
We would like to express gratitude to the Referees for the detailed and precise analysis of our manuscript
that contributes towards its improvement. We have taken all of the comments into account in the revision
(changes appear in red type) and explain this in detail in the following sections.

1 Technical comments from Reviewer 1

Question 1: In the work, the symbol V has two different meanings. One is the volume in Figure 1, the
other is the potential function on Page 5.

Answer: The volume of the compartments in Figure 1 was designated as Vc.

Question 2: In stochastic differential equation (9), you can add the initial condition Y0 = y0. On the

second line from the bottom of Page 7, the generator should be Au = lim
t→0

Eu(yt)−u(y0)
t .

Answer: The initial condition Y0 = y0 is added to the equation (9). The generator on line 165 is
corrected as suggested.

Question 3: In the manuscript, the authors adopted the αstable non-Gaussian Lévy noise to model
the extreme events? Can you give the comparison between the Brownian motion and Lévy flight?

Answer: We compare the processes in the end of the section 2.1.1.

Question 4: In equation (14), what is the definition of I?

Answer: The definition of indicator function I is given by equation (15).

Question 5: In Section 2.1.5, what is the definition of pi(y),m,M? Could you represent the definition
of stochastic basin of attraction to the one-dimensional case since that the escape boundary only has two
direction in the one-dimension. The work ”Y. Zheng, L. Serdukova, J. Duan, J. Kurths, Transitions in a
genetic transcriptional regulatory system under Lévy motion, Sci. Rep. 6 (2016) 29274.“ also introduces
the stochastic basin of attraction, which can be added to the references.

Answer: In Section 2.1.5 the definition of stochastic basin of attraction is adapted to the one-
dimensional case and the measures of m and M are specified. The work of Y. Zheng is added to the
references line 355.

Question 6: In the manuscript, the authors show the three concepts, mean residence time, first passage
probability and stochastic basin of attraction to perform the stability analysis. Could you show us how to
solve the non local equations (14) (15) and (17)?

Answer: At the end of section 2.1.3 we describe the numerical method that we use to solve these
equations.

2 Technical comments from Reviewer 2

Question 1: Title: The model does not represent the global thermohaline circulation but the Atlantic
MOC.

1



Answer: We have made proposed amendments to both the title and the text.

Question 2: l17: Tides are no part of the THC. l27: There is no surplus of precipitation over
evaporation at low latitudes, except in a small zone near the equator (ITCZ).

Answer: The suggested changes are introduced in the lines 16 and 26.

Question 3:There should be a justification that the variability in the freshwater forcing can be repre-
sented by an α-stable process. Here, the time scale considered is important: when focus is on Dansgaard-
Oeschger (DO) events (e.g. Ditlevsen 1999), this is a different issue that when the stability of the present-
day MOC is considered. As for the latter case, many observations and model results (reanalyses, CMIP6)
are available for justification.

Answer: We consult the publications (bibliography line 372) and introduce the suggested justification
on lines 55-60.

Question 4: The new aspects in this paper, in relation to the one just published (Tesfay et al., 2020
in the reference list), should be clarified as the same model and same noise are investigated.

Answer: This clarification is included on page 3 in the first paragraph.

Question 5: l72: ∆ρ should be divided by ρ0. l99: β is no restoration ”tensility“ but a ratio of a
diffusive and a restoring time scale. l101: definition of µ2 is wrong. l105, 107: dt→ dτ . l129: the relation
between the amplitude of dLt and F is missing.

Answer: The respective corrections were introduced in the equations (2), (6) and (7).

Question 6: Fig. 6 contains no probability distributions as for each curve the integral is not 1.

Answer: Figure 6 has been replaced according to the suggestion.

Question 7: The methodology in section 2.1 should be better explained and only provide well explained
mathematical results with reference to the mathematical details. It appears now to have been copied from
a mathematics paper with many symbols unexplained. At line 130, there is a reference to a ”Methods“
section which is not there.

Answer: All mathematical concepts were described in more detail in section 3, on pages 7, 8 and 9.

Question 8: Section 3: I would suggest to split the results into two sections: (i) DO transitions.
Connect the results to the Ditlevsen (1999) analysis and proposed noise structure. Can the α-stable noise
better describe the transition behavior (as in the proxy data), than just Brownian noise? (ii) Present-day
MOC. Is the transition probability of a MOC transition increased under climate change, when incorporating
an α-stable process in the freshwater flux noise?

Answer: To make the proposed comparison (α-stable vs Brownian noise) we should include the pa-
rameter α = 2 (which corresponds to the Brownian case) in the simulations of stochastic perturbations.
We leave this option for future studies.

Question 9: Improve also the interpretation of the results: in the present text, lines 209-210, lines
222-223, lines 267-268 and lines 277-281 make no sense.

