
Answer to reviewer 1 
 
General answer: 
We thank the reviewer for the detailed comments on the paper. They have helped us to significantly 
improve on the readability and clarity in the revised version. We have implemented changes for 
every comment raised by the reviewer. 
 
Please note: 
The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting 
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised version. 
 

 

Comment 1 

I find there to be room for improvement on a few presentational issues. (i). There seems to be an 

assumption of familiarity with other clustering methods. The paper would be more accessible, and 

therefore useful, if the authors took just slightly more time in defining new terms and in providing 

the intuitive content of mathematical concepts. 

Answer to comment 1 

Thank you for your comment. We have made the following changes in the revised version: 

 

1. Additional paragraph in the methods section that briefly describes why embedding / clustering is 

necessary, and also explains in one sentence what k-Means does 

 

 

2. Additional explanation in the methods section that describes why the embedding we choose is 

expected to create a detectable signal for OPTICS. 



 

 

 

Comment 2 

(ii) I find it a little strange that some figures are presented in the appendix, but discussed only in the 

main text. Some of these make good illustrations of the performance of the method with respect to 

others, e.g. D1&D2. I feel this tends to negatively impact the narrative. If figures are discussed in the 

main text, I would present them there also. 

Answer to comment 2 

Thank you for this comment. We agree with the reviewer and have now included the clustering 

results of the classical MDS method in the main text. In the revised version, we provide the results of 

OPTICS together with its comparison to k-Means for both of the model flows. We have decided to 

leave the discussion of the embedded network of Padberg-Gehle and Schneide (2017) together with 

the previous figures D1-D3 in the appendix. This is because the major focus of the paper is the 

OPTICS clustering on the direct embedding of the trajectories, as this removes the need of several 

parameters compared to Padberg-Gehle and Schneide (2017), such as the cut-off parameter d, and 

the embedding dimensions. A reader that is interested in the application of OPTICS to the spectral 

embedding of Padberg-Gehle and Schneide (2017) gets a full account on that topic in the appendix. 

We do not discuss these results in the main text, but only mention them quickly. The actual 

discussion is contained in appendix C of the revised version. 

 

 



Comment 3 

(iii) The paper has a highly technical focus throughout. More framing of the import of this problem at 

the start and end would have been appreciated. 

Answer to comment 3 

Thank you for this suggestion. We have now added more content on the problem itself, i.e. the 

detection of many small coherent structures in a large, noisy ocean domain. 

 

1. Introduction 

 

 

2. Conclusion 

 



 

 

3. We have now also discussed the relation of our method to existing methods. In particular, we 

stress that we focus on a new clustering algorithm instead of a new form of embedding, as e.g. done 

by Froyland et al. (2018). 

 

 



 

 

 

Comment 4 

(iv) For a short paper, the abstract is perhaps disproportionately long. 

Answer to comment 4 

Thanks for noting. We have shortened the abstract a bit in the new version. 

 



 

 

Comment 5 

There is one point raised in the paper that I felt required more elaboration. A selling point the 

authors bring up for this method is that it can in principle be applied to real-world trajectory data, 

see line 86 and also line 306. This is true but incomplete. Real-world Lagrangian instruments are 

sufficiently sparse that it is rare to find more than one in the same eddy at the same time. Thus, the 

application presented herein—finding eddies is idealized configurations—is not really relevant for 

how one would apply this method to real-world trajectories. The data density used here is orders of 

magnitude greater than for real-world instruments. Since the authors bring this up as an advantage 

of the method, a more fair and nuanced discussion of its potential and limitations with respect to 

real-world data is called for. I would say, rather, that the method seems more suitable in application 

to model data or virtual trajectories from altimetry, where it benefits from a simplicity with respect 

to some other proposed methods. 

Answer to comment 5 

The reviewer is correct that an application of our method to real drifters to detect eddies is not 

possible due to the limited coverage of drifter data. Note that two studies applied their methods to 

real drifters, as we mentioned in the introduction (Froyland and Padberg-Gehle (2015) and Banisch 

and Koltai (2017)), however to detect the five major ocean basins and not eddies. In the new version, 

we omit the reference to real ocean drifters at other places but the introduction, where we now 

explicitly mention the application to ocean basins (and not eddies). 

 



1. Changes in introduction to clarify that trajectory-based clustering has been applied to real drifter 

data only in the context of detecting the ocean basins, not individual eddies. 

 

2. End of the introduction 

 

2. First sentence in conclusion 

 

 

 

Comment 6 

Line 99. Do you not want to cite Bickley? My understanding is that the term “Bickley jet” itself is used 

to refer to a steady solution with a sechˆ2 u-velocity, see e.g. Swaters (1999). The authors’ Eq. (2) is 

an added perturbation. As read, it sounds like the whole thing is the Bickley jet. 

Answer to comment 6 

Thank you for this comment and the careful check of our references of the flow. You are indeed right 

that the Bickley Jet is a steady, sechˆ2 velocity profile. We have added the reference to Bickley now, 



together with a reference to the paper of del Castillo-Negrete and Morrison (1993), where the 

perturbed form of the jet is motivated. 

 

 

Comment 7 

Section 3.2.2. I didn’t really understand this section, or what B is encoding in Eq. (4). A more intuitive 

description would be helpful. When you say, “pairwise distances are approximately preserved”, this 

is with respect to what? Also, why are two dimensions chosen? 

Answer to comment 7 

Thank you for this comment. In the new version, we elaborate more on the intuitive goal of classical 

MDS in this section. We choose two dimensions because we wish to visualize the data in the plane. 

We have made this more clear in the new version. 

 



 

 

 

Comment 8 

Line 193. The intuitive meaning of the ‘generating distances’ that are not being used here should be 

mentioned 

Answer to comment 8 

Than you for the comment. In the new version, we briefly mention what a finite generating distance 

would mean. 



 

 

 

 

Comment 9 

Line 196. The definition of the epsilon neighborhood appears incomplete. Is it not the M-dimensional 

sphere of radius epsilon? Otherwise, what is the epsilon? 

Answer to comment 9 

Indeed the epsilon-neighborhood of p is just the M-dimensional ball around the point p, and the 

previous version was incomplete. We have changed this in the new version, together with renaming 

epsilon to delta, see our answer to comment 8. 

 

 

Comment 10 

Line 200. It would be very helpful to write out in words the meaning of Eq. (6). My understanding is 

that c(p) is minimum distance epsilon such that the number of points in an epsilon neighborhood is 

greater than a specified number. 

Answer to comment 10 

Thank you for your comment. Your interpretation was correct. We have made it more clear in the 

new version, see the answer to comment 8. 

 

 

Comment 11 

Line 213. I did not immediately understand how it arises that there are valleys in the reachability if 

you have sorted iteratively on the reachability. You might explain that this happens as you encounter 



groups of points that are all near to each other, thus replacing earlier high values of reachability with 

lower values. 

Answer to comment 11 

Thank you for the comment. Indeed, it is the sorting that is the most important step in the algorithm. 

We added some more explanation in the new version. 

 

 

Comment 12 

Line 216. The phrasing here made me wonder if this was a second, different epsilon. It would be 

clearer to say that you choose a value for the parameter epsilon. Also, it appears this is conditional 

on a choice of s_min which should then be emphasized. 

Answer to comment 12 

Thank you for very much for pointing this out. Indeed, this was a second epsilon, and the 

presentation in the first version was confusing. We have made the appropriate changes in the new 

version by re-naming one of the epsilons into delta. See our answer to comment 8. 

 

 

Comment 13 

Line 228. What are the permissible values of k in condition (a)? 

Answer to comment 13 

We have made this more precise in the new version. It can be any integer larger than zero and 

smaller than N - l. 

 

 

Comment 14 

Figure 2, what are the units of the y-axis in the left column of plots? 

Answer to comment 14 

Thank you for this comment. Indeed, we missed to specify the units of all reachability values. We do 

so in all figures in the new version (apart from the network embedding case in the appendix, where 

quantities are dimensionless), see the example below. 



 

 

 

Comment 15 

Figs 2 and 3, some of the colored dots lie above the epsilon threshold. 

Answer to comment 15 

This is correct, DBSCAN classifies the points below the line only up to boundary points, i.e. there can 

be points at the cluster boundary that belong to the cluster. We have made this more clear in the 

new version. 

 

 



Comment 16 

Figure 4. I really don’t understand the two dimensions of these plots, nor the star-shaped patterns, 

could you explain these more? 

Answer to comment 16 

We have now made the presentation of the methods regarding classical MDS more clear, also 

relating it to principal component analysis, see the answer to your comment 7. In addition, we have 

provided more explanation on the star-shaped structure in the results section. 

 

In addition, we have further discussed the failure of k-Means in relation to the star-shaped structure 

of the embedding. 

 

 

Comment 17 

Data locations at Zenodo should be cited, not only the papers referring to them. 

Answer to comment 17 

The reference is actually a Zenodo link, not a paper. Note that there were two references Wichmann 

2020 (Zenodo link) and Wichmann et al. (2020) (previous paper). In the new version, there is now 

also a Zenodo link to an animation for the Agulhas flow. 

 



 

Comment 18 

Throughout the paper, the authors consistently omit the subject ahead of an infinitive, e.g. “which 

allows to detect”. I believe this is grammatically incorrect (in US usage anyway). “allows one to 

detect” or “allowing the detection of” sound better 

Answer to comment 18 

Thank you, we have made appropriate changes in the new version. 

 

 

Comment 19 

l 42 and 90. “sparse” should probably be used instead of “scarce”. The former means thinly 

distributed while the latter means hard to come by. 

Answer to comment 19 

We have made appropriate changes in the new version. 

 

Comment 20 

l 128. NumPy and Zenodo are the standard capitalizations 

Answer to comment 20 

We made the suggested changes in the  new version. Thank you for noting. 

 

 

Comment 21 

l 141. “method” should be “methods” 

Answer to comment 21 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 22 

l 156. Straightforward 

Answer to comment 22 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 23 

l 191. “and as will become clear” 



Answer to comment 23 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 24 

l 217. “is equal to” should be “set of points is equivalent to”. 

Answer to comment 24 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 25 

l 243. “a priory” should be “a priori” 

Answer to comment 25 

We corrected it in the new version. 

 

 

Comment 26 

l 279. “large- and small-scale” 

Answer to comment 26 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 27 

l 354. GitHub 

Answer to comment 27 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 28 

l 359. There is a title of an appendix with no appendix. 

Answer to comment 28 

The content of appendix C consisted of only two figures, C1 and C2. It appeared as without content 

due to the page break. In the new version, we have removed one appendix as we include the figures 

in the main text, such that the formatting looks better. 

 



 

Comment 29 

l 360 & 361. “particle-based” 

Answer to comment 29 

Thank you for noting, we corrected it in the new version. 

 

 

Comment 30 

l 383. “ot” 

Answer to comment 30 

Thanks for the careful read, we made the changes in the revised manuscript. 

 

 

Comment 31 

l 389. There should be a period at the end of this sentence 

Answer to comment 31 

Done. Thanks for noting. 

 

 

Comment 32 

Figure C1, “three” eigenvalues should be “two”, correct? 

Answer to comment 32 

Yes, indeed. Thanks for reading also the appendix figure captions so carefully! We corrected this in 

the new version. 

 

 

 



Answer to reviewer 2 
 
General answer: 
We thank the reviewer for the critical comments, and in particular for the detailed analysis of other 
methods and their comparison to our approach. We agree with most points raised by the reviewer. 
We have made major adaptations to the formulations in the revised version, and explain the relation 
of our method to existing studies in more detail. 
 
Please note: 
The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting 
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised 
version. 

 
 
Comment 1 
There are already several clustering methods in the literature for finding finite-time coherent sets, 
including a density-based clustering DBSCAN by Schneide-etal’18, which is a special case of the 
OPTICS approach in the manuscript. The idea of a hierarchy of finite-time coherent sets has been 
considered by Ma/Bollt’13. The paper Fr/Sa/Ro’19 develops a robust method to classify only those 
sets are that coherent, not fully partitioning the domain. In Fr/Sa/Ro’19, coherent sets at different 
spatial scales are also considered, similar to a hierarchy. Fr/Sa/Ro’19 also considers the Bickley jet 
and ocean eddies, with ocean eddies listed as a motivation in Fr/Sa/Ro’19 for developing a non-
partitioning approach. Not limited to the work above, I would say there is some "upselling" of the 
novelty in the manuscript, and that prior work is occasionally omitted, mischaracterized, or overly 
criticized. 
 
Answer to comment 1 
Thank you for this comment. We did not intend to upsell our work, or omit, mischaracterize or 
overly criticize existing work. In fact, our work has been majorly motivated by the paper of Froyland 
et al. 2019. But we understand that the original manuscript appeared to do so, and we thank the 
reviewer to making this clear to us. We have made the following changes in the new version. 
 

1. We mainly removed the discussion of other methods in the introduction and moved it to a 
separate section. In the introduction, we emphasize that our work is majorly inspired by 
Froyland et al. 2019. We are also more specific about the actual problem at hand, i.e. the 
detection of many small scale coherent sets in large-scale, noisy ocean flows. 



 
 

 
 
 

2. We have added an additional section to compare our method to existing approaches. There, 
we stress what our contribution is compared to Froyland et al. 2019: the study of an 
improved clustering step, instead of an improved embedding step. We also mention the 
downside of our method compared to Froyland and Junge (2018) and Froyland et al. (2019). 
Note that the hierarchical method of Ma and Bollt (2013) is powerful, but it is partition-



based and not intrinsic to the clustering algorithm, as there is a cut-off chosen at each step 
of the hierarchical clustering. Also, note that many of the existing methods that use k-Means 
did work for examples where the coherent sets are not very small compared to the fluid 
domain. Finally, DBSCAN has been used by Schneide et al. (2018), but not to derive explicit 
clustering results, and also not in the ocean context. We explain this in this new section. 

 
 
 

 



 
 
 
 
Comment 2 
A positive aspect is that the (standard) "DBSCAN" and "\xi" clustering outputs of the OPTICS 
clustering could provide potentially useful hierarchical information, and to my knowledge this is a 
new way of analyzing the dynamics. Unfortunately, this is not explored much, and the authors do 
not provide an intuitive explanation of what the "DBSCAN" and "\xi" clustering algorithms are 
actually doing in their dynamical context. It would be beneficial for the authors to link the algorithms 
more with the dynamical inputs (trajectories) and the dynamical problem being solved. As this is the 
main contribution of the paper, I think this needs to be expanded much more. The reasons behind 
the choices of which clustering algorithm is applied to the different datasets should also be 
explained. 
 
Answer to comment 2 
Thank you for this comment. We were indeed lacking some form of intuition behind the two 
clustering methods and their application. We have made the following changes. 
 

