not affect one or more directions in the variable space (i.e. the associated covariance matrix is singular), this

method requires some precautions. In particular, for the box model in Castellana et al. (2019), we had to adapt the definition of330

the improved score function (19), as well as calculate the pseudo-inverse matrix of the covariance matrix, in order to compute

the ellipsoid.

This method, while being quite general, has several limitations. While the modified score function φ̃ is continuous outside

B, it is constant in the domain M = {X ∈ Rn | φ(X)> φ̃ target} \ E (see Fig. 4). This means that in the TAMS algorithm,

branching will never occur inside M , but at the boundary ∂M . This can have an influence on the convergence of TAMS if the335

level sets of the initial score function φ have a pathological shape near XB and the spatial extension of D is not negligible.

Nevertheless, we expect this to have little impact because this phenomenon is localised near the target state XB . Therefore,

the trajectories will naturally converge towards XB as a result of the dynamics, even without the help of the branching process

of TAMS. However, to ensure that the confidence ellipsoid E defines a meaningful target set, one needs to be sure that E is

contained inside the basin of attraction of the target state XB . While this is the case in the limit of small noise σ→ 0, it might340

not be the case for finite noise. A solution to this issue would be to compute the basin of attraction V of XB and define the

target set B as the intersection B = E ∩V . However, we expect that in the generic case, this occurs when the noise level σ is

high enough so that transitions are less rare and a direct Monte Carlo estimation is sufficient to estimate transition probabilities.

Next, we proposed a systematic method of defining a score function, designed to approximate the static committor, based on

empirical transition paths. We proposed an algorithm to estimate the typical transition path under a high noise level, which is345

then used to define a family of score functions with a single decay parameter d0. We applied our method to a two-dimensional

well with a potential barrier. We found that our typical path estimation gave satisfactory results and that the associated score

function φC , while discontinuous, remained unbiased and relatively insensitive to the change of decay parameter d0. While

we did not find significant performance improvements over existing non-trivial score functions, we think that differences will

become apparent if applied to higher dimensional systems, where there are more directions to fluctuate in. We did not show350

any results of the application of this method to the box model of the AMOC (Castellana et al., 2019), because for this rather

complicated case, we were not able to efficiently compute typical transition paths from the trajectory histograms of the system.

One key limitation of our approach of constructing the path-based score function φC is the computer memory needed to

store the trajectory histogram, which becomes prohibitively huge for high-dimensional systems such as discretised partial

differential equation (PDE) systems. As an example, a 50× 50 two-dimensional grid storing 4 variables in each cell (e.g. two355

velocity components, pressure and a tracer) with 10 bins of resolution in each degree of freedom would require more than 10
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Petabytes of memory, which is unfeasonable. However, this limitation can be easily bypassed by defining the objects needed

to run the TAMS algorithm, namely the score function φ and the target set B, in a reduced space of much fewer dimensions.

For instance, Bouchet et al. (2019) studied the dynamics of the barotropic beta-plane quasi-geostrophic equations describing

Jupiter’s turbulent atmosphere. While the PDE system was evolved in the full phase space, their rare-event algorithm was run360

in a reduced 3-dimensional phase space defined by three Fourier coefficients. The target set B and the score function were

defined on this reduced space. Moreover, they accumulated transition trajectories in a 3-dimensional histogram and showed

their concentration around instantons. By applying the path-finding algorithm, an empirical estimation of the instanton can be

made. This offers a viable alternative to solving a minimization problem in the full space to compute the instanton and then

project it in the reduced space, which is next to intractable for this system.365

Another way to define the reduced space V in which to run TAMS is to consider the principal components, also called em-

pirical orthogonal functions (EOF), which are the eigenvectors of the covariance matrix. One idea, suggested by Baars (2019),

is to retain the EOFs {YA1 , . . . ,Y
A
k ,Y

B
1 , . . . ,Y

B
k′} with largest variance (i.e. eigenvalue of the covariance matrix) at the initial

state XA and target state XB . EOFs represent the directions in which the system fluctuates the most. They are then assumed

to be the directions which capture best the noise-driven dynamics. When studying transitions in a PDE model of the Atlantic370

