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Abstract. The detection of finite-time coherent particle sets in Lagrangian trajectory data using data clustering techniques is an

active research field at the moment. Yet, the clustering methods mostly employed so far have been based on graph partitioning,

which assigns each trajectory to a cluster, i.e. there is no concept of noisy, incoherent trajectories. This is problematic for

applications in the ocean, where many small coherent eddies are present in a large, mostly noisy fluid flow. Here, for the first

time in this context, we use the density-based clustering algorithm OPTICS (Ankerst et al., 1999) to detect finite-time coherent5

particle sets in Lagrangian trajectory data. Different from partition-based clustering methods, derived clustering results contain

a concept of noise, such that not every trajectory needs to be part of a cluster. OPTICS also has a major advantage compared to

the previously used DBSCAN method, as it can detect clusters of varying density. The resulting clusters have an intrinsically

hierarchical structure, which allows one to detect coherent trajectory sets at different spatial scales at once. We apply OPTICS

directly to Lagrangian trajectory data in the Bickley jet model flow and successfully detect the expected vortices and the10

jet. The resulting clustering separates the vortices and the jet from background noise, with an imprint of the hierarchical

clustering structure of coherent, small-scale vortices in a coherent, large-scale, background flow. We then apply our method

to a set of virtual trajectories released in the eastern South Atlantic Ocean in an eddying ocean model and successfully detect

Agulhas rings. We illustrate the difference between our approach and partition-based k-Means clustering using a 2-dimensional

embedding of the trajectories derived from classical multidimensional scaling. We also show how OPTICS can be applied to15

the spectral embedding of a trajectory-based network to overcome the problems of k-Means spectral clustering in detecting

Agulhas rings.

Copyright statement. TEXT

1 Introduction

Understanding the transport of tracers in the ocean is an important topic in oceanography. Despite large-scale transport features20

of the mean flow, on smaller scales, mesoscale eddies and jets play an important role for tracer transport (Van Sebille et al.,
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2020). Such eddies can capture large amounts of a tracer, and, while transported in a background flow, redistribute them in the

ocean. Eddies have been shown to play an important role for the accumulation of plastic (Brach et al., 2018) and the transport

of heat and salt (Dong et al., 2014). To quantify the effects of eddies on tracer transport in the ocean, it is necessary to develop

methods that are able to detect and track them. Many methods exist to detect such finite-time coherent sets of fluid parcels based25

on different mathematical or heuristic principles (Hadjighasem et al., 2017). The term ‘finite-time coherent set’ is based on the

work of Froyland et al. (2010), and is in our context defined as a set of particles that stay, in a sense to be made more specific,

close to each other along their entire trajectories. Here, for the first time in this context, we make use of the density-based

clustering algorithm OPTICS (Ankerst et al., 1999) to detect finite-time coherent sets in Lagrangian trajectory data.

The detection of coherent Lagrangian vortices using abstract embeddings of Lagrangian trajectories together with data clus-30

tering techniques has received significant attention in the recent literature (Froyland and Padberg-Gehle, 2015; Hadjighasem

et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Schneide et al., 2018; Froyland and Junge, 2018;

Froyland et al., 2019). Using embedded trajectories for the detection of finite-time coherent sets is interesting as it allows one

to use sparse trajectory data, and it can in principle be applied to ocean drifter trajectories, as demonstrated by Froyland and

Padberg-Gehle (2015) and Banisch and Koltai (2017) for the detection of the five ocean basins. Yet, most of these methods35

cluster trajectory data with graph partitioning, which does not incorporate the difference between coherent, clustered trajecto-

ries and noisy trajectories that should not belong to any cluster. Graph partitioning has been shown to work in situations where

the finite-time coherent sets are not too small compared to the fluid domain (Froyland and Padberg-Gehle, 2015; Hadjighasem

et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018). For applications to La-

grangian trajectory datasets on basin-scale ocean domains, where multiple small-scale coherent sets (eddies) coexist with noisy40

trajectories in the background, graph partitioning is however likely to fail. Similar observations were made by Froyland et al.

(2019) for the partition-based clustering approaches based on transfer and dynamic Laplace operators (Froyland and Junge,

2018). Although some attempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one

additional cluster corresponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al. (2019) have developed a special form45

of trajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators and dynamic

Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from unclustered back-

ground noise.

Motivated by the results Froyland et al. (2019) obtained by developing a new form of trajectory embedding, we here ex-

plore the potential of another clustering algorithm to overcome the inherent problems of partition-based clustering. We use the50

density-based clustering method OPTICS (Ordering Points To Identify the Clustering Structure) developed by Ankerst et al.

(1999) to detect finite-time coherent sets in large ocean domains, using a very simple choice of embedding (cf. section 3.2.1).

Density-based clustering aims to detect groups of data points that are close to each other, i.e. regions with high data density. Our

data points correspond to entire trajectories, and groups of trajectories staying close to each other over a certain time interval

correspond to such regions of high point density. Different from partition-based methods such as k-Means or fuzzy-c-means,55

OPTICS does not require to fix the number of clusters beforehand. Further, density-based clustering has an intrinsic notion of
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a noisy data point: a point does not belong to any cluster (i.e. a finite-time coherent set) if it is not part of a dense region. A

more detailed comparison of the method presented here to existing related methods can be found in section 3.4.

Another desirable property of the OPTICS algorithm is its ability to capture coherence hierarchies. In the ocean, coherent sets

of trajectories naturally come with a notion of such a hierarchy. For example, the surface flow in the North Atlantic Ocean can60

be seen as approximately coherent (Froyland et al., 2014), while mesoscale eddies and jets are also finite-time coherent sets

of trajectories at smaller scales within the North Atlantic Ocean. Froyland et al. (2019) show how their leading eigenvectors

resolve coherent sets at large scales, while small-scale results can be obtained with a sparse eigenbasis approximation of a set

of eigenvectors. Similarly, clustering results obtained from OPTICS are typically hierarchical. The main result of OPTICS, the

reachability plot, provides this hierarchical information in a simple 1-dimensional graph.65

In section 4, we first show how OPTICS detects finite-time coherent sets at different scales for the Bickley jet model flow (also

discussed e.g. by Hadjighasem et al. (2017)), successfully detecting the six coherent vortices and the jet as the steepest valleys

in the reachability plot. The general structure of the reachability plot also reveals the large-scale finite-time coherent sets, i.e.

the northern and southern parts of the model flow, separated by the jet. We then apply our method to Lagrangian particle tra-

jectories released in the eastern South Atlantic Ocean, where large rings detach from the Agulhas Current (e.g. Schouten et al.70

(2000)). We detect several Agulhas rings, and on the larger scale also separate the eastward and westward moving branches of

the South Atlantic Subtropical Gyre. While the traditional approach to study Agulhas rings is based on sea surface height anal-

ysis (see e.g. Dencausse et al. (2010)), several methods based on virtual Lagrangian trajectories have been applied to Agulhas

ring detection before (Haller and Beron-Vera, 2013; Beron-Vera et al., 2013; Froyland et al., 2015; Hadjighasem et al., 2016;

Tarshish et al., 2018). Our method is different from these approaches in that it is directly applicable to a trajectory dataset, i.e.75

without much pre-processing of the data. As the OPTICS algorithm is readily available in the sklearn package of SciPy, the

detection of finite-time coherent sets can be done without much effort and with only a few lines of code. A further difference

is the mentioned intrinsic notion of coherence hierarchy, which allows for simultaneous analysis of trajectory data at different

scales. While we mainly focus on the direct embedding of trajectories in an abstract high-dimensional Euclidean space, we also

show in appendix C that OPTICS can be used to overcome the limits of k-Means clustering in the context of spectral clustering80

of the trajectory-based network of Padberg-Gehle and Schneide (2017).