1. More explanation about the embedding and why the embedded trajectories create a signal 
in terms of data density. 



 
 

2. An intuitive explanation of the two clustering methods and their major properties. 
 

 
 
 
3. We have included a DBSCAN clustering result in the main figure of the Agulhas flow example, and 
discuss the differences between xi and DBSCAN clustering. 



 

 
 
Comment 3 
The (uncited) paper Froyland/Junge’18 develops a finite-element approximation of the dynamic 
Laplacian, which is a very accurate and robust method of finite-time coherent set extraction for low-
dimensional systems of the type treated in the Wichmann manuscript. In Froyland/Junge’18 there 
are no free parameters, the method is unaffected by the density of the data points, and estimates 
are produced on the whole domain. A comparison can be made for the Bickley example in the 
Wichmann manuscript because the setup is identical. Wichmann et al uses a 200x60 grid of points 
and particle positions at times t=0, 1, 2, 3,..., 39, 40. Froyland/Junge’18 studied the same Bickley 
flow as in Wichmann, except that Froyland/Junge’18 used a coarser 100x30 grid of points and only 
particle positions at time 0 and time 40. Figure 15 in Froyland/Junge’18 shows much clearer images 
with fewer trajectory inputs. Thus, I think there is not a strong case for the approach in the 
manuscript being a better performer. 
 
 
Answer to comment 3 



Thank you for this comment, and we apologize for not having cited that paper. Note however that 
the clustering results presented there are also based on k-Means clustering, and there are no free 
parameters only up to the choice of embedding dimension and the number of clusters. The paper 
also shows that the approach with k-Means works for situations where the coherent sets are not 
very small compared to the fluid domain, see the problems of k-Means in this context in the paper 
by Froyland et al. 2019. Nevertheless, the concepts presented there are powerful, as they provide a 
type of embedding that has a clear dynamical motivation, which is an advantage compared to our 
heuristic embedding. We refer to the paper at many places in the new version in different contexts: 
 

1. End of the new section on comparison to other methods 

 
2. We now also tested our method with the Bickley jet using less particles and less data points 

for each trajectory. Our method does indeed not perform as well as the method of Froyland 
and Junge (2018), and we want to thank the reviewer for explicitly mentioning this possible 
comparison. 

 

 

 
 
  

 
3. In the conclusion, we come back to the problems of our form of embedding and mention 

again that a combination of the embedding of Froyland and Junge (2018) together with 
OPTICS could yield better results. 

 



 

 
 

 
 
Comment 4 
The idea to not fully partition the domain has already been treated in Fr/Sa/Ro’19. Regarding the 
ocean eddy example in the manuscript, Fr/Sa/Ro’19 also applied the method of Froyland/Junge’18 
to ocean flow and successfully extracted a greater number of eddies than Wichmann at a higher 
quality. On the other hand, Fr/Sa/Ro’19 used AVISO-derived trajectories rather than model output, 
so it could be that Wichmann is using a rougher velocity field. Wichmann also used lower trajectory 
density than Fr/Sa/Ro’19 by a factor of about 4; both of these items could make Wichmann’s task 
more difficult, compared to Fr/Sa/Ro’19. 
 
 
Answer to comment 4 
Thank you for pointing this out. For a detailed comparison of the both methods, it would indeed be 
necessary to choose exactly the same flows. Detecting a greater number of eddies in a specific ocean 
domain does not necessarily have an implication for the usefulness of a method. We would like to 
note again that the results of Froyland et al. (2019) were a major motivation for our paper, and we 
do not aim to compete with their method any aspects. We would rather like to show how a change 
of clustering algorithm, instead of a change of embedding, can also yield better results compared to 
partition-based clustering, see the paragraph below in the revised paper on the comparison to other 
methods. We believe that a combination of the embedding of Froyland and Junge 2018 together 
with OPTICS could be a useful extension of our method. See our answer to your comments 1 and 3 
for more content relating to their method. 
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Abstract. The detection of finite-time coherent particle sets in Lagrangian trajectory data using data clustering techniques is an

active research field at the moment. Yet, the clustering methods mostly employed so far have been based on graph partitioning,

which assigns each trajectory to a cluster, i.e. there is no concept of noisy, incoherent trajectories. This is problematic for

applications to
::
in the ocean, where many small coherent eddies are present in a largefluid domain. In addition, to our knowledge

none of the existing methods to detect finite-time coherent sets has an intrinsic notion of coherence hierarchy, i.e. the detection5

of finite-time coherent sets at different spatial scales. Such coherence hierarchies are present in the ocean, where basin scale

coherence coexists with smaller coherent structures such as jets and mesoscale eddies. ,
:::::::

mostly
:::::
noisy

::::
fluid

:::::
flow. Here, for

the first time in this context, we use the density-based clustering algorithm OPTICS (Ankerst et al., 1999) to detect finite-time

coherent particle sets in Lagrangian trajectory data. Different from partition based
::::::::::::
partition-based

:
clustering methods, OPTICS

does not require to fix the number of clusters beforehand. Derived
::::::
derived

:
clustering results contain a concept of noise, such10

that not every trajectory needs to be part of a cluster. OPTICS also has a major advantage compared to the previously used

DBSCAN method, as it can detect clusters of varying density. Further, clusters can also be detected based on density changes

instead of absolute density. Finally, OPTICS based clusters
:::
The

::::::::
resulting

:::::::
clusters have an intrinsically hierarchical structure,

which allows
:::
one to detect coherent trajectory sets at different spatial scales at once. We apply OPTICS directly to Lagrangian

trajectory data in the Bickley jet model flow and successfully detect the expected vortices and the jet. The resulting clustering15

separates the vortices and the jet from background noise, with an imprint of the hierarchical clustering structure of coherent,

small scale
:::::::::
small-scale

:
vortices in a coherent, large-scale, background flow. We then apply our method to a set of virtual

trajectories released in the eastern South Atlantic Ocean in an eddying ocean model and successfully detect Agulhas rings.

At larger scale, our method also separates the eastward and westward moving parts of the subtropical gyre. We illustrate the

difference between our approach and partition based
::::::::::::
partition-based

:
k-Means clustering using a 2-dimensional embedding20

of the trajectories derived from classical multidimensional scaling. We also show how OPTICS can be applied to the spectral

embedding of a trajectory based
:::::::::::::
trajectory-based network to overcome the problems of k-Means spectral clustering in detecting

Agulhas rings.

1



Copyright statement. TEXT

1 Introduction25

Understanding the transport of tracers in the ocean is an important topic in oceanography. Despite large-scale transport features

of the mean flow, on smaller scales, mesoscale eddies and jets play an important role for tracer transport (Van Sebille et al.,

2020). Such eddies can capture large amounts of a tracer, and, while transported in a background flow, redistribute them in the

ocean. Eddies have been shown to play an important role for the accumulation of plastic (Brach et al., 2018) and the transport

of heat and salt (Dong et al., 2014). To quantify the effects of eddies for
::
on

:
tracer transport in the ocean, it is necessary to30

develop methods that are able to detect and track them. Many methods exist to detect such finite-time coherent sets of fluid

parcels based on different mathematical or heuristic principles (Hadjighasem et al., 2017). The term ‘finite-time coherent set’

is based on the work of Froyland et al. (2010), and is in our context defined as a set of particles that stay, in a sense to be made

more specific, close to each other along their entire trajectories. In this article, we propose a new way to identify finite-time

coherent sets in Lagrangian trajectory data. For
:::::
Here,

:::
for the first time in this context, we make use of the density-based clus-35

tering algorithm OPTICS (Ankerst et al., 1999) which allows to detect coherent trajectories at different spatial scales at once,

introducing a powerful computational tool to the geophysical fluid dynamics community
:
to

::::::
detect

:::::::::
finite-time

:::::::
coherent

::::
sets

::
in

:::::::::
Lagrangian

::::::::
trajectory

::::
data.

The detection of coherent Lagrangian vortices using abstract embeddings of Lagrangian trajectories
::::::
together

::::
with

::::
data

::::::::
clustering

:::::::::
techniques has received significant attention in the recent literature (Froyland and Padberg-Gehle, 2015; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Schneide et al., 2018)40

. Examples include the direct embedding of trajectories in a high dimensional Euclidean space (Froyland and Padberg-Gehle, 2015)

, or more abstract embeddings based on related networks constructed from particle trajectories (Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017)

.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Froyland and Padberg-Gehle, 2015; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Schneide et al., 2018; Froyland and Junge, 2018; Froyland et al., 2019)

:
. Using embedded trajectories for the detection of finite-time coherent sets is interesting as it allows to use scarce

:::
one

::
to
::::

use

:::::
sparse

:
trajectory data, and it can in principle be applied to ocean drifter trajectories, as done

:::::::::::
demonstrated by Froyland and45

Padberg-Gehle (2015) and Banisch and Koltai (2017)
:::
for

:::
the

::::::::
detection

::
of

:::
the

:::
five

:::::
ocean

::::::
basins. Yet, the methods proposed so

far suffer from a major drawback: they cluster networks based on network
::::
most

:::
of

::::
these

::::::::
methods

:::::
cluster

:::::::::
trajectory

::::
data

::::
with

:::::
graph partitioning, which does not incorporate the difference between coherent, clustered trajectories and noisy trajectories that

should not belong to any cluster.
:::::
Graph

::::::::::
partitioning

:::
has

::::
been

::::::
shown

::
to

::::
work

::
in

::::::::
situations

::::::
where

::
the

:::::::::
finite-time

:::::::
coherent

::::
sets

:::
are

:::
not

::
too

:::::
small

::::::::
compared

::
to
:::
the

::::
fluid

:::::::
domain

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Froyland and Padberg-Gehle, 2015; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018)50

:
.
:::
For

::::::::::
applications

::
to
::::::::::

Lagrangian
:::::::::
trajectory

:::::::
datasets

::
on

::::::::::
basin-scale

:::::
ocean

::::::::
domains,

::::::
where

:::::::
multiple

::::::::::
small-scale

:::::::
coherent

::::
sets

::::::
(eddies)

::::::
coexist

::::
with

:::::
noisy

:::::::::
trajectories

::
in
:::
the

:::::::::::
background,

:::::
graph

:::::::::
partitioning

::
is

:::::::
however

:::::
likely

::
to

::::
fail. Similar observations were

made for the spectral clustering approaches of particle-based networks and
::
by

:::::::::::::::::::
Froyland et al. (2019)

::
for

:::
the

:::::::::::::
partition-based

::::::::
clustering

:::::::::
approaches

::::::
based

::
on

:
transfer and dynamic Laplace operators by Froyland et al. (2019)

::::::::::::::::::::::
(Froyland and Junge, 2018)

. Although some attempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-55

ditional cluster corresponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

2



discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al. (2019) have developed an algorithm

:
a
::::::
special

::::
form

:::
of

::::::::
trajectory

:::::::::
embedding

:
based on sparse eigenbasis decomposition given the eigenvectors of transfer operators

and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-

clustered background noise.60

Here, we show how the
::::::::
Motivated

:::
by

:::
the

::::::
results

:::::::::::::::::::
Froyland et al. (2019)

:::::::
obtained

:::
by

:::::::::
developing

::
a
::::
new

:::::
form

::
of

:::::::::
trajectory

:::::::::
embedding,

:::
we

::::
here

:::::::
explore

::
the

::::::::
potential

::
of

::::::
another

:::::::::
clustering

::::::::
algorithm

::
to

::::::::
overcome

:::
the

:::::::
inherent

::::::::
problems

::
of

:::::::::::::
partition-based

::::::::
clustering.

::::
We

:::
use

:::
the density-based clustering method OPTICS (Ordering Points To Identify the Clustering Structure) devel-

oped by Ankerst et al. (1999) can be used to overcome the inherent problems of partition-based clustering.
::
to

:::::
detect

:::::::::
finite-time

:::::::
coherent

::::
sets

::
in

::::
large

::::::
ocean

:::::::
domains,

:::::
using

::
a
::::
very

::::::
simple

::::::
choice

::
of

::::::::::
embedding

:::
(cf.

::::::
section

::::::
3.2.1).

:
Density-based clustering65

aims to detect groups of data points that are close to each other, i.e. regions with high data density. Our data points correspond to

entire trajectories, and groups of trajectories staying close to each other over a certain time interval are detected as
:::::::::
correspond

::
to

such regions of high point density. Different from partition based
::::::::::::
partition-based methods such as k-Means or fuzzy-c-means,

OPTICS does not require to define
::
fix

:
the number of clusters beforehand. Further, density-based clustering has an intrinsic

notion of a noisy data point: a point does not belong to any cluster (i.e. a finite-time coherent set) if it is not part of a dense re-70

gion. The density-based clustering algorithm DBSCAN (Ester et al., 1996) has been applied to pseudo-trajectories in fluids to

detect coherent sets (Schneide et al., 2018). Yet, DBSCAN is only able to detect clusters with a certain fixed minimum density,

although clusters with varying densities might be present in a data set (Ankerst et al., 1999).Choosing a good value for the

density parameter in DBSCAN is challenging if there is no underlying physical intuition for the density structure. In addition,

OPTICS not only allows to detect clusters based on their absolute density, but also based on density changes. The main result75

of OPTICS, the reachability plot, can be used to derive any DBSCAN result (with similar parameter smin, cf. section 3.3)

without re-running the algorithm, as illustrated in section 4. Finally, clustering results from OPTICS are typically hierarchical,

and the reachability plot provides this hierarchical information in a simple 1-dimensional graph. Indeed, finite-time coherent

:
A
:::::
more

:::::::
detailed

::::::::::
comparison

::
of

:::
the

::::::
method

::::::::
presented

::::
here

::
to
:::::::
existing

::::::
related

::::::::
methods

:::
can

::
be

:::::
found

::
in
:::::::
section

:::
3.4.

:::::::
Another

:::::::
desirable

::::::::
property

::
of

:::
the

:::::::
OPTICS

::::::::
algorithm

::
is
:::
its

:::::
ability

::
to

:::::::
capture

::::::::
coherence

::::::::::
hierarchies.

::
In

:::
the

::::::
ocean,

:::::::
coherent

::::
sets80

::
of trajectories naturally come with a notion of

::::
such

::
a hierarchy. For example, the surface flow in the North Atlantic Ocean

can be seen as approximately coherent (Froyland et al., 2014), while mesoscale eddies and jets are also finite-time coher-

ent sets of trajectories at smaller scales within the North Atlantic Ocean. This is also reflected in previous studies that apply

methods to detect finite-time coherent sets to individual vortices and also to global drifter data, identifying the five major

ocean basins (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017). The hierachical property of finite-time coherent85

sets has been studied in the transfer operator framework of Froyland et al. (2010) by Ma and Bollt (2013). Different from this

approach, however, the clustering result derived from OPTICS is intrinsically hierarchical. This means that it shows in a

smooth manner how the coherent structures change when zooming in or out, and it does not require to fix a certain partition to

detect sub-partitions, e.g. as is typical for hierarchical applications of spectral clustering in the spirit of Shi and Malik (2000)

::::::::::::::::::
Froyland et al. (2019)

::::
show

::::
how

::::
their

:::::::
leading

::::::::::
eigenvectors

:::::::
resolve

:::::::
coherent

::::
sets

::
at

::::
large

::::::
scales,

:::::
while

::::::::::
small-scale

:::::
results

::::
can90

::
be

:::::::
obtained

::::
with

:
a
::::::
sparse

:::::::::
eigenbasis

::::::::::::
approximation

::
of

:
a
:::
set

::
of

:::::::::::
eigenvectors.