Meridional Overturning Circulation (den Toom et al., 2011; Baars et al., 2019) projected the dynamics in a reduced spaceW ≡
Span{XA,XB ,YA1 , . . . ,Y

A
k ,Y

B
1 , . . . ,Y

B
k′} of dimension (∼ 500) still too large to apply the histogram method directly. However,

one idea is that the TAMS algorithm could be run in an even smaller space V ≡ Span{XA,XB ,YA1 , . . . ,Y
A
d ,Y

B
1 , . . . ,Y

B
d′} (of

dimension <10), while still computing the dynamics in the spaceW . Then, the memory required to store a histogram becomes

reasonable and our histogram method can be applied.375

Another potential issue of our modified TAMS method is the fact that the score function φC is discontinuous because the

trajectory has positive curvature, as shown in Fig. 7(b). The discontinuity is located near the axis x= 0. Indeed, when crossing

the axis x= 0, the closest point on C changes and s(X,C) is discontinuous. In fact, in the mathematical proofs about the

statistical and convergence properties of the probability estimator (Cérou et al., 2016), the score functions are assumed to be

continuous. Nevertheless, in our applications, we did not detect any statistically significant bias in the probability estimator380

due to the discontinuity. Moreover, some meaning can be attributed to the discontinuity: it is located at the boundary between

the attraction basins of XA and XB and it thus reflects a qualitative change of behaviour in the system. Crossing this boundary

means that the trajectory converges to XB instead of XA, if σ = 0. In addition, the remnant of a discontinuity is observed in

the static committor of the similar triple well system used in Rolland and Simonnet (2015). Indeed, their Figure 4c shows the

contour plots of the static committor in the low noise regime. A steep gradient is present at the x= 0 boundary, which gives385

further evidence that the discontinuity of φC may not be problematic.

Further testing of the ideas presented in this work in high-dimensional systems such as discretised PDEs would give more

insight as to the effectiveness of our approach, compared to the more generic score functions used up to now. Moreover, incor-

porating some form of time-dependence in the score function φ to specifically optimise TAMS would constitute an interesting

project.390
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Code availability. The software is available at https://github.com/pascalwangt/PyTAMS and https://github.com/pascalwangt/PyGMAM.
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Appendix A: Trajectory-Adaptive Multilevel sampling (TAMS) algorithm

Input: N number of trajectories in the ensemble

T total duration of a trajectory

kmax maximum number of iterations of the algorithm

φ score function

φtarget target score, that is the condition that defines the occurrence of a transition

Output: p̂ transition probability estimation

Initialization:

1: for i=1,. . . ,N do

2: Simulate the trajectory (X(i)) = (X(i)
0 , . . . ,X(i)

T ) of the different ensemble members i (e.g. using the Euler-Maruyama scheme).

3: Compute the score φi ≡ max
0≤t≤T

φ(X(i)
t ) of trajectory i, which is the maximum value of the score function φ along the trajectory i.

4: end for

5: Set the iteration number k = 1

Main loop:

6: while min
1≤i≤N

φi < φtarget and k < kmax do

7: Discard the ensemble members for which the trajectories realised the minimum score i.e discard the indices in Sk ≡ {j | φj =

min
1≤i≤N

φi}.

8: Set lk ≡ Card(Sk) the number of discarded trajectories (Sk = {1} and lk = 1 in Fig. 2. Note that Sk can have multiple elements

because of the time discretization).

9: for j in Sk do

10: Choose uniformly at random a trajectory index r in {1, . . . ,N} \Sk. This is the trajectory from which the new trajectory will

originate from (r = 2 in Fig. 2).

11: Copy the trajectory (X(r)) into the new trajectory (X̃
(j)

) up to the first time the value of the score function is greater than φj . In

other words, set (X̃
(j)

0 , . . . , X̃
(j)

tbranch
)≡ (X(r)

0 , . . .X(r)
tbranch

) where tbranch ≡min({0≤ t≤ T | φ(X(r)
t )≥ φj}).