2 Trajectory datasets

2.1 Quasi-periodically perturbed Bickley jet

We apply our method to a model system that has been used frequently in studies to detect finite-time coherent sets (Hadjighasem

et al., 2017; Padberg-Gehle and Schneide, 2017; Hadjighasem et al., 2016; Banisch and Koltai, 2017; Froyland and Junge,85

2018). The velocity field of the quasi-periodically perturbed Bickley jet (Bickley, 1937; del Castillo-Negrete and Morrison,
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1993) is defined by a stream function ψ(x,y, t), i.e. ẋ=−∂ψ∂y and ẏ = ∂ψ
∂x , with ψ(x,y, t) = ψ0(y) +ψ1(x,y, t) consisting of

a stationary eastward background flow

ψ0(y) =−ULtanh(y/L), (1)

and a time-dependent perturbation90

ψ1(x,y, t) = UL sech2(y/L) Re

[
3∑

n=1

fn(t)exp(iknx)

]
, (2)

where Re(z) denotes the real part of the complex number z. We use the same parameter values as Hadjighasem et al. (2017),

with U = 62.66 m/s the characteristic velocity of the zonal background flow, and L= 1770 km. The parameters in eq. (2)

are given by kn = 2n/r0, fn(t) = εn exp(−ikncnt) with ε1 = 0.075, ε2 = 0.4, ε3 = 0.3, c1 = 0.1446U , c2 = 0.205U , c3 =

0.461U . The domain of interest is Ω = [0,πr0]× [−3000 km,3000 km], where r0 = 6371 km is the radius of the Earth, and95

the left and right edges of Ω are identified, i.e. the flow is periodic in x-direction with period πr0. Similar to Banisch and Koltai

(2017), we seed the domain with an initial number of 12,000 particles on a uniform 200× 60 grid. For this choice, the initial

particle spacing is slightly above 100 km in both directions. We compute the trajectories for 40 days with a time step of one

second using the SciPy integrate package. We output the trajectories every day, i.e. we have T = 41 data points in time for each

trajectory.100

2.2 Agulhas rings in the South Atlantic

To test the OPTICS algorithm with a more realistic ocean flow, we simulate surface particle trajectories in a strongly eddying

ocean model. Surface velocities are derived from a NEMO ORCA-N006 run (Madec, 2008), which has a horizontal resolution

of 1/12◦ and velocity output for every five days. The model is forced by reanalysis and observed data of wind, heat and fresh

water fluxes (Dussin et al., 2016), i.e. the currents do not only contain the geostrophic component, as is the case in altimetry-105

derived currents (Beron-Vera et al., 2013; Froyland et al., 2019). For the advection of virtual particles, we use version 1.11 of

the open source Parcels framework (Lange and van Sebille, 2017), see oceanparcels.org. The 2-dimensional surface current

velocity is interpolated in space and time with the C-grid interpolation scheme of Delandmeter and van Sebille (2019), using

a 4th order Runge-Kutta method with a time step of 10 minutes. We initially distribute particles uniformly in the ocean on

the vertices of a 0.2◦× 0.2◦ grid in the domain [30◦W,20◦E]× [40◦S,20◦S], which corresponds to a total number of 23,821110

particles. At 30◦S, a spacing of 0.2◦ corresponds to roughly 20 km. The particles start at January 5, 2000 and are advected

for two years. We output the trajectories with a time interval of five days. We only use the first 100 days as data to detect the

finite-time coherent sets, i.e. we have T = 21 data points for each trajectory, but also look at later times to see how long the

rings need to disperse. We provide the used trajectory data for the Agulhas flow as NumPy file on Zenodo (Wichmann, 2020b).
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3 Methods115

3.1 Detecting coherent structures in Lagrangian trajectory data

For N trajectories of dimension D and length T , the trajectory information can be stored in a data matrix X ∈ RN×DT , where

each row results from a particle trajectory by concatenating the different spatial dimensions. The analysis of trajectory data

to detect finite-time coherent sets of trajectories (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017; Hadjighasem

et al., 2016; Padberg-Gehle and Schneide, 2017; Schneide et al., 2018; Froyland and Junge, 2018; Wichmann et al., 2020) can120

be split into two essential steps:

Step 1 Embedding of the trajectories in an abstract (metric) space, i.e. X → X̄ ∈ RN×M , where M ≤DT . If one uses a

dimensionality reduction method, M <DT .

Step 2 Clustering of the embedded data with a clustering algorithm.

The embedding is necessary to represent the trajectories as points in a metric space. Different options for embedding the125

trajectories exist, e.g. a direct embedding of the data points along the trajectories (Froyland and Padberg-Gehle, 2015), or

embeddings based on the eigenvectors derived from networks that are defined by physically motivated trajectory similarities

(Banisch and Koltai, 2017; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018). Once

an embedding of each trajectory as a point in a metric (typically Euclidean) space is established, one can apply a clustering

algorithm. Roughly speaking, clustering algorithms try to identify groups of points that are close to each other as a cluster.130

Partition-based clustering methods divide the entire data into a (typically fixed) number of K clusters, such that each data

point belongs to a cluster. The most popular method in this category is the k-Means algorithm, which tries to find a given

number of K clusters such that the sum of pairwise squared distances of points within a cluster is minimized. Other clustering

algorithms contain a concept of ‘noisy’ data, i.e. data points that do not belong to any cluster, or belong to a cluster only with a

certain probability. Examples for the former case are DBSCAN (Ester et al., 1996), discussed by Schneide et al. (2018) in the135

fluid dynamics context, and the here presented OPTICS (Ankerst et al., 1999) algorithm. For the latter case, the most popular

method is fuzzy-c-means clustering, as discussed by Froyland and Padberg-Gehle (2015) in the context of finite-time coherent

sets.

Figure 1 shows a few possible options for trajectory embedding and clustering that have partially been explored before (see the

footnotes in the figure for the combinations used in related studies). For a given trajectory dataset, one can in principle apply140

an arbitrary combination of embedding and clustering methods. Only a few of the different combinations have been explored

so far, and many more options for embedding and clustering as those shown in fig. 1 exist. It is important to note that a good

choice of embedding and clustering might well depend on the specific problem at hand, and there might be no combination

that performs well for all possible situations.

Most of the studies that use clustering techniques to detect finite-time coherent sets have focused on developing new forms145

of trajectory embeddings. For example, Hadjighasem et al. (2016), Padberg-Gehle and Schneide (2017), Banisch and Koltai

(2017) and Froyland and Junge (2018) all use different forms of spectral embeddings, together with k-Means clustering.
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Figure 1. Different steps to detect coherent trajectories in Lagrangian data with trajectory clustering. The figure is non-exhaustive, and many

more options for embedding and clustering exist. Footnotes: 1 Froyland and Padberg-Gehle (2015). 2 Hadjighasem et al. (2016), Padberg-

Gehle and Schneide (2017) and Banisch and Koltai (2017) all define networks with spectral embedding and subsequent k-Means clustering.

Froyland et al. (2019) define spectral embeddings defined on dynamic Laplacian and transfer operators. 3 Schneide et al. (2018).

Froyland et al. (2019) have developed a powerful form of embedding, based on a sparse eigenbasis approximation. Here, we

focus on the clustering step in fig. 1, and propose the OPTICS clustering algorithm in the fluid dynamics context. We test the

algorithm for three different kinds of embeddings:150

E1 A direct embedding of the trajectory data in a high dimensional Euclidean space, i.e. M =DT (cf. section 3.2.1).

E2 A reduction of the trajectory data to a 2-dimensional embedding space using classical multidimensional scaling (MDS,

cf. section 3.2.2). This is mainly to visualize the difference to partition-based k-Means clustering.

E3 A spectral embedding of the network proposed by Padberg-Gehle and Schneide (2017).