::::::::
Similarly,

::::::::
clustering

::::::
results

:::::::
obtained

::::
from

::::::::
OPTICS
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::
are

::::::::
typically

::::::::::
hierarchical.

::::
The

:::::
main

:::::
result

::
of

::::::::
OPTICS,

:::
the

::::::::::
reachability

::::
plot,

:::::::
provides

:::
this

::::::::::
hierarchical

::::::::::
information

::
in
::
a
::::::
simple

:::::::::::
1-dimensional

:::::
graph.

In section 4, we first show how OPTICS detects finite-time coherent sets at different scales for the Bickley jet model flow

(also discussed e.g. by Hadjighasem et al. (2017)), successfully detecting the six coherent vortices and the jet as the steepest95

valleys in the reachability plot. The general structure of the reachability plot also reveals the large-scale finite-time coherent

sets, i.e. the northern and southern parts of the model flow, separated by the jet. We then apply our method to Lagrangian

particle trajectories released in the eastern South Atlantic Ocean, where large rings detach from the Agulhas Current (e.g.

Schouten et al. (2000)). We detect several Agulhas rings, and on the larger scale also separate the eastward and westward

moving branches of the South Atlantic Subtropical Gyre. While the traditional approach to study Agulhas rings is based100

on sea surface height analysis (see e.g. Dencausse et al. (2010)), several methods based on virtual Lagrangian trajectories

have been applied to Agulhas ring detection before (Haller and Beron-Vera, 2013; Beron-Vera et al., 2013; Froyland et al.,

2015; Hadjighasem et al., 2016; Tarshish et al., 2018). Our method is different from these approaches in that it is directly

applicable to a trajectory data set
::::::
dataset,

:::
i.e.

:::::::
without

:::::
much

::::::::::::
pre-processing

:::
of

:::
the

::::
data. As the OPTICS algorithm is read-

ily available in the sklearn package of SciPy, the detection of finite-time coherent sets can be done without much effort and105

with only a few lines of code. A further difference is the mentioned intrinsic notion of coherence hierarchy, which allows for

simultaneous analysis of trajectory data at different scales. Finally, trajectory based approaches can in principle be applied

to scarce trajectory data, i.e. to any Lagrangian particle simulation result without much care for the spatial coverage of the

initial conditions. While we mainly focus on the direct embedding of trajectories in an abstract high-dimensional Euclidean

space, we also show in section C in the appendix
:::::::
appendix

::
C
:
that OPTICS can be used to overcome the limits of k-Means110

clustering in the context of spectral clustering of physically motivated trajectory based networks, such as the works presented

by Hadjighasem et al. (2016), Padberg-Gehle and Schneide (2017)or Banisch and Koltai (2017)
:::
the

:::::::::::::
trajectory-based

::::::::
network

::
of

:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017).

2 Trajectory datasets

2.1
:::::::::::::::

Quasi-periodically
:::::::::
perturbed

:
Bickley jet115

We apply our method to a model system that has been used frequently in studies to detect finite-time coherent sets (Hadjighasem et al., 2017; Padberg-Gehle and Schneide, 2017; Hadjighasem et al., 2016; Banisch and Koltai, 2017)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hadjighasem et al., 2017; Padberg-Gehle and Schneide, 2017; Hadjighasem et al., 2016; Banisch and Koltai, 2017; Froyland and Junge, 2018)

. The velocity field of the Bickley jet
::::::::::::::
quasi-periodically

::::::::
perturbed

:::::::
Bickley

::
jet

:::::::::::::::::::::::::::::::::::::::::::::::
(Bickley, 1937; del Castillo-Negrete and Morrison, 1993)

is defined by a stream function ψ(x,y, t), i.e. ẋ=−∂ψ∂y and ẏ = ∂ψ
∂x , with ψ(x,y, t) = ψ0(y) +ψ1(x,y, t) consisting of a sta-

tionary eastward background flow120

ψ0(y) =−ULtanh(y/L), (1)
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and a time-dependent perturbation

ψ1(x,y, t) = UL sech2(y/L) Re

[
3∑

n=1

fn(t)exp(iknx)

]
, (2)

where Re(z) denotes the real part of the complex number z. We use the same parameter values as Hadjighasem et al. (2017),

with U = 62.66 m/s the characteristic velocity of the zonal background flow, and L= 1770 km. The parameters in eq. (2) are125

given by kn = 2n/r0, fn(t) = εn exp(−ikncnt) with ε1 = 0.075, ε2 = 0.4, ε3 = 0.3, c3 = 0.461U
:::::::::::
c1 = 0.1446U , c2 = 0.205U ,

c1 = 0.1446U
:::::::::::
c3 = 0.461U . The domain of interest is Ω = [0,πr0]× [−3000 km,3000 km], where r0 = 6371 km is the radius

of the Earth, and
::
the

:
left and right edges of Ω are identified, i.e. the flow is periodic in x-direction with period πr0. Similar to

Banisch and Koltai (2017), we seed the domain with an initial number of 12,000 particles on a uniform 200× 60 grid. For this

choice, the initial particle spacing is slightly above 100 km in both directions. We compute the trajectories for 40 days with130

a time step of one second using the SciPy integrate package. We output the trajectories every day, i.e. we have T = 41 data

points in time for each trajectory.

2.2 Agulhas rings in the South Atlantic

To test our method
:::
the

:::::::
OPTICS

::::::::
algorithm with a more realistic ocean flow, we simulate surface particle trajectories in a strongly

eddying ocean model. Surface velocities are derived from a NEMO ORCA-N006 run (Madec, 2008), which has a horizontal135

resolution of 1/12◦ and velocity output for every five days. The model is forced by reanalysis and observed data of wind, heat

and fresh water fluxes (Dussin et al., 2016), i.e. the currents do not only contain the geostrophic component, as is the case in

altimetry-derived currents (Beron-Vera et al., 2013; Froyland et al., 2019). For the advection of virtual particles, we use version

1.11 of the open source Parcels framework (Lange and van Sebille, 2017), see oceanparcels.org. The 2-dimensional surface

current velocity is interpolated in space and time with the C-grid interpolation scheme of Delandmeter and van Sebille (2019),140

using a 4th order Runge-Kutta method with a time step of 10 minutes. We initially distribute particles uniformly in the ocean

on the vertices of a 0.2◦×0.2◦ grid in the domain [30◦W,20◦E]×[40◦S,20◦S], which corresponds to a total number of 23,821

particles. At 30◦S, a spacing of 0.2◦ corresponds to roughly 20 km. The particles start at January 5, 2000 and are advected

for two years. We output the trajectories with a time interval of five days. We only use the first 100 days as data to detect the

finite-time coherent sets, i.e. we have T = 21 data points for each trajectory, but also look at later times to see how long the145

rings need to disperse. The data is a subset of the trajectory output of our previous paper (Wichmann et al., 2019), and we refer

to that paper and the code references in there for the details of the particle simulation. We provide the used trajectory data for

the Agulhas flow as numpy file on zenodo
::::::
NumPy

:::
file

:::
on

::::::
Zenodo

:
(Wichmann, 2020b).
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3 Methods

3.1 Detecting coherent structures in
::::::::::
Lagrangian

:
trajectory data: an overview150

For N trajectories of dimension D and length T , the trajectory information can be stored in a data matrix X ∈ RN×DT , where

each row results from a particle trajectory by concatenating the different spatial dimensions. The analysis of trajectory data to

detect finite-time coherent sets of trajectories (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Schneide et al., 2018; Wichmann et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Schneide et al., 2018; Froyland and Junge, 2018; Wichmann et al., 2020)

can be split into two essential steps:155

Step 1 Embedding of the trajectories in an abstract (metric) space, i.e. X → X̄ ∈ RN×M ,
:

where M ≤DT . If one uses a

dimensionality reduction method, M <DT .

Step 2 Clustering of the embedded data with a clustering algorithm.

:::
The

::::::::::
embedding

::
is

::::::::
necessary

::
to

::::::::
represent

:::
the

::::::::::
trajectories

::
as

::::::
points

::
in

:
a
::::::
metric

::::::
space.

::::::::
Different

::::::
options

:::
for

::::::::::
embedding

:::
the

:::::::::
trajectories

:::::
exist,

::::
e.g.

:
a
::::::
direct

:::::::::
embedding

:::
of

:::
the

::::
data

::::::
points

:::::
along

:::
the

::::::::::
trajectories

::::::::::::::::::::::::::::::
(Froyland and Padberg-Gehle, 2015),

:::
or160

::::::::::
embeddings

:::::
based

::
on

:::
the

:::::::::::
eigenvectors

:::::::
derived

::::
from

::::::::
networks

::::
that

:::
are

::::::
defined

:::
by

::::::::
physically

:::::::::
motivated

::::::::
trajectory

::::::::::
similarities

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Banisch and Koltai, 2017; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018).

:::::
Once

::
an

:::::::::
embedding

::
of

:::::
each

::::::::
trajectory

:::
as

:
a
:::::
point

::
in

::
a
::::::
metric

::::::::
(typically

::::::::::
Euclidean)

:::::
space

::
is

::::::::::
established,

::::
one

:::
can

:::::
apply

::
a
:::::::::
clustering

::::::::
algorithm.

::::::::
Roughly

::::::::
speaking,

:::::::::
clustering

:::::::::
algorithms

:::
try

::
to

:::::::
identify

::::::
groups

::
of

::::::
points

:::
that

:::
are

:::::
close

::
to
:::::

each
::::
other

:::
as

:
a
:::::::

cluster.

::::::::::::
Partition-based

:::::::::
clustering

:::::::
methods

::::::
divide

:::
the

:::::
entire

::::
data

::::
into

::
a

::::::::
(typically

:::::
fixed)

:::::::
number

::
of

:::
K

:::::::
clusters,

:::::
such

:::
that

:::::
each

::::
data165

::::
point

:::::::
belongs

::
to

::
a
::::::
cluster.

::::
The

:::::
most

::::::
popular

:::::::
method

::
in
::::

this
::::::::
category

::
is

:::
the

:::::::
k-Means

:::::::::
algorithm,

::::::
which

::::
tries

::
to

::::
find

::
a

:::::
given

::::::
number

::
of

:::
K

::::::
clusters

::::
such

::::
that

:::
the

::::
sum

::
of

:::::::
pairwise

:::::::
squared

::::::::
distances

::
of

:::::
points

::::::
within

:
a
::::::
cluster

::
is

:::::::::
minimized.

:::::
Other

:::::::::
clustering

:::::::::
algorithms

::::::
contain

:
a
:::::::
concept

::
of

::::::
‘noisy’

:::::
data,

::
i.e.

::::
data

::::::
points

:::
that

:::
do

:::
not

:::::
belong

:::
to

:::
any

::::::
cluster,

::
or

::::::
belong

::
to

::
a

:::::
cluster

::::
only

::::
with

::
a

:::::
certain

::::::::::
probability.

:::::::::
Examples

::
for

:::
the

::::::
former

::::
case

:::
are

:::::::::
DBSCAN

:::::::::::::::
(Ester et al., 1996)

:
,
::::::::
discussed

:::
by

::::::::::::::::::
Schneide et al. (2018)

::
in

:::
the

::::
fluid

::::::::
dynamics

:::::::
context,

:::
and

:::
the

::::
here

::::::::
presented

::::::::
OPTICS

::::::::::::::::::
(Ankerst et al., 1999)

::::::::
algorithm.

::::
For

::
the

:::::
latter

:::::
case,

:::
the

::::
most

:::::::
popular170

::::::
method

::
is

::::::::::::
fuzzy-c-means

:::::::::
clustering,

::
as

::::::::
discussed

:::
by

::::::::::::::::::::::::::::::
Froyland and Padberg-Gehle (2015)

:
in

:::
the

::::::
context

:::
of

::::::::
finite-time

::::::::
coherent

:::
sets.

Figure 1 shows a few possible options for these two steps
:::::::
trajectory

::::::::::
embedding

:::
and

::::::::
clustering

:
that have partially been explored

before (see the footnotes in the figure for the combinations used in related studies). For a given trajectory dataset, one can

in principle apply an arbitrary combination of embedding and clustering method
:::::::
methods. Only a few of the different combi-175

nations have been explored so far, and many more options for embedding and clustering as those shown in fig. 1 exist. It is

important to note that a good choice of embedding and clustering might well depend on the specific problem at hand, and there

might be no combination that performs well for all possible situations.

::::
Most

::
of

:::
the

::::::
studies

:::
that

::::
use

::::::::
clustering

:::::::::
techniques

::
to

:::::
detect

:::::::::
finite-time

:::::::
coherent

:::
sets

:::::
have

::::::
focused

:::
on

:::::::::
developing

::::
new

:::::
forms

::
of

::::::::
trajectory

::::::::::
embeddings.

:::
For

::::::::
example,

:::::::::::::::::::::
Hadjighasem et al. (2016)

:
,
:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017),

::::::::::::::::::::::
Banisch and Koltai (2017)180

:::
and

::::::::::::::::::::::
Froyland and Junge (2018)

::
all

:::
use

::::::::
different

:::::
forms

::
of

::::::
spectral

:::::::::::
embeddings,

:::::::
together

::::
with

:::::::
k-Means

:::::::::
clustering.

::::::::::::::::::
Froyland et al. (2019)
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Figure 1.
::::::
Different

:::::
steps

::
to

:::::
detect

::::::
coherent

:::::::::
trajectories

::
in

:::::::::
Lagrangian

::::
data

::::
with

:::::::
trajectory

::::::::
clustering.

::::
The

:::::
figure

:
is
::::::::::::

non-exhaustive,
::::

and

::::
many

::::
more

:::::::
options

::
for

:::::::::
embedding

::::
and

:::::::
clustering

:::::
exist.

::::::::
Footnotes:

::

1
:::::::::::::::::::::::::::
Froyland and Padberg-Gehle (2015).

::

2
:::::::::::::::::::
Hadjighasem et al. (2016)

:
,

:::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017)

::
and

::::::::::::::::::::
Banisch and Koltai (2017)

::
all

:::::
define

:::::::
networks

::::
with

::::::
spectral

:::::::::
embedding

:::
and

:::::::::
subsequent

:::::::
k-Means

::::::::
clustering.

