Answer to reviewer 1

General answer:

We thank the reviewer for the detailed comments on the paper. They have helped us to significantly
improve on the readability and clarity in the revised version. We have implemented changes for
every comment raised by the reviewer.

Please note:
The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised version.

Comment 1

| find there to be room for improvement on a few presentational issues. (i). There seems to be an
assumption of familiarity with other clustering methods. The paper would be more accessible, and
therefore useful, if the authors took just slightly more time in defining new terms and in providing
the intuitive content of mathematical concepts.

Answer to comment 1
Thank you for your comment. We have made the following changes in the revised version:

1. Additional paragraph in the methods section that briefly describes why embedding / clustering is
necessary, and also explains in one sentence what k-Means does

The embedding is necessary Lo represent the trajectories as points in 4 metric space. Different options for embedding the

180 frajector ist, e.c. a direct embedding of the dala poinis along the irajectories (Froyland and Padberg-Gehle, 2015), or

embeddings based on the eigenvectors derived from networks that are defined by physically motivated rajeclory similarities
(Banisch and Koltai, 2017; Padberg-Gehle and Schne

e, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018), Onee an

embedding of each frajectory as a point in a metric (typically Fuclidean) space is eslablished, one can apply a clusis

ing

algorithm. Roughly speaking, clusiering algorithms try to identify groups of points that are close 1o each other as a cluster

185 Farition-based clusiering methods divide the entire data into a (typically fixed) number of I clusters, such that each data

L e LANK e, the most popular
sed by Frovland and Padberg-Gehle (2013} in the coniext of finite-time coberent

method is fuzzy-c-means clustering, as dis

sets.

2. Additional explanation in the methods section that describes why the embedding we choose is
expected to create a detectable signal for OPTICS.



3.2 Trajectory embedding

321 Directembedding

The direct embedding of each trajectory in BP7 is the most séraizht- fopsard siraighiforward
pre-processing of the trajectory data. For simplicity, assume we are given a set of NV trajectories in a 3-dimensional space, i.e.
200 (zy(f)ow(E),=(t)) where: =1,... Nand £ =#,..., t4-. We then simply define the embedding of trajectory « in the abstract

3T'-dimensional space as

wy = (xltg ) oyt ) omlbr o (o ) (B ) wltr )zl s (). ozl b)) e BT 3)

and impose an Euclidean metric in B*7 o measure distances betwsen different embedded rajectories. The resulting em-
bedded data matrix X is then simply given by the vertical concatenation of the different embedding vectors. This kind of
205

210

To take into account the wrp-periodicity in x-dirction of the Bickley jet flow, we first put the individual 2-dimensional data

points on the surface of a cylinder with radius rp/2 in ®*, and interpret the msulting 42— 24 trajectories in a 3-dimensional

Euclidean space. The resulting data matrix is X < BY = with ¥ = 12,000 and T = 41. For the Agulhas particles. we put the

single data points on the eanh surface in a 3-dimensional Euclidean embedding space by the standard coordinate transformation
215 of spherical to Euclidean coordinates. The msulting data matrix is thus X « BV=3 with N = 23 821 and T = 21.

Comment 2

(ii) | find it a little strange that some figures are presented in the appendix, but discussed only in the
main text. Some of these make good illustrations of the performance of the method with respect to
others, e.g. D1&D2. | feel this tends to negatively impact the narrative. If figures are discussed in the
main text, | would present them there also.

Answer to comment 2

Thank you for this comment. We agree with the reviewer and have now included the clustering
results of the classical MDS method in the main text. In the revised version, we provide the results of
OPTICS together with its comparison to k-Means for both of the model flows. We have decided to
leave the discussion of the embedded network of Padberg-Gehle and Schneide (2017) together with
the previous figures D1-D3 in the appendix. This is because the major focus of the paper is the
OPTICS clustering on the direct embedding of the trajectories, as this removes the need of several
parameters compared to Padberg-Gehle and Schneide (2017), such as the cut-off parameter d, and
the embedding dimensions. A reader that is interested in the application of OPTICS to the spectral
embedding of Padberg-Gehle and Schneide (2017) gets a full account on that topic in the appendix.
We do not discuss these results in the main text, but only mention them quickly. The actual
discussion is contained in appendix C of the revised version.




Comment 3
(iii) The paper has a highly technical focus throughout. More framing of the import of this problem at
the start and end would have been appreciated.

Answer to comment 3

Thank you for this suggestion. We have now added more content on the problem itself, i.e. the
detection of many small coherent structures in a large, noisy ocean domain.

1. Introduction

should not belong to any cluster. Graph partitioning has been shown to work in situations where the finite-time coherent sets are
50 notioo small compared to the Auid domain (Froyland and Padherg-Gehle, 2015; Hadjighmm et al, 2016; Padberg-Gehle and Schneide, 1
- For applications (o Laprangian trajectory datasets on basin-scale ocean
(eddies) coe bajzkgmu dgmphpm‘tl is however | Ill.cl'..' o fzul Sirrula.r abﬁer\'auonswere
made £ - 5 e : : by Froyland et al. (2019} for the partition-based
tlumnng_appm\achcs based on transfer and d}'namlc Laplme operators y-Frevland adal 20004 Froyland and Junge, 2018)
55 . Although some atiempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-

noisy ““.}ccwm sin

ditional cluster corresponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al (2019) have developed ss-sleerithm
a special fom

1 of rajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators
and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-
60 clusiered background noise.

2. Conclusion

The abstract embedding of particle trajectories in a metric space with suhseque:nt c]ustenng is a promising field of reszarch
470 for the detection of finite-time coherent sets in oceanographyss+ ¥

MMMW Yet, most of the e:usung mﬂmds&k—hha—ahﬂﬂj—h}mp&mﬂ-ﬁm&a—&ma—e@ham

-B&&Hia—tha—&ﬂ-ﬂe&&g—&t&ﬁrﬂdﬁ-pﬁp&i&ﬂ—%ﬂ—ﬁf—hﬂe been based on gmph pamuunmg which frests-has no co WP[ of mis].'

unclustered detep
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475 This is a problem for applications in the ocean, where many eddies are transporied in a noisy background fiow on large
domains, This study is motivated by the success of Froyland et al. (2019) in overcoming the problem of graph partiioning by 2
sophisticated form of trajectory embedding. Here, we show how the density-based clustering algorithm OPTICS (Ankerstetal.,
1999) can be used insiead of graph partitioning, in order to detect small-scale eddies in large ocean domains. Different from
parttenbased-partition-based clustering methods such as k-Means, OPTICS deteststhechusternastetum-of theembaddad

480 {rafretodas by locking fordoes nol require fo fix the number of clusters beforehand. Clusiers are detzcied by identifying dense
accumulations of points, Le. groups of rajectories that are close to each other in embedding space. Coherent groups of particle
trajectorizs can be identified as valleys in the reachability plot computed by the OPTICS algorithm. This plot also has a natural
interpretation in &erms of clusier hierarchies, Le. finite-time coherent sets that are by themselves part of a larger scale finite-time
coherent set. Such hierarchies are present in the surface ocean flow, where the subtropical basins are approximately coherent

485 and at the same time essspris=—contain other finike-time coherent structures such as eddies and jets Fhishierrrekiest-property

3. We have now also discussed the relation of our method to existing methods. In particular, we
stress that we focus on a new clustering algorithm instead of a new form of embedding, as e.g. done
by Froyland et al. (2018).

325 34 Comparison fo related methods

; I:-crg-___ chnclde {70 ') and Froyland and 1
use spectral cmbaddmgs nfg;raphs that are defined on some form Dfph'.'s:cal intuition or of dvnamical operators, together with

330 k-Means clustering. These studies show applications of their methods to example flows where the size of almost-coherent
sets is not too small compared to the fuid domain. Such examples are the Bickley jet flow, which we also study in section
4.1, the five major ocean basins (Froyland and Padbera-Gehle, 2015; Banisch and Koltai, 2017). or few individual eddies in an
ocean or atmospheric flow (Hadjighasem et al., 2016; Padbers-Gehle and Schneide. 2017 Froyland and Junge. 2018). In such
situations, noisy background trajectories can be detected as individual clusiers by the partitioning method, as discussed by
335 Hadjighasem et al (2016). For applications in lare ocean domains, where the number of eddies is not known beforehand
am:l where there are many more noisy trajectories than coharent trajectories, such an_gpp;‘_q_ag:_g__l_s___l_i_l@_lg__t_g__tja._i];__s-_z_sgg_l_sg__rj_:_lg_
discussion by Froyland et al. (2019). OPTICS does not require to fix the number of clusters beforehand, and also contains an

340 As mentioned, OPTICS also contains an intrinsic notion of cluster hierarchy. Le. coherent sets that are themselves part of
coherent sefs at larger scales. Ma and Bollt (2013) studied hierarchical coherent sets in the transfer operator framework of
Froyland et al. (2010), in the spirit of the hierarchical clustering method proposed by Shi and Malik (2000). Their approach is
also partition-hased. i.e. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy, a fixed cut-off has
Io be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of

345 OPTICS, the reachability plot, containg such higrarchical information in a smooth and intrinsic manner,

Asdescribed in section 3.3, clustering results of the DBSCAN algorithm (Ester et al.. 1996) can ba derived from the reachability

12



not fo
g The pote density-based clustering for

applications in the ocean and its comparison to other existing clusiering methods for flow examples such as the Bickley jet (cf.
350 section 2.1) has not been explored so far. Different from OPTICS, DBSCAN detects clusters with a cerfain ficed minimum

identify spe ngL

density, although clusters with varying densities might be present in a dataset (Ankerstet al., 1999). More specifically, the
value for the cut-off parameter «, cf, section 3.3, has to be set beforzhand. Choosing a good value for the density parameter
in DBSCAN is challenging if there is no underlying physical infuition for the density structure. As described in section 3.3,

OPTICS allows one to derive any DBSCAN clustering result, with the same value for the parameter sy, ., afler computing the

aspre
based on dynam 2019} apply their method to
a frajectory dataset in the Western Boundary Current region in the North Atlantic Ocean, and successfully defect many eddies

19)

on dynamic Lapl operal and Junge, 2

360 by superposing individual eigenvectors. The methods presented there are based on a form of spectral embedding. derived
from discretized dynamical operators. Based on this embedding, clusiering results have also been derived with k-Means by
Froyland and Junge (2018) and with individual thresholding by Froyland et al. (2019). Froyland et al. (2019) also show how
the low-order gigenvectors comespond to large-scale coherent features, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of eigenvectors. The latter approach is essentially a transformation of the embedding to

365 represent the most reliable features, such that a superposition of the eipenvectors alone yields the information about the location

and size of finite-time coherent sets

(without a clusiering step). This is essentially an optimized form of embedding, ie, the

sepin fig, heme is s on ird step in fig

clusiering algorithm OPTICS, together with a very simple embedding of eq. (3).
A downside of our method compared to other approaches is the rather ad-hoe choice of embedding, cf. eq, (3). Different from
370 many other methods, most notably the ones of Banisch and Koltai (2017). Froyland and Junge (2018) and Froyland et al. {2019)
+ this type of embedding is not derived from a meaningful dynamical operator. 1t could be fruitful to explore a combination of

these more meaning ful embeddings together with OFTICS as a clustering algorithm in future research.

Comment 4
(iv) For a short paper, the abstract is perhaps disproportionately long.

Answer to comment 4
Thanks for noting. We have shortened the abstract a bit in the new version.