Answer: Reading more articles about timescales of AMOC decline, AMOC response to fresh water
forcing and stability of AMOC off-state we try to improve the interpretation of the results, see the changes
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made in the section 4.
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Abstract.

How will extreme events due to human activities and climate change affect the Atlantic meridional overturning circulation is

a key concern in climate predictions. The stability of the thermohaline circulation with respect to extreme events, such as fresh-

water oscillations is examined using a conceptual stochastic Stommel two-compartment model. The extreme fluctuations are

modeled by symmetric α-stable Lévy motions whose pathways are cádlág functions with at most a countable number of jumps.5

The mean first passage time, escape probability and stochastic basin of attraction are used to perform the stability analysis of

on (off) equilibrium states. Our results argue that for model with weak fresh-water forcing strength, the greatest threat to the

stability of the on-state represents noise with low jumps and higher frequency that can be seen as freshwater inputs from glacier

melting due to ocean warming caused by increased greenhouse gas emissions. On the other hand, the off -state stability is more

vulnerable to the agitations with moderate jumps and frequencies which can be interpreted as a possible scenario of Atlantic10

thermohaline circulation recovery. Under the repercussion of stochastic noise, on to off transitions are more expected in the

model with the strong fresh-water influx. Moreover, transitions from one metastable state to another are equiprobable when the

fresh-water input induces a symmetric potential well.

1 Introduction

Natural and civilization catalyzed fluctuations in climate have significant impact on the ocean and ocean circulation pattern15

variations greatly affect climate (Chapman and Shackleton, 1999; Clark et. al., 2002). The thermohaline circulation, known

as great ocean conveyor as well, has been declared potentially unstable, whose change could lead to abrupt climate shift on

all timescales (Marotzke, 2000). Thermohaline circulation is basically an outcome of the interplay of fresh-water with thermal

energy along with the ocean-atmosphere interface and inside the ocean competition of temperature and salinity (Rahmstorf,

2003). This enormous oceanic process has a significant contribution in maintaining the equilibrium of Earth’s energy frame-20

work by redistributing thermal energy of the order 1.2× 1015W northwards in the Atlantic ocean. A large proportion of the
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meridional overturning circulation (MOC) is usually categorized as thermohaline circulation because MOC takes the lion’s

share in this heat penetration to the north pole (Ganachaud and Wunsch, 2001; Trenberth and Solomon, 1994). The warm and

saltier surface water on interannual and even longer time-scales gets freshened and loses heat to the cold atmosphere. Subse-

quently, the water descends slightly to the bottom of the Atlantic since it gets denser than the underneath water. The cooled25

water eventually returns southward as deep current and the warm temperature around the equatorial belt opts for upwelling.

Thermohaline circulation is a combination of the floating of deep water currents around the equator and in the southern oceans,

the horizontal currents, and the descending and forming of deep water in high latitudes. Climate reconstructions indicate that

conveyor belt has indispensable contribution in the climate system transitions from cold to warm or from warm to cold climate

states (Rahmstorf, 1995; Bond et.al., 1997; Grootes and Stuiver, 1997). In today’s warm climate, the thermohaline circulation30

state is sensitive to increased fresh-water volume. During global warming, the intensity of the water cycle, especially at high

latitudes, increases, and the melting of ice accelerates, the supply of fresh water to the North Atlantic will most likely increase,

thereby reducing the density of the surface layer in the MOC sinking area. Thus, it seems likely that the thermohaline circu-

lation will weaken over the coming century. Studying the stability of this oceanic conveyor belt by analyzing the influence of

internal and external agitations on its dynamical behavior is increasingly pressing presently.35

To study how the Atlantic meridional overturning circulation (AMOC) transports properties latitudinally, a conceptual deter-

ministic two-compartment model was forwarded by Stommel (Stommel, 1961). Shreds of evidence from sea observation and

model simulation show that the strength of the thermohaline flow is sensitive to the surface fresh-water flux fluctuation (Jack-

son and Wood, 2017; Caesar et.al., 2018). Competition between thermal versus saline forcing can lead to a multiple equilibria

regime if the relaxation time-scales for the temperature and the salinity are distinct. The thermohaline flow system is bistable,40

one with strong circulation (analogous with the present set up), and the second state with a very weak flow, when the salinity

difference is forced by a prescribed fresh-water flux (Marotzke, 2000). The multistability of AMOC is also verified by results

obtained from different numerical models (Broecker, 1987). The deterministic compartment model has been further extended

to include noisy thermal and saline forcing oscillations (Huang et. al., 1992; Rahmstorf, 1996; Djikstra, 2005).

Forcing the general ocean circulation model with some particularly large stochastic fresh-water fluctuations is found to45

trigger pulsation of transport from one stable configuration to the other (Mikolajewicz and Maier-Reimer, 1990). Therefore,

the fresh-water budget is the main control parameter of the Atlantic circulation, the oscillations of which lead to the circulation

response in the form of a hysteresis curve. There is evidence that after the AMOC crossing a threshold exists a temporary

resilience period during which the AMOC could still recover if freshwater inflow ceases (Jackson and Wood, 2017).