::::::::::::::::
Froyland et al. (2019)

:::::
define

::::::
spectral

:::::::::
embeddings

:::::
defined

:::
on

::::::
dynamic

::::::::
Laplacian

:::
and

::::::
transfer

::::::::
operators.

:

3
::::::::::::::::
Schneide et al. (2018).

::::
have

::::::::
developed

::
a

:::::::
powerful

:::::
form

::
of

::::::::::
embedding,

:::::
based

::
on

::
a

:::::
sparse

:::::::::
eigenbasis

::::::::::::
approximation.

:
Here, we explore the

::::
focus

:::
on

:::
the

::::::::
clustering

::::
step

::
in

:::
fig.

::
1,

::::
and

::::::
propose

:::
the

:
OPTICS clustering algorithm for the first time in the context of finite-time coherent

sets
::
in

::
the

:::::
fluid

::::::::
dynamics

::::::
context. We test it

:::
the

::::::::
algorithm for three different kinds of embeddings:

E1 A direct embedding of the trajectory data in a high dimensional Euclidean space, i.e. M =DT (cf. section 3.2.1).185

E2 A reduction of the trajectory data to a 2-dimensional embedding space using classical multidimensional scaling (MDS,

cf. section 3.2.2). This is mainly to visualize the difference to partition based
::::::::::::
partition-based k-Means clustering.

E3 An
:
A
:::::::
spectral

:
embedding of the network proposed by Padberg-Gehle and Schneide (2017), which is in section C in the

appendix for the sake of brevity.

In the following sections, we explain in detail the embeddings E1 and E2 and the OPTICS algorithm. We introduce the190

network embedding E3 together with the corresponding results in section C in the appendix
:::::::
appendix

::
C.

Different steps to detect coherent trajectories in Lagrangian data with trajectory clustering. The figure is non-exhaustive, and

many more options for embedding and clustering exist. Footnotes: 1 Froyland and Padberg-Gehle (2015). 2 Hadjighasem et al. (2016)

, Padberg-Gehle and Schneide (2017) and Banisch and Koltai (2017) all define networks with spectral embedding and subsequent

k-Means clustering. 3 Schneide et al. (2018).195
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3.2 Trajectory embedding

3.2.1 Direct embedding

The direct embedding of each trajectory in RDT is the most straight forward
:::::::::::::
straightforward embedding as it requires no further

pre-processing of the trajectory data. For simplicity, assume we are given a set of N trajectories in a 3-dimensional space, i.e.

(xi(t),yi(t),zi(t)) where i= 1, . . . ,N and t= t1, . . . , tT . We then simply define the embedding of trajectory i in the abstract200

3T -dimensional space as

ui = (xi(t0),xi(t1), . . . ,xi(tT ),yi(t0),yi(t1), . . . ,yi(tT ),zi(t0),zi(t1), . . . ,zi(tT )) ∈ R3T , (3)

and impose an Euclidean metric in R3T to measure distances between different embedded trajectories. The resulting em-

bedded data matrix X̄ is then simply given by the vertical concatenation of the different embedding vectors. This kind of

embedding was also explored by Froyland and Padberg-Gehle (2015), together with a fuzzy-c-means clustering.
:::::::::
Intuitively,

::
if205

:::
two

:::::::::
trajectories

::
i
:::
and

::
j

::::::
belong

::
to

:::
the

::::
same

:::::::::
finite-time

::::::::
coherent

:::
set,

:::
the

::::::::::::
corresponding

:::::::
particles

::::::
follow

::::
very

::::::
similar

:::::::::
pathways,

::
i.e.

:::
the

:::::::::
Euclidean

:::::::
distance

::
of

:::
the

::::::::::
embedding

::::::
vectors

::::::::::::::
dij = ||ui−uj ||::

is
::::::::
expected

::
to

::
be

::::::
small.

:::
On

:::
the

::::
other

:::::
hand,

::
a
::::::
particle

::
i

:::
that

:::::::
belongs

::
to

::
a

:::::::
coherent

:::
set

::
is

::::::::
expected

::
to

::::
have

::
a
:::::
larger

:::::::
distance

::
to
::

a
:::::::
particle

:
j
::::
that

::
is

:::
not

::::
part

::
of

:::
the

::::
set.

::
In

:::::
other

::::::
words,

:::::
groups

:::
of

:::::::
particles

:::
that

:::::
form

:
a
:::::::::
finite-time

:::::::
coherent

:::
set

:::
are

:::::
dense

::
in

:::
the

:::::::::
embedding

::::::
space.

::::
This

::::::::
motivates

::
to

:::
use

:
a
::::::::::::
density-based

::::::::
clustering

::::::::
algorithm

::
to

:::::
detect

:::::::::
finite-time

::::::::
coherent

::::
sets.210

To take into account the πr0-periodicity in x-direction of the Bickley jet flow, we first put the individual 2-dimensional data

points on the surface of a cylinder with radius r0/2 in R3, and interpret the resulting (D = 3) trajectories in a 3-dimensional

Euclidean space. The resulting data matrix is X̄ ∈ RN×3T , withN = 12,000 and T = 41. For the Agulhas particles, we put the

single data points on the earth surface in a 3-dimensional Euclidean embedding space by the standard coordinate transformation

of spherical to Euclidean coordinates. The resulting data matrix is thus X̄ ∈ RN×3T with N = 23,821 and T = 21.215

3.2.2 Classical
:::::::::::::
Dimensionality

:::::::::
reduction

::::
with

:::::::
classical

:
multidimensional scaling

To get an intuition for
::::
what

::
the

::::::::
OPTICS

::::::::
algorithm

:::::
does,

:::
and

:::
the

:::::::::
differences

::
to

::::::::
k-Means,

:::
we

::::
wish

::
to

::::::::
visualize

:::
the

:::
data

::::::::
structure

::
in the clustering results of the OPTICS algorithm , we visualize the density structure of the trajectories in the 2-dimensional

plane
:::::
plane.

::::
For

::::
this,

::
it

::
is

::::::::
necessary

:::
to

::::::
reduce

:::
the

::::::::::
embedding

:::::::::
dimension

::
of

:::::
each

::::::::
trajectory

:::::
from

:::
3T

::
to

::::
two

::
in

::
a
::::
way

::::
that

::
the

:::::::
density

::::::::
structure,

::::
and

:::::
hence

:::
the

:::::::::
individual

:::::::::
Euclidean

::::::::
distances

:::::::
between

:::::::::
embedded

::::::::::
trajectories

::::::::::::::
dij = ||ui−uj ||,:::

cf.
:::
eq.220

:::
(3),

:::
are

:::::::::
preserved.

:::
We

:::
do

::
so

:
by a common method of nonlinear dimensionality reduction, called classical Multidimensional

::::::::::::::
multidimensional

:
scaling (MDS), see e.g. chapter 10.3 of Fouss et al. (2016). Classical MDS tries to find an embedding of

the high-dimensional data points in a low dimensional space such that the pairwise distances are approximately preserved.
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Classical
::::::
Similar

::
to

:
a
::::::::
principal

:::::::::
component

::::::::
analysis,

:::::::
classical MDS makes use of the eigenvectors corresponding to the largest

eigenvalues of the kernel matrix
:
a

:::::
kernel

::::::
matrix,

::::::
which

:
is
::
in
::::
this

::::
case

::::::
defined

:::
by225

B =−1

2
H∆2H, (4)

where ∆2 ∈ RN×N is a matrix containing all squared distances between the points,
:::::::::::::::
∆2
ij = ||ui−uj ||2, and H is the centring

matrix withHij = δij−1/N , where δij denotes the Kronecker delta.
:::
The

::::::
matrix

::
B

::
in

:::
eq.

::
(4)

::
is
:::::
called

:::
the

:::::::
centred

::::
inner

:::::::
product

::::::
matrix.

::
If

::
B̃

::
is

::
the

::::::
matrix

::
of

:::::
inner

:::::::
products

:::
of

:::
the

::::::::
embedded

::::
data

::::::
points,

:::
i.e.

:::::::::::
B̃ij = ui ·uj::::

with
::::::::
Euclidean

::::::
scalar

:::::::
product,

::::
then

::
B

:::
can

::
be

::::::::
obtained

::
by

::::::::
removing

:::
the

:::::
mean

::
of

:::
all

::::
rows

:::
and

::::::::
columns

::
of

::
B̃,

:::
cf.

::::::
chapter

::::
10.3

:::
of

:::::::::::::::
Fouss et al. (2016).

:::
An

::::::::::
embedding230

::
of

:::
the

::::
data

:::::
points

::::::
using

:::
the

::::::::::
eigenvectors

:::::::::::::
corresponding

::
to

:::
the

:::::::
leading

:::::::::::
non-negative

::::::::::
eigenvalues

::
of

::
B

:::
in

:::
eq.

:::
(4)

::::::
ensures

:::
to

::::::
capture

:::
the

::::
main

::::::::
variance

::
of

:::
the

::::::::
(squared)

:::::::
distance

::::::::
structure,

::::::
similar

::
to

:
a
::::::::
principal

:::::::::
component

::::::::
analysis.

We compute ∆2 with the Euclidean embeddings
:::::::::
embedding

:
described in section 3.2.1 and restrict ourselves to the first two

dimensions
:
to

::::::::
visualize

:::
the

::::
data

:::::::
structure

::
in

:::
the

:::::
plane, i.e. the embedding is defined by

ui = (w0,i,w1,i), i= 1, . . . ,N, (5)235

where Kwj = λjwj , and λ0 ≥ λ1 ≥ λk for all k = 2, . . .N−1. This choice of embedding ensures to capture the main variance

of the data points, and we therefore also expect to capture the main structure in terms of data density. For large particle sets

however, computing the spectrum of H in eq. (4) is computationally not feasible, as the matrix B is in general dense and

computing the spectrum scales with O(N3). We apply classical MDS to the 12,000 particles of the Bickley jet model flow,

and a random selection of the equal number of particles for the Agulhas flow. In our context, the method is most useful for240

visualization purposes, as it provides a good 2-dimensional approximation of the point distances, i.e. also the density structure

of the embedded trajectories.

3.3 Clustering with OPTICS

The detection of dense accumulations of points that are separated from each other by non-dense regions (noise) is the main

goal of density-based clustering. We use the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm by245

Ankerst et al. (1999) to detect these regions. The OPTICS algorithm can be seen as an extension of DBSCAN (Ester et al.,

1996), with important advantages for the detection of finite-time coherent sets, as discussed in the introduction and will become

clear in section 4.
:
. As we have no prior information on the density structure of the embedded nodes, we set the ‘generating

distance’ of OPTICS to infinity and our presentation here is limited to this case. The general OPTICS algorithm with finite

generating distance is
:::::::::::::
computationally

:::::
more

:::::::
efficient

:::
and

:
slightly more complicated, and we refer to Ankerst et al. (1999) for250

more details.For ε ∈ R, the ε

:::
For

:::::
δ ∈ R,

:::
the

::
δ-neighbourhood of a point p ∈ RM is defined as the M -dimensional ball

::
of

:::::
radius

::
δ around p. Define Mε(p)
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:::::
Mδ(p):as the number of points that is in the ε

:
δ-neighbourhood of p, including p itself. OPTICS requires one parameter, an

integer smin (called MinPts by Ester et al. (1996)
::::::::::::::::
Ankerst et al. (1999)), that defines the core-distance of a point p as

c(p) = {min(εδ) |M εδ(p)≥ smin}. (6)255

The
:::
core

:::::::
distance

::
is
::::::
simply

:::
the

:::::::::
minimum

:::::
radius

:::
of

:
a
::::
ball

::::::
around

::
p,

::::
such

::::
that

:::
the

::::
ball

:::::::
contains

:::::
smin ::::::

points.
::::
Note

::::
that

:::
the

::::::::
generating

::::::::
distance

:::
that

:::
we

:::
set

::
to

:::::::
infinity

::
is

:
a
:::::::::
maximum

:::
cut

:::
off

:::::::
distance

:::
for

:::
the

:::::::::::
computation

::
of

:::
the

::::
core

:::::::
distance

::
in

:::
eq.

::::
(6),

::::::
beyond

:::::
which

:::
the

::::
core

:::::::
distance

::
is

:::
not

:::::::
defined.

:::
As

:::
we

::
do

:::
not

::::
have

:::
an

:::::::
intuition

:::
for

:
a
:::::
good

:::::
value

::
of

::::
such

::
a

::
cut

::::
off,

:::
we

::::::
remove

::
it

::
by

::::::
setting

:
it
:::
to

::::::
infinity.

:

:::
The

:
ordering of the points is based on the reachability distance of a point p w.r.t. another point q, defined as260

r(p|q) = max(c(q), ||p− q||), (7)

where ||p− q|| in our case denotes the Euclidean distance between p and q. The ordering of points is then constructed with the

following scheme
:
:

Step 1 Pick a point p1. This is the first point in the order, and is arbitrary.

Step 2 Compute the core-distance c(p1) of p1.265

Step 3 Define an ordered seed list containing all other points, pl, k = 2, . . . ,N
::::::::::
l = 2, . . . ,N . For each point pl, define the reacha-

bility value r(pl) as the reachability distance (eq. (7)) w.r.t. p1, r(pl) = r(pl|p1). Order the list in ascending order of the

r(pl).

Step 4 Pick the first point on the ordered seed list as p2 and compute the core-distance c(p2). For all remaining points pl,

l = 3, . . . ,N , update the reachability value r(pl)→min(r(pl), r(pl|p2)).270

Step 5 Update the ordered seed list according to the new reachability.

Step 5

::::
Step

::
6 Repeat steps 4-5 to obtain p3. Continue until all points are processed.

::::
Note

:::
that

:::
the

:::::::
ordering

:::
of

:::::
points

::
is

:::::::
achieved

:::
by

::::::::
constantly

::::::::
updating

:::
the

::::::
ordered

::::
seed

::::
list,

::
cf.

::::
step

::
3.

::
In

:::
this

:::::
way,

::
the

:::::::::
algorithm

::::::
iterates

:::::::
through

::::::
groups

::
of

:::::
dense

:::::
points

::::
one

::::
after

:::
the

:::::
other,

:::
and

::::
only

:::::::::
continues

::::
with

::::
other

::::::
points

::::
once

::
a

:::::
dense

:::::
region

:::
has

:::::
been275

::::
fully

::::::::
explored.

::::
Note

::::
also

::::
that

:::
the

:::::
entire

::::::::
algorithm

:::::::
depends

:::
on

:::
the

:::::
choice

:::
of

:::
the

::::::::
parameter

:::::
smin.

::::
The

:::::
value

::
of

::::
smin::::::

should
:::
be

::::::
chosen

::::::
roughly

:::
as

:
a
:::::::::
minimum

::::
value

:::
of

:::
the

:::::::
expected

::::::
cluster

:::::
size.