Abstract The detection of finit2-time coherant particke s2ts in Lagrangian trajactory data using data clustering techniques is an
active resedrch fizld at the moment. Yet. the clustering methods mostly employed so far have baen basad on graph partitioning.

which assigns each trajectory to a clusier. i.e. there is no concept of noisy, incoherent rajectories. This is problematic for

applications +=in the ocean, where many small coberent eddies are present in a larg

of finita tima cohammat cate o diffarans coatial coalae Quob cobampen biararobine sea oracans in tha ceagn oohar bacin coala

, mostly noisy fluid Aow. Here, for

10 Hderived clusiering results contain a concepd of noise, such

that not every trajectory needs to be part of a cluster. OPTICS also has a major advantage mmpared to the prew-muhl'. used

DBSCAN method, as it can detzct clusters of varyving density.

rs-The resulting clusters have an intrinsically hierarchical structure,
which allows one to deLecl onhemnt trajectory sets at different spatial scales at once. We apply OFTICS directly to Lagrangian
15 trajectory data in the Bickley jet modzl fliow and successfully detect the expected vortices and the jet. The resulting clusiring
separates the vortices and the jet from background noise, with an imprint of the hizrarchical clustering structure of coherent,
smalsealasmall-scale vortices in a coherent, large-scale, background flow. We then apply our method to a set of virtual

rajectories released in the eastern South Atlantic Ocean in an eddying ocean model and successfully detect A gulhas rings.

—We illusiraie the

20
of the trajectories derived from classical mullld:rnensmnal scaling. "-\.-e also show how [JP’TICS can he applled fo the spectral
embedding of a sFajacten-basadrajectory-based network to overcome the problems of k-Means spectral clustering in detecting
Agulhas rings.

Comment 5

There is one point raised in the paper that | felt required more elaboration. A selling point the
authors bring up for this method is that it can in principle be applied to real-world trajectory data,
see line 86 and also line 306. This is true but incomplete. Real-world Lagrangian instruments are
sufficiently sparse that it is rare to find more than one in the same eddy at the same time. Thus, the
application presented herein—finding eddies is idealized configurations—is not really relevant for
how one would apply this method to real-world trajectories. The data density used here is orders of
magnitude greater than for real-world instruments. Since the authors bring this up as an advantage
of the method, a more fair and nuanced discussion of its potential and limitations with respect to
real-world data is called for. | would say, rather, that the method seems more suitable in application
to model data or virtual trajectories from altimetry, where it benefits from a simplicity with respect
to some other proposed methods.

Answer to comment 5

The reviewer is correct that an application of our method to real drifters to detect eddies is not
possible due to the limited coverage of drifter data. Note that two studies applied their methods to
real drifters, as we mentioned in the introduction (Froyland and Padberg-Gehle (2015) and Banisch
and Koltai (2017)), however to detect the five major ocean basins and not eddies. In the new version,
we omit the reference to real ocean drifters at other places but the introduction, where we now
explicitly mention the application to ocean basins (and not eddies).



1. Changes in introduction to clarify that trajectory-based clustering has been applied to real drifter
data only in the context of detecting the ocean basins, not individual eddies.

The detection of coherent Lagrangian vortices using abstract embeddings Ul'l.agmnqmn Lra]ecloncs topetherwith data clustering

40 technigues has received significant attention in the recent litzrature

—{Froyland and Padberg Gehle, 2013; Hadjighasem et al., 2016; PadbergGehle and Schneide, 2017; Banisch and Koltai, 2017 Schne
. Using embeddad Lrajeclorics for the detzction of finite-time coberent sets is intcreslinq as it allows t5-tse-—searee—0ne 10 Use

2. End of the introduction

In section 4, we first show how OPTICS detects finite-time coherent sets at different scales for the Bickley jet model flow
95 (also discussed e.g. by Hadjighasem et al. {2017)). successfully detecting the six coherent vortices and the jet as the steepest
valleys in the reachability plot The general structure of the reachability plot also reveals the large-scale finite-time coherznt
sets, Le. the northem and southemn parts of the model flow, separated by the jet. We then apply our method to Lagrangian
particle trajectories released in the eastern South Atlantic Ocean, where large rings detach from the A gulhas Current (e.g.
Schouten et al. (20007). We detect several Agulhas rings, and on the larger scale also separate the eastward and westward
100 moving branches of the South Atlantic Subtropical Gyre. While the traditional approach to study Aguthas rings is based
on sea surface height analysis (see e.g. Dencausse et al (2010)), several methods based on virtual Lagrangian trajectories
have been applied to Agulhas ring deection before (Haller and Beron-Vera, 2013; Beron-Vera et al., 2013; Froyland et al..
2013; Hadjighasem et al.. 2006; Tarshish et al.. 2018). Our method is different from these approaches in that it is directly
applicable o0 a trajectory eeta-setdatasel, Le. without much pre-processing of the data As the OPTICS algorithm is read-
105 ily available in the sklearn package of SciPy. the detection of finite-time coherent sets can be done without much effort and

with only a few lines of code. A further difference is the mentioned intrinsic notion of coberence hierarchy, which allows for

simultaneous analysis of trajectory data at different scales.

initiat-conditiers—While we mainly focus on the direct embedding of trajectories in an abstract high-dimensional Euclidzan
110 space, we also show in ﬁH@n—[—:-n—Lhe—aﬁpeﬂde;mndlx C that OPTICS can be used to overcome the limits of k-Means
clumnnq in the context of spactral clustcnng of phvsic - e —————

Tuthe trajectory-based network

of, F.‘%ﬂh?.fet.f?ﬂh??. and Schneide (2017).

2. First sentence in conclusion

The abstract embedding of particle trajectories in a metric space with subseque:nt c]ustenng is a promising field of research
470 for the detection of finie-time coherent sets in oceanography-esit dHers o

From-drifler mleass axperimente— Yt most of the existing methods

Comment 6

Line 99. Do you not want to cite Bickley? My understanding is that the term “Bickley jet” itself is used
to refer to a steady solution with a sech”2 u-velocity, see e.g. Swaters (1999). The authors’ Eq. (2) is
an added perturbation. As read, it sounds like the whole thing is the Bickley jet.

Answer to comment 6
Thank you for this comment and the careful check of our references of the flow. You are indeed right
that the Bickley Jet is a steady, sech”2 velocity profile. We have added the reference to Bickley now,



together with a reference to the paper of del Castillo-Negrete and Morrison (1993), where the
perturbed form of the jet is motivated.

Comment 7

Section 3.2.2. | didn’t really understand this section, or what B is encoding in Eq. (4). A more intuitive
description would be helpful. When you say, “pairwise distances are approximately preserved”, this
is with respect to what? Also, why are two dimensions chosen?

Answer to comment 7

Thank you for this comment. In the new version, we elaborate more on the intuitive goal of classical
MDS in this section. We choose two dimensions because we wish to visualize the data in the plane.
We have made this more clear in the new version.



312 CasslealDimensionality reduction with classical multidimensional scaling

To get an intuition for what the OPTICS algorithm does, and the differences to k-Means, we wish to visualize the data structure

phaneplane. For this. il is necessary to reduce the embedding dimension of each trajectory from 37" w two in a way that
220  the density structure, and hence the individual Euclidean distances between embedded trajectories dy = ||uy — uyl|. cf eq.
3), are preserved. We do so by a common method of nonlinear dimensionality reduction, called classical #utidimensionat
multidimensional scaling (MDS), s22 e.g. chapter 10.3 of Fouss et al. (2016). Classical MDS tries to find an embedding of
the high-dimensional data points in a low dimensional space such that the pairwise distances are approximately preserved.

Etasstest-Similar to a principal component analysis, classical MDS makes use of the eigenvectors comresponding to the largest
225 eigenvalues of the-kernalmatrica kernel matrix, which is in this case defined by

1
B= —EH&QH: )

where A% = BV =" js a matrix containing all squared distances between the pmnls =l — 2|7, and H is the centring
matrix with Hyy = &; —1/N, whem &;; denotes the Kronecker delta. The i
mafrix. If B is the matrix of inner products of the embedded data poi

lar produu:'l, then
230 B can be obtained by emoving the mean of all rows and columns of H cf. -:haptcr 10.3 of Fouss et al. (2016). An embedding

of the data points using the eigenvectors comesponding to the leading non-negative eipenvalues of B in eq. (4) ensums o
capture the main variance of the (squared) distance siructure, similar to a principal component analysis.

We compute A with the Euclidean embeddings-embedding described in section 3.2.1 and restrict ourselves to the first two
dimensions to visualize the data structure in the plane, ie. the embedding is defined by

235 = (wgy.w4), 1 =1, N, (3)

where K wy = Aywy, and Mg = Ay = Ay forall k= 2,.. N — 1. This choice of embedding ensures o capiure the main variance
of the data points, and we themfore also expect to capture the main structure in tzrms of data density. For large particle sets
however, computing the spectrum of H in eq. (4) is computationally not feasible, as the matrix B is i-gesesat-dense and
computing the spectrum scales with O(N?). We apply classical MDS to the 12,000 particles of the Bickley jet model flow,

240  and a random selection of the equal number of particles for the Agulhas flow. In our context, the method is most useful for
visualization purposes, as it provides a good 2-dimensional approximation of the point distances, 2. also the density structure
of the embeddad rajectories.

Comment 8
Line 193. The intuitive meaning of the ‘generating distances’ that are not being used here should be
mentioned

Answer to comment 8
Than you for the comment. In the new version, we briefly mention what a finite generating distance
would mean.



Mg (p) as the number of points that is in the =5-neighbourhood of p, including p itself. OFTICS requires one parameter. an

INEBEET 5y (called MinPts by &=

255 cfp) = {min(f) | M:5(p) = #mn }. (&)

Comment 9

Line 196. The definition of the epsilon neighborhood appears incomplete. Is it not the M-dimensional
sphere of radius epsilon? Otherwise, what is the epsilon?

Answer to comment 9

Indeed the epsilon-neighborhood of p is just the M-dimensional ball around the point p, and the
previous version was incomplete. We have changed this in the new version, together with renaming
epsilon to delta, see our answer to comment 8.

Comment 10

Line 200. It would be very helpful to write out in words the meaning of Eq. (6). My understanding is
that c(p) is minimum distance epsilon such that the number of points in an epsilon neighborhood is
greater than a specified number.

Answer to comment 10
Thank you for your comment. Your interpretation was correct. We have made it more clear in the
new version, see the answer to comment 8.

Comment 11
Line 213. | did not immediately understand how it arises that there are valleys in the reachability if
you have sorted iteratively on the reachability. You might explain that this happens as you encounter



groups of points that are all near to each other, thus replacing earlier high values of reachability with
lower values.

Answer to comment 11
Thank you for the comment. Indeed, it is the sorting that is the most important step in the algorithm.
We added some more explanation in the new version.

275

Comment 12

Line 216. The phrasing here made me wonder if this was a second, different epsilon. It would be
clearer to say that you choose a value for the parameter epsilon. Also, it appears this is conditional
on a choice of s_min which should then be emphasized.

Answer to comment 12

Thank you for very much for pointing this out. Indeed, this was a second epsilon, and the
presentation in the first version was confusing. We have made the appropriate changes in the new
version by re-naming one of the epsilons into delta. See our answer to comment 8.

Comment 13
Line 228. What are the permissible values of k in condition (a)?

Answer to comment 13
We have made this more precise in the new version. It can be any integer larger than zero and
smaller than N - 1.

Comment 14
Figure 2, what are the units of the y-axis in the left column of plots?