The Gaussian noise perturbed thermohaline circulation has been under extensive study. For instance, it was shown in (Vélez-50

Belchí et. al., 2001) that an increment of 5% of the fresh-water forcing in the ocean circulation could stimulate transitions

between a high and low salinity difference metastable states. In a time-dependent compartment model for thermohaline cir-

culation with Brownian motion and moderate noise intensity, hysteresis does not adiabatically follow stationary distribution

(Bergund and Gentz, 2002). Meanwhile, the noise forcing climate comprises of a non-Gaussian α-stable Lévy noise component

(Fuhrer et. al., 1993; Ditlevsen, 1999). The occurrence more than a dozen of additional Dansgaard-Oeschger (D-O) events that55

took place during the last glacial period could not have been reproduced by using the continuous perturbation processes. As
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well modern climate models from the fifth Coupled Model Intercomparison Project (CMIP5) predict abrupt non-linear shifts

in subpolar North Atlantic dynamics (Sgubin et. al., 2016). The jumps in those events could better be modeled by Lévy flights

(Kuhwald and Pavlyukevich, 2016).

Paleoclimatic data indicate the coincidence of transitions from strong to weak or from weak to strong thermohaline circu-60

lation states with the occurrence of extreme climatic variations (Vélez-Belchí et. al., 2001). In our previous work (Tesfay et.

al., 2020), we investigated the most probable trajectories of such transitions. The results of this study led us to a number of

questions, of how is the overturning circulation stable to abrupt climatic changes? And what parameters of Lévy noise most

affect the equilibrium of the AMOC? We also estimate possible scenarios for thermohaline circulation regeneration, analyzing

the stability of the off state under stochastic fresh-water fluctuations.65

We analyze the stability of metastable states of the AMOC model by calculating three quantities, namely, mean first passage

(exit) time, first passage (escape) probability and stochastic basin of attraction that carry the dynamical information of the

model. In the present form of the AMOC, analyzing the intensity and mechanism of the forcing schemes that could trigger

such transitions and studying the stability of strong and weak AMOC equilibrium states is of fundamental importance.

Particularly, we will study the effect of extreme events on the scalar stochastic AMOC model70

dYt =−V ′(Yt)dt+ dLαt (1)

by measuring the stability of equilibrium states of the salinity difference process Yt for various values of (nondimensional)

fresh-water forcing and non-Gaussianity parameter α. In Eq. (1), V is a potential function (details are given in Section 2).

The paper is structured as follows. In Section 2, we discuss the simplified conceptual stochastic Stommel two-compartment

model for AMOC. A brief introduction of the stability analysis measures is provided in Section 3. Stability analysis of the75

stochastic overturning circulation system is given and results obtained are presented in Section 4. Our findings are summarized

in Section 5.

2 Atlantic meridional overturning circulation model

Thermohaline circulation is an oceanographic phenomena that refers to the movement of ocean waters across both hemispheres

and is responsible for the heat transfer and redistribution, acting as a regulator of the global climate. The schematic functioning80

of AMOC is shown in Fig. 1. The main engine of this circulation is the difference in density between ocean currents ∆ρ, which

is determined by the salinity Se,Sp and the temperature Te,Tp of the water and can be represented by

∆ρ= ρ0[βS(Se−Sp)−βT (Te−Tp)], (2)

where βT = 0.17× 10−3 o C−1 is the thermal expansion coefficient and βS = 0.75× 10−3 psu−1 is the haline contraction

coefficients, respectively. The surface ocean waters in the subtropical regions due to intense evaporation Fs/2 have high salinity85

Se, however the high water temperature Te maintains the low density and prevent surface waters sinking.

In high latitude areas, the formation of dense water is mainly associated with lower temperatures Tp and increased salinity

Sp due to the formation of ice. Thus, in the polar regions, the increase in surface water density causes it to sink and displace
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Figure 1. The two-compartment model of Stommel adapted from (Cessi, 1994). Each compartment represents the waters of the equatorial

and polar oceans with the same volumes Vc = 300× 4.5× 8,250 km3 and temperature Te/Tp and salinity Se/Sp characteristic of each of

them. The other system parameters are the mean ocean depth H = 4500 m, the exchange mass function Q, the density gradient ∆ρ, the

freshwater flux Fs, the equatorial atmospheric temperature Tae, the polar atmospheric temperature Tap, the reference temperature T0 = 5o

C, the reference salinity S0 = 35 psu, the meridional temperature difference θ = 25 K and the temperature relaxation time scale tr = 25

days.