In the following sections, we explain in detail the embeddings E1 and E2 and the OPTICS algorithm. We introduce the155

network embedding E3 together with the corresponding results in appendix C.

3.2 Trajectory embedding

3.2.1 Direct embedding

The direct embedding of each trajectory in RDT is the most straightforward embedding as it requires no further pre-processing

of the trajectory data. For simplicity, assume we are given a set ofN trajectories in a 3-dimensional space, i.e. (xi(t),yi(t),zi(t))160
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where i= 1, . . . ,N and t= t1, . . . , tT . We then simply define the embedding of trajectory i in the abstract 3T -dimensional space

as

ui = (xi(t0),xi(t1), . . . ,xi(tT ),yi(t0),yi(t1), . . . ,yi(tT ),zi(t0),zi(t1), . . . ,zi(tT )) ∈ R3T , (3)

and impose an Euclidean metric in R3T to measure distances between different embedded trajectories. The resulting embedded

data matrix X̄ is then simply given by the vertical concatenation of the different embedding vectors. This kind of embedding165

was also explored by Froyland and Padberg-Gehle (2015), together with a fuzzy-c-means clustering. Intuitively, if two tra-

jectories i and j belong to the same finite-time coherent set, the corresponding particles follow very similar pathways, i.e.

the Euclidean distance of the embedding vectors dij = ||ui−uj || is expected to be small. On the other hand, a particle i that

belongs to a coherent set is expected to have a larger distance to a particle j that is not part of the set. In other words, groups of

particles that form a finite-time coherent set are dense in the embedding space. This motivates to use a density-based clustering170

algorithm to detect finite-time coherent sets.

To take into account the πr0-periodicity in x-direction of the Bickley jet flow, we first put the individual 2-dimensional data

points on the surface of a cylinder with radius r0/2 in R3, and interpret the resulting trajectories in a 3-dimensional Euclidean

space. The resulting data matrix is X̄ ∈ RN×3T , with N = 12,000 and T = 41. For the Agulhas particles, we put the single

data points on the earth surface in a 3-dimensional Euclidean embedding space by the standard coordinate transformation of175

spherical to Euclidean coordinates. The resulting data matrix is thus X̄ ∈ RN×3T with N = 23,821 and T = 21.

3.2.2 Dimensionality reduction with classical multidimensional scaling

To get an intuition for what the OPTICS algorithm does, and the differences to k-Means, we wish to visualize the data structure

in the plane. For this, it is necessary to reduce the embedding dimension of each trajectory from 3T to two in a way that

the density structure, and hence the individual Euclidean distances between embedded trajectories dij = ||ui−uj ||, cf. eq.180

(3), are preserved. We do so by a common method of nonlinear dimensionality reduction, called classical multidimensional

scaling (MDS), see e.g. chapter 10.3 of Fouss et al. (2016). Classical MDS tries to find an embedding of the high-dimensional

data points in a low dimensional space such that the pairwise distances are approximately preserved. Similar to a principal

component analysis, classical MDS makes use of the eigenvectors corresponding to the largest eigenvalues of a kernel matrix,

which is in this case defined by185

B =−1

2
H∆2H, (4)

where ∆2 ∈ RN×N is a matrix containing all squared distances between the points, ∆2
ij = ||ui−uj ||2, and H is the centring

matrix withHij = δij−1/N , where δij denotes the Kronecker delta. The matrixB in eq. (4) is called the centred inner product

matrix. If B̃ is the matrix of inner products of the embedded data points, i.e. B̃ij = ui ·uj with Euclidean scalar product, thenB

can be obtained by removing the mean of all rows and columns of B̃, cf. chapter 10.3 of Fouss et al. (2016). An embedding of190
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the data points using the eigenvectors corresponding to the leading non-negative eigenvalues of B in eq. (4) ensures to capture

the main variance of the (squared) distance structure, similar to a principal component analysis.

We compute ∆2 with the Euclidean embedding described in section 3.2.1 and restrict ourselves to the first two dimensions to

visualize the data structure in the plane, i.e. the embedding is defined by

ui = (w0,i,w1,i), i= 1, . . . ,N, (5)195

where Kwj = λjwj , and λ0 ≥ λ1 ≥ λk for all k = 2, . . .N−1. This choice of embedding ensures to capture the main variance

of the data points, and we therefore also expect to capture the main structure in terms of data density. For large particle sets

however, computing the spectrum of H in eq. (4) is computationally not feasible, as the matrix B is dense and computing the

spectrum scales with O(N3). We apply classical MDS to the 12,000 particles of the Bickley jet model flow, and a random

selection of the equal number of particles for the Agulhas flow. In our context, the method is most useful for visualization pur-200

poses, as it provides a good 2-dimensional approximation of the point distances, i.e. also the density structure of the embedded

trajectories.

3.3 Clustering with OPTICS

The detection of dense accumulations of points that are separated from each other by non-dense regions (noise) is the main goal

of density-based clustering. We use the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm by Ankerst205

et al. (1999) to detect these regions. The OPTICS algorithm can be seen as an extension of DBSCAN (Ester et al., 1996). As

we have no prior information on the density structure of the embedded nodes, we set the ‘generating distance’ of OPTICS

to infinity and our presentation here is limited to this case. The general OPTICS algorithm with finite generating distance is

computationally more efficient and slightly more complicated, and we refer to Ankerst et al. (1999) for more details.

For δ ∈ R, the δ-neighbourhood of a point p ∈ RM is defined as the M -dimensional ball of radius δ around p. Define Mδ(p) as210

the number of points that is in the δ-neighbourhood of p, including p itself. OPTICS requires one parameter, an integer smin

(called MinPts by Ankerst et al. (1999)), that defines the core-distance of a point p as

c(p) = {min(δ) |Mδ(p)≥ smin}. (6)

The core distance is simply the minimum radius of a ball around p, such that the ball contains smin points. Note that the

generating distance that we set to infinity is a maximum cut off distance for the computation of the core distance in eq. (6),215

beyond which the core distance is not defined. As we do not have an intuition for a good value of such a cut off, we remove it

by setting it to infinity.

The ordering of the points is based on the reachability distance of a point p w.r.t. another point q, defined as

r(p|q) = max(c(q), ||p− q||), (7)
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where ||p− q|| in our case denotes the Euclidean distance between p and q. The ordering of points is then constructed with the220

following scheme:

Step 1 Pick a point p1. This is the first point in the order, and is arbitrary.

Step 2 Compute the core-distance c(p1) of p1.

Step 3 Define an ordered seed list containing all other points, pl, l = 2, . . . ,N . For each point pl, define the reachability value

r(pl) as the reachability distance (eq. (7)) w.r.t. p1, r(pl) = r(pl|p1). Order the list in ascending order of the r(pl).225

Step 4 Pick the first point on the ordered seed list as p2 and compute the core-distance c(p2). For all remaining points pl,

l = 3, . . . ,N , update the reachability value r(pl)→min(r(pl), r(pl|p2)).

Step 5 Update the ordered seed list according to the new reachability.

Step 6 Repeat steps 4-5 to obtain p3. Continue until all points are processed.

Note that the ordering of points is achieved by constantly updating the ordered seed list, cf. step 3. In this way, the algorithm230

iterates through groups of dense points one after the other, and only continues with other points once a dense region has been

fully explored. Note also that the entire algorithm depends on the choice of the parameter smin. The value of smin should be

chosen roughly as a minimum value of the expected cluster size. In the examples presented in this paper, we take values for

smin that correspond to the estimated minimum size of the coherent sets.