Answer to comment 14

Thank you for this comment. Indeed, we missed to specify the units of all reachability values. We do
so in all figures in the new version (apart from the network embedding case in the appendix, where
quantities are dimensionless), see the example below.
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Comment 15
Figs 2 and 3, some of the colored dots lie above the epsilon threshold.

Answer to comment 15

This is correct, DBSCAN classifies the points below the line only up to boundary points, i.e. there can

be points at the cluster boundary that belong to the cluster. We have made this more clear in the
new version.

ars

380

4 Resulis
4.1 Bickley jet flow

We start with the direct embedding of the —t=Rickley jet flow trajectories, cf. section
2. The data matrix has dimension J.—LRMX 3 R12 000133 Wy apply the OPTICS algorithm to the resulting points -
tugel]'ler with DBSCAN clustering, choosing s, = 80 as a minimum size of the finite-time coherent sets. In the following, all

axis units are in multiples of 1000 km. Figure 2 shows the reachability plot, together with the DBSCAN clustering result of three
different choices of e. The six vortices and the jet are clearly visible as the major valleys in the reachability plot. The hierachical

13

structure of the DBSCAN clustering with decreasing « is visible in the ﬁgums from top {+ai=g—sen-la—lalm scale culmme} to
bottom (smab-seate-small-scale coherence). Bainzabla = this reh 2

-_a-rewdaa—Nole that for the DBSCAN clustering m}mﬁmm%smwfgdg§5wd ary points of the
clusiers can be above the hozitonal line at y — e This is because of the definition of the DESCAN clustering in section 3.3.




Comment 16

Figure 4. | really don’t understand the two dimensions of these plots, nor the star-shaped patterns,
could you explain these more?

Answer to comment 16

We have now made the presentation of the methods regarding classical MDS more clear, also
relating it to principal component analysis, see the answer to your comment 7. In addition, we have
provided more explanation on the star-shaped structure in the results section.

385 MextTo illustrate the difference between OPTICS and k-Means, we use the embedded rajectories and apply classical MDS

R i A R

to obtain a 2-dimensional embedding. As sestiersd-described in section 3.2.2, this assures to capture the major variance along
the embedding axes. The spectrum of B in eq. (4) is shown in fig. A1 in the appendix. with two clearly dominant eigenvalues.

300 eentres-and-thejein-the-middieThe fact that them are two very dominant eigenvalues assures that the llustration of the data
in the plane captures the major variance of the data points. Figure 3a shows the corresponding embedding of the trajectories in
the 2-dimensional emsbedding-spees—snd-fiz—2E-Huclidean space, The star-shaped distribution of data points reflect the strong

14

O 5.
g e

symmetries of the underlying idzalized Bickley jet flow. Such symmetry is not engcted. to be gl'_esent for more realistic fow

Ewgures 3b and 3¢ show the cluster labels for OFTICS with DBSCAN clusenng at

£ = 10F km, and for a k-Means clusiering with K = 8 clusters, w—h;sh-msvpgclwe]v K=
jet, and one noise cluster as suggested by Hadjighasem et al. (2016).

In addition, we have further discussed the failure of k-Means in relation to the star-shaped structure
of the embedding.

The comesponding clustering 2

st : fesults in real space am shown in figs. 4 and 5
for OPTICS and k-Means, espectively. The jet and the six vortices are clearly recognizable as dense accumulations of points in
400  the 2-dimensional space of fig. 3b. see fig. 4 for the coresponding colours. The clustering result with k-Means in fig. 3 shows

that the clusers coresponding to the vortices are much less focussed. In addition, 2ach of the eight clusters in fig. 3¢ contains

some of the noisy pc:lnts of fig. 3b, which shows that using one additional cluster for noise does not £

& ork in this situation. It is mteresunLG note that capturing the

405 .95_?.FJE?HFH-.EEF.‘?.M;!!.].HS}'HLEEEE‘_EEEEE‘..L‘!ﬂ%&ﬂ&ﬂ?ﬁ.?F;,EIFE?,:.{PAJ.ER}J,H.f.{,E-,..Jl%;.!?BE.‘.PEF?E'LE.H.E;M?&&?-

Comment 17
Data locations at Zenodo should be cited, not only the papers referring to them.

Answer to comment 17

The reference is actually a Zenodo link, not a paper. Note that there were two references Wichmann
2020 (Zenodo link) and Wichmann et al. (2020) (previous paper). In the new version, there is now
also a Zenodo link to an animation for the Agulhas flow.




Comment 18

Throughout the paper, the authors consistently omit the subject ahead of an infinitive, e.g. “which
allows to detect”. | believe this is grammatically incorrect (in US usage anyway). “allows one to
detect” or “allowing the detection of” sound better

Answer to comment 18
Thank you, we have made appropriate changes in the new version.

Comment 19
| 42 and 90. “sparse” should probably be used instead of “scarce”. The former means thinly
distributed while the latter means hard to come by.

Answer to comment 19
We have made appropriate changes in the new version.

Comment 20
| 128. NumPy and Zenodo are the standard capitalizations

Answer to comment 20
We made the suggested changes in the new version. Thank you for noting.

Comment 21
1 141. “method” should be “methods”

Answer to comment 21
Thank you for noting, we corrected it in the new version.

Comment 22
| 156. Straightforward

Answer to comment 22
Thank you for noting, we corrected it in the new version.

Comment 23
1 191. “and as will become clear”



Answer to comment 23
Thank you for noting, we corrected it in the new version.

Comment 24
1 217. “is equal to” should be “set of points is equivalent to”.

Answer to comment 24
Thank you for noting, we corrected it in the new version.

Comment 25
| 243. “a priory” should be “a priori”

Answer to comment 25
We corrected it in the new version.

Comment 26
| 279. “large- and small-scale”

Answer to comment 26
Thank you for noting, we corrected it in the new version.

Comment 27
| 354. GitHub

Answer to comment 27
Thank you for noting, we corrected it in the new version.

Comment 28
| 359. There is a title of an appendix with no appendix.

Answer to comment 28

The content of appendix C consisted of only two figures, C1 and C2. It appeared as without content
due to the page break. In the new version, we have removed one appendix as we include the figures
in the main text, such that the formatting looks better.




Comment 29
| 360 & 361. “particle-based”

Answer to comment 29

Thank you for noting, we corrected it in the new version.

Comment 30
| 383. “ot”

Answer to comment 30
Thanks for the careful read, we made the changes in the revised manuscript.

Comment 31
| 389. There should be a period at the end of this sentence

Answer to comment 31
Done. Thanks for noting.

Comment 32
Figure C1, “three” eigenvalues should be “two”, correct?

Answer to comment 32
Yes, indeed. Thanks for reading also the appendix figure captions so carefully! We corrected this in
the new version.




Answer to reviewer 2

General answer:

We thank the reviewer for the critical comments, and in particular for the detailed analysis of other
methods and their comparison to our approach. We agree with most points raised by the reviewer.
We have made major adaptations to the formulations in the revised version, and explain the relation
of our method to existing studies in more detail.

Please note:

The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised
version.

Comment 1

There are already several clustering methods in the literature for finding finite-time coherent sets,
including a density-based clustering DBSCAN by Schneide-etal’18, which is a special case of the
OPTICS approach in the manuscript. The idea of a hierarchy of finite-time coherent sets has been
considered by Ma/Bollt’13. The paper Fr/Sa/Ro’19 develops a robust method to classify only those
sets are that coherent, not fully partitioning the domain. In Fr/Sa/Ro’19, coherent sets at different
spatial scales are also considered, similar to a hierarchy. Fr/Sa/Ro’19 also considers the Bickley jet
and ocean eddies, with ocean eddies listed as a motivation in Fr/Sa/Ro’19 for developing a non-
partitioning approach. Not limited to the work above, | would say there is some "upselling" of the
novelty in the manuscript, and that prior work is occasionally omitted, mischaracterized, or overly
criticized.

Answer to comment 1

Thank you for this comment. We did not intend to upsell our work, or omit, mischaracterize or
overly criticize existing work. In fact, our work has been majorly motivated by the paper of Froyland
et al. 2019. But we understand that the original manuscript appeared to do so, and we thank the
reviewer to making this clear to us. We have made the following changes in the new version.

1. We mainly removed the discussion of other methods in the introduction and moved it to a
separate section. In the introduction, we emphasize that our work is majorly inspired by
Froyland et al. 2019. We are also more specific about the actual problem at hand, i.e. the
detection of many small scale coherent sets in large-scale, noisy ocean flows.



The detection of coherent Lagrangian vortices using abstract embeddings of Laganglan trajectories tog:ﬂ'lcrw ith data clusr.eﬂng

40 tcchmq ues has meeived slgmﬁcant attention in the racent lilerature

45 sparse trajectory data, and it can in principle be applied to ocean drifter trajectories. as deme-demonstrated tg,' Froyland and
Padbarg-(‘nehle ("-'ﬂlS) and Banisch and Koltai (2017) for the detection of the five ocean basins. Yet, the-matheds propasad so

—maost of these methods cluster trajectory data with.

graph partitioning, which does not incorporake the difference between coherent, clustered trajectories and noisy trajectories that

should not belong to any cluster. Graph partitioning has been shown to work in situations where the finite-time coherent sets arg

50 nottoo small compared to the fluid dom jighase

. For applications 0 Lagrangian trajectory d datascls on_ basm scalc ocean domains, where multiple small- scalc coherent scls_
(add:csﬁ coexistwith noisy Lra_}ccloms in the background gmph paruuomngls however likely to fail. Similar observations wers
made cpactral clust chas ¢ ; csand by Froyland et al. (2019) for the partition-based
clusiering approaches based on transl'er and d}'namlc Laplace operators byFrovland e ol OodoyFroyland and Junge J018)

55 . Although some atiempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-

ditional cluster cormesponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al. (2019) have developed sssleertsm
a special form of trajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators
and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-
60 clusiered background noise.
Here—weshew—hew—the-Motivated by the results Froyland et al. (2019) obtained by developing 2 new form of trajectory
embedding, we here explome the potential of another clustering algorithm to overcome the inherent problems of partition-based
clustering. We use the density-based clustering method OPTICS {Ordering Points To Identlr)' the Clustering Structure) devel-
oped by Ankerst et al. {1999) 2 e - - daripeto delact

65 coherent sets in larpe ocean domains, using a very simplk choice of embedding (cf. section 3.2.1). Density-based clusiering

aims to detect groups of data points that are close to each other, Le. regions with high data density. Our data points correspond to

entire trajectories, and groups of trajectories staying close toeach other over a certain time interval #fe-detested-sscormespond o

such regions of high point densil}' Different from parsten-besed-partition-based methods such as k-Means or fuzz_',.' -C-means,
70 notion of a nms:,' data point: a pcml does not belong to an}' cluster (i.e. a finite-time mherem set) if it is not part of a dense re-

gion,

A mom detailed comparison of the method presented here (o existing related methods can be found in section 3.4.

2. We have added an additional section to compare our method to existing approaches. There,
we stress what our contribution is compared to Froyland et al. 2019: the study of an
improved clustering step, instead of an improved embedding step. We also mention the
downside of our method compared to Froyland and Junge (2018) and Froyland et al. (2019).
Note that the hierarchical method of Ma and Bollt (2013) is powerful, but it is partition-



335

M5

based and not intrinsic to the clustering algorithm, as there is a cut-off chosen at each step
of the hierarchical clustering. Also, note that many of the existing methods that use k-Means
did work for examples where the coherent sets are not very small compared to the fluid
domain. Finally, DBSCAN has been used by Schneide et al. (2018), but not to derive explicit
clustering results, and also not in the ocean context. We explain this in this new section.