deep water. In this way, the origin of the thermohaline circulation is a vertical flow of surface water 1
2Q(∆ρ), diving to an

intermediate depth or close to the bottom, depending on the density of that water. The systems of superficial and deep circulation90

of the oceans are interconnected. The continuation is a horizontal flow: the recently sunk waters repel in the horizontal direction

the deep waters that occupied this place. In this way, the cold, dense waters sink and slowly flow towards the equator. Thermal

energy and salinity balances can be defined by the system of differential equations (Cessi, 1994) (the dots represent derivative

with respect to time):

Ṫe =−tr−1(Te− (T0 +
θ

2
))− 1

2
Q(∆ρ)(Te−Tp),95

Ṫp =−tr−1(Tp− (T0−
θ

2
))− 1

2
Q(∆ρ)(Tp−Te),

Ṡe =
FS
2H

S0−
1

2
Q(∆ρ)(Se−Sp),

Ṡp =− FS
2H

S0−
1

2
Q(∆ρ)(Sp−Se), (3)
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where Q(∆ρ) = t−1
d +V −1

c q(∆ρ)2 is the exchange mass function with diffusive time scale td = 180 years between the two

compartments and transport coefficient q = 1.92× 1012 m3s−1. The other parameters of the system are defined in the caption100

of Fig. 1.

The time evolution of temperature ∆T ≡ Te−Tp and salinity difference ∆S ≡ Se−Sp between the compartments are

obtained by subtracting the conservation equations (3), respectively.

d∆T

dt
=−tr−1(∆T − θ)−Q(∆ρ)∆T,

d∆S

dt
=
FS
H
S0−Q(∆ρ)∆S. (4)105

The original system (4) with the substitutions x≡ ∆T
θ , y ≡ ∆Sβs

θβT
, τ ≡ t

td
is reduced to the dimensionless system of

evolution equations (Cessi, 1994; Tesfay et. al., 2020)

dx= (−β(x− 1)−x[1 +µ2(x− y)2])dτ,

dy = (F − y[1 +µ2(x− y)2])dτ, (5)

where β a ratio of a diffusive and a restoring time scale, µ2 strength of the buoyancy-driven convection between the two110

compartments relative to the diffusive mixing and F dimensionless fresh-water forcing are defined as

β =
td
tr
, µ2 =

qtd(βT θ)
2

V
, F =

βSS0td
βT θH

FS . (6)

The dynamical system (5) can be further simplified, since the diffusion time scale td is much larger than the temperature-

restoring time scale tr. Thus, taking the approximation x= 1 +O(β−1), we get the first order differential equation in y(t)

115

dy = (F − y[1 +µ2(1− y)2])dt. (7)

where τ is replaced by the usual notation of time t for convenience. Considering that F is constant, Eq. (7) can be written as

dy =−V ′(y)dt with the potential function

V (y) = µ2(
y4

4
− 2

3
y3 +

y2

2
) +

y2

2
−Fy. (8)

The variation in the fresh-water forcing strength F , Fig 2 (b), suddenly changes the qualitative behaviour of the AMOC120

system giving rise to the two bifurcation points F = 0.9556 and F = 1.2963. For F < 0.9556 the system has a single stable

equilibrium point, called on-state, Fig 2 (a). In this state y is small and this matches with relatively large equator to north pole

heat transport. For 0.9556< F < 1.2963, Fig 2 (d), (e) and (f) in addition to the stable on-state, two more equilibria emerge:

one of which is stable, called off -state and the other is unstable one. In the off -state y is large and corresponds to weak (or

even reversed) circulation. Only stable off -state takes place in the AMOC systems with F > 1.2963, Fig 2 (c). With global125

warming, by the end of the twenty-first century, the mean surface air temperature due to harmful human activities leading to the

accumulation of greenhouse gases in the atmosphere will increase by 2−6o C (Chapman and Shackleton, 1999; Ganachaud and
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Figure 2. The Stommel two-compartment model for the meridional overturning circulation may have multiple equilibria. (b) The bifurcation diagram for the salinity difference y,

as a function of fresh-water forcing strength F . The potential function V (y) for forcing strength (a) F = 0.9556, (c) F = 1.2963, (d) F = 1, (e) F = 1.126 and (f) F = 1.28.