The main result of the OPTICS algorithm is a reachability plot. This plot is the graph defined by (i,r(pi)), where p0 =∞ by235

definition. The reachability plot is a powerful presentation of the global and local distribution of a set of points at once. The

valleys in this plot correspond to dense regions, which we relate to finite-time coherent sets. We show examples of reachability

plots in section 4. Given the reachability plot (i,r(pi)), we use two common ways to derive a clustering result:

1. DBSCAN clustering: Choose a cut-off parameter ε and define all points pi with c(pi)≤ ε as core points. All points

that are not in the ε-neighbourhood of a core point are defined as noise. This set of noisy data points is equivalent to all240

points pi that are not core points and have a reachability value r(pi) with r(pi)> ε. A cluster of size L is then defined

as a consecutive set (in the sense of the ordering) of non-noise points (pj ,pj+1, . . . ,pj+L−1), with adjacent points pj−1

and pj+L being noise. This is similar to the clustering result of a DBSCAN run with equal values for smin and ε. All

possible realizations of DBSCAN clusters, with the same value for smin, can therefore be derived from the reachability

values, core distances and the ordering determined by OPTICS. Up to boundary points, a DBSCAN clustering result can245

be obtained by drawing horizontal lines in the reachability plot, cf. section 4.

2. ξ-clustering: While the DBSCAN clustering method looks for deep valleys in the reachability plot, this method looks for

valleys with steep boundaries. In short, the larger a parameter ξ with 0< ξ < 1, the steeper the boundary of a valley has to

be to be classified as a cluster. In more detail, a ξ-cluster is defined as a consecutive set of points (pj ,pj+1, . . . ,pj+L−1)

that has steep boundaries in the sense that for a parameter ξ, 0< ξ < 1:250
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(a) The start of the cluster pj is in a ξ-steep downward area. A ξ-steep downward area is a maximal set of consecutive

points (pl,pl+1, . . . ,pl+k), k ∈ {1, ...,N − l} where: 1. pl and pl+k are ξ-steep downward points, i.e. r(pl)≤ (1−
ξ)r(pl−1) and r(pl+k)≤ (1− ξ)r(pl+k−1), 2. pl+i ≤ pl for all i= 1, . . . ,k and 3. not more than smin consecutive

points in the set are no ξ-steep downward points.

(b) The end of the cluster pj+L−1 is a ξ-steep upward area. The definitions are the reverse of the ξ-steep downward255

area, with the definition of a ξ-steep upward point as r(pj)≤ (1− ξ)r(pj+1).

(c) The cluster contains at least smin points, i.e. L≥ smin.

(d) Every point in the inside of the cluster is at least a factor of (1−ξ) smaller than the boundary points pj and pj+L−1.

All points that do not belong to a cluster are classified as noise.

We refer to Ankerst et al. (1999) for a more detailed discussion of the ξ-clustering method with illustrations for example260

data. Note that the full ξ-clustering method presented by Ankerst et al. (1999) does contain some more details related to the

choice of the start and end points, which we did not mention here.

The OPTICS algorithm as well as functions to derive both clustering results from an OPTICS output are available in the SciPy

sklearn package. Note that the implementation in sklearn allows for a minimum cluster size different from smin for the ξ-

clustering method (item 2 c above), but we will not make use of this additional freedom to reduce the number of parameters.265

Note that, different from k-Means, both clustering methods do not require an a priori determination of the number of clusters.

For the ξ-clustering method, a larger ξ requires steeper boundaries to form a cluster, i.e. will typically lead to a reduction of

the number of resulting clusters. For DBSCAN clustering with very large ε, one will detect one large global cluster. Making

ε smaller leads then to consecutive splits of this cluster, forming (up to noise) a cluster hierarchy. We will demonstrate the

properties for both clustering methods in section 4 for different situations. In the following applications, we use an estimation270

of the minimum number of particles per finite-time coherent set for the parameter smin.

Intuitively, the two clustering methods can be understood as follows. DBSCAN detects those groups of points that have a

certain minimum density defined by the minimum reachability distance ε. Clusters detected by DBSCAN are therefore defined

by a global density criterion. This assumes no structural differences in the type of coherent sets in different regions of the fluid.

Different from that, the ξ-clustering method detects clusters by finding strong changes in the density of the data points, and not275

based on absolute densities. This has the advantage that clusters of different absolute density can be detected. Such a situation

can arise if the distribution of particles is inhomogeneous over the fluid domain, or if the spatial extend of the fluid domain is

very large such that the properties of finite-time coherent sets vary significantly. It is important to note that the main result of

OPTICS is the reachability plot itself. The DBSCAN- and ξ-clustering methods should be seen as useful tools to identify the

most important features of that plot.280

3.4 Comparison to related methods

Our method is closely related to existing methods to detect finite-time coherent sets with clustering techniques. Most notably,

Froyland and Padberg-Gehle (2015) also use a direct embedding of individual trajectories similar to eq. (3), together with fuzzy-
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c-means clustering. Hadjighasem et al. (2016), Banisch and Koltai (2017), Padberg-Gehle and Schneide (2017) and Froyland

and Junge (2018) use spectral embeddings of graphs that are defined on some form of physical intuition or of dynamical285

operators, together with k-Means clustering. These studies show applications of their methods to example flows where the

size of almost-coherent sets is not too small compared to the fluid domain. Such examples are the Bickley jet flow, which we

also study in section 4.1, the five major ocean basins (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017), or few

individual eddies in an ocean or atmospheric flow (Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Froyland

and Junge, 2018). In such situations, noisy background trajectories can be detected as individual clusters by the partitioning290

method, as discussed by Hadjighasem et al. (2016). For applications in large ocean domains, where the number of eddies is

not known beforehand and where there are many more noisy trajectories than coherent trajectories, such an approach is likely

to fail, see also the discussion by Froyland et al. (2019). OPTICS does not require to fix the number of clusters beforehand,

and also contains an intrinsic concept of noisy trajectories that do not belong to any cluster, making OPTICS suitable for

challenging flows in large domains.295

As mentioned, OPTICS also contains an intrinsic notion of cluster hierarchy, i.e. coherent sets that are themselves part of

coherent sets at larger scales. Ma and Bollt (2013) studied hierarchical coherent sets in the transfer operator framework of

Froyland et al. (2010), in the spirit of the hierarchical clustering method proposed by Shi and Malik (2000). Their approach is

also partition-based, i.e. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy, a fixed cut-off has

to be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of300

OPTICS, the reachability plot, contains such hierarchical information in a smooth and intrinsic manner.

As described in section 3.3, clustering results of the DBSCAN algorithm (Ester et al., 1996) can be derived from the reachability

plot of OPTICS. DBSCAN has been used in the context of coherent sets before by Schneide et al. (2018), although not to

identify specific clusters, but to distinguish noisy from clustered trajectories. The potential of density-based clustering for

applications in the ocean and its comparison to other existing clustering methods for flow examples such as the Bickley jet (cf.305

section 2.1) has not been explored so far. Different from OPTICS, DBSCAN detects clusters with a certain fixed minimum

density, although clusters with varying densities might be present in a dataset (Ankerst et al., 1999). More specifically, the

value for the cut-off parameter ε, cf. section 3.3, has to be set beforehand. Choosing a good value for the density parameter

in DBSCAN is challenging if there is no underlying physical intuition for the density structure. As described in section 3.3,

OPTICS allows one to derive any DBSCAN clustering result, with the same value for the parameter smin, after computing the310

reachability plot, i.e. after one can get first insights into the clustering structure of the dataset to make an appropriate choice

for ε. Furthermore, it also allows one to use the ξ-clustering method instead of DBSCAN (cf. section 3.3).