34 Comparison to related methods

Our method is closely related to existing methods to detect finite-time coherent sets with clustering echnigues. Most notably,

T almosl-

..... eans clustering. These studies show appli examp
sets is not too small compared to the fuid domain. Such examples are the Bickley jet flow, which we also study in section
4.1, the five major ocean basins (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017). or few individual eddies in an
oczan or atmospheric fow (Hadjighasem et al., 2016; Padberg-Gehle and Schneide. 2017 Froyland and Junge. 2018). In such
situations, noisy backpround trajectories can be detected as individual clusiers by the partitoning method, as discussed by
Hadjighasem et gl (20161, For applications in large ocean domains, where the number of eddies is not known beforehand
and where there are many more noisy trajectories than coherent trajectories, such an approach is likely to fail, see also the
discussion by Froyland et al. {2019). OFTICS does not require to fix the number of clusters beforehand, and also contains an

intrinsic concept of noisy trajectories that do not belang to any cluster, making OPTICS suitable for challenging fows in large

coherent  larger sc
Froyland et al. (2010}, in the spirit

also partifion-hased, i.¢. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy. a fixed cut-off has

io be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of
OPTICS, the reachability plot, contains such hierarchical information in a smooth and intrinsic manner,
DBSCAN algorithm (Ester et al., 1996) can be derived from the reachability

Asdescribed in section 3.3, clusiering results of the |

12



plot of OPTICS, DESCAN has been used in the conlext of coherent sets before by Schneide et al (2018), although not o
identify specific clusiers, but w distinguish

350

355

alraje al
380 by superposing

Froyland and Junge (2018) and with individual thresholding by Froyland et al. (201%). Froyland et al. (2019) also show how
the low-order eigenvectors comespond 1o large-scale coherent features, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of sigenvectors. The latler approach is ¢ ssentially a transformation of the embedding to

365 represent the most reliable features, such that a superposition of the eigenvectors alone vields the information about the location

choi 1M

ovland and Junge (2018) and Froyland et

270 nes of Banisch and Koltai (2017),

- this type of embedding is not derived from a meaning ful dynamical operator. 1t could be fruitful to explore a combination of

these more meaning ful embeddings topether with OPTICS as a clustering algorithm in future research.

Comment 2

A positive aspect is that the (standard) "DBSCAN" and "\xi" clustering outputs of the OPTICS
clustering could provide potentially useful hierarchical information, and to my knowledge this is a
new way of analyzing the dynamics. Unfortunately, this is not explored much, and the authors do
not provide an intuitive explanation of what the "DBSCAN" and "\xi" clustering algorithms are
actually doing in their dynamical context. It would be beneficial for the authors to link the algorithms
more with the dynamical inputs (trajectories) and the dynamical problem being solved. As this is the
main contribution of the paper, | think this needs to be expanded much more. The reasons behind
the choices of which clustering algorithm is applied to the different datasets should also be
explained.

Answer to comment 2
Thank you for this comment. We were indeed lacking some form of intuition behind the two
clustering methods and their application. We have made the following changes.

1. More explanation about the embedding and why the embedded trajectories create a signal
in terms of data density.



12 Trajectory embedding
31 Direct embedding

The direct embedding of each trajectory in BT is the most straishit-forward siraightforward embedding as it requires no further
pre-processing of the trajectory data For simplicity, assume we are given a set of V trajectories in a 3-dimensional space, ie.
200 (xy(t)wit).z(t)) wherei =1,..., N and ¢ =¢#y,... 7. We then simply define the embedding of trajectory 1 in the abstract

AT-dimensional space as

uy = (xglta) my(ty ) mobr)we (o). we (B ) - b s (). = (B1) - omltr)) e RIT, 3)

and impose an Euclidean metric in B*7 to measure distances between different embedded rajectories. The resulting em-
bedded data matrix X is then simply given by the vertical concatenation of the different embedding vectors. This kind of
205 embedding was alsoexplored by Froyland and Padberg-Gehle (2015}, together with a fuzzy -c-means clusiering. Intuitively, if
twa trajectories : and 7 belong (o the same finite-time coherent set, the corresponding particles follow very similar pathways,
Le. the Euclidean distance of the embedding vectors dy = ||u, - 1| is expected to be small. On the other hand, a partick 1
that belongs (o a coherent set is expected to have a larger distance to a particle j that is not part of the set. In other words,
groups of particles that form a finie-time coherent sel are dense in the embedding space. This motivates to use a density-based
210 clustering algorithm to detect finite-time coherent sets,
To take into account the wrp-periodicity in x-direction of the Bickley jet flow, we first put the individual 2-dimensional data
points on the surface of a cylinder with radius r;/2 in B, and interpret the resulting {2 — 2 Hrajectories in a 3-dimensional
Euclidean space. The resulting data matrix is ¥ = RY ™ with ¥ = 12,000 and T = 41. For the Agulhas particles, we put the
single data points on the earth surface in a 3-dimensional Euclidzan e mbedding space by the standard coordinate transformation
215 of spherical to Euclidean coordinates. The msulting data matrix is thus X = BV=% with ¥ — 23 821 and T — 21.

2. Anintuitive explanation of the two clustering methods and their major properties.

Intuitively, the two cluslering methods can be undersiood as follows DBSCAN detects those proups of points that have a

not

220 based on absolute densities. This has the advantage that clusiers of different absolute density can be detected. Such a situation
can arise if the distribution of particles is inhomogeneous over the fluid domain, or if the spatial extend of the fluid domain is
very large such that the properties of finite-time coherent sets vary significantly. It is important to note that the main result of
OPTICS is the reachability plot itself. The DBSCAMN- and £-clustering methods should be seen as useful tools to identify the
most important features of that plot.

3. We have included a DBSCAN clustering result in the main figure of the Agulhas flow example, and
discuss the differences between xi and DBSCAN clustering.
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Figure 6. Result of the OFTICS algorithm applicd to the direct embedding of the trajectorics, with different clustering methods. Grey

particles comespond to nodse.

435  WeFigure 6 shows that for this situation, the £-clustering method detects more Agulhas rings than DESCAN, Whike the
clusiering results shown in the figure all depends on the parameter values for £ and ¢, it s visible in the reachability plot of fig.
fig that the definition of some eddies includes the entire boundary of the valleys, i.e. up to very high reachability values, At the
in fact expected, cf. the discussion of the two clusiering methods at the end of section 3.3, DBSCAN is best to detect global

440 density structures, i.e. when the reachability values of all points are compared w the same cut-off ¢, Regions that are dense

C
8oL e

locally but not necessarily globally are betier detected with the £-clustering method. Despite these differences hetween the two

clusizring methods, we again emphasize that the main result of OPTICS is the reachability plot itself. Fig. 7 shows a colour

17

map at initial time of the reachability values. We clearly see Agulhas rings as the dark regions corresponding o lowest values
of reachability. The regions of large reachability commespond to trajectories that are relatively noisy compared to all the other
445  rajectorias.

Comment 3

The (uncited) paper Froyland/Junge’18 develops a finite-element approximation of the dynamic
Laplacian, which is a very accurate and robust method of finite-time coherent set extraction for low-
dimensional systems of the type treated in the Wichmann manuscript. In Froyland/Junge’18 there
are no free parameters, the method is unaffected by the density of the data points, and estimates
are produced on the whole domain. A comparison can be made for the Bickley example in the
Wichmann manuscript because the setup is identical. Wichmann et al uses a 200x60 grid of points
and particle positions at times t=0, 1, 2, 3,..., 39, 40. Froyland/Junge’18 studied the same Bickley
flow as in Wichmann, except that Froyland/Junge’18 used a coarser 100x30 grid of points and only
particle positions at time 0 and time 40. Figure 15 in Froyland/Junge’18 shows much clearer images
with fewer trajectory inputs. Thus, | think there is not a strong case for the approach in the
manuscript being a better performer.

Answer to comment 3



Thank you for this comment, and we apologize for not having cited that paper. Note however that
the clustering results presented there are also based on k-Means clustering, and there are no free
parameters only up to the choice of embedding dimension and the number of clusters. The paper
also shows that the approach with k-Means works for situations where the coherent sets are not
very small compared to the fluid domain, see the problems of k-Means in this context in the paper
by Froyland et al. 2019. Nevertheless, the concepts presented there are powerful, as they provide a
type of embedding that has a clear dynamical motivation, which is an advantage compared to our
heuristic embedding. We refer to the paper at many places in the new version in different contexts:

1. End of the new section on comparison to other methods

370 many other methods, most notably the ones of Banisch and Koltai (2017), Froyland and Junge (2018) and Froyland et al. (2019)

. this type of embedding is not derived from a meaningful dynamical operator, It could be fruitful to explore a combination of

ngful em v ¥ m
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2. We now also tested our method with the Bickley jet using less particles and less data points
for each trajectory. Our method does indeed not perform as well as the method of Froyland
and Junge (2018), and we want to thank the reviewer for explicitly mentioning this possible
comparison.

We finally also ested the performance of our algorithm with a random subset of 2,000 particles, using data for every five
days instead of every day, cf. fig. Al in the appendix, OPTICS still deiecis the six vortices and the jet. although the cluster
boundaries are less clearly defined compared o fig. 2. Froyland and Junge (2018) detect the vortices and the jet by using data

15

of 3,000 particles only at initial and final times (¢ = 0 and ¢ = 40 days). Our method is not able to detect the expected finite-time
415 coherent sets with using only initial and final particle data. This is likely to be a result of the ad-hoc direct embedding, cf. eq.

(3), see the discussion at the end of section 3.4,

{a) DBSCAN-clustering, £ = 18:10° km IB)t = 15 days (cl t = 30 days
E
R
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o 500 1004 1500

3. Inthe conclusion, we come back to the problems of our form of embedding and mention
again that a combination of the embedding of Froyland and Junge (2018) together with
OPTICS could yield better results.



490 ‘W apply OPTICS to Lagrangian particle trajectories directly, in the spirit of Froyland and Padberg-Gehle (2015). OPTICS
successfully detects the expectzd coherent structums in the Bickley jet model flow, separating the six vortices and the jet

successfully identify Agulhas rings, separated by noise. We visualize the differznce sFOPTICSte-between OPTICS and k-
Means with a 2-dimensional embedding of the trajectories based on classical multidimensional scaling. We also show how
4g5 OPTICS can be applied to the spectral embedding of the ges besed-particke-based network proposed by Padberg-Gehle
and Schneide (2017), providing a necessary amendment to S+s-their method to detect coherent vortices in a large ocean

domain, i.e. when k-Means fails. Our method is difemat-Ge e e e e

20

tHem— ity —our =very simple to implement in Python, as OFTICS is available in the SciPy skleam pack-
age. While we here present the results of OPTICS with three different kinds of embeddinsembeddings, it is likely that OP-
TICS also works for other trajectory embeddings, s — — - --

finita time cohamat sate (Brovland at al 0100 ae denamic aslacians (lrovland ab sl 30104 cuch as the spectral embeddings

505 of Banisch and Koltai (2017) or Frovland and Junge (2018). Using such dynamically motivated embeddings insiead of the

Comment 4

The idea to not fully partition the domain has already been treated in Fr/Sa/Ro’19. Regarding the
ocean eddy example in the manuscript, Fr/Sa/Ro’19 also applied the method of Froyland/Junge’18
to ocean flow and successfully extracted a greater number of eddies than Wichmann at a higher
quality. On the other hand, Fr/Sa/Ro’19 used AVISO-derived trajectories rather than model output,
so it could be that Wichmann is using a rougher velocity field. Wichmann also used lower trajectory
density than Fr/Sa/Ro’19 by a factor of about 4; both of these items could make Wichmann's task
more difficult, compared to Fr/Sa/Ro’19.