::
In

:::
the

::::::::
examples

::::::::
presented

::
in

::::
this

:::::
paper,

:::
we

::::
take

::::::
values

:::
for

::::
smin::::

that
:::::::::
correspond

::
to

:::
the

::::::::
estimated

::::::::
minimum

::::
size

::
of

:::
the

:::::::
coherent

::::
sets.

The main result of the OPTICS algorithm is a reachability plot. This plot is the graph defined by (i,r(pi)):,:::::
where

:::::::
p0 =∞

:::
by
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::::::::
definition. The reachability plot is a powerful presentation of the global and local distribution of a set of points at once. The280

valleys in this plot correspond to dense regions, which we will relate to finite-time coherent sets. We will show examples of

reachability plots in section 4. Given the reachability plot (i,r(pi)), we use two common ways to derive a clustering result:

1. DBSCAN clustering: Choose a cut-off parameter ε and define all points pi with c(pi)≤ ε as core points. All points that

are not in the ε-neighbourhood of a core point are defined as noise. This is equal
::
set

:::
of

:::::
noisy

:::
data

::::::
points

::
is

:::::::::
equivalent

to all points p
:
pi:that are not core points and have a reachability value r(p) with r(p)> ε

::::
r(pi)::::

with
::::::::
r(pi)> ε. A cluster285

of size L is
:::
then

:
defined as a consecutive set (in the sense of the ordering) of non-noise points (pj ,pj+1, . . . ,pj+L−1),

with adjacent points pj−1 and pj+L being noise. This is similar to the clustering result of a DBSCAN run with equal

values for smin and ε. All possible realizations of DBSCAN clusters(,
:

with the same
::::
value

:::
for smin) ,

:
can therefore be

derived from the reachability values, core distances and the ordering determined by OPTICS. Up to boundary points, a

DBSCAN clustering result can be obtained by drawing horizontal lines in the reachability plot, cf. section 4.290

2. ξ-clustering: While the DBSCAN clustering method looks for deep valleys in the reachability plot, this method looks for

valleys with steep boundaries. In short, the larger a parameter ξ with 0< ξ < 1, the steeper the boundary of a valley has to

be to be classified as a cluster. In more detail, a ξ-cluster is defined as a consecutive set of points (pj ,pj+1, . . . ,pj+L−1)

that has steep boundaries in the sense that for a parameter ξ, 0< ξ < 1:

(a) The start of the cluster pj is in a ξ-steep downward area. A ξ-steep downward area is a maximal set of consecutive295

points (pl,pl+1, . . . ,pl+k),
:::::::::::::::
k ∈ {1, ...,N − l} where: 1. pl and pl+k are ξ-steep downward points, i.e. r(pl)≤ (1−

ξ)r(pl−1) and r(pl+k)≤ (1− ξ)r(pl+k−1), 2. pl+i ≤ pl for all i= 1, . . . ,k and 3. not more than smin consecutive

points in the set are no ξ-steep downward points.

(b) The end of the cluster pj+L−1 is a ξ-steep upward area. The definitions are the reverse of the ξ-steep downward

area, with the definition of a ξ-steep upward point is changed to
::
as

:
r(pj)≤ (1− ξ)r(pj+1).300

(c) The cluster contains at least smin points
:
,
:::
i.e.

::::::::
L≥ smin.

(d) Every point in the inside of the cluster is at least a factor of (1−ξ) smaller than the boundary points pj and pj+L−1.

All points that do not belong to a cluster are classified as noise.

We refer to Ankerst et al. (1999) for a more detailed discussion of the ξ-clustering method with illustrations for example

data. Note that the full ξ-clustering method presented by Ankerst et al. (1999) does contain some more details related to the305

choice of the start and end points, which we did not mention here.

Functions
:::
The

:::::::
OPTICS

:::::::::
algorithm

:::
as

::::
well

::
as

::::::::
functions

:
to derive both clustering results from an OPTICS output are also

available in the SciPy sklearn package. Note that the implementation in sklearn allows for a minimum cluster size different

from smin (item (c) for the ξ-clustering
::::::
method

:::::
(item

:
2
::

c
:::::
above), but we will not make use of this additional freedom to

reduce the number of parameters. Note that, different from k-Means, both clustering methods do not require an a priory
:::::
priori310

determination of the number of clusters. For the ξ-clustering method, a larger ξ requires steeper boundaries to form a cluster,

i.e. will typically lead to a reduction of the number of resulting clusters. For DBSCAN clustering with very large ε, one will
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detect one large global cluster. Making ε smaller leads then to consecutive splits of this cluster, forming (up to noise) a cluster

hierarchy. We will demonstrate the properties for both clustering methods in section 4 for different situations. In the following

applications, we use an estimation of the minimum number of particles per finite-time coherent set for the parameter smin.315

:::::::::
Intuitively,

:::
the

:::
two

:::::::::
clustering

::::::::
methods

:::
can

:::
be

:::::::::
understood

:::
as

:::::::
follows.

:::::::::
DBSCAN

::::::
detects

:::::
those

::::::
groups

::
of

::::::
points

::::
that

::::
have

::
a

:::::
certain

:::::::::
minimum

::::::
density

::::::
defined

:::
by

:::
the

::::::::
minimum

::::::::::
reachability

:::::::
distance

::
ε.

:::::::
Clusters

:::::::
detected

::
by

:::::::::
DBSCAN

:::
are

:::::::
therefore

:::::::
defined

::
by

:
a
::::::
global

::::::
density

::::::::
criterion.

::::
This

:::::::
assumes

::
no

::::::::
structural

::::::::::
differences

::
in

:::
the

::::
type

::
of

:::::::
coherent

:::
sets

::
in
::::::::
different

::::::
regions

::
of

:::
the

:::::
fluid.

:::::::
Different

:::::
from

::::
that,

:::
the

:::::::::
ξ-clustering

:::::::
method

::::::
detects

:::::::
clusters

::
by

::::::
finding

::::::
strong

:::::::
changes

::
in

::
the

:::::::
density

::
of

:::
the

::::
data

::::::
points,

::::
and

:::
not

:::::
based

::
on

:::::::
absolute

::::::::
densities.

::::
This

:::
has

:::
the

:::::::::
advantage

:::
that

:::::::
clusters

::
of

::::::::
different

:::::::
absolute

::::::
density

:::
can

:::
be

:::::::
detected.

:::::
Such

:
a
::::::::
situation320

:::
can

::::
arise

::
if

:::
the

::::::::::
distribution

::
of

:::::::
particles

::
is

:::::::::::::
inhomogeneous

::::
over

:::
the

::::
fluid

:::::::
domain,

:::
or

:
if
:::
the

::::::
spatial

::::::
extend

::
of

:::
the

::::
fluid

:::::::
domain

::
is

::::
very

::::
large

::::
such

::::
that

:::
the

::::::::
properties

:::
of

::::::::
finite-time

::::::::
coherent

:::
sets

:::::
vary

::::::::::
significantly.

::
It
::
is

::::::::
important

::
to
::::
note

::::
that

:::
the

:::::
main

:::::
result

::
of

:::::::
OPTICS

::
is

:::
the

::::::::::
reachability

:::
plot

:::::
itself.

::::
The

:::::::::
DBSCAN-

::::
and

::::::::::
ξ-clustering

:::::::
methods

::::::
should

:::
be

::::
seen

::
as

:::::
useful

:::::
tools

::
to

:::::::
identify

:::
the

::::
most

::::::::
important

:::::::
features

::
of

::::
that

::::
plot.

3.4
::::::::::

Comparison
::
to

:::::::
related

:::::::
methods325

:::
Our

:::::::
method

::
is

::::::
closely

::::::
related

::
to

:::::::
existing

:::::::
methods

::
to

:::::
detect

:::::::::
finite-time

::::::::
coherent

:::
sets

::::
with

:::::::::
clustering

:::::::::
techniques.

:::::
Most

:::::::
notably,

:::::::::::::::::::::::::::::
Froyland and Padberg-Gehle (2015)

::::
also

:::
use

::
a

:::::
direct

::::::::::
embedding

::
of

:::::::::
individual

::::::::::
trajectories

::::::
similar

::
to

:::
eq.

::::
(3),

:::::::
together

:::::
with

::::::::::::
fuzzy-c-means

:::::::::
clustering.

:::::::::::::::::::::
Hadjighasem et al. (2016),

::::::::::::::::::::::
Banisch and Koltai (2017),

::::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017)

:::
and

::::::::::::::::::::::
Froyland and Junge (2018)

:::
use

::::::
spectral

::::::::::
embeddings

:::
of

:::::
graphs

::::
that

:::
are

::::::
defined

:::
on

::::
some

:::::
form

::
of

:::::::
physical

:::::::
intuition

::
or

::
of

:::::::::
dynamical

:::::::::
operators,

:::::::
together

::::
with

:::::::
k-Means

:::::::::
clustering.

::::::
These

::::::
studies

:::::
show

::::::::::
applications

:::
of

::::
their

:::::::
methods

:::
to

:::::::
example

:::::
flows

::::::
where

:::
the

::::
size

::
of

::::::::::::::
almost-coherent330

:::
sets

::
is

:::
not

:::
too

:::::
small

:::::::::
compared

::
to

:::
the

:::::
fluid

:::::::
domain.

::::
Such

:::::::::
examples

:::
are

:::
the

:::::::
Bickley

::
jet

:::::
flow,

:::::
which

:::
we

::::
also

:::::
study

::
in
:::::::

section

:::
4.1,

:::
the

:::
five

:::::
major

::::::
ocean

:::::
basins

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017)

:
,
::
or

:::
few

:::::::::
individual

:::::
eddies

::
in
:::
an

:::::
ocean

::
or

::::::::::
atmospheric

::::
flow

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Froyland and Junge, 2018).

:::
In

::::
such

::::::::
situations,

:::::
noisy

::::::::::
background

::::::::::
trajectories

:::
can

:::
be

:::::::
detected

:::
as

::::::::
individual

:::::::
clusters

:::
by

:::
the

::::::::::
partitioning

:::::::
method,

:::
as

::::::::
discussed

:::
by

:::::::::::::::::::::
Hadjighasem et al. (2016).

::::
For

::::::::::
applications

::
in
:::::

large
::::::
ocean

::::::::
domains,

:::::
where

:::
the

:::::::
number

:::
of

:::::
eddies

:::
is

:::
not

::::::
known

::::::::::
beforehand335

:::
and

:::::
where

:::::
there

:::
are

:::::
many

:::::
more

:::::
noisy

::::::::::
trajectories

::::
than

:::::::
coherent

::::::::::
trajectories,

:::::
such

::
an

::::::::
approach

::
is
:::::
likely

:::
to

:::
fail,

::::
see

::::
also

:::
the

::::::::
discussion

:::
by

::::::::::::::::::
Froyland et al. (2019).

::::::::
OPTICS

::::
does

:::
not

::::::
require

:::
to

::
fix

:::
the

:::::::
number

::
of

:::::::
clusters

::::::::::
beforehand,

:::
and

::::
also

:::::::
contains

:::
an

:::::::
intrinsic

::::::
concept

::
of

:::::
noisy

::::::::::
trajectories

:::
that

:::
do

:::
not

::::::
belong

::
to

:::
any

::::::
cluster,

:::::::
making

:::::::
OPTICS

:::::::
suitable

:::
for

:::::::::
challenging

:::::
flows

::
in

:::::
large

:::::::
domains.

::
As

::::::::::
mentioned,

:::::::
OPTICS

::::
also

::::::::
contains

::
an

::::::::
intrinsic

::::::
notion

::
of

::::::
cluster

:::::::::
hierarchy,

:::
i.e.

:::::::
coherent

::::
sets

::::
that

:::
are

::::::::::
themselves

:::
part

:::
of340

:::::::
coherent

::::
sets

::
at

:::::
larger

::::::
scales.

::::::::::::::::::
Ma and Bollt (2013)

::::::
studied

::::::::::
hierarchical

:::::::
coherent

::::
sets

::
in
::::

the
::::::
transfer

::::::::
operator

:::::::::
framework

:::
of

:::::::::::::::::
Froyland et al. (2010)

:
,
::
in

:::
the

:::::
spirit

::
of

:::
the

::::::::::
hierarchical

::::::::
clustering

:::::::
method

:::::::
proposed

:::
by

::::::::::::::::::
Shi and Malik (2000).

:::::
Their

::::::::
approach

::
is

:::
also

:::::::::::::
partition-based,

:::
i.e.

:::::
there

::
is

::
no

:::::::
concept

::
of

:::::
noisy

::::::::::
trajectories.

::
In

:::::::
addition,

::
at
:::::
each

::::
stage

::
of

:::
the

:::::::::
hierarchy,

:
a
:::::
fixed

::::::
cut-off

:::
has

::
to

::
be

::::::
chosen

:::::
based

::
on

::::::::::
minimizing

:::
an

:::::::
objective

:::::::
function

::::::::::::::::::
(Ma and Bollt, 2013).

::::::::
Different

::::
from

::::
that

::::::::
approach,

:::
the

:::::
main

:::::
result

::
of

:::::::
OPTICS,

:::
the

::::::::::
reachability

::::
plot,

::::::::
contains

::::
such

::::::::::
hierarchical

::::::::::
information

::
in

:
a
::::::
smooth

::::
and

:::::::
intrinsic

:::::::
manner.345

::
As

::::::::
described

::
in

::::::
section

::::
3.3,

::::::::
clustering

:::::
results

:::
of

::
the

:::::::::
DBSCAN

::::::::
algorithm

::::::::::::::::
(Ester et al., 1996)

:::
can

::
be

::::::
derived

::::
from

:::
the

::::::::::
reachability
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:::
plot

::
of
:::::::::

OPTICS.
::::::::
DBSCAN

::::
has

::::
been

:::::
used

::
in

:::
the

:::::::
context

::
of

::::::::
coherent

:::
sets

::::::
before

:::
by

::::::::::::::::::
Schneide et al. (2018)

:
,
:::::::
although

:::
not

:::
to

::::::
identify

:::::::
specific

:::::::
clusters,

::::
but

::
to

:::::::::
distinguish

::::::
noisy

::::
from

::::::::
clustered

::::::::::
trajectories.

::::
The

::::::::
potential

::
of

::::::::::::
density-based

:::::::::
clustering

:::
for

::::::::::
applications

::
in

:::
the

:::::
ocean

:::
and

:::
its

:::::::::
comparison

::
to

:::::
other

:::::::
existing

::::::::
clustering

:::::::
methods

:::
for

::::
flow

::::::::
examples

::::
such

::
as

:::
the

:::::::
Bickley

:::
jet

:::
(cf.

::::::
section

:::
2.1)

::::
has

:::
not

::::
been

::::::::
explored

::
so

::::
far.

::::::::
Different

::::
from

::::::::
OPTICS,

:::::::::
DBSCAN

::::::
detects

:::::::
clusters

::::
with

::
a

::::::
certain

::::
fixed

:::::::::
minimum350

::::::
density,

::::::::
although

:::::::
clusters

::::
with

:::::::
varying

:::::::
densities

::::::
might

::
be

:::::::
present

::
in

::
a
::::::
dataset

::::::::::::::::::
(Ankerst et al., 1999).