Wunsch, 2001; Rahmstorf, 2003). This large-scale warming of the climate can cause an increase in frequency or/and intensity

of extreme events on the time-scale of decades, such as high-latitude precipitations, the Greenland ice sheet deglaciation, the

freshwater outflows to the oceans that certainly affect the dynamic aspects of thermohaline circulation (Clark et. al., 2002;130

Jackson and Wood, 2017; Gregory et. al., 2017). An increase in the mass of freshwater in the global ocean reduces its density

and thereby complicates its deep immersion, which can slow down AMOC and even ”switch it off“ if the parameters cross the

tipping threshold (Stommel, 1961). Such extreme and fast events cannot be modeled by deterministic models, since they do

not take into account the uncertainty, unpredictability and the likelihood of their occurrence. The Brownian motion predicts

the behavior of such random fluctuation with very low accuracy, since it has continuous sample paths and normally distributed135

increments. It was proved (Ditlevsen, 1999; Marotzke, 2000) that the Lévy process, characterized by heavy-tailed distribution

and discontinuous cadlag paths, with a certain precision simulates and predicts these rare events. Consider now that the fresh-

water flux can be written as sum of a stochastic component dLαt with a parameter F which is independent of time; then (7)

generalizes into the Itô equation,

dYt =−V ′(Yt)dt+ dLαt , Y0 = y0. (9)140
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Here Lαt is a symmetric α-stable Lévy process, with α ∈ (0,2), defined on the probability space (Ω,F ,P ) (See subsection

3.1). The drift term V ′(Yt) satisfies a Lipschitz condition with jump measures, then the solution of the SDE (9) exists and

is unique (Applebaum, 2004). We focus our attention on the three AMOC models with different values of the parameter F ;

a weak F=1, fresh-water forcing F=1.126 which induces a symmetric potential function and a strong F=1.28. These values

represent different geometries of a double-well potential function as in Fig. 2 (d), (e) and (f).145

3 Method

This section summarizes definitions and the main properties of the stability measures used in the present analysis. Also a brief

summary to the type of stochastic process chosen to model extreme events is given.

3.1 A symmetric α-stable scalar Lévy motion

Climate extreme events show random fluctuations having sample pathways with intermittent jumps and heavy tails. Natural150

and more appropriate candidate for modeling such a non-Gaussian process is an α-stable Lévy motion. Lαt with 0< α < 2 is

a stochastic process that satisfies the following properties:

a) Lα0 = 0, almost sure;

b) Lαt has independent increments;

c) stationary increments Lαt −Lαs and Lαt−s have the same symmetric α-stable distribution, i.e.155

Sα((t− s) 1
α ,0,0);

d) stochastically continuous sample paths, i.e., for every s > 0, Lαt → Lαs in probability, as t→ s.

The probability density function for Lαt is defined by

t−
1
α fα(t−

1
α y), (10)

where fα is the probability density function for the standard symmetric α-stable random variable Y ∼ Sα(1,0,0) (for more160

details see (Applebaum, 2004; Duan, 2015). The generating triplet of Lαt is (0,0,να), with the jump measure, i.e. the expected

value of the number of jumps of size dz during the unit time, is defined as:

να(dz) =
α Γ((1 +α)/2) dz

21−α√π Γ(1−α/2) |z|1+α
, α ∈ (0,2), (11)

where Γ is the Gamma function. When α ∈ (0,1), the α-stable Lévy motion has finite variation, otherwise, when α ∈ [1,2) it

is unbounded.165

Comparing two stochastic processes such as Brownian motion and Lévy flight, several differences and some similarities can

be distinguished. This comparison will once again justify our choice of noise for simulating climate extreme events.

Both processes are a random walk with independent and stationary increments. Brownian motion increments have a Normal

distribution, while Lévy flight step-lengths have a Lévy distribution, a probability distribution that is heavy-tailed. The sample

path of the Brownian motion is continuous, differing in this from Lévy flight since its path is a cadlag function. Namely, Lévy170

path at most has a countable number of jumps, which are the only discontinuities in time.
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3.2 Mean first exit time

The first exit time for a solution orbit from a deterministic domain D ⊂ R1 of attraction of y(on/off) is defined as:

τ(ω,y) = inf{t≥ 0,Yt(ω,y) 6∈D}, (12)

and the mean exit time or the mean residence time of the process in the on(off)-state domain is denoted as u(y) , Eτ(ω,y)≥ 0.175

It has been proven (Duan, 2015) that the mean exit time of the stochastic system (9) for an orbit starting at y ∈D, satisfies the

following nonlocal partial differential equation with an external boundary condition

Au(y) =−1, y ∈D

u(y) = 0, y ∈Dc, (13)

where A is the generator defined as180

Au(y) =−V ′(y)u′(y) +

∫
R1\{0}

[u(y+ z)−u(y)− I{|z|<1} zu
′(y)]να(dz). (14)

Here Dc is the complement set of D in R1 and I{|z|<1}(z) is the indicator function for a set |z|< 1, defined as

I{|z|<1}(z) =

 1, if |z|< 1,

0, if |z| ≥ 1.
(15)

Moreover, the generator can be interpreted as Au= lim
t→0

Eu(yt)−u(y0)
t , for every u ∈ C2(R1).

3.3 Escape probability185

The likelihood that the salinity difference process Yt exits firstly from the on(off)-state domain D by landing in the set U ∈Dc

belonging to the off(on)-state domain is represented by

p(y) = P{Yτ (y) ∈ U} (16)

and solves the following integro-differential equation with the Balayage-Dirichlet boundary condition

Ap(y) = 0, y ∈D, (17)190

p(y) =

 1, y ∈ U,
0, y ∈Dc\U.