Answer to comment 4

Thank you for pointing this out. For a detailed comparison of the both methods, it would indeed be
necessary to choose exactly the same flows. Detecting a greater number of eddies in a specific ocean
domain does not necessarily have an implication for the usefulness of a method. We would like to
note again that the results of Froyland et al. (2019) were a major motivation for our paper, and we
do not aim to compete with their method any aspects. We would rather like to show how a change
of clustering algorithm, instead of a change of embedding, can also yield better results compared to
partition-based clustering, see the paragraph below in the revised paper on the comparison to other
methods. We believe that a combination of the embedding of Froyland and Junge 2018 together
with OPTICS could be a useful extension of our method. See our answer to your comments 1 and 3
for more content relating to their method.
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Ordering of trajectories reveals hierarchical finite-time coherent
sets in Lagrangian particle data: detecting Agulhas rings in the
South Atlantic Ocean

David Wichmann'?, Christian Kehl', Henk A. Dijkstra'?, and Erik van Sebille'-

nstitute for Marine and Atmospheric Research Utrecht, Utrecht University
2Centre for Complex Systems Studies, Utrecht University

Correspondence: David Wichmann (d.wichmann@uu.nl)

Abstract. The detection of finite-time coherent particle sets in Lagrangian trajectory data using data clustering techniques is an

active research field at the moment. Yet, the clustering methods mostly employed so far have been based on graph partitioning,

which assigns each trajectory to a cluster, i.e. there is no concept of noisy, incoherent trajectories. This is problematic for

apphcatlons to-in the ocean, where many small coherent eddies are present ina largeﬂmekdeﬁwﬂ—mﬂdehﬂeﬁ—t&ewqﬂmw}edge

ies—, mostly noisy fluid flow. Here, for
the first time in this context, we use the density-based clustering algorithm OPTICS (Ankerst et al., 1999) to detect finite-time

coherent partlcle sets in Lagrangian trajectory data. Different from partitien-based-partition-based clustering methods, OPTICS

derived clustering results contain a concept of noise, such
that not every trajectory needs to be part of a cluster. OPTICS also has a major advantage compared to the previously used
DBSCAN method, as it can detect clusters of varying density.

instead-of-absolute-density—Finally,- OPTICS-based-chasters-The resulting clusters have an intrinsically hierarchical structure,

which allows one to detect coherent trajectory sets at different spatial scales at once. We apply OPTICS directly to Lagrangian

trajectory data in the Bickley jet model flow and successfully detect the expected vortices and the jet. The resulting clustering
separates the vortices and the jet from background noise, with an imprint of the hierarchical clustering structure of coherent,
smatt-seate-small-scale vortices in a coherent, large-scale, background flow. We then apply our method to a set of virtual
trajectories released in the eastern South Atlantic Ocean in an eddying ocean model and successfully detect Agulhas rings.

e—We illustrate the

difference between our approach and partition-based-partition-based k-Means clustering using a 2-dimensional embedding
of the trajectories derived from classical multidimensional scaling. We also show how OPTICS can be applied to the spectral
embedding of a trajectory-based-trajectory-based network to overcome the problems of k-Means spectral clustering in detecting
Agulhas rings.



25

30

35

40

45

50

55

Copyright statement. TEXT

1 Introduction

Understanding the transport of tracers in the ocean is an important topic in oceanography. Despite large-scale transport features
of the mean flow, on smaller scales, mesoscale eddies and jets play an important role for tracer transport (Van Sebille et al.,
2020). Such eddies can capture large amounts of a tracer, and, while transported in a background flow, redistribute them in the
ocean. Eddies have been shown to play an important role for the accumulation of plastic (Brach et al., 2018) and the transport
of heat and salt (Dong et al., 2014). To quantify the effects of eddies for-on tracer transport in the ocean, it is necessary to
develop methods that are able to detect and track them. Many methods exist to detect such finite-time coherent sets of fluid
parcels based on different mathematical or heuristic principles (Hadjighasem et al., 2017). The term ‘finite-time coherent set’

is based on the work of Froyland et al. (2010), and is in our context defined as a set of particles that stay, in a sense to be made

more specific, close to each other along their entire trajectories.

coherentsetsin-Lagrangian-trajectory-data—For-Here, for the first time in this context, we make use of the density-based clus-
termg algorlthm OPTICS (Ankerst et al., 1999) Whiehﬂﬂewﬂﬁdetee%eekmfeﬁ&fmjeemﬂe%%dﬁfefa%%paﬂ&k%ea}e%ﬂe&

ityto detect finite-time coherent sets in

Lagrangian trajectory data.
The detection of coherent Lagrangian vortices using abstract embeddings of Lagrangian trajectories together with data clusterin

techniques has received significant attention in the recent literature (¥

—(Froyland and Padberg-Gehle, 2015; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and Koltai, 2017;

. Using embedded trajectories for the detection of finite-time coherent sets is interesting as it allows to-tise-searee-one o use
sparse trajectory data, and it can in principle be applied to ocean drifter trajectories, as donre-demonstrated by Froyland and
Padberg-Gehle (2015) and Banisch and Koltai (2017) for the detection of the five ocean basins. Yet, the-methods-proposed-so
-most of these methods cluster trajectory data with

graph partitioning, which does not incorporate the difference between coherent, clustered trajectories and noisy trajectories that

should not belong to any cluster. Graph partitioning has been shown to work in situations where the finite-time coherent sets are

Schneide

not too small compared to the fluid domain (Froyland and Padberg-Gehle, 2015; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2

. For applications to Lagrangian trajectory datasets on basin-scale ocean domains, where multiple small-scale coherent sets

eddies) coexist with noisy trajectories in the background, graph partitioning is however likely to fail. Similar observations were

Froyland et al. (2019) for the partition-based
clustering approaches based on transfer and dynamic Laplace operators byFroyland-et-al~26049)(Froyland and Junge, 2018

. Although some attempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-

ditional cluster corresponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as
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discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al. (2019) have developed an-algorithm
a special form of trajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators
and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-

clustered background noise.

Here—we—show—hoew—the-Motivated by the results Froyland et al. (2019) obtained by developing a new form of trajecto

embedding, we here explore the potential of another clustering algorithm to overcome the inherent problems of partition-based
clustering. We use the density-based clustering method OPTICS (Ordering Points To Identify the Clustering Structure) devel-

oped by Ankerst et al. (1999)
coherent sets in large ocean domains, using a very simple choice of embedding (cf. section 3.2.1). Density-based clustering

aims to detect groups of data points that are close to each other, i.e. regions with high data density. Our data points correspond to

ing-to detect finite-time

entire trajectories, and groups of trajectories staying close to each other over a certain time interval are-deteeted-as-correspond to
such regions of high point density. Different from partition-based-partition-based methods such as k-Means or fuzzy-c-means,
OPTICS does not require to define-fix the number of clusters beforehand. Further, density-based clustering has an intrinsic

notion of a noisy data point: a point does not belong to any cluster (i.e. a finite-time coherent set) if it is not part of a dense re-

A more detailed comparison of the method presented here to existing related methods can be found in section 3.4.

Another desirable property of the OPTICS algorithm is its ability to capture coherence hierarchies. In the ocean, coherent sets
of trajectories naturally come with a notion of such a hierarchy. For example, the surface flow in the North Atlantic Ocean

can be seen as approximately coherent (Froyland et al., 2014), while mesoscale eddies and jets are also finite-time coher-

ent sets of tra]ectorles at smaller scales within the North Atlantic Ocean. Thfﬁs—a}sefeﬂeeteé—lﬁpfe’ﬁeﬂs—smdte&fha%ﬂpply

Froyland et al. (2019) show how their leading eigenvectors resolve coherent sets at large scales, while small-scale results can
be obtained with a sparse eigenbasis approximation of a set of eigenvectors. Similarly, clustering results obtained from OPTICS



are typically hierarchical. The main result of OPTICS, the reachability plot, provides this hierarchical information in a simple

1-dimensional graph.
In section 4, we first show how OPTICS detects finite-time coherent sets at different scales for the Bickley jet model flow

95 (also discussed e.g. by Hadjighasem et al. (2017)), successfully detecting the six coherent vortices and the jet as the steepest
valleys in the reachability plot. The general structure of the reachability plot also reveals the large-scale finite-time coherent
sets, i.e. the northern and southern parts of the model flow, separated by the jet. We then apply our method to Lagrangian
particle trajectories released in the eastern South Atlantic Ocean, where large rings detach from the Agulhas Current (e.g.
Schouten et al. (2000)). We detect several Agulhas rings, and on the larger scale also separate the eastward and westward

100 moving branches of the South Atlantic Subtropical Gyre. While the traditional approach to study Agulhas rings is based
on sea surface height analysis (see e.g. Dencausse et al. (2010)), several methods based on virtual Lagrangian trajectories
have been applied to Agulhas ring detection before (Haller and Beron-Vera, 2013; Beron-Vera et al., 2013; Froyland et al.,
2015; Hadjighasem et al., 2016; Tarshish et al., 2018). Our method is different from these approaches in that it is directly
applicable to a trajectory data—setdataset, i.e. without much pre-processing of the data. As the OPTICS algorithm is read-

105 ily available in the sklearn package of SciPy, the detection of finite-time coherent sets can be done without much effort and

with only a few lines of code. A further difference is the mentioned intrinsic notion of coherence hierarchy, which allows for

simultaneous analysis of trajectory data at different scales. Fi i inet i

D
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initial-conditions—While we mainly focus on the direct embedding of trajectories in an abstract high-dimensional Euclidean
110 space, we also show in seetion-C-in-the-appendix-appendix C that OPTICS can be used to overcome the limits of k-Means

clustering in the context of spectral clustering of physically-motivated-trajectory-based-networks—such-as-the-werks-presente

of Padberg-Gehle and Schneide (2017).