:::::
More

:::::::::::
specifically,

:::
the

::::
value

:::
for

:::
the

::::::
cut-off

:::::::::
parameter

::
ε,

:::
cf.

::::::
section

:::
3.3,

::::
has

::
to

::
be

:::
set

::::::::::
beforehand.

:::::::::
Choosing

:
a
:::::
good

:::::
value

:::
for

:::
the

::::::
density

:::::::::
parameter

::
in

::::::::
DBSCAN

::
is
::::::::::
challenging

::
if

:::::
there

::
is

::
no

:::::::::
underlying

::::::::
physical

:::::::
intuition

:::
for

:::
the

::::::
density

:::::::::
structure.

::
As

:::::::::
described

::
in

::::::
section

::::
3.3,

:::::::
OPTICS

::::::
allows

:::
one

::
to

:::::
derive

::::
any

::::::::
DBSCAN

:::::::::
clustering

:::::
result,

::::
with

:::
the

:::::
same

::::
value

:::
for

:::
the

:::::::::
parameter

:::::
smin,

::::
after

:::::::::
computing

:::
the

:::::::::
reachability

:::::
plot,

:::
i.e.

::::
after

:::
one

::::
can

:::
get

::::
first

::::::
insights

::::
into

:::
the

:::::::::
clustering

:::::::
structure

::
of
::::

the
::::::
dataset

::
to

:::::
make

::
an

::::::::::
appropriate

::::::
choice355

::
for

::
ε.
:::::::::::
Furthermore,

::
it

:::
also

::::::
allows

::::
one

::
to

:::
use

:::
the

::::::::::
ξ-clustering

::::::
method

::::::
instead

:::
of

::::::::
DBSCAN

:::
(cf.

:::::::
section

::::
3.3).

:
A
:::::
more

:::::
recent

:::
and

::::::::
powerful

::::::::
technique

::
to

:::::
detect

:::::::::
finite-time

:::::::
coherent

::::
sets

::
in

:::::
sparse

::::::::
trajectory

::::
data

:::
was

::::::::
presented

:::
by

:::::::::::::::::
Froyland et al. (2019)

:
,
:::::
based

::
on

::::::::
dynamic

::::::::
Laplacian

:::
and

:::::::
transfer

::::::::
operators

:::::::::::::::::::::::
(Froyland and Junge, 2018).

::::::::::::::::::
Froyland et al. (2019)

:::::
apply

::::
their

:::::::
method

::
to

:
a
::::::::
trajectory

::::::
dataset

::
in

:::
the

:::::::
Western

:::::::::
Boundary

::::::
Current

::::::
region

::
in

:::
the

:::::
North

:::::::
Atlantic

::::::
Ocean,

::::
and

::::::::::
successfully

:::::
detect

:::::
many

::::::
eddies

::
by

::::::::::
superposing

:::::::::
individual

:::::::::::
eigenvectors.

::::
The

::::::::
methods

::::::::
presented

:::::
there

:::
are

::::::
based

::
on

::
a
:::::
form

::
of

:::::::
spectral

::::::::::
embedding,

:::::::
derived360

::::
from

:::::::::
discretized

:::::::::
dynamical

:::::::::
operators.

:::::
Based

:::
on

::::
this

::::::::::
embedding,

::::::::
clustering

::::::
results

::::
have

::::
also

:::::
been

::::::
derived

::::
with

::::::::
k-Means

:::
by

::::::::::::::::::::::
Froyland and Junge (2018)

:::
and

::::
with

:::::::::
individual

:::::::::::
thresholding

::
by

::::::::::::::::::
Froyland et al. (2019)

:
.
:::::::::::::::::::
Froyland et al. (2019)

:::
also

:::::
show

::::
how

::
the

:::::::::
low-order

:::::::::::
eigenvectors

:::::::::
correspond

:::
to

:::::::::
large-scale

:::::::
coherent

::::::::
features,

:::::
while

:::
the

:::::::::
individual

::::::
eddies

:::
are

:::::::
derived

::
by

::
a
::::::
sparse

::::::::
eigenbasis

::::::::::::
approximation

:::
of

:
a
:::::::
number

::
of

:::::::::::
eigenvectors.

:::
The

:::::
latter

::::::::
approach

::
is

:::::::::
essentially

:
a
::::::::::::
transformation

::
of

:::
the

::::::::::
embedding

::
to

:::::::
represent

:::
the

::::
most

:::::::
reliable

:::::::
features,

::::
such

::::
that

:
a
:::::::::::
superposition

::
of

:::
the

::::::::::
eigenvectors

:::::
alone

:::::
yields

:::
the

::::::::::
information

:::::
about

:::
the

:::::::
location365

:::
and

::::
size

::
of

:::::::::
finite-time

:::::::
coherent

::::
sets

:::::::
(without

::
a
::::::::
clustering

:::::
step).

:::::
This

::
is

:::::::::
essentially

::
an

:::::::::
optimized

::::
form

:::
of

::::::::::
embedding,

:::
i.e.

:::
the

::::::
second

:::
step

::
in
::::

fig.
::
1.

:::
Our

::::
aim

::::
here

::
is

::
to

:::::
focus

::
on

:::
the

:::::
third

::::
step

::
in

:::
fig.

::
1,

:::
i.e.

::
to

::::::::::
demonstrate

:::
the

::::::::
potential

::
of

:::
the

::::::::::::
density-based

::::::::
clustering

::::::::
algorithm

::::::::
OPTICS,

:::::::
together

::::
with

::
a

::::
very

:::::
simple

::::::::::
embedding

::
of

:::
eq.

:::
(3).

:

:
A
:::::::::
downside

::
of

:::
our

::::::
method

:::::::::
compared

::
to

:::::
other

:::::::::
approaches

::
is

:::
the

:::::
rather

::::::
ad-hoc

::::::
choice

::
of

::::::::::
embedding,

::
cf.

:::
eq.

::::
(3).

:::::::
Different

:::::
from

::::
many

:::::
other

::::::::
methods,

::::
most

::::::
notably

:::
the

::::
ones

::
of

::::::::::::::::::::::
Banisch and Koltai (2017),

:::::::::::::::::::::::
Froyland and Junge (2018)

::
and

::::::::::::::::::
Froyland et al. (2019)370

:
,
:::
this

::::
type

::
of

:::::::::
embedding

::
is
:::
not

:::::::
derived

::::
from

::
a

:::::::::
meaningful

:::::::::
dynamical

::::::::
operator.

:
It
:::::
could

:::
be

::::::
fruitful

::
to

:::::::
explore

:
a
:::::::::::
combination

::
of

::::
these

:::::
more

:::::::::
meaningful

::::::::::
embeddings

::::::::
together

::::
with

:::::::
OPTICS

::
as

::
a

::::::::
clustering

::::::::
algorithm

::
in

::::::
future

:::::::
research.

:

4 Results

4.1 Bickley jet flow

We start with the direct embedding of the trajectories. As explained in section 2, the
::::::
Bickley

:::
jet

::::
flow

::::::::::
trajectories,

::
cf.

:::::::
section375

::
2.

:::
The

:
data matrix has dimension X ∈ R12,000×143

::::::::::::::
X ∈ R12,000×123. We apply the OPTICS algorithm to the resulting points ,

together with DBSCAN clustering, choosing smin = 80 as a minimum size of the finite-time coherent sets. In the following, all

axis units are in
:::::::
multiples

::
of

:
1000 km. Figure 2 shows the reachability plot, together with the DBSCAN clustering result of three

different choices of ε. The six vortices and the jet are clearly visible as the major valleys in the reachability plot. The hierachical
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structure of the DBSCAN clustering with decreasing ε is visible in the figures from top (larg scale
::::::::
large-scale

:
coherence) to380

bottom (small scale
:::::::::
small-scale

:
coherence). Being able to study this hierarchical structure with one run of OPTICS is a major

advantage compared to DBSCAN and other methods to detect finite-time coherent sets. Note again that one run of OPTICS

provides
::::
Note

::::
that

:::
for the DBSCAN clustering result of any parameter ε (with the same smin).

::::::
results,

::::::::
boundary

::::::
points

::
of

:::
the

::::::
clusters

:::
can

:::
be

:::::
above

:::
the

::::::::
hozitonal

:::
line

::
at
::::::
y = ε.

::::
This

::
is

::::::
because

:::
of

::
the

:::::::::
definition

::
of

:::
the

::::::::
DBSCAN

:::::::::
clustering

::
in

::::::
section

:::
3.3.

:

Figure 2. Result of the OPTICS algorithm applied to the direct embedding of the trajectories. (a), (d) and (g) show the reachability plot with

different DBSCAN clustering results, indicated by the black horizontal line. The corresponding clustering results of each choice of DBSCAN

parameter ε is shown on the right of the reachability plots for different times. Grey particles correspond to noise. Axis units in the centre and

right column are in 1000 km.

Next
::
To

:::::::
illustrate

:::
the

:::::::::
difference

:::::::
between

::::::::
OPTICS

:::
and

::::::::
k-Means, we use the embedded trajectories and apply classical MDS385

to obtain a 2-dimensional embedding. As mentioned
::::::::
described in section 3.2.2, this assures to capture the major variance along

the embedding axes. The spectrum of B in eq. (4) is shown in fig. A1 in the appendix, with two clearly dominant eigenvalues.

Figure 4 shows the result of OPTICS for this case of embedding. Most notably, applying MDS has lead to the vortices and

the jet having comparable depth in the reachability plot, such that a single DBSCAN clustering result detects all six vortex

centres and the jet in the middle
:::
The

::::
fact

:::
that

:::::
there

:::
are

:::
two

::::
very

:::::::::
dominant

:::::::::
eigenvalues

:::::::
assures

:::
that

:::
the

::::::::::
illustration

::
of

:::
the

::::
data390

::
in

::
the

:::::
plane

:::::::
captures

:::
the

::::::
major

:::::::
variance

::
of

:::
the

::::
data

:::::
points. Figure 3a shows the corresponding embedding

:
of

:::
the

::::::::::
trajectories in

the 2-dimensional embedding space, and fig. 3b
::::::::
Euclidean

:::::
space.

::::
The

::::::::::
star-shaped

:::::::::
distribution

::
of

::::
data

::::::
points

:::::
reflect

:::
the

::::::
strong

14



:::::::::
symmetries

::
of

:::
the

::::::::::
underlying

:::::::
idealized

:::::::
Bickley

::
jet

:::::
flow.

::::
Such

:::::::::
symmetry

::
is

:::
not

:::::::
expected

::
to
:::
be

::::::
present

:::
for

:::::
more

::::::
realistic

::::::
flows.

::::::
Figures

::
3b

::::
and

::
3c

:::::
show the cluster labels for OPTICS with DBSCAN clustering at ε= 1000, as shown in fig. 4. The jet and the

six vortices are clearly recognizable as dense accumulations of points in this 2-dimensional space. Figure 3c shows the result395

::::::
ε= 106

::::
km,

:::
and

:
for a k-Means clustering with K = 8 clusters, which

::::::::::
respectively.

::::::
K = 8

:
corresponds to the six vortices, the

jet, and one noise cluster as suggested by Hadjighasem et al. (2016).

Figure 3.
:
a:

:::::::::::
2-dimensional

::::::::
embedding

::
of
:::

the
:::::::
classical

::::
MDS

::::::
method

:::
(cf.

::::::
section

:::::
3.2.2)

::
of

:::
the

:::::::::
trajectories.

::
b:

:::
with

:::::
labels

::::::::
according

::
to

:::
the

:::::::
DBSCAN

:::::
result

::
of

:::
fig.

::
4.

:::
The

:::
six

::::::
vortices

:::
and

:::
the

::
jet

:::
are

::::::
clearly

:::::
visible

::
as

:::::
dense

::::::
regions.

::::
Grey

:::::::
particles

::::::::
correspond

::
to

:::::
noise.

::
c:

:::::::
k-Means

:::::::
clustering

:::::
result

::
for

::::
K=8,

:::
see

:::
fig.

:
5
:::
for

::
the

:::::
spatial

::::::::
clustering

::::
result

::
of
::::::::
k-Means.

The corresponding clustering result is shown in fig. 5 in the appendix, showing
:::::
results

::
in

:::
real

:::::
space

:::
are

::::::
shown

::
in

::::
figs.

:
4
:::
and

::
5

::
for

::::::::
OPTICS

:::
and

::::::::
k-Means,

::::::::::
respectively.

::::
The

::
jet

::::
and

::
the

:::
six

:::::::
vortices

:::
are

::::::
clearly

::::::::::
recognizable

::
as

:::::
dense

::::::::::::
accumulations

::
of

::::::
points

::
in

::
the

::::::::::::
2-dimensional

:::::
space

:::
of

:::
fig.

:::
3b,

:::
see

:::
fig.

:
4
:::
for

:::
the

::::::::::::
corresponding

:::::::
colours.

::::
The

::::::::
clustering

:::::
result

::::
with

::::::::
k-Means

::
in

:::
fig.

:
5
::::::
shows400

that the clusters corresponding to the vortices are much less focussed. In addition, each of the eight clusters in fig. 3c contains

some of the noisy points of fig. 3b, which shows that using one additional cluster for noise does not really address the issue of

not detecting the vortices properly for this case of embedding
::::
work

::
in

:::
this

::::::::
situation.

::
It
::
is

:::::::::
interesting

::
to

::::
note

::::
that

::::::::
capturing

:::
the

::::
noisy

::::
data

::::::
points

::
of

:::
fig.

:::
3b

::
by

:::
an

::::::::
additional

::::::
cluster

::
in

::::::::
k-Means

:
is
::::::::::::
geometrically

::::::::::
impossible,

::::::
simply

:::::::
because

:::::::
k-Means

:::::::
clusters

::
are

:::::::
circular.

::::::::
Covering

:::
all

:::::
noisy

:::::
points

:::::::
without

::::::::
including

:::
the

::::::
centre,

::
i.e.

:::
the

:::
jet

::
in

:::
fig.

:::
3b,

::
is

:::
not

:::::::
possible

:::
for

:::::::
k-Means.405

:
It
::::::
should

:::
be

:::::
noted

::::
here

::::
that

:::
the

::::
poor

:::::::::::
performance

::
of

::::::::
k-Means

::
in

::::
figs.

:::
3c

:::
and

::
5
::
is

:::
not

::::::::::::
representative

:::
for

:::::
other

:::::::
methods

::::
that

:::
use

::::::::
k-Means.