A more recent and powerful technique to detect finite-time coherent sets in sparse trajectory data was presented by Froyland

et al. (2019), based on dynamic Laplacian and transfer operators (Froyland and Junge, 2018). Froyland et al. (2019) apply their

method to a trajectory dataset in the Western Boundary Current region in the North Atlantic Ocean, and successfully detect315

many eddies by superposing individual eigenvectors. The methods presented there are based on a form of spectral embedding,

derived from discretized dynamical operators. Based on this embedding, clustering results have also been derived with k-Means

by Froyland and Junge (2018) and with individual thresholding by Froyland et al. (2019). Froyland et al. (2019) also show how
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the low-order eigenvectors correspond to large-scale coherent features, while the individual eddies are derived by a sparse

eigenbasis approximation of a number of eigenvectors. The latter approach is essentially a transformation of the embedding to320

represent the most reliable features, such that a superposition of the eigenvectors alone yields the information about the location

and size of finite-time coherent sets (without a clustering step). This is essentially an optimized form of embedding, i.e. the

second step in fig. 1. Our aim here is to focus on the third step in fig. 1, i.e. to demonstrate the potential of the density-based

clustering algorithm OPTICS, together with a very simple embedding of eq. (3).

A downside of our method compared to other approaches is the rather ad-hoc choice of embedding, cf. eq. (3). Different325

from many other methods, most notably the ones of Banisch and Koltai (2017), Froyland and Junge (2018) and Froyland

et al. (2019), this type of embedding is not derived from a meaningful dynamical operator. It could be fruitful to explore a

combination of these more meaningful embeddings together with OPTICS as a clustering algorithm in future research.

4 Results

4.1 Bickley jet flow330

We start with the direct embedding of the Bickley jet flow trajectories, cf. section 2. The data matrix has dimension X ∈
R12,000×123. We apply the OPTICS algorithm to the resulting points together with DBSCAN clustering, choosing smin = 80

as a minimum size of the finite-time coherent sets. In the following, all axis units are in multiples of 1000 km. Figure 2 shows

the reachability plot, together with the DBSCAN clustering result of three different choices of ε. The six vortices and the

jet are clearly visible as the major valleys in the reachability plot. The hierachical structure of the DBSCAN clustering with335

decreasing ε is visible in the figures from top (large-scale coherence) to bottom (small-scale coherence). Note that for the

DBSCAN clustering results, boundary points of the clusters can be above the hozitonal line at y = ε. This is because of the

definition of the DBSCAN clustering in section 3.3.

To illustrate the difference between OPTICS and k-Means, we use the embedded trajectories and apply classical MDS

to obtain a 2-dimensional embedding. As described in section 3.2.2, this assures to capture the major variance along the340

embedding axes. The spectrum of B in eq. (4) is shown in fig. A1 in the appendix, with two clearly dominant eigenvalues.

The fact that there are two very dominant eigenvalues assures that the illustration of the data in the plane captures the major

variance of the data points. Figure 3a shows the corresponding embedding of the trajectories in the 2-dimensional Euclidean

space. The star-shaped distribution of data points reflect the strong symmetries of the underlying idealized Bickley jet flow.

Such symmetry is not expected to be present for more realistic flows. Figures 3b and 3c show the cluster labels for OPTICS345

with DBSCAN clustering at ε= 106 km, and for a k-Means clustering with K = 8 clusters, respectively. K = 8 corresponds

to the six vortices, the jet, and one noise cluster as suggested by Hadjighasem et al. (2016).

The corresponding clustering results in real space are shown in figs. 4 and 5 for OPTICS and k-Means, respectively. The jet

and the six vortices are clearly recognizable as dense accumulations of points in the 2-dimensional space of fig. 3b, see fig. 4

for the corresponding colours. The clustering result with k-Means in fig. 5 shows that the clusters corresponding to the vortices350

are much less focussed. In addition, each of the eight clusters in fig. 3c contains some of the noisy points of fig. 3b, which
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Figure 2. Result of the OPTICS algorithm applied to the direct embedding of the trajectories. (a), (d) and (g) show the reachability plot with

different DBSCAN clustering results, indicated by the black horizontal line. The corresponding clustering results of each choice of DBSCAN

parameter ε is shown on the right of the reachability plots for different times. Grey particles correspond to noise. Axis units in the centre and

right column are in 1000 km.

shows that using one additional cluster for noise does not work in this situation. It is interesting to note that capturing the noisy

data points of fig. 3b by an additional cluster in k-Means is geometrically impossible, simply because k-Means clusters are

circular. Covering all noisy points without including the centre, i.e. the jet in fig. 3b, is not possible for k-Means.

It should be noted here that the poor performance of k-Means in figs. 3c and 5 is not representative for other methods that355

use k-Means. For example, the method of Banisch and Koltai (2017) captures the coherent structures in the Bickley jet rather

well, including the jet in the middle. We emphasize again that we use classical MDS here mostly for visualization purposes,

as the computation of the classical MDS embedding is difficult for large particle sets. In our case, a dense 12,000× 12,000

symmetric matrix has to be diagonalized, which already takes a significant amount of computation time.

We finally also tested the performance of our algorithm with a random subset of 2,000 particles, using data for every five360

days instead of every day, cf. fig. A2 in the appendix. OPTICS still detects the six vortices and the jet, although the cluster

boundaries are less clearly defined compared to fig. 2. Froyland and Junge (2018) detect the vortices and the jet by using data of

3,000 particles only at initial and final times (t= 0 and t= 40 days). Our method is not able to detect the expected finite-time
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Figure 3. a: 2-dimensional embedding of the classical MDS method (cf. section 3.2.2) of the trajectories. b: with labels according to the

DBSCAN result of fig. 4. The six vortices and the jet are clearly visible as dense regions. Grey particles correspond to noise. c: k-Means

clustering result for K=8, see fig. 5 for the spatial clustering result of k-Means.

Figure 4. Result of DBSCAN clustering of the 2-dimensional embedding of the classical MDS method. a: reachability plot with black line

representing the DBSCAN parameter ε. b-c: corresponding clustering results at different times. Grey particles represent noise. Axis units are

in 1000 km.

coherent sets with using only initial and final particle data. This is likely to be a result of the ad-hoc direct embedding, cf. eq.

(3), see the discussion at the end of section 3.4.365

4.2 Agulhas rings

We next apply OPTICS to the Agulhas trajectories. As described in section 2, we have X̄ ∈ RN×63 with N = 23,821. We

choose smin = 100 in the following, which corresponds initially to a square cell of 2◦× 2◦, i.e. a reasonable minimum size

of an Agulhas ring. Figure 6 shows the result of the direct embedding. The reachability plot in fig. 6a is much more jagged

than for the Bickley jet model flow (cf. fig. 2a). The narrow deep valleys and the wider valleys in the reachability plot indicate370

the presence of large- and small-scale coherence patterns. Figure 6a-c show the DBSCAN clustering result for a relatively

large value of ε. The main separation of fluid domains is between the red and the blue particles, with a few vortices at their

boundary. These two water masses are the northern and southern parts of the subtropical gyre in the South Atlantic, the red
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Figure 5. Result of K = 8 k-Means clustering of the 2-dimensional embedding from classical MDS, cf. fig. 4. Axis units are in 1000 km.

particles moving to the west, the blue particles to the east. The second and third rows of fig. 6 show other clustering results

for the DBSCAN- and the ξ-clustering method, respectively. The valleys in fig. 6g with steepest boundaries as detected by375

the ξ-clustering method mostly correspond to eddy-like structures, separated by background noise. Note that not all clusters

in the figure correspond to eddies. For example, the blue cluster in figs. 6g-i stays approximately coherent over the considered

time interval, although it is certainly not an Agulhas ring. An animation of the detected finite-time coherent sets for the full

two years of trajectory data based on the ξ-clustering method as in the last row of fig. 6 can be found on Zenodo (Wichmann,

2020a), showing that many of the sets stay coherent for significantly longer times than the first 100 days.380

Figure 6. Result of the OPTICS algorithm applied to the direct embedding of the trajectories, with different clustering methods. Grey

particles correspond to noise.
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Figure 6 shows that for this situation, the ξ-clustering method detects more Agulhas rings than DBSCAN. While the cluster-

ing results shown in the figure all depends on the parameter values for ξ and ε, it is visible in the reachability plot of fig. 6g that

the definition of some eddies includes the entire boundary of the valleys, i.e. up to very high reachability values. At the same

time, the detection of the large-scale clusters as in 6a-c is not possible with the ξ-clustering method. These findings are in fact

expected, cf. the discussion of the two clustering methods at the end of section 3.3. DBSCAN is best to detect global density385

structures, i.e. when the reachability values of all points are compared to the same cut-off ε. Regions that are dense locally but

not necessarily globally are better detected with the ξ-clustering method. Despite these differences between the two clustering

methods, we again emphasize that the main result of OPTICS is the reachability plot itself. Fig. 7 shows a colour map at initial

time of the reachability values. We clearly see Agulhas rings as the dark regions corresponding to lowest values of reachability.