12: Generate the rest of the new trajectory up to time T (green branch in Fig. 2) starting from X̃
(j)

tbranch
≡ X(r)

tbranch
(orange dot in

Fig. 2) .

13: Replace the discarded trajectory (X(j))← (X̃
(j)

0 , . . . , X̃
(j)

tbranch
, . . . , X̃

(j)

T ).

14: Update the corresponding score φj ← max
tbranch≤t≤T

φ(X(j)
t ) which is greater than the previous score by construction of tbranch.

15: end for

16: k← k+ 1

17: end while

18: Set NB the number of trajectories having reached the target set B, i.e that have a score greater than φtarget.

19: return

p̂=
NB

N

k∏
i=0

(
1− li

N

)
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Appendix B: Box model for the Atlantic Meridional Ocean Circulation

The equations determining the evolution of the AMOC in this model are the salinity budgets of the different boxes, together

with the variation of the volume of the pycnocline, and the salt and volume conservation equations (Castellana et al., 2019):395

d(VtSt)

dt
= qS(θ(qS)Sts + θ(−qS)St) + qUSd− θ(qN )qNSt + rS(Sts−St)

+ rN (Sn−St) + 2EsS0,

d(VtsSts)

dt
= qEkSs− qeSts− qS(θ(qS)Sts + θ(−qS)St) + rS(St−Sts),

d(VnSn)

dt
= θ(qN )qN (St−Sn) + rN (St−Sn)− (Es +Ea)S0,

d(VsSs)

dt
= qS(θ(qS)Sd + θ(−qS)Ss) + qeSts− qEkSs− (Es−Ea)S0,(

A+
LxALy

2

)
dD

dt
= qU + qEk − qe− θ(qN )qN ,

S0V0 = VnSn +VdSd +VtSt +VtsSts +VsSs, (B1)

where the function θ(x) is the Heaviside step function. The transports depend on the variables via the following relations:

qEk =
τLxS
ρ0|fS |

,

qe =AGM
LxA
Ly

D,

qU =
κA

D
,

qN = η
ρn− ρts
ρ0

D2,

qS = qEk − qe, (B2)

where the density of the generic box i is defined as

ρi = ρ0 (1−α(Ti−T0) +β(Si−S0)) . (B3)400

The volumes depend, in turn, on the variable D:

Vt =AD,

Vts =
LxALy

2
D,

Vd = V0−Vn−Vs−Vt−Vts. (B4)

The reference parameter values are shown in table B1.
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Parameters used in the model

V0 3× 1017 m3 total volume of the basin

Vn 3× 1015 m3 volume of the northern box

Vs 9× 1015 m3 volume of the southern box

A 1× 1014 m2 horizontal area of the Atlantic pycnocline

LxA 1× 107 m zonal extent of the Atlantic Ocean at its southern end

Ly 1× 106 m meridional extent of the frontal region of the Southern Ocean

LxS 3× 107 m zonal extent of the Southern Ocean

τ 0.1 N m−2 average zonal wind stress amplitude

AGM 1700 m2s−1 eddy diffusivity

fS −10−4 m3 Coriolis parameter

ρ0 1027.5 kg m−3 reference density

κ 10−5 m2s−1 vertical diffusivity

S0 35 psu reference salinity

T0 5 K reference temperature

Tn 5 K temperature of the northern box

Tts 10 K temperature of the box ts

η 3× 104 m s−1 hydraulic constant

α 2× 10−4 K−1 thermal expansion coefficient

β 8× 10−4 psu−1 haline contraction coefficient

rS 1× 107 m3s−1 transport by the southern subtropical gyre

rN 5× 106 m3s−1 transport by the northern subtropical gyre

Es 0.17× 106 m3s−1 symmetric freshwater flux

Table B1. Reference parameters used in equations (B1) - (B4), from (Castellana et al., 2019).

Author contributions. PW and DC designed the algorithms, ran the simulations and prepared the figures. All authors discussed the results

and contributed to the writing, of the manuscript.405
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