2 Trajectory datasets
115 2.1 uasi-periodically perturbed Bickley jet

We apply our method to a model system that has been used frequently in studies to detect finite-time coherent sets (Hadjighasem-et-al20H7
2017; Padberg-Gehle and Schneide, 2017; Hadjighasem et al., 2016; Banisch and Koltai, 2017; Froyland and Junge, '
. The velocity field of the Biekleyjet-quasi-periodically perturbed Bickley jet (Bickley, 1937; del Castillo-Negrete and Morrison, 1993

is defined by a stream function ¢ (z,y,t), i.e. & = _% and §y = g%,’ with ¢¥(x,y,t) = ¥o(y) +¥1(x,y,t) consisting of a sta-

Hadjighasem et al.,

120 tionary eastward background flow

Yo(y) = —ULtanh(y/L), (1)
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and a time-dependent perturbation

Y1 (z,y,t) = UL sech®(y/L) Re

3
> falt) exp(iknm)] , )

n=1
where Re(z) denotes the real part of the complex number z. We use the same parameter values as Hadjighasem et al. (2017),
with U = 62.66 m/s the characteristic velocity of the zonal background flow, and L = 1770 km. The parameters in eq. (2) are
givenby k,, = 2n/ro, fn(t) = €y exp(—ikpcnt) with e; = 0.075, €2 = 0.4, €3 = 0.3, €5 ="0461F ¢y = 0.1446U, co = 0.205U,
er=">03446TF¢; = 0.461U. The domain of interest is © = [0, 7] X [—3000 km, 3000 km], where 7o = 6371 km is the radius
of the Earth, and the left and right edges of {2 are identified, i.e. the flow is periodic in x-direction with period 7ry. Similar to
Banisch and Koltai (2017), we seed the domain with an initial number of 12,000 particles on a uniform 200 x 60 grid. For this
choice, the initial particle spacing is slightly above 100 km in both directions. We compute the trajectories for 40 days with
a time step of one second using the SciPy integrate package. We output the trajectories every day, i.e. we have T'= 41 data

points in time for each trajectory.
2.2 Agulhas rings in the South Atlantic

To test our-method-the OPTICS algorithm with a more realistic ocean flow, we simulate surface particle trajectories in a strongly
eddying ocean model. Surface velocities are derived from a NEMO ORCA-NO006 run (Madec, 2008), which has a horizontal
resolution of 1/12° and velocity output for every five days. The model is forced by reanalysis and observed data of wind, heat
and fresh water fluxes (Dussin et al., 2016), i.e. the currents do not only contain the geostrophic component, as is the case in
altimetry-derived currents (Beron-Vera et al., 2013; Froyland et al., 2019). For the advection of virtual particles, we use version
1.11 of the open source Parcels framework (Lange and van Sebille, 2017), see oceanparcels.org. The 2-dimensional surface
current velocity is interpolated in space and time with the C-grid interpolation scheme of Delandmeter and van Sebille (2019),
using a 4th order Runge-Kutta method with a time step of 10 minutes. We initially distribute particles uniformly in the ocean
on the vertices of a 0.2° x 0.2° grid in the domain [30°T,20° E] x [40°.S,20°S], which corresponds to a total number of 23,821
particles. At 30°S, a spacing of 0.2° corresponds to roughly 20 km. The particles start at January 5, 2000 and are advected
for two years. We output the trajectories with a time interval of five days. We only use the first 100 days as data to detect the
finite-time coherent sets, i.e. we have 7' = 21 data points for each trajectory, but also look at later times to see how long the

rings need to disperse.

atton—We provide the used trajectory data for

the Agulhas flow as numpy-file-onzenode-NumPy file on Zenodo (Wichmann, 2020b).


oceanparcels.org

3 Methods
150 3.1 Detecting coherent structures in Lagrangian trajectory data:-an-oeverview

For N trajectories of dimension D and length T', the trajectory information can be stored in a data matrix X € RV*PT | where
each row results from a particle trajectory by concatenating the different spatial dimensions. The analysis of trajectory data to
detect finite-time coherent sets of trajectories (Froyland-and-Padbere-Gehle; 2015 Banisch-and Keltai; 2017 Hadjighasem-et-al52016;

Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017; Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Schneide e

155 can be split into two essential steps:

Step I Embedding of the trajectories in an abstract (metric) space, i.e. X — X € RV*M where M < DT. If one uses a

dimensionality reduction method, M < DT.

Step 2 Clustering of the embedded data with a clustering algorithm.

The embedding is necessary to represent the trajectories as points in a metric space. Different options for embedding the

160 trajectories exist, e.g. a direct embedding of the data points along the trajectories (Froyland and Padberg-Gehle, 2015), or

embeddings based on the eigenvectors derived from networks that are defined by physically motivated trajectory similarities
embedding of each trajectory as a point in a metric (typically Euclidean) space is established, one can apply a clusterin

algorithm, Roughly speaking, clustering algorithms try to identify groups of points that are close to each other as a cluster.
point belongs to a cluster. The most popular method in this category is the k-Means algorithm, which tries to find a given
number of K clusters such that the sum of pairwise squared distances of points within a cluster is minimized. Other clustering

method is fuzzy-c-means clustering, as discussed by Froyland and Padberg-Gehle (2015) in the context of finite-time coherent

sets.

Figure 1 shows a few possible options for these-twe-steps-trajectory embedding and clustering that have partially been explored

before (see the footnotes in the figure for the combinations used in related studies). For a given trajectory dataset, one can
175 in principle apply an arbitrary combination of embedding and clustering methodmethods. Only a few of the different combi-

nations have been explored so far, and many more options for embedding and clustering as those shown in fig. 1 exist. It is

important to note that a good choice of embedding and clustering might well depend on the specific problem at hand, and there

might be no combination that performs well for all possible situations.

Most of the studies that use clustering techniques to detect finite-time coherent sets have focused on developing new forms of
180 trajectory embeddings. For example, Hadjighasem et al. (2016), Padberg-Gehle and Schneide (2017), Banisch and Koltai (2017
and Froyland and Junge (2018) all use different forms of spectral embeddings, together with k-Means clustering. Froyland et al. (2019
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Xe RNXDT Xe ]RNXM,MS DT trajectories

I. Direct embedding (M = DT)!
Il. Dimensionality reduction (M < DT)

--------------------- = DBSCAN?
Network based (physical)? OPTICS
1. Adjacency matrix: X —» A € RVV
2. Embedding: 4 = X € RV*M D

Physics-based reduction
e.g. trajectory averaging?

Nonlinear dimensionality reduction
(Classical) multidimensional scaling

Figure 1. Different steps to detect coherent trajectories in Lagrangian data with trajectory clustering. The figure is non-exhaustive, and

many more options for embedding and clustering exist. Footnotes; ! Froyland and Padberg-Gehle (2015). 2 Hadjighasem et al. (2016),

Padberg-Gehle and Schneide (2017) and Banisch and Koltai (2017) all define networks with spectral embedding and subsequent k-Means
3 Schneide et al. (2018).

clustering. Froyland et al. (2019) define spectral embeddings defined on dynamic Laplacian and transfer operators.

have developed a powerful form of embedding, based on a sparse eigenbasis approximation. Here, we explore-the-focus on the
clustering step in fig. 1, and propose the OPTICS clustering algorithm fer-thefirsttime-in-the-context-of finite-time-coherent

setsin the fluid dynamics context. We test it-the algorithm for three different kinds of embeddings:
El A direct embedding of the trajectory data in a high dimensional Euclidean space, i.e. M = DT (cf. section 3.2.1).

E2 A reduction of the trajectory data to a 2-dimensional embedding space using classical multidimensional scaling (MDS,

cf. section 3.2.2). This is mainly to visualize the difference to partition-based-partition-based k-Means clustering.
E3 An-A spectral embedding of the network proposed by Padberg-Gehle and Schneide (2017);-which-is-in-seetion-Cin-the
i forthe-sake-of brevity.
In the following sections, we explain in detail the embeddings E1 and E2 and the OPTICS algorithm. We introduce the
network embedding E3 together with the corresponding results in seetion-C-in-the-appendix-appendix C.
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3.2 Trajectory embedding
3.2.1 Direct embedding

The direct embedding of each trajectory in RP7 is the most straightforward-straightforward embedding as it requires no further
pre-processing of the trajectory data. For simplicity, assume we are given a set of N trajectories in a 3-dimensional space, i.e.
(i (t),yi(t),2z;(t)) where i =1,...,N and t = t1,...,tp. We then simply define the embedding of trajectory ¢ in the abstract

3T'-dimensional space as

U; = (xi(to),xi(tl),--~,$i(tT)7yi(t0),yi(t1)7--~7yi(tT),Zi(t0)7Zi(t1), .. .,Zi(tT» S RgT, (3)

and impose an Euclidean metric in R3? to measure distances between different embedded trajectories. The resulting em-
bedded data matrix X is then simply given by the vertical concatenation of the different embedding vectors. This kind of
embedding was also explored by Froyland and Padberg-Gehle (2015), together with a fuzzy-c-means clustering. Intuitively, if
two trajectories i and j belong to the same finite-time coherent set, the corresponding particles follow very similar pathways,

i.e. the Euclidean distance of the embedding vectors d;; is expected to be small. On the other hand, a particle ¢

that belongs to a coherent set is expected to have a larger distance to a particle 7 that is not part of the set. In other words
roups of particles that form a finite-time coherent set are dense in the embedding space. This motivates to use a density-based
clustering algorithm to detect finite-time coherent sets.

To take into account the 7rg-periodicity in x-direction of the Bickley jet flow, we first put the individual 2-dimensional data

points on the surface of a cylinder with radius 7/2 in R3, and interpret the resulting (/>—-3)-trajectories in a 3-dimensional
Euclidean space. The resulting data matrix is X e RVX3T with N = 12,000 and T' = 41. For the Agulhas particles, we put the
single data points on the earth surface in a 3-dimensional Euclidean embedding space by the standard coordinate transformation

of spherical to Euclidean coordinates. The resulting data matrix is thus X € RV>37 with N = 23,821 and T = 21.

3.2.2 <Classieal-Dimensionality reduction with classical multidimensional scaling

To get an intuition for what the OPTICS algorithm does, and the differences to k-Means, we wish to visualize the data structure
in the - . T . . o . .

ptaneplane. For this, it is necessary to reduce the embedding dimension of each trajectory from 37 to two in a way that
the density structure, and hence the individual Euclidean distances between embedded trajectories d;;
(3), are preserved. We do so by a common method of nonlinear dimensionality reduction, called classical Multidimensional
multidimensional scaling (MDS), see e.g. chapter 10.3 of Fouss et al. (2016). Classical MDS tries to find an embedding of

the high-dimensional data points in a low dimensional space such that the pairwise distances are approximately preserved.
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Classteal-Similar to a principal component analysis, classical MDS makes use of the eigenvectors corresponding to the largest
eigenvalues of the-kernelmatrixa kernel matrix, which is in this case defined b

1
B=—-HA’H, 4
2

where A% € RV*V is a matrix containing all squared distances between the points, A7, = |Ju; — u;||?, and H is the centring
matrix with H;; = d;; —1/N, where 0;; denotes the Kronecker delta. The matrix B in eq. (4) is called the centred inner product

B;; ; - w; with Euclidean scalar product, then

B can be obtained by removing the mean of all rows and columns of B, cf. chapter 10.3 of Fouss et al. (2016). An embeddin
of the data points using the eigenvectors corresponding to the leading non-negative eigenvalues of B in eq. (4) ensures to

capture the main variance of the (squared) distance structure, similar to a principal component analysis.
We compute A? with the Euclidean embeddings-embedding described in section 3.2.1 and restrict ourselves to the first two

matrix. If B is the matrix of inner products of the embedded data oints, i.e.

dimensions to visualize the data structure in the plane, i.e. the embedding is defined by

ui:(wo,ivwl,i)yizl,...,N, (5)

where Kw; = A\ jw;, and A\g > Ay > A forall k = 2,... N —1. This choice of embedding ensures to capture the main variance
of the data points, and we therefore also expect to capture the main structure in terms of data density. For large particle sets
however, computing the spectrum of H in eq. (4) is computationally not feasible, as the matrix B is in—general-dense and
computing the spectrum scales with O(N3). We apply classical MDS to the 12,000 particles of the Bickley jet model flow,
and a random selection of the equal number of particles for the Agulhas flow. In our context, the method is most useful for
visualization purposes, as it provides a good 2-dimensional approximation of the point distances, i.e. also the density structure

of the embedded trajectories.
3.3 Clustering with OPTICS

The detection of dense accumulations of points that are separated from each other by non-dense regions (noise) is the main

goal of density-based clustering. We use the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm by

Ankerst et al. (1999) to detect these regions. The OPTICS algorithm can be seen as an extension of DBSCAN (Ester et al.,

elear-in-seetion4—,_As we have no prior information on the density structure of the embedded nodes, we set the ‘generating
distance’ of OPTICS to infinity and our presentation here is limited to this case. The general OPTICS algorithm with finite
generating distance is computationally more efficient and slightly more complicated, and we refer to Ankerst et al. (1999) for
more details. ForecR-thee

For § € R, the §-neighbourhood of a point p € RM is defined as the M-dimensional ball of radius ¢ around p. Define A}
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M;(p)_as the number of points that is in the €J-neighbourhood of p, including p itself. OPTICS requires one parameter, an
integer S, (called MinPts by Ester-etal-1996)Ankerst et al. (1999)), that defines the core-distance of a point p as

c(p) = {min(ed) | Mcs(p) = Smin}- (6)

The core distance is simply the minimum radius of a ball around p, such that the ball contains s,,;,, points. Note that the
. (6)
beyond which the core distance is not defined. As we do not have an intuition for a good value of such a cut off, we remove it

by setting it to infinity.
The ordering of the points is based on the reachability distance of a point p w.r.t. another point ¢, defined as

enerating distance that we set to infinity is a maximum cut off distance for the computation of the core distance in e

7(plg) = max(c(q), [|lp —qll), @)

where ||p — ¢|| in our case denotes the Euclidean distance between p and ¢. The ordering of points is then constructed with the

following scheme:

Step 1 Pick a point p;. This is the first point in the order, and is arbitrary.
Step 2 Compute the core-distance ¢(py) of p;.