We use a numerical approach adapted from Gao et. al. (2014) for solving equation (17). The simplified form of this equation

d

2
p′′(x) + f(x)p′(x)− εCα

α
[

1

(1 +x)α
+

1

(1−x)α
]p(x)

+εCα

1−x∫
−1−x

p(x+ y)− p(x)

|y|1+α
dy = 0, (18)195
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is discretized in the x ∈ (−1,1). p(x) = 1 for x ∈ (1,+∞) and p(x) = 0 for x ∈ (−∞,−1). The corresponding schemes for

the general case can be extended easily, using central difference for derivatives and the "punched-hole" trapezoidal rule getting

a discretized equation of second-order accuracy for any 0< α < 2 and j =−J + 1, ...,−2,−1,0,1,2, ...,J − 1:

Ch
Pj−1− 2Pj +Pj+1

h2
+ f(xj)

Pj+1−Pj−1

2h

−εCP j
α

[
1

(1 +xj)α
+

1

(1−xj)α
] + εCαh

J−j∑
k=−J−j,k 6=0

′′ Pj+k −Pj
|xk|1+α

= 0 (19)200

where Pj is the numerical solution of p at xj . The interval [−2,2] is divided into 4J subintervals and xj = jh for −2J ≤ j ≤
2J integers, where h= 1/J . The modified summation symbol

∑′′ means that the quantities corresponding to the two end

summation indices are multiplied by 1/2. For more information see Gao et. al. (2014).

3.4 Fokker-Planck equation

The evolution of the probability density function p(y,t) for the solution paths Yt of the SDE (9) is governed by a Fokker-Planck205

equation

∂tp(y,t) =A∗p(y,t), p(y,0) = δ(y− y0), (20)

with the initial condition Y0 = y0. Where A∗ is the adjoint operator of A (14) in the Hilbert space L2(R1) that has the explicit

form in the case of a symmetric α-stable Lévy motion. Thus, the equation (20) is specified as

∂tp(y,t) =−∂y [f(y)p(y,t)]−
∫

R1\{0}

[p(y,t)− p(y− z, t)− I{|z|<1} z ∂yp(y,t)] να(dz), (21)210

where f(y) =−V ′ is a vector field of the SDE (9).

Sufficient conditions for the existence and regularity of the probability density p(y,t) in the Lévy processes driven SDE

(9) is established under Hörmander’s condition by using the Malliavin calculus with jump. For more details, See (Chen et.al.,

2015; Song et. al., 2015; Zhang, 2014) and the references therein.

3.5 Stochastic basin of attraction215

The Stochastic basin of attraction (SBA) is an important theoretical and practical tool that helps to describe a metastable

behavior of a system (Zheng, 2016). SBA quantifies the stability of a metastable state in a dynamical system with noise

perturbation in terms of size of the basin depending on the escape probability (Serdukova et. al., 2016). SBA is the collection

of initial conditions of solution processes that have low (high) probability of exit (return) from (to) a neighborhood of an

attractor. This geometric tool is applicable to models with small noise and noise that is a function of an order parameter.220

By Definition (Serdukova et. al., 2016), in the R1 state space SBA of the on(off) equilibrium state with the open deterministic

domain of attraction D is the set Bon(off)(m,M) =Dc
II

⋃
DI , where DI = {y ∈D | p(y)<m}, Dc

II = {y ∈Dc
I | p(y)>

M}, p(y) is the escape probability from D(Dc
I ) to Dc(DI ) defined in (16), m is the stability level I and M is the stability level

II. In this study we consider m= 0.3 and M = 0.8.
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4 Results and Discussion225

The stability analysis of the off and on-states in the AMOC model is based on the three main measures: escape probability,

mean first exit time and stochastic basin of attraction which are frequently used in behaviour prediction of the stochastic

dynamical system trajectories and whose main properties are summarized in Section 3. In this Section we discuss the results

obtained and interpret them from the climatological point of view. The potential function V (y) (8) for the weak fresh-water

input, as shown in Fig. 3 (a), is asymmetric and has the deepest on-state (y = 0.2) the widest 0.8 stability basin. The length of230

the deterministic basin of attraction for off -state (y = 1) is 0.26 units smaller than that for on-state. This indicates that under
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the Lévy perturbations the transition from off -state to on-state is more likely. In fact, the off -state basin under the noise with

α= 1 decreases by 6.75 times, while the on-state basin reduces only by 1.98. The greatest threat to the stability of on-state

represents noise with low jumps of higher frequency, i.e. α= 1.5. Extreme events of short time-scale (decades or less) such as

human-induced greenhouse gas emission are more likely to destabilize the on-state. As a response to increase in greenhouse235

gas concentration, atmospheric water cycle boost is expected. This leads to a greater excess of precipitation over evaporation

in high latitudes, freshening and reducing the density of surface water, and hence its tendency to sink and weaken the AMOC.