The regions of large reachability correspond to trajectories that are relatively noisy compared to all the other trajectories.390

Figure 7. Reachability values at initial time, resulting from the OPTICS algorithm applied to the direct embedding of the trajectories. The

regions with lowest values clearly correspond to Agulhas rings. The colour bar is cut off at a reachability of 1000 km to show the relevant

structure of variations.

In order to illustrate again the difference between OPTICS and k-Means for this example, we choose 12,000 random trajec-

tories and again embed the trajectories in a 2-dimensional space with classical MDS (cf. section 3.2.2). The reduction of the

particle set is necessary to simplify the eigendecomposition of the matrixB in eq. (4), and we therefore choose smin = 30. The

corresponding spectrum of B is shown in fig. B1 in the appendix, showing that there are again two dominant eigenvectors, i.e.

visualizing the netwok in the plane captures the main variance of the data. Figure 8 shows the embedded trajectories together395

with OPTICS / DBSCAN clustering (fig. 8b) and k-Means (fig. 8c) for K=40. Figs. 9 and 10 show the corresponding clustering

results in the fluid domain. It is visible that k-Means does not detect a single vortex, but splits the fluid domain into regions of

approximately similar size. OPTICS detects multiple Agulhas rings by finding the deepest valleys in the reachability plot.

It is interesting to note that the use of classical MDS in fig. 9 has lead to the detection of many of the vortices of fig. 6d-f with400

DBSCAN instead of the ξ-clustering method. The transformation to the reduced 2D space has hence lead to a simplification

of the reachability plot, which now represents the major variations in the distances of the embedded trajectories. At the same

time, the large-scale structure of 6a is not visible any more in fig. 9. This indicates that exploring more dimensionality reduction
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Figure 8. Embedding of the Agulhas trajectories in the 2-dimensional space defined by the leading eigenvectors of the MDS Kernel matrixB.

a: no labels. b: clustering labels of OPTICS / DBSCAN, see fig. 9 for the corresponding plot in the Agulhas region. Grey particles represent

noise. c: k-Means with K = 40, see fig. 10 for the corresponding plot in the Agulhas domain.

Figure 9. Result of OPTICS applied to the 2-dimensional embedding of 12,000 randomly selected particles with the classical MDS method,

cf. fig. 8b, and smin = 30. The corresponding spectrum is shown in fig. B1 in the appendix, showing that there are two dominant eigenvectors.

Grey particles are classified as noise.

techniques could be useful for future research, in particular those that are computationally more efficient than classical MDS.

Spectral embeddings derived from networks together with partition-based clustering have a similar problem as the one illus-405

trated in figs. 8c and 10 (Froyland et al., 2019). Similar to the case discussed here, OPTICS can be used to overcome the

problems of k-Means. We show this in appendix C for the network proposed by Padberg-Gehle and Schneide (2017) for the

Agulhas region, together with a brief introduction of the network and how to construct spectral embeddings. In summary, k-

Means again fails to detect any of the vortices, while OPTICS detects many of the coherent vortices in the spectrally embedded

network. Yet, other flow features are also present that result from the physical motivation of the network definition, see the410

results in appendix C.
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Figure 10. Result of the k-Means clustering with K = 40 applied to the 2-dimensional embedding with classical MDS, cf. fig. 8c.

5 Conclusions

The abstract embedding of particle trajectories in a metric space with subsequent clustering is a promising field of research

for the detection of finite-time coherent sets in oceanography. Yet, most of the existing methods have been based on graph

partitioning, which has no concept of noisy, unclustered trajectories. This is a problem for applications in the ocean, where415

many eddies are transported in a noisy background flow on large domains. This study is motivated by the success of Froyland

et al. (2019) in overcoming the problem of graph partitioning by a sophisticated form of trajectory embedding. Here, we show

how the density-based clustering algorithm OPTICS (Ankerst et al., 1999) can be used instead of graph partitioning, in order to

detect small-scale eddies in large ocean domains. Different from partition-based clustering methods such as k-Means, OPTICS

does not require to fix the number of clusters beforehand. Clusters are detected by identifying dense accumulations of points,420

i.e. groups of trajectories that are close to each other in embedding space. Coherent groups of particle trajectories can be

identified as valleys in the reachability plot computed by the OPTICS algorithm. This plot also has a natural interpretation in

terms of cluster hierarchies, i.e. finite-time coherent sets that are by themselves part of a larger scale finite-time coherent set.

Such hierarchies are present in the surface ocean flow, where the subtropical basins are approximately coherent and at the same

time contain other finite-time coherent structures such as eddies and jets.425

We apply OPTICS to Lagrangian particle trajectories directly, in the spirit of Froyland and Padberg-Gehle (2015). OPTICS

successfully detects the expected coherent structures in the Bickley jet model flow, separating the six vortices and the jet

from background noise. We also apply OPTICS to simulated trajectories in the eastern South Atlantic and successfully identify

Agulhas rings, separated by noise. We visualize the difference between OPTICS and k-Means with a 2-dimensional embedding

of the trajectories based on classical multidimensional scaling. We also show how OPTICS can be applied to the spectral430

embedding of the particle-based network proposed by Padberg-Gehle and Schneide (2017), providing a necessary amendment

to their method to detect coherent vortices in a large ocean domain, i.e. when k-Means fails. Our method is very simple to

implement in Python, as OPTICS is available in the SciPy sklearn package. While we here present the results of OPTICS with

three different kinds of embeddings, it is likely that OPTICS also works for other trajectory embeddings, such as the spectral

embeddings of Banisch and Koltai (2017) or Froyland and Junge (2018). Using such dynamically motivated embeddings435

instead of the ad-hoc direct embedding presented here could be a promising direction for future research.

Extending our method to datasets with more trajectories can be made more efficient by choosing a finite generating distance for
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OPTICS (Ankerst et al., 1999). While this is better from a computational point of view, it requires some knowledge or intuition

about the spatial distribution of the embedded trajectories. A major challenge for the method proposed here is the embedding

dimension. For long trajectories, it is necessary to reduce the dimensionality of the trajectories before applying OPTICS. A440

complication here is the desired property of an embedding to preserve both local and global distances in order to make full

use of the hierarchical properties of OPTICS. This means, for example, that the popular method of a locally linear embedding

(Roweis and Saul, 2000) is not suitable, unless only the small-scale (densest finite-time coherent sets) are to be detected. Using

classical multidimensional scaling (MDS), as we did here to visualize the clustering results, in principle preserves local and

global distances, although our results indicate that the large-scale coherence structure in the Agulhas flow is less pronounced445

for the classical MDS embedding compared to the full embedding of trajectories. In any case, classical MDS is not an option for

very large datasets, as it requires the diagonalization of a dense symmetric square matrix of size equal to the particle number.