Step 3 Define an ordered seed list containing all other points, p;, #=2:——# = 2, ..., V. For each point p;, define the reacha-
bility value r(p;) as the reachability distance (eq. (7)) w.r.t. p1, 7(p;) = r(pi|p1). Order the list in ascending order of the

r(pr)-

Step 4 Pick the first point on the ordered seed list as po and compute the core-distance ¢(p2). For all remaining points p;,

1=3,...,N, update the reachability value r(p;) — min(r(p;),r(pi|p2))-

Step 5 Update the ordered seed list according to the new reachability.

Step>

Step 6 Repeat steps 4-5 to obtain p3. Continue until all points are processed.

Note that the ordering of points is achieved by constantly updating the ordered seed list, cf: step 3. In this way, the algorithm
iterates through groups of dense points one after the other, and only continues with other points once a dense region has been
fully explored. Note also that the entire algorithm depends on the choice of the parameter s,y The value of sy, should be
chosen roughly as a minimum value of the expected cluster size. In the examples presented in this paper, we take values for

Smin that correspond to the estimated minimum size of the coherent sets.
The main result of the OPTICS algorithm is a reachability plot. This plot is the graph defined by (¢,7(p;)), where po = oo by

10
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valleys in this plot correspond to dense regions, which we will-relate to finite-time coherent sets. We will-show examples of

reachability plots in section 4. Given the reachability plot (¢,7(p;)), we use two common ways to derive a clustering result:

1. DBSCAN clustering: Choose a cut-off parameter € and define all points p; with ¢(p;) < € as core points. All points that

are not in the e-neighbourhood of a core point are defined as noise. This is-equal-set of noisy data points is equivalent
to all points p-p; that are not core points and have a reachability value #{p)-with{p)>—er(p;) with r(p;) > €. A cluster
of size L is then defined as a consecutive set (in the sense of the ordering) of non-noise points (p;,pj+1,-..,Pj+L—1)s
with adjacent points p;_; and p; 1, being noise. This is similar to the clustering result of a DBSCAN run with equal
values for s,,,;, and e. All possible realizations of DBSCAN clusters¢, with the same value for s,,,,,)-, can therefore be
derived from the reachability values, core distances and the ordering determined by OPTICS. Up to boundary points, a

DBSCAN clustering result can be obtained by drawing horizontal lines in the reachability plot, cf. section 4.

. &-clustering: While the DBSCAN clustering method looks for deep valleys in the reachability plot, this method looks for

valleys with steep boundaries. In short, the larger a parameter £ with 0 < £ < 1, the steeper the boundary of a valley has to
be to be classified as a cluster. In more detail, a {-cluster is defined as a consecutive set of points (p;,pj41,...,0j+1—1)

that has steep boundaries in the sense that for a parameter £, 0 < ¢ < 1:

(a) The start of the cluster p; is in a {-steep downward area. A {-steep downward area is a maximal set of consecutive

points (pr, Pi41,---sPi+k)s k € {1....,N —l} where: 1. p; and p;y, are -steep downward points, i.e. r(p;) < (1 —
Or(pi—1) and r(pix) < (1 =) r(Pisr—1), 2. prys < p; forall i =1,...,k and 3. not more than s,,;, consecutive

points in the set are no £-steep downward points.

(b) The end of the cluster p; 1 is a £-steep upward area. The definitions are the reverse of the £-steep downward
area, with the definition of a {-steep upward point is-ehanged-to-as 7(p;) < (1 —&)r(pj+1).

(c) The cluster contains at least sy, points, i.6. L > Spin.

(d) Every point in the inside of the cluster is at least a factor of (1 —&) smaller than the boundary points p; and pj;1,—1.

All points that do not belong to a cluster are classified as noise.

We refer to Ankerst et al. (1999) for a more detailed discussion of the {-clustering method with illustrations for example
data. Note that the full £-clustering method presented by Ankerst et al. (1999) does contain some more details related to the
choice of the start and end points, which we did not mention here.
Funetions-The OPTICS algorithm as well as functions to derive both clustering results from an OPTICS output are also
available in the SciPy sklearn package. Note that the implementation in sklearn allows for a minimum cluster size different
from s,,,;,, (item—e)-for the {-clustering method (item 2 ¢ above), but we will not make use of this additional freedom to
reduce the number of parameters. Note that, different from k-Means, both clustering methods do not require an a priory-priori
determination of the number of clusters. For the ¢-clustering method, a larger & requires steeper boundaries to form a cluster,

i.e. will typically lead to a reduction of the number of resulting clusters. For DBSCAN clustering with very large €, one will

11



detect one large global cluster. Making e smaller leads then to consecutive splits of this cluster, forming (up to noise) a cluster
hierarchy. We will demonstrate the properties for both clustering methods in section 4 for different situations. In the following

315 applications, we use an estimation of the minimum number of particles per finite-time coherent set for the parameter $,,,;y,.

Intuitively, the two clustering methods can be understood as follows. DBSCAN detects those groups of points that have a
certain minimum density defined by the minimum reachability distance €. Clusters detected by DBSCAN are therefore defined
by a global density criterion. This assumes no structural differences in the type of coherent sets in different regions of the fluid.
Different from that, the {-clustering method detects clusters by finding strong changes in the density of the data points, and not
320  based on absolute densities, This has the advantage that clusters of different absolute density can be detected. Such a situation
can arise if the distribution of particles is inhomogeneous over the fluid domain, or if the spatial extend of the fluid domain is
OPTICS is the reachability plot itself. The DBSCAN- and &-clustering methods should be seen as useful tools to identify the

most important features of that plot.
325 3.4 Comparison to related methods

Our method is closely related to existing methods to detect finite-time coherent sets with clustering techniques. Most notably,
.3
fuzzy-c-means clustering. Hadjighasem et al. (2016), Banisch and Koltai (2017), Padberg-Gehle and Schneide (2017) and Froyland and Ju
use spectral embeddings of graphs that are defined on some form of physical intuition or of dynamical operators, together with
330 k-Means clustering. These studies show applications of their methods to example flows where the size of almost-coherent
sets is not too small compared to the fluid domain. Such examples are the Bickley jet flow, which we also study in section
4.1, the five major ocean basins (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017), or few individual eddies in an
ocean or atmospheric flow (Hadjighasem et al., 2016; Padberg-Gehle and Schneide, 2017; Froyland and Junge, 2018). In such
situations, noisy background trajectories can be detected as individual clusters by the partitioning method, as discussed by
335 Hadjighasem et al. (2016). For applications in large ocean domains, where the number of eddies is not known beforehand
and where there are many more noisy trajectories than coherent trajectories, such an approach is likely to fail, see also the

discussion by Froyland et al. (2019). OPTICS does not require to fix the number of clusters beforehand, and also contains an

intrinsic concept of noisy trajectories that do not belong to any cluster, making OPTICS suitable for challenging flows in large
domains.
340 As mentioned, OPTICS also contains an intrinsic notion of cluster hierarchy, i.e. coherent sets that are themselves part of

coherent sets at larger scales. Ma and Bollt (2013) studied hierarchical coherent sets in the transfer operator framework of
Froyland et al. (2010), in the spirit of the hierarchical clustering method proposed by Shi and Malik (2000). Their a

Froyland and Padberg-Gehle (2015) also use a direct embedding of individual trajectories similar to e together with

roach is

2

also partition-based, i.e. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy, a fixed cut-off has

to be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of
345  OPTICS, the reachability plot, contains such hierarchical information in a smooth and intrinsic manner.

As described in section 3.3, clustering results of the DBSCAN algorithm (Ester et al., 1996) can be derived from the reachability

12
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plot of OPTICS. DBSCAN has been used in the context of coherent sets before by Schneide et al. (2018), although not to
identify specific clusters, but to distinguish noisy from clustered trajectories. The potential of density-based clustering for
lications in the ocean and its comparison to other existing clustering methods for flow examples such as the Bickley jet (cf.
section 2.1) has not been explored so far. Different from OPTICS, DBSCAN detects clusters with a certain fixed minimum
density, although clusters with varying densities might be present in a dataset (Ankerst et al., 1999). More specifically, the

value for the cut-off parameter ¢, cf. section 3.3, has to be set beforehand. Choosing a good value for the density parameter

in DBSCAN is challenging if there is no underlying physical intuition for the density structure. As described in section 3.3,
OPTICS allows one to derive any DBSCAN clustering result, with the same value for the parameter s,,4,. after computing the
reachability plot, i.e. after one can get first insights into the clustering structure of the dataset to make an appropriate choice

for ¢. Furthermore, it also allows one to use the ¢-clustering method instead of DBSCAN (cf. section 3.3).

A more recent and powerful technigue to detect finite-time coherent sets in sparse trajectory data was presented by Froyland et al. (2019)
» based on dynamic Laplacian and transfer operators (Froyland and Junge, 2018). Froyland et al. (2019) apply their method to

a trajectory dataset in the Western Boundary Current region in the North Atlantic Ocean, and successfully detect many eddies

by superposing individual eigenvectors. The methods presented there are based on a form of spectral embedding, derived

from discretized dynamical operators. Based on this embedding, clustering results have also been derived with k-Means by
Froyland and Junge (2018) and with individual thresholding by Froyland et al. (2019). Froyland et al. (2019) also show how.

the low-order eigenvectors correspond to large-scale coherent features, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of eigenvectors. The latter approach is essentially a transformation of the embedding to
represent the most reliable features, such that a superposition of the eigenvectors alone yields the information about the location

and size of finite-time coherent sets (without a clustering ste
second step in fig. 1. Qur aim here is to focus on the third step in fig. 1, i.e. to demonstrate the potential of the density-based
clustering algorithm OPTICS, together with a very simple embedding of eg. (3).