The off -state stability, on the other hand, is more vulnerable to the perturbations with moderate jumps and frequencies, i.e

α= 1. This type of variability in the fresh-water forcing must be taken into account in the AMOC recovery programs.

The analysis of the trajectories’ first mean exit time (12) and (13) from the deterministic basin Fig. 4(a) confirms the stability240

results based on the SBA.

Actually, the trajectories remain longer in the vicinity of on-state than in the off -state basin as the stability index (that is, α)

increases. The relationship between the residence time and stability index can be understood as the extreme event modeled by

Figure 4. First exit time and mean first exit time MET of orbits with α= 0.5 (dashed line), α= 1 (solid line), α= 1.5 (dash-dotted line) from the respective deterministic

basins for (a) the potential V (y) with F = 1; (b) the potential V (y) with F = 1.126; (c) the potential V (y) with F = 1.28.
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Lévy motion with small jumps and high frequency (α= 1.5) contributes to faster escape compared to the events characterized

by moderate or big jumps that correspond to moderate or low probability (α= 1 or 0.5). Actually, when rate of fresh-water245

released is large (Jackson and Wood, 2017) the timescale of AMOC weakening is measured in decades and does not depend

on the actual rate of fresh-water inflow, because advective feedbacks become enhanced.

For strong fresh-water forcing the potential function V (y) is also asymmetric, but now with the reversed depth: off -state

y = 1.14 here is deeper than on-state y = 0.37. In this model Fig. 3 (b), off -state is more stable than on-state and this implies

that under the influence of stochastic noise, the transitions from on to off are more expected.250

Comparing the dimension of the effects that noise with different α parameter values causes in the meridional overturning

circulation, it should be noted that the extreme events modeled by Lévy motion with α= 0.5 does not reduce the stability of

the off -state significantly, inducing only 0.114 unit cutback in the basin width. The noise with the short jumps and the high

frequency destabilizes the off -state more than the extreme events with moderate jumps and frequency. The long-term stability

(450-year duration of the model integration) of AMOC off -state was also revealed in the study of eddy-permitting climate255

model (Mecking et. al., 2016) and explained by the combination of the anomalous northward freshwater transport with the

freshening due to reduced evaporation in this region.

In the case of the on-state stability, noise with the same parameter α= 1 induces the greatest eleven times shrink of its

deterministic basin. Simulation results in Fig. 5 (c) indicate the noise-driven orbits escape faster from the on-state and stay

longer in the off -state basin.260

The symmetry in the potential V (y) is presented for F = 1.126 (see Fig. 3 (c)) generating the equality of the lengths of the

on(off)-states stability basins. Also, under the force of stochastic noise, the transition from one state to another is equiprobable.

The greatest destabilizer of the states is the perturbation with moderate jumps and high probability, alternatively the events

characterized by low probability but high jumps bring less transient impact between the states. In Fig 4 (b), the mean exit time

of the orbits from the neighborhoods of on(off)-states is the same and manifests the highest values for the orbits carried by265

Lévy noise with α= 0.5. This shows as well that such type of perturbations has minimal influence on the stability of the states.

In Fig. 5 the DI and DC
II SBA criteria (Serdukova et. al., 2016) based on the escape probabilities (16) and (17) for the stable

on(off)-states of the AMOC model with different fresh-water forcing F are shown: (a)-(d) for weak fresh-water input, (e)-(h)

for symmetric potential well inducing fresh-water input and (i)-(l) for strong forcing. The first criteria defines the set DI of the

initial salinity difference y0 that originate the trajectories with the m< 0.3 probability of escape from the deterministic basin270

of on-state Fig. 5 (a), (e), (i) and off -state (d), (h), (l). The trajectories with probability M > 0.8 of return to the interval DI

have their initial points y0 included by the second criteria in the on-state’s SBA Fig. 5 (b), (f), (j) (off -state’s SBA (c), (g),

(k)). The geometry of the probability density functions (20) and (21) of the salinity difference process Yt Fig. 6, once again

confirms the previous conclusions about the stability of the on(off)-states. Therefore, the process is most likely to remain in

the state that represents the deepest valley in the potential function V (y), this is in on-state for weak forcing and in off -state275

for strong forcing. For symmetrical potential well inducing forcing, the orbits with equal probability visit on or off -states. The

transition between the states is more likely if the AMOC system undergoes to Lévy perturbations with low jumps and high

noise probability as shown in Fig. 6 (c), since the difference between the probabilities of staying in each of the states is smaller.
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Figure 5. Escape probability of solutions with α= 0.5 (dashed line), α= 1 (solid line), α= 1.5 (dash-dotted line) (a) from D = (0,0.798) to Dc = (0.798,1.33); (b)

from DcI = (0.6723,1.33)/(0.3731,1.33)/(0.2613,1.33) to DI = (0,0.6723)/(0,0.3731)/(0,0.2613) for the respective α; (c) from D = (0.798,1.33) to Dc =