Spectral embeddings of derived networks such as the ones of Hadjighasem et al. (2016), Padberg-Gehle and Schneide (2017)

and Banisch and Koltai (2017) are useful to achieve lower-dimensional embeddings, but they come with the introduction of

additional parameters for the network construction and heuristics to truncate the embedding dimension. Further research into450

other non-linear dimensionality reduction techniques that have not been explored in the context of finite-time coherent sets can

lead to more efficient and robust methods.

Code and data availability. All code is available at https://github.com/OceanParcels/coherent_vortices_OPTICS, including the code to gen-

erate the Bickley jet trajectories. The data for the virtual particles in the South Atlantic is available on Zenodo (Wichmann, 2020b).

Details on the Parcels simulation for the virtual trajectories in the ocean can be found at the GitHub repository of our previous paper,455

https://github.com/OceanParcels/near_surface_microplastic. The data from the NEMO ORCA-006 run are available at http://opendap4gws.

jasmin.ac.uk/thredds/nemo/root/catalog.html

Appendix A: Additional figures for the Bickley jet flow

Appendix B: Additional figures for the Agulhas flow

Appendix C: Detecting Agulhas rings with a particle-based network460

To demonstrate that OPTICS can also be applied to the spectral embedding of a particle-based network, we use the net-

work proposed by Padberg-Gehle and Schneide (2017). If we have a set of particle trajectories xi(t), where i= 1, . . . ,N ,

t= t1, t2, . . . , tT with N the number of particles and T the number of time steps, the network A ∈ RN×N is defined as:

Aij =

1, if ∃t ∈ {t1, t2, . . . , tT } s.t. ||xi(t)−xj(t)||< d,

0, otherwise.
(C1)
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Figure A1. Spectrum of the classical MDS kernel matrix B for the Bickley jet flow. It is visible that there are two dominant eigenvalues. We

choose the vectors corresponding to these first two eigenvalues as embedding vectors in section 4.1.

Figure A2. Result of the OPTICS algorithm for a random subset of 2,000 particles in the Bickley jet flow, with particle data every 5 days

instead of every day. To account for the smaller number of particles, we set smin = 15 for this case. The six vortices and the jet are still

clearly visible.

Here, ||.|| denotes the Euclidean norm and d > 0 is a fixed pre-determined cut-off parameter, see Padberg-Gehle and Schneide465

(2017) for a discussion on the choice of d (called ε in Padberg-Gehle and Schneide (2017)). Similar to Padberg-Gehle and

Schneide (2017), we embed the nodes in a lower dimensional space RK by means of the eigenvectors of its random walk

Laplacian, (see e.g. Von Luxburg (2007))

Lr =D−1A, (C2)

where D is a diagonal matrix with Dii =
∑
jAij . The embedding of node i is defined by470

yi = (v1,i,v1,i, . . . ,vK,i) ∈ RK , (C3)

where vi, i= 0, . . . ,N − 1 are the right eigenvectors corresponding to the largest eigenvalues λi of Lr. The eigenvalues are

assumed to be ordered in descending order, i.e. 1 = λ0 > λ1 ≥ . . . ,≥ λN . The classical simultaneous K-way normalized cut
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Figure B1. Spectrum of the classical MDS kernel matrixB for the Agulhas flow, where we first constrain the particle data to 12,000 randomly

selected trajectories. There are again two dominant eigenvalues, for which we choose the corresponding vectors for the embedding in section

4.2.

proceeds with applying the k-Means algorithm to the embedding defined in eq. (C3) to detect K clusters (Von Luxburg, 2007),

resulting in an approximate solution to the normalized cut problem (Shi and Malik, 2000).475

Figure C1 shows the spectrum of the resulting random walk Laplacian with d= 200 km. No obvious spectral gap is visible

that would suggest a truncation of the embedding space. Figure C2 shows the clustering result if we apply a k-Means algorithm

as suggested by Padberg-Gehle and Schneide (2017) to detect K = 40 clusters. It is visible that the partition-based k-Means

clustering method does not detect any individual Agulhas rings, but partitions the state space into regions of approximately

equal size.480

Figure C1. Spectrum of the random walk Laplacian, cf. eq. (C2) of the network proposed by Padberg-Gehle and Schneide (2017) applied to

the Agulhas trajectory data. No clear gap exists that suggest a truncation of the embedding.

Applying OPTICS instead of k-Means with a subsequent ξ-clustering detects some of the Agulhas rings, see fig. C3, where

we choose smin = 100 as in section 4.2. Note that also other structures than typical circular eddies are detected. While this

depends on the clustering parameter ξ (or ε for DBSCAN), this is also a consequence of the physically motivated network
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Figure C2. Result of k-Means clustering applied to the 40 leading eigenvectors of the random walk Laplacian, cf. eq. (C2), looking for 40

clusters. No individual vortices are detected.

defined by eq. (C3), where particles are connected equally if they are close to each other at least once in time. This is different

from the direct embedding, where we require particles to stay close to each other along the entire trajectory.485

Figure C3. Result of OPTICS applied to the K = 40 spectral embedding of the network defined in eq. (C1) with d= 200 km and smin =

100. Grey particles are classified as noise.

Author contributions. DW performed the analysis, with support from CK, EvS and HD. DW wrote the manuscript and all authors jointly

edited and revised it.

Competing interests. The authors declare no competing interests

22



Acknowledgements. David Wichmann, Christian Kehl and Erik van Sebille are supported through funding from the European Research

Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No 715386). This work was490

partially carried out on the Dutch national e-infrastructure with the support of SURF Cooperative (project no. 16371). We thank Andrew

Coward for providing the ORCA-N006 simulation data.

23



References

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: Ordering Points to Identify the Clustering Structure, ACM Sigmod

record, 28, 49–60, https://doi.org/https://doi.org/10.1145/304181.304187, 1999.495

Banisch, R. and Koltai, P.: Understanding the geometry of transport: Diffusion maps for Lagrangian trajectory data unravel coherent sets,

Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 035 804, https://doi.org/https://doi.org/10.1063/1.4971788, 2017.

Beron-Vera, F. J., Wang, Y., Olascoaga, M. J., Goni, G. J., and Haller, G.: Objective Detection of Oceanic Eddies and the Agulhas Leakage,

Journal of Physical Oceanography, 43, 1426–1438, https://doi.org/https://doi.org/10.1175/JPO-D-12-0171.1, 2013.

Bickley, W.: LXXIII. The plane jet, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23, 727–731,500

https://doi.org/https://doi.org/10.1080/14786443708561847, 1937.

Brach, L., Deixonne, P., Bernard, M. F., Durand, E., Desjean, M. C., Perez, E., van Sebille, E., and ter Halle, A.: Anticyclonic

eddies increase accumulation of microplastic in the North Atlantic subtropical gyre, Marine Pollution Bulletin, 126, 191–196,

https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.10.077, 2018.

del Castillo-Negrete, D. and Morrison, P.: Chaotic transport by Rossby waves in shear flow, Physics of Fluids A: Fluid Dynamics, 5, 948–965,505

https://doi.org/https://doi.org/10.1063/1.858639, 1993.

Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geoscientific Model Devel-

opment, 12, 3571–3584, https://doi.org/https://doi.org/10.5194/gmd-12-3571-2019, 2019.

Dencausse, G., Arhan, M., and Speich, S.: Routes of Agulhas rings in the southeastern Cape Basin, Deep-Sea Research Part I: Oceanographic

Research Papers, 57, 1406–1421, https://doi.org/https://doi.org/10.1016/j.dsr.2010.07.008, 2010.510

Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nature Communications, 5, 3294,

https://doi.org/https://doi.org/10.1038/ncomms4294, 2014.