:::
For

::::::::
example,

:::
the

::::::
method

:::
of

::::::::::::::::::::::
Banisch and Koltai (2017)

::::::
captures

:::
the

::::::::
coherent

::::::::
structures

::
in

:::
the

:::::::
Bickley

:::
jet

:::::
rather

::::
well,

::::::::
including

:::
the

:::
jet

::
in

:::
the

:::::::
middle. We emphasize again that we use classical MDS here mostly for visualization purposes,

as the computation of the classical MDS embedding is difficult for large particle sets. In our case, a dense 12,000× 12,000

symmetric matrix has to be diagonalized, which already takes a significant amount of computation time.410

:::
We

:::::
finally

::::
also

:::::
tested

:::
the

:::::::::::
performance

::
of
::::

our
::::::::
algorithm

::::
with

::
a
:::::::
random

:::::
subset

::
of

::::::
2,000

:::::::
particles,

:::::
using

::::
data

:::
for

:::::
every

::::
five

::::
days

::::::
instead

::
of

:::::
every

::::
day,

:::
cf.

:::
fig.

:::
A1

::
in
:::

the
:::::::::

appendix.
:::::::
OPTICS

::::
still

::::::
detects

:::
the

:::
six

:::::::
vortices

::::
and

:::
the

:::
jet,

::::::::
although

:::
the

::::::
cluster

:::::::::
boundaries

:::
are

:::
less

::::::
clearly

:::::::
defined

::::::::
compared

::
to

:::
fig.

::
2.
:::::::::::::::::::::::
Froyland and Junge (2018)

:::::
detect

:::
the

:::::::
vortices

:::
and

:::
the

::
jet

:::
by

:::::
using

::::
data
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Figure 4. Result of DBSCAN clustering of the 2-dimensional embedding of the classical MDS method. a: reachability plot with black line

representing the DBSCAN parameter ε. b-c: corresponding clustering results at different times. Grey particles represent noise. Axis units are

in 1000 km.

Figure 5. a: 2-dimensional embedding
:::::
Result of

:::::
K = 8

:::::::
k-Means

::::::::
clustering

::
of the

::::::::::
2-dimensional

:::::::::
embedding

::::
from

:
classical MDSmethod

(,
:
cf. section 3.2.2) of the trajectories. b: with labels according to the DBSCAN result of fig. 4. The six vortices and the jet

:::
Axis

::::
units

:
are

clearly visible as dense regions
::
in

::::
1000

:::
km.Grey particles correspond to noise. c: k-Means clustering result for K=8, see fig. 5 for the spatial

clustering result of k-Means.

::
of

:::::
3,000

:::::::
particles

::::
only

::
at

:::::
initial

:::
and

::::
final

:::::
times

:::::
(t= 0

:::
and

::::::
t= 40

:::::
days).

::::
Our

::::::
method

::
is

:::
not

:::
able

::
to
::::::
detect

::
the

::::::::
expected

:::::::::
finite-time

:::::::
coherent

:::
sets

:::::
with

::::
using

::::
only

::::::
initial

:::
and

::::
final

:::::::
particle

::::
data.

::::
This

::
is

:::::
likely

::
to

:::
be

:
a
:::::
result

::
of

:::
the

::::::
ad-hoc

:::::
direct

::::::::::
embedding,

:::
cf.

:::
eq.415

:::
(3),

:::
see

:::
the

:::::::::
discussion

::
at

:::
the

:::
end

::
of

::::::
section

::::
3.4.

4.2 Agulhas rings

We next apply OPTICS to the Agulhas trajectories. As described in section 2, we have X̄ ∈ RN×63 with N = 23,821. We

choose smin = 100 in the following, which corresponds
:::::::
initially to a square cell of 2◦× 2◦, i.e. a reasonable

::::::::
minimum size of

an Agulhas ring. Figure 6 shows the result of the direct embedding. The reachability plot in
:::
fig. 6a is much more jagged than420

for the Bickley jet model flow (cf. fig. 2a). The narrow deep valleys and the wider valleys in the reachability plot indicate the

presence of large and small scale
:::::
large-

:::
and

::::::::::
small-scale coherence patterns. Figure 6a-c shows

:::::
show the DBSCAN clustering

result for a relatively large value of ε. The main separation of fluid domains is between the red and the blue particles, with a

few vortices at their boundary. These two water masses are the northern and southern parts of the subtropical gyre in the South

Atlantic, the red particles moving to the west, the blue particles to the east. The second and third rows of fig. 6 show the
::::
other425

::::::::
clustering results for the

:::::::::
DBSCAN-

:::
and

:::
the ξ-clustering methodwith different values of ξ

:
,
::::::::::
respectively. The valleys with steep

boundaries
::
in

:::
fig.

::
6g

::::
with

:::::::
steepest

:::::::::
boundaries

::
as

:::::::
detected

:::
by

:::
the

::::::::::
ξ-clustering

::::::
method

::::::
mostly correspond to eddy-like structures,
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separated by background noise. Our method also performs well when almost 80% of the trajectories is removed. Figure ??

shows a similar result for a reduced data set where we keep 5,000 randomly chosen particles and set smin = 20 to account for

the reduction in the number of particles. The large-scale structure as well as
::::
Note

::::
that

:::
not

::
all

:::::::
clusters

::
in

:::
the

:::::
figure

::::::::::
correspond430

::
to

::::::
eddies.

:::
For

::::::::
example,

::
the

::::
blue

::::::
cluster

::
in

::::
figs.

::::
6g-i

::::
stays

::::::::::::
approximately

::::::::
coherent

::::
over

::
the

::::::::::
considered

::::
time

:::::::
interval,

:::::::
although

::
it

:
is
::::::::
certainly

:::
not

::
an

:::::::
Agulhas

:::::
ring.

:::
An

::::::::
animation

::
of

:::
the

:::::::
detected

:::::::::
finite-time

::::::::
coherent

:::
sets

:::
for

:::
the

:::
full

::::
two

:::::
years

::
of

::::::::
trajectory

::::
data

:::::
based

::
on

:::
the

::::::::::
ξ-clustering

:::::::
method

::
as

::
in

:::
the

:::
last

::::
row

::
of

:::
fig.

::
6
:::
can

:::
be

:::::
found

::
on

:::::::
Zenodo

::::::::::::::::
(Wichmann, 2020a)

:
,
:::::::
showing

::::
that many

of the eddies shown in fig. 6 are still visible.
:::
sets

::::
stay

:::::::
coherent

:::
for

::::::::::
significantly

::::::
longer

:::::
times

::::
than

::
the

::::
first

::::
100

::::
days.

:

Figure 6. Result of the OPTICS algorithm applied to the direct embedding of the trajectories, with different clustering methods. Grey

particles correspond to noise.

We
:::::
Figure

::
6
::::::
shows

:::
that

:::
for

::::
this

::::::::
situation,

:::
the

::::::::::
ξ-clustering

:::::::
method

::::::
detects

:::::
more

:::::::
Agulhas

:::::
rings

::::
than

:::::::::
DBSCAN.

::::::
While

:::
the435

::::::::
clustering

::::::
results

:::::
shown

::
in

:::
the

:::::
figure

:::
all

:::::::
depends

::
on

:::
the

:::::::::
parameter

:::::
values

:::
for

::
ξ

:::
and

::
ε,

:
it
::
is
::::::
visible

::
in

:::
the

::::::::::
reachability

:::
plot

:::
of

:::
fig.

::
6g

:::
that

:::
the

:::::::::
definition

::
of

::::
some

::::::
eddies

:::::::
includes

:::
the

:::::
entire

::::::::
boundary

::
of

:::
the

:::::::
valleys,

:::
i.e.

::
up

::
to

::::
very

::::
high

::::::::::
reachability

::::::
values.

:::
At

:::
the

::::
same

:::::
time,

:::
the

::::::::
detection

::
of

:::
the

:::::::::
large-scale

:::::::
clusters

::
as

::
in

::::
6a-c

::
is

:::
not

:::::::
possible

::::
with

:::
the

::::::::::
ξ-clustering

:::::::
method.

::::::
These

:::::::
findings

:::
are

::
in

:::
fact

::::::::
expected,

:::
cf.

:::
the

:::::::::
discussion

::
of

:::
the

::::
two

::::::::
clustering

::::::::
methods

::
at

:::
the

:::
end

::
of

:::::::
section

:::
3.3.

:::::::::
DBSCAN

::
is

::::
best

::
to

:::::
detect

::::::
global

::::::
density

:::::::::
structures,

:::
i.e.

:::::
when

:::
the

::::::::::
reachability

::::::
values

::
of

:::
all

:::::
points

:::
are

:::::::::
compared

::
to

:::
the

:::::
same

::::::
cut-off

::
ε.

:::::::
Regions

:::
that

::::
are

:::::
dense440

:::::
locally

:::
but

:::
not

::::::::::
necessarily

:::::::
globally

:::
are

:::::
better

:::::::
detected

::::
with

:::
the

::::::::::
ξ-clustering

:::::::
method.

::::::
Despite

:::::
these

:::::::::
differences

:::::::
between

:::
the

::::
two

::::::::
clustering

::::::::
methods,

:::
we again emphasize that the main result of OPTICS is the reachability plot itself. Fig. 7 shows a colour
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map at initial time of the reachability values. We clearly see Agulhas rings as the dark regions corresponding to lowest values

of reachability. The regions of large reachability correspond to trajectories that are relatively noisy compared to all the other

trajectories.445

Figure 7. Reachability values at initial time, resulting from the OPTICS algorithm applied to the direct embedding of the trajectories. The

regions with lowest values clearly correspond to Agulhas rings. The colour bar is cut off at a reachability of 1000
:::
km to show the relevant

structure of variations.

In order to illustrate again the difference between OPTICS and k-Means for this example, we choose 12,000 random trajec-

tories and again embed the trajectories in a 2-dimensional space with classical MDS (cf. section 3.2.2). The reduction of the

particle set is necessary to simplify the eigendecomposition of the matrixB in eq. (4), and we therefore choose smin = 30. The

corresponding spectrum of B is shown in fig. C in the appendix, showing that there are again two dominant eigenvectors.
:
,
:::
i.e.

:::::::::
visualizing

:::
the

::::::
netwok

::
in

:::
the

:::::
plane

:::::::
captures

:::
the

:::::
main

:::::::
variance

::
of

:::
the

:::::
data. Figure 8 shows the embedded trajectories together450

with OPTICS / DBSCAN clustering (fig. 8b) and k-Means (fig. 8c) for K=40. Figs. 9 and 10 show the corresponding clustering

results in the fluid domains
::::::
domain. It is visible that k-Means does not detect a single vortex, but splits the fluid domain into

regions of
:::::::::::
approximately

:
similar size. OPTICS easily detects multiple Agulhas rings by finding the steepest

::::::
deepest valleys in

the reachability plot.

455

:
It
::
is

:::::::::
interesting

::
to

::::
note

:::
that

:::
the

:::
use

::
of

:::::::
classical

:::::
MDS

::
in

:::
fig.

::
9

:::
has

::::
lead

::
to

::
the

::::::::
detection

::
of

:::::
many

::
of

:::
the

:::::::
vortices

::
of

:::
fig.

::::
6d-f

::::
with

::::::::
DBSCAN

::::::
instead

:::
of

:::
the

::::::::::
ξ-clustering

:::::::
method.

::::
The

::::::::::::
transformation

::
to

:::
the

:::::::
reduced

:::
2D

:::::
space

:::
has

::::::
hence

::::
lead

::
to

:
a
::::::::::::
simplification

::
of

:::
the

::::::::::
reachability

::::
plot,

:::::
which

::::
now

:::::::::
represents

:::
the

:::::
major

:::::::::
variations

::
in

:::
the

::::::::
distances

::
of

:::
the

:::::::::
embedded

:::::::::
trajectories.

:::
At

:::
the

:::::
same

::::
time,

:::
the

:::::::::
large-scale

:::::::
structure

::
of

:::
6a

::
is

::
not

::::::
visible

::::
any

::::
more

::
in

:::
fig.

::
9.

::::
This

:::::::
indicates

::::
that

::::::::
exploring

::::
more

:::::::::::::
dimensionality

::::::::
reduction

:::::::::
techniques

::::
could

:::
be

:::::
useful

:::
for

:::::
future

::::::::
research,

::
in

::::::::
particular

:::::
those

:::
that

:::
are

::::::::::::::
computationally

:::::
more

:::::::
efficient

:::
than

::::::::
classical

:::::
MDS.460

Spectral embeddings derived from networks together with partition based
::::::::::::
partition-based clustering have a similar problem

as the one illustrated in fig
::
figs. 8c

:::
and

::
10

:
(Froyland et al., 2019). Similar to the case discussed here, OPTICS can be used to

overcome the problems of k-Means. We show this in appendix C for the network proposed by Padberg-Gehle and Schneide

(2017) for the Agulhas region, together with a brief introduction of the network and how to construct spectral embeddings.

In summary, k-Means again fails to detect any of the vortices, while OPTICS detects many of the coherent vortices in the465
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Figure 8. Embedding of the Agulhas trajectories in the 2-dimensional space defined by the leading eigenvectors of the MDS Kernel matrix

B. a: no labels. b: clustering labels of OPTICS / DBSCAN, see fig. 8
:
9
:
for the corresponding plot in the Agulhas region. Grey particles

represent noise. c: k-Means with K = 40, see fig. 10 for the corresponding plot in the Agulhas domain.

Figure 9.
:::::
Result

::
of

::::::
OPTICS

::::::
applied

::
to

:::
the

::::::::::
2-dimensional

:::::::::
embedding

::
of

:::::
12,000

::::::::
randomly

::::::
selected

::::::
particles

::::
with

:::
the

::::::
classical

::::
MDS

:::::::
method,

::
cf.

:::
fig.

::
8b,

:::
and

:::::::::
smin = 30.

:::
The

:::::::::::
corresponding

:::::::
spectrum

:
is
:::::
shown

::
in
:::
fig.

::
C

:
in
:::
the

:::::::
appendix,

:::::::
showing

:::
that

::::
there

:::
are

:::
two

:::::::
dominant

::::::::::
eigenvectors.

::::
Grey

::::::
particles

:::
are

:::::::
classified

::
as

:::::
noise.

spectrally embedded network. Yet, other flow features are also present that result from the physical motivation of the network

definition, see the results in appendix C.

5 Conclusions

The abstract embedding of particle trajectories in a metric space with subsequent clustering is a promising field of research

for the detection of finite-time coherent sets in oceanography, as it can be potentially applied to sparse sets of trajectories e. g.470

from drifter release experiments. .
:
Yet, most of the existing methods lack the ability to separate finite-time coherent structures

from noisy trajectories that do not belong to any such structure, which hampers the application to large ocean domains. This is

because the clustering methods proposed so far have been based on graph partitioning, which treats
:::
has

::
no

:::::::
concept

::
of

:
noisy,

unclustered data points insufficiently. In this article, we presented a simple way to overcome this problem by using
::::::::::
trajectories.
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Figure 10.
:::::
Result

::
of

::
the

:::::::
k-Means

::::::::
clustering

:::
with

:::::::
K = 40

:::::
applied

::
to
:::
the

:::::::::::
2-dimensional

::::::::
embedding

::::
with

::::::
classical

:::::
MDS,

::
cf.