(0,0.798); (d) from DcI = (0,1.072)/(0,1.264)/(0,1.208) to DI = (1.072,1.33)/(1.264,1.33)/(1.208,1.33); (e) from D = (0,0.667) to Dc = (0.667,1.33);

(f) from DcI = (0.5069,1.33)/(0.1918,1.33)/(0.1818,1.33) to DI = (0,0.5069)/(0,0.1918)/(0,0.1818); (g) from D = (0.667,1.33) to Dc = (0,0.667);

(h) from DcI = (0,0.8278)/(0,1.138)/(0,1.149) to DI = (0.8278,1.33)/(1.138,1.33)/(1.149,1.33); (i) from D = (0,0.490) to Dc = (0.490,1.33); (j) from

DcI = (0.147,1.33)/(0.04287,1.33)/(0.1078,1.33) to DI = (0,0.147)/(0,0.04287)/(0,0.1078); (k) from D = (0.49,1.33) to Dc = (0,0.49); (l) from DcI =

(0,0.616)/(0,0.9037)/(0,1.04) to DI = (0.616,1.33)/(0.9037,1.33)/(1.04,1.33). (a)-(d) The potential function V (y) for forcing strength F = 1; (e)-(h) The po-

tential function V (y) for forcing strength F = 1.126 (i)-(l) The potential function V (y) for forcing strength F = 1.28. Red dotted lines PE(y) = 0.3 and PE(y) = 0.8 are

parametersm andM .
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Figure 6. Probability density function p(y,t) for the salinity difference process Yt with initial condition Y0 = y0, t= 50, p(y,0) = δ(y− y0) for the potential V (y) with
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Therefore, for α= 0.5 Fig. 6 (a) the probability that the process remains in off -state is 2.87 times greater than in on-state. This

difference in probabilities decreases with the increase in α parameter (which means a decrease in height and an increase in the280

frequency of jumps), resulting in a difference of 1.81 times for α= 1 Fig. 6 (b) and 1.42 times for α= 1.5 Fig. 6 (c).

5 Conclusion

Fluctuations in the AMOC patterns influence climate, in its turn civilization-induced and natural climatic changes have im-

pacts on AMOC. The meridional overturning circulation is bistable only for some domain of the nondimensional fresh-water

parameter values. Extreme events such as greenhouse gas emissions, collapse of major ice sheets and global warming induce a285

transition between both states. It has, therefore, great importance to sufficiently scrutinize the stability of strong (weak) AMOC

states against these extreme events. In this work, we have performed analysis of stability of the on-state and off -state in the

stochastic two-compartment Atlantic meridional overturning circulation model by considering three different values of the

fresh-water input control parameter.

Random noise agitations in geophysical complex dynamical systems have been regarded as continuous perturbation or290

Gaussian processes. However, the paleoclimatic data sets signify random fluctuations in swift climatic transitions have a non-

Gaussian distribution with heavy tail and pathways that are cádlág functions with at most a countable number of jumps.

Therefore, it is more fitting applying non-Gaussian symmetric α-stable Lévy processes in modeling the influence of extreme

events in the conceptual stochastic Stommel two-compartment model. Actually, these non-Gaussian processes are becoming

increasingly popular lately.295

We applied three concepts, mean residence time, first passage probability and stochastic basin of attraction. Each of these

quantities is helpful in understanding the stability of the strong AMOC (small salinity difference y) state and the weak AMOC

(large salinity difference y) against stochastic perturbations (extreme events) and predicting transitions between these states.
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The main conclusion of our work are the following: For the weak fresh-water flux, on to off -state transition is more probable

under extreme events modeled by Lévy noise perturbations with smaller jumps but with high frequency. This SBA analysis300

result is confirmed by calculating MET of sample paths. In the deterministic case, on-state has the widest basin of attraction as

compared to both symmetric well potential inducing and strong fresh-water influxes. Our results for strong fresh-water input

indicate extreme events of moderate jumps and frequencies facilitate the recovery of the strong AMOC, i.e., the transition from

off to on-state is boosted. Strong AMOC state attraction basin suffers its largest shrink to extreme events with a moderate

jump and probability Lévy noise and noise-driven pathways linger in the attraction basin of the weak AMOC state. Both305

strong and weak AMOC state have equal basin stability and transitions between the states are equiprobable for the symmetric

potential well inducing fresh-water forcing. The geometry of the probability density function also shows that pathways shuttle

between both states. Extreme events characterized by medium jumps and frequency destabilize the states most, while events

with smaller jumps and high frequency bring less transient impact.
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