Dussin, R., Barnier, B., and Brodeau, L.: The making of Drakkar forcing set DFS5, Tech. rep., LGGE, Grenoble, France., 2016.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,

in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, p. 226–231, AAAI Press,515

1996.

Fouss, F., Saerens, M., and Shimbo, M.: Algorithms and models for network data and link analysis, Cambridge University Press, 2016.

Froyland, G. and Junge, O.: Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories,

SIAM Journal on Applied Dynamical Systems, 17, 1891–1924, https://doi.org/https://doi.org/10.1137/17M1129738, 2018.

Froyland, G. and Padberg-Gehle, K.: A rough-and-ready cluster-based approach for extracting finite-time coherent sets520

from sparse and incomplete trajectory data, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 087 406,

https://doi.org/https://doi.org/10.1063/1.4926372, 2015.

Froyland, G., Santitissadeekorn, N., and Monahan, A.: Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos:

An Interdisciplinary Journal of Nonlinear Science, 20, 043 116, https://doi.org/https://doi.org/10.1063/1.3502450, 2010.

Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected is the surface of the global ocean?, Chaos: An Interdisciplinary Journal525

of Nonlinear Science, 24, 033 126, https://doi.org/https://doi.org/10.1063/1.4892530, 2014.

Froyland, G., Horenkamp, C., Rossi, V., and van Sebille, E.: Studying an Agulhas ring’s long-term pathway and decay with finite-time

coherent sets, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 083 119, https://doi.org/https://doi.org/10.1063/1.4927830,

2015.

24

https://doi.org/https://doi.org/10.1145/304181.304187
https://doi.org/https://doi.org/10.1063/1.4971788
https://doi.org/https://doi.org/10.1175/JPO-D-12-0171.1
https://doi.org/https://doi.org/10.1080/14786443708561847
https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.10.077
https://doi.org/https://doi.org/10.1063/1.858639
https://doi.org/https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/https://doi.org/10.1016/j.dsr.2010.07.008
https://doi.org/https://doi.org/10.1038/ncomms4294
https://doi.org/https://doi.org/10.1137/17M1129738
https://doi.org/https://doi.org/10.1063/1.4926372
https://doi.org/https://doi.org/10.1063/1.3502450
https://doi.org/https://doi.org/10.1063/1.4892530
https://doi.org/https://doi.org/10.1063/1.4927830


Froyland, G., Rock, C. P., and Sakellariou, K.: Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal530

scales with application to coherent set identification, Communications in Nonlinear Science and Numerical Simulation, 77, 81 – 107,

https://doi.org/https://doi.org/10.1016/j.cnsns.2019.04.012, 2019.

Hadjighasem, A., Karrasch, D., Teramoto, H., and Haller, G.: Spectral-clustering approach to Lagrangian vortex detection, Physical Review

E, 93, 063 107, https://doi.org/https://doi.org/10.1103/PhysRevE.93.063107, 2016.

Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., and Haller, G.: A critical comparison of Lagrangian535

methods for coherent structure detection, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 053 104,

https://doi.org/https://doi.org/10.1063/1.4982720, 2017.

Haller, G. and Beron-Vera, F. J.: Coherent Lagrangian vortices: The black holes of turbulence, Journal of Fluid Mechanics, 731, R4,

https://doi.org/https://doi.org/10.1017/jfm.2013.391, 2013.

Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geoscientific Model540

Development, 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, https://gmd.copernicus.org/articles/10/4175/2017/, 2017.

Ma, T. and Bollt, E. M.: Relatively Coherent Sets as a Hierarchical Partition Method, International Journal of Bifurcation and Chaos, 23,

1330 026, https://doi.org/https://doi.org/10.1142/S0218127413300267, 2013.

Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, No 27, 2008.

Padberg-Gehle, K. and Schneide, C.: Network-based study of Lagrangian transport and mixing, Nonlinear Processes in Geophysics, 24,545

661–671, https://doi.org/https://doi.org/10.5194/npg-24-661-2017, 2017.

Roweis, S. T. and Saul, L. K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 290, 2323–2326,

https://doi.org/https://doi.org/10.1126/science.290.5500.2323, 2000.

Schneide, C., Pandey, A., Padberg-Gehle, K., and Schumacher, J.: Probing turbulent superstructures in Rayleigh-Bénard convection by

Lagrangian trajectory clusters, Physical Review Fluids, 3, 113 501, https://doi.org/https://doi.org/10.1103/PhysRevFluids.3.113501, 2018.550

Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J., and Lutjeharms, J. R. E.: Translation, decay and split-

ting of Agulhas rings in the southeastern Atlantic Ocean, Journal of Geophysical Research: Oceans, 105, 21 913–21 925,

https://doi.org/https://doi.org/10.1029/1999jc000046, 2000.

Shi, J. and Malik, J.: Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888–

905, https://doi.org/https://doi.org/10.1109/34.868688, 2000.555

Tarshish, N., Abernathey, R., Zhang, C., Dufour, C. O., Frenger, I., and Griffies, S. M.: Identifying Lagrangian coherent vortices in a

mesoscale ocean model, Ocean Modelling, 130, 15–28, https://doi.org/https://doi.org/10.1016/j.ocemod.2018.07.001, 2018.

Van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A.,

Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy, L., Hardesty, B. D., Hoffman, M. J., Isobe, A., Jongedijk,

C. E., Kaandorp, M. L., Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle, D., Maes, C., Martinez-560

Vicente, V., Morales Maqueda, M. A., Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks, A. L., Shim, W. J., Suaria, G., Thiel, M.,

Van Den Bremer, T. S., and Wichmann, D.: The physical oceanography of the transport of floating marine debris, Environmental Research

Letters, 15, 023 003, https://doi.org/https://doi.org/10.1088/1748-9326/ab6d7d, 2020.

Von Luxburg, U.: A Tutorial on spectral clustering, Statistics and Computing, 17, 395–416, https://doi.org/https://doi.org/10.1007/s11222-

007-9033-z, 2007.565

Wichmann, D.: Animation of finite-time coherent sets in the Agulhas region, https://doi.org/https://doi.org/10.5281/zenodo.4103741, 2020a.

25

https://doi.org/https://doi.org/10.1016/j.cnsns.2019.04.012
https://doi.org/https://doi.org/10.1103/PhysRevE.93.063107
https://doi.org/https://doi.org/10.1063/1.4982720
https://doi.org/https://doi.org/10.1017/jfm.2013.391
https://doi.org/10.5194/gmd-10-4175-2017
https://gmd.copernicus.org/articles/10/4175/2017/
https://doi.org/https://doi.org/10.1142/S0218127413300267
https://doi.org/https://doi.org/10.5194/npg-24-661-2017
https://doi.org/https://doi.org/10.1126/science.290.5500.2323
https://doi.org/https://doi.org/10.1103/PhysRevFluids.3.113501
https://doi.org/https://doi.org/10.1029/1999jc000046
https://doi.org/https://doi.org/10.1109/34.868688
https://doi.org/https://doi.org/10.1016/j.ocemod.2018.07.001
https://doi.org/https://doi.org/10.1088/1748-9326/ab6d7d
https://doi.org/https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/https://doi.org/10.5281/zenodo.4103741


Wichmann, D.: Lagrangian particle dataset (2 years) for Agulhas region surface flow, https://doi.org/https://doi.org/10.5281/zenodo.3899942,

2020b.

Wichmann, D., Kehl, C., Dijkstra, H. A., and van Sebille, E.: Detecting flow features in scarce trajectory data using networks derived from

symbolic itineraries: an application to surface drifters in the North Atlantic, Nonlinear Processes in Geophysics Discussions, 2020, 1–20,570

https://doi.org/https://doi.org/10.5194/npg-2020-18, 2020.

26

https://doi.org/https://doi.org/10.5281/zenodo.3899942
https://doi.org/https://doi.org/10.5194/npg-2020-18