:::
fig.

:::
8c.

::::
This

::
is

:
a
::::::::

problem
:::
for

::::::::::
applications

:::
in

:::
the

::::::
ocean,

::::::
where

:::::
many

::::::
eddies

:::
are

::::::::::
transported

::
in

::
a

:::::
noisy

::::::::::
background

::::
flow

:::
on

:::::
large475

:::::::
domains.

::::
This

:::::
study

::
is

::::::::
motivated

:::
by

:::
the

::::::
success

::
of

:::::::::::::::::::
Froyland et al. (2019)

:
in

::::::::::
overcoming

:::
the

:::::::
problem

::
of

:::::
graph

::::::::::
partitioning

::
by

::
a

::::::::::
sophisticated

:::::
form

::
of

::::::::
trajectory

::::::::::
embedding.

::::
Here,

:::
we

:::::
show

::::
how the density-based clustering algorithm OPTICS (Ankerst et al.,

1999)
:::
can

:::
be

::::
used

::::::
instead

::
of

:::::
graph

:::::::::::
partitioning,

::
in

:::::
order

::
to

:::::
detect

::::::::::
small-scale

::::::
eddies

::
in

::::
large

::::::
ocean

:::::::
domains. Different from

partition based
::::::::::::
partition-based

:
clustering methods such as k-Means, OPTICS detects the clustering structure of the embedded

trajectories by looking for
::::
does

:::
not

::::::
require

::
to

:::
fix

:::
the

::::::
number

::
of

:::::::
clusters

::::::::::
beforehand.

:::::::
Clusters

:::
are

:::::::
detected

::
by

::::::::::
identifying dense480

accumulations of points, i.e. groups of trajectories that are close to each other in embedding space. Coherent groups of particle

trajectories can be identified as valleys in the reachability plot computed by the OPTICS algorithm. This plot also has a natural

interpretation in terms of cluster hierarchies, i.e. finite-time coherent sets that are by themselves part of a larger scale finite-time

coherent set. Such hierarchies are present in the surface ocean flow, where the subtropical basins are approximately coherent

and at the same time comprise
::::::
contain

:
other finite-time coherent structures such as eddies and jets.This hierarchical property485

is a clear advantage compared to DBSCAN, which has been used before to detect coherent sets (Schneide et al., 2018). One

run of OPTICS can in principle produce all possible results of DBSCAN clustering for the same parameter smin. In addition,

different from DBSCAN, OPTICS can detect clusters of varying density, and detect them by locating the valleys with the

steepest boundaries in the reachability plot with the ξ-clustering method of Ankerst et al. (1999).

We apply OPTICS to Lagrangian particle trajectories directly, in the spirit of Froyland and Padberg-Gehle (2015). OPTICS490

successfully detects the expected coherent structures in the Bickley jet model flow, separating the six vortices and the jet

from background noise. We also apply our method to
:::::::
OPTICS

::
to
:::::::::

simulated
::::::::::
trajectories

::
in

:
the eastern South Atlantic and

successfully identify Agulhas rings, separated by noise. We visualize the difference of OPTICS to
::::::
between

::::::::
OPTICS

:::
and

:
k-

Means with a 2-dimensional embedding of the trajectories based on classical multidimensional scaling. We also show how

OPTICS can be applied to the spectral embedding of the particle based
:::::::::::
particle-based

:
network proposed by Padberg-Gehle495

and Schneide (2017), providing a necessary amendment to this
::::
their

:
method to detect coherent vortices in a large ocean

domain, i.e. when k-Means fails. Our method is different from previous approaches used to detect finite-time coherent sets

in ocean models from Lagrangian trajectory data as it has a clear interpretability in terms of clustering hierarchy, where

large-scale and small scale structures are visible in the reachability plot produced by OPTICS. Our method can also be

applied to scarce trajectory data sets, i.e. without too much concern about the spatial coverage of a fluid domain with initial500
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conditions. Finally, our method is very simple to implement in Python, as OPTICS is available in the SciPy sklearn pack-

age. While we here present the results of OPTICS with three different kinds of embedding
::::::::::
embeddings, it is likely that OP-

TICS also works for other trajectory embeddings, or even other methods using clustering such as transfer operator based

finite-time coherent sets (Froyland et al., 2010) or dynamic Laplacians (Froyland et al., 2019).
::::
such

::
as

:::
the

:::::::
spectral

::::::::::
embeddings

::
of

::::::::::::::::::::::
Banisch and Koltai (2017)

::
or

::::::::::::::::::::::
Froyland and Junge (2018)

:
.
:::::
Using

:::::
such

::::::::::
dynamically

:::::::::
motivated

:::::::::::
embeddings

::::::
instead

::
of
::::

the505

:::::
ad-hoc

:::::
direct

::::::::::
embedding

::::::::
presented

::::
here

:::::
could

::
be

::
a
::::::::
promising

::::::::
direction

:::
for

:::::
future

::::::::
research.

Extending our method to datasets with more trajectories can be made more efficient by choosing a finite generating distance

for OPTICS (Ankerst et al., 1999). While this is better from a computational point of view, it requires some knowledge or

intuition about the spatial distribution of the embedded trajectories. A major challenge for the method proposed here is the em-

bedding dimension. For very long trajectories, it is important
::::::::
necessary

:
to reduce the dimensionality of the trajectories before510

applying OPTICS. A complication here is the desired property of an embedding to preserve both local and global distances in

order to make full use of the hierarchical properties of OPTICS. This means, for example, that the popular method of a locally

linear embedding (Roweis and Saul, 2000) is not suitable, unless only the small scale
:::::::::
small-scale

:
(densest finite-time coherent

sets) are to be detected. Using classical multidimensional scaling (MDS), as we did here to visualize the clustering results, in

principle preserves local and global distances, but is
:::::::
although

:::
our

::::::
results

::::::
indicate

::::
that

:::
the

:::::::::
large-scale

::::::::
coherence

::::::::
structure

::
in

:::
the515

:::::::
Agulhas

::::
flow

:
is
::::
less

::::::::::
pronounced

:::
for

:::
the

:::::::
classical

:::::
MDS

:::::::::
embedding

::::::::
compared

::
to

:::
the

:::
full

::::::::::
embedding

::
of

::::::::::
trajectories.

::
In

:::
any

:::::
case,

:::::::
classical

:::::
MDS

:
is
:

not an option for very large data sets
:::::::
datasets, as it requires the diagonalization of a dense symmetric square

matrix of size equal to the particle number. Spectral embeddings of derived networks such as the ones of Hadjighasem et al.

(2016), Padberg-Gehle and Schneide (2017) and Banisch and Koltai (2017) are useful to achieve lower-dimensional embed-

dings, but they come with the introduction of additional parameters for the network construction
:::
and

::::::::
heuristics

::
to

:::::::
truncate

:::
the520

:::::::::
embedding

:::::::::
dimension. Further research into other non-linear dimensionality reduction techniques that have not been explored

in the context of finite-time coherent sets can lead to more efficient
:::
and

:::::
robust

:
methods.

Code and data availability. All code is available at https://github.com/OceanParcels/coherent_vortices_OPTICS, including the code to gen-

erate the Bickley jet trajectories. The data for the virtual particles in the South Atlantic is available on Zenodo (Wichmann, 2020b).

Details on the Parcels simulation for the virtual trajectories in the ocean can be found at the GitHub repository of our previous paper,525

https://github.com/OceanParcels/near_surface_microplastic. The data from the NEMO ORCA-006 run are available at http://opendap4gws.

jasmin.ac.uk/thredds/nemo/root/catalog.html

Appendix A: Agulhas rings with smaller particle set
:::::::::
Additional

::::::
figures

:::
for

:::
the

:::::::
Bickley

:::
jet

::::
flow

Appendix B: Additional figures for the classical MDS embedding
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Figure A1. Result
:::::::
Spectrum of the OPTICS algorithm

::::::
classical

::::
MDS

:::::
kernel

:::::
matrix

::
B
:

for the Agulhas particles, applied to 5,000 randomly

selected trajectories and smin = 20
:::::
Bickley

:::
jet

:::
flow. The large-scale structure as well as many of the eddies

:
It
::
is

:::::
visible

:::
that

::::
there

:
are very

similar to the full dataset case, see fig
::
two

::::::::
dominant

::::::::
eigenvalues. 6. Grey particles are classified

:::
We

:::::
choose

:::
the

:::::
vectors

:::::::::::
corresponding

::
to

::::
these

:::
first

:::
two

:::::::::
eigenvalues as noise

::::::::
embedding

::::::
vectors

:
in
::::::
section

:::
4.1.

Figure A1. Result of K = 8 k-Means clustering
::

the
:::::::
OPTICS

:::::::
algorithm

:::
for

::
a
::::::
random

::::::
subset of

::::
2,000

::::::
particles

:::
in the 2-dimensional

embedding from classical MDS
:::::
Bickley

:::
jet

:::
flow, cf

::::
with

::::::
particle

:::
data

::::
every

::
5

:::
days

::::::
instead

::
of

::::
every

:::
day. fig

::
To

::::::
account

::
for

:::
the

::::::
smaller

::::::
number

:
of
:::::::

particles,
:::

we
::
set

:::::::::
smin = 15

::
for

:::
this

::::
case. 4. Axis units

:::
The

:::
six

::::::
vortices

:::
and

:::
the

::
jet are in 1000 km

:::
still

:::::
clearly

::::::
visible.

Result of OPTICS applied to the 2-dimensional embedding of 12,000 randomly selected particles with the classical MDS530

method, cf. fig. 8b, and smin = 30. The corresponding spectrum is shown in fig. C in the appendix, showing that there are two

dominant eigenvectors. Grey particles are classified as noise.

Appendix B:
:::::::::
Additional

::::::
figures

:::
for

:::
the

::::::::
Agulhas

::::
flow
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Figure B1. Result
:::::::
Spectrum of the k-Means clustering with K = 40 applied to the 2-dimensional embedding with classical MDS

:::::
kernel

:::::
matrix

::
B

::
for

:::
the

::::::
Agulhas

::::
flow, cf

:::::
where

::
we

::::
first

:::::::
constrain

:::
the

:::::
particle

::::
data

::
to

:::::
12,000

::::::::
randomly

::::::
selected

::::::::
trajectories. fig

::::
There

:::
are

:::::
again

:::
two

:::::::
dominant

:::::::::
eigenvalues,

:::
for

::::
which

:::
we

:::::
choose

:::
the

:::::::::::
corresponding

:::::
vectors

:::
for

:::
the

::::::::
embedding

::
in

::::::
section

::
4.2.8c.

Appendix C: Spectra of the MDS kernel matrices

Spectrum of the classical Multidimensional Scaling Kernel matrix K for the Bickley Jet example. It is visible that there are three dominant

eigenvalues. In the manuscript, we choose the vectors corresponding to he first two for visualization purposes.

Spectrum of the classical Multidimensional Scaling Kernel matrix K for the Agulhas flow, where we first constrain the particle data to

12,000 randomly selected trajectories. There are again two dominant eigenvalues, for which we choose the corresponding vectors for the

embedding.

Appendix C: Detecting Agulhas rings with a particle based
::::::::::::
particle-based

:
network

To demonstrate that OPTICS can also be applied to the spectral embedding of a particle based
:::::::::::
particle-based

:
network, we use535

the network proposed by Padberg-Gehle and Schneide (2017). If we have a set of particle trajectories xi(t), where i= 1, . . . ,N ,

t= t1, t2, . . . , tT with N the number of particles and T the number of time steps, the network A ∈ RN×N is defined as:

Aij =

1, if ∃t ∈ {t1, t2, . . . , tT } s.t. ||xi(t)−xj(t)||< d,

0, otherwise.
(C1)

Here, ||.|| denotes the Euclidean norm and d ∈ R
::::
d > 0

:
is a fixed pre-determined cut-off parameter, see Padberg-Gehle and

Schneide (2017) for a discussion on the choice of d (called ε in Padberg-Gehle and Schneide (2017)). Similar to Padberg-Gehle540
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and Schneide (2017), we embed the nodes in a lower dimensional space RK by means of the eigenvectors of its random walk

Laplacian, (see e.g. Von Luxburg (2007))

Lr =D−1A, (C2)

where D is a diagonal matrix with Dii =
∑
jAij . The embedding of node i is defined by

yi = (v1,i,v1,i, . . . ,vK,i) ∈ RK , (C3)545

where , the vi, i= 0, . . . ,N −1 are the right eigenvectors corresponding to the largest eigenvalues λi of Lr. The eigenvalues

are assumed to be ordered in descending order, i.e. 1 = λ0 > λ1 ≥ . . . ,≥ λN . This is the most common network embedding for

the detection of finite-time coherent sets so far (Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017; Hadjighasem et al., 2016)

. The classical simultaneous K-way normalized cut proceeds with applying the k-Means algorithm to the embedding defined

in eq. (C3) to detect K clusters (Von Luxburg, 2007), resulting in an approximate solution to the normalized cut problem (Shi550

and Malik, 2000).

Figure C1 shows the spectrum of the resulting random walk Laplacian with d= 200 km. No obvious spectral gap is visible

that would suggest a truncation of the embedding space. Figure C2 shows the clustering result if we apply a k-Means al-

gorithm as suggested by Padberg-Gehle and Schneide (2017) to detect K = 40 clusters. It is visible that the partition based

::::::::::::
partition-based

:
k-Means clustering method does not detect any individual Agulhas rings, but partitions the state space into555

regions of approximately equal size.

Figure C1. Spectrum of the random walk Laplacian, cf. eq. (C2) of the network proposed by Padberg-Gehle and Schneide (2017) applied to

the Agulhas trajectory data. No clear gap exists that suggest a truncation of the embedding.

Applying OPTICS instead ot
::
of

:
k-Means with a subsequent ξ-clustering detects some of the Agulhas rings, see fig. C3,

where we choose smin = 100
::
as

::
in

::::::
section

:::
4.2. Note that also other structures than typical circular eddies are detected. While

this depends on the clustering parameter ξ (or ε for DBSCAN), this is also a consequence of the physically motivated network

defined by eq. (C3), where particles are connected equally if they are close to each other at least once in time. This is different560

from the direct embedding, where we require particles to stay close
::
to

::::
each

:::::
other along the entire trajectory.
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Figure C2. Result of k-Means clustering applied to the 40 leading eigenvectors of the random walk Laplacian, cf. eq. (C2), looking for 40

clusters. No individual vortices are detected.

Figure C3. Result of optics
::::::
OPTICS

:
applied to the K = 40 spectral embedding of the network defined in eq. (C1) with d= 200 km and

smin = 100. Grey particles are classified as noise.
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