A downside of our method compared to other approaches is the rather ad-hoc choice of embedding, cf. eq. (3). Different from
many other methods, most notably the ones of Banisch and Koltai (2017), Froyland and Junge (2018) and Froyland et al. (2019)
» this type of embedding is not derived from a meaningful dynamical operator. It could be fruitful to explore a combination of
these more meaningful embeddings together with OPTICS as a clustering algorithm in future research,

. This is essentially an optimized form of embedding, i.e. the

4 Results

4.1 Bickley jet flow

We start with the direct embedding of the trajecteries—As-explained-inseetion2-the-Bickley jet flow trajectories, cf. section
2. The data matrix has dimension X R12:000x143 X' ¢ R12,000x123 ‘We apply the OPTICS algorithm to the resulting points 5

together with DBSCAN clustering, choosing s,,;, = 80 as a minimum size of the finite-time coherent sets. In the following, all
axis units are in multiples of 1000 km. Figure 2 shows the reachability plot, together with the DBSCAN clustering result of three

different choices of €. The six vortices and the jet are clearly visible as the major valleys in the reachability plot. The hierachical
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structure of the DBSCAN clustering with decreasing e is visible in the figures from top (Yarg-seale-large-scale coherence) to

bottom (small-seale-small-scale coherence). Being-able-to-study-this-hierarchieal-structure-with-one-run-of-OP S majo
v Y § s—Note-again-that-one-runof-OP
provides-Note that for the DBSCAN clustering i sm)—results, boundary points of the

clusters can be above the hozitonal line at v = €. This is because of the definition of the DBSCAN clustering in section 3.3.

(a) DBSCAN-clustering, € = 58-10° km (b) t = 15 days (c) t = 30 days
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Figure 2. Result of the OPTICS algorithm applied to the direct embedding of the trajectories. (a), (d) and (g) show the reachability plot with
different DBSCAN clustering results, indicated by the black horizontal line. The corresponding clustering results of each choice of DBSCAN
parameter € is shown on the right of the reachability plots for different times. Grey particles correspond to noise. Axis units in the centre and

right column are in 1000 km.

NextTo illustrate the difference between OPTICS and k-Means, we use the embedded trajectories and apply classical MDS

to obtain a 2-dimensional embedding. As mentioned-described in section 3.2.2, this assures to capture the major variance along

the embedding axes. The spectrum of B in eq. (4) is shown in fig. A1 in the appendix, with two clearly dominant eigenvalues.

D

eentres-and-thejetin-the-middleThe fact that there are two very dominant eigenvalues assures that the illustration of the data
in the plane captures the major variance of the data points. Figure 3a shows the corresponding embedding of the trajectories in
the 2-dimensional embedding-space;and-fig—3b-Euclidean space. The star-shaped distribution of data points reflect the stron
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symmetries of the underlying idealized Bickley jet flow. Such symmetry is not expected to be present for more realistic flows.
Figures 3b and 3c show the cluster labels for OPTICS with DBSCAN clustering at e=1+006;-as-shown-infig—4-—Thejet-and-the

€ = 10 km, and for a k-Means clustering with K = 8 clusters, which-respectively. & = 8 corresponds to the six vortices, the

RAAARANAARAARAAANAD

jet, and one noise cluster as suggested by Hadjighasem et al. (2016).

(a) No labels (b) DBSCAN-clustering, € = 106 km (c) k-Means (K=8)
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Figure 3. a: 2-dimensional embedding of the classical MDS method (cf. section 3.2.2) of the trajectories. b: with labels according to the

DBSCAN result of fig. 4. The six vortices and the jet are clearly visible as dense regions. Grey particles correspond to noise. c: k-Means

clustering result for K=8, see fig. 5 for the spatial clustering result of k-Means.

The corresponding clustering resultis-sheown-infig—5-in-the-appendix;-showingresults in real space are shown in figs. 4 and 5
for OPTICS and k-Means, respectively. The jet and the six vortices are clearly recognizable as dense accumulations of points in

the 2-dimensional space of fig. 3b, see fig. 4 for the corresponding colours. The clustering result with k-Means in fig. 5 shows
that the clusters corresponding to the vortices are much less focussed. In addition, each of the eight clusters in fig. 3¢ contains

some of the noisy points of fig. 3b, which shows that using one additional cluster for noise does not really-address-the-issue-of

noisy data points of fig. 3b by an additional cluster in k-Means is geometrically impossible, simply because k-Means clusters
are circular, Covering all noisy points without including the centre, i.e. the jet in fig. 3b, is not possible for k-Means.
It should be noted here that the poor performance of k-Means in figs. 3¢ and 5 is not representative for other methods that

use k-Means. For example, the method of Banisch and Koltai (2017) captures the coherent structures in the Bickley jet rather
well, including the jet in the middle. We emphasize again that we use classical MDS here mostly for visualization purposes,

as the computation of the classical MDS embedding is difficult for large particle sets. In our case, a dense 12,000 x 12,000

symmetric matrix has to be diagonalized, which already takes a significant amount of computation time.
We finally also tested the performance of our algorithm with a random subset of 2,000 particles, using data for every five
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(a) DBSCAN-clustering, € = 10° km (b) t = 15 days (c) t = 30 days
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Figure 4. Result of DBSCAN clustering of the 2-dimensional embedding of the classical MDS method. a: reachability plot with black line
representing the DBSCAN parameter €. b-c: corresponding clustering results at different times. Grey particles represent noise. Axis units are

in 1000 km.

(a) t = 15 days (b) t = 30 days

Figure 5. a—%—dﬁﬂeﬁﬂeﬁal»embedd—ngesult of K =8 k-Means clustering of the 2-dimensional embedding from classical MDSmethod
€, cf. seeti fig. 4. ?heﬂHﬁfﬁeeﬂ—aﬁd—fheje&Axm units are

of 3,000 particles only at initial and final times (¢ = 0 and ¢ = 40 days). Our method is not able to detect the expected finite-time

coherent sets with using only initial and final particle data. This is likely to be a result of the ad-hoc direct embedding, cf. eq.
3), see the discussion at the end of section 3.4.

4.2 Agulhas rings

We next apply OPTICS to the Agulhas trajectories. As described in section 2, we have X € RV*63 with N = 23,821. We
choose 5,5, = 100 in the following, which corresponds initially to a square cell of 2° x 2°, i.e. a reasonable minimum size of
an Agulhas ring. Figure 6 shows the result of the direct embedding. The reachability plot in fig. 6a is much more jagged than
for the Bickley jet model flow (cf. fig. 2a). The narrow deep valleys and the wider valleys in the reachability plot indicate the
presence of large-and-small-seale-large- and small-scale coherence patterns. Figure 6a-c shews-show the DBSCAN clustering
result for a relatively large value of e. The main separation of fluid domains is between the red and the blue particles, with a
few vortices at their boundary. These two water masses are the northern and southern parts of the subtropical gyre in the South

Atlantic, the red particles moving to the west, the blue particles to the east. The second and third rows of fig. 6 show the-other

clustering results for the DBSCAN- and the £-clustering methodwith-different-vatues-of-&, respectively. The valleys with-steep
boundaries-in fig. 6g with steepest boundaries as detected by the ¢-clustering method mostly correspond to eddy-like structures,
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to eddies. For example, the blue cluster in figs. 6g-1 stays a

as-Note that not all clusters in the figure correspond

roximately coherent over the considered time interval, although it

is certainly not an Agulhas ring. An animation of the detected finite-time coherent sets for the full two years of trajectory data

based on the ¢-clustering method as in the last row of fig. 6 can be found on Zenodo (Wichmann, 2020a), showing that many
of the eddiesshown-in-fig—6-are-stith-visible-sets stay coherent for significantly longer times than the first 100 days.
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Figure 6. Result of the OPTICS algorithm applied to the direct embedding of the trajectories, with different clustering methods. Grey

particles correspond to noise.

-clustering method detects more Agulhas rings than DBSCAN. While the
lot of fig.

We-Figure 6 shows that for this situation, the
clustering results shown in the figure all depends on the parameter values for & and e, it is visible in the reachabilit
6¢ that the definition of some eddies includes the entire boundary of the valleys, i.e. up to very high reachability values. At the

same time, the detection of the large-scale clusters as in 6a-c is not possible with the &-clustering method. These findings are

in fact expected, cf. the discussion of the two clustering methods at the end of section 3.3. DBSCAN is best to detect global

density structures, i.e. when the reachability values of all points are compared to the same cut-off €. Regions that are dense
lobally are better detected with the

locally but not necessaril -clustering method. Despite these differences between the two

clustering methods, we again emphasize that the main result of OPTICS is the reachability plot itself. Fig. 7 shows a colour
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map at initial time of the reachability values. We clearly see Agulhas rings as the dark regions corresponding to lowest values
of reachability. The regions of large reachability correspond to trajectories that are relatively noisy compared to all the other

trajectories.
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Figure 7. Reachability values at initial time, resulting from the OPTICS algorithm applied to the direct embedding of the trajectories. The
regions with lowest values clearly correspond to Agulhas rings. The colour bar is cut off at a reachability of 1000 km to show the relevant

structure of variations.

In order to illustrate again the difference between OPTICS and k-Means for this example, we choose 12,000 random trajec-
tories and again embed the trajectories in a 2-dimensional space with classical MDS (cf. section 3.2.2). The reduction of the
particle set is necessary to simplify the eigendecomposition of the matrix B in eq. (4), and we therefore choose s,,,;, = 30. The
corresponding spectrum of B is shown in fig. C in the appendix, showing that there are again two dominant eigenvectors-—, i.e.
visualizing the netwok in the plane captures the main variance of the data. Figure 8 shows the embedded trajectories together
with OPTICS / DBSCAN clustering (fig. 8b) and k-Means (fig. 8c) for K=40. Figs. 9 and 10 show the corresponding clustering
results in the fluid demainsdomain. It is visible that k-Means does not detect a single vortex, but splits the fluid domain into
regions of approximately similar size. OPTICS easily-detects multiple Agulhas rings by finding the steepest-deepest valleys in
the reachability plot.

Itis interesting to note that the use of classical MDS in fig. 9 has lead to the detection of many of the vortices of fig. 6d-f with
DBSCAN instead of the {-clustering method. The transformation to the reduced 2D space has hence lead to a simplification
of the reachability plot, which now represents the major variations in the distances of the embedded trajectories. At the same
time, the large-scale structure of 6a is not visible any more in fig. 9. This indicates that exploring more dimensionality reduction

techniques could be useful for future research, in particular those that are computationally more efficient than classical MDS.
Spectral embeddings derived from networks together with partitien-based-partition-based clustering have a similar problem

as the one illustrated in figfigs. 8c and 10 (Froyland et al., 2019). Similar to the case discussed here, OPTICS can be used to
overcome the problems of k-Means. We show this in appendix C for the network proposed by Padberg-Gehle and Schneide
(2017) for the Agulhas region, together with a brief introduction of the network and how to construct spectral embeddings.

In summary, k-Means again fails to detect any of the vortices, while OPTICS detects many of the coherent vortices in the

18



470

(a) No labels (b) DBSCAN-clustering, € = 80 km (c) k-Means (K=40)

~ 2000 i | ‘
c %
kel ;
2 "
@ 0 . . Pl e
__g oy
& vy
—5000 - 1 1
—10000 0 10000 —10000 0 10000 —10000 0 10000
dimension 1 dimension 1 dimension 1

Figure 8. Embedding of the Agulhas trajectories in the 2-dimensional space defined by the leading eigenvectors of the MDS Kernel matrix
B. a: no labels. b: clustering labels of OPTICS / DBSCAN, see fig. 8-9 for the corresponding plot in the Agulhas region. Grey particles

represent noise. c: k-Means with K = 40, see fig. 10 for the corresponding plot in the Agulhas domain.
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Figure 9. Result of OPTICS applied to the 2-dimensional embedding of 12,000 randomly selected particles with the classical MDS method

cf. fig. 8b, and s,,;, = 30. The corresponding spectrum is shown in fig. C in the appendix, showing that there are two dominant eigenvectors.

Grey particles are classified as noise.

spectrally embedded network. Yet, other flow features are also present that result from the physical motivation of the network

definition, see the results in appendix C.

5 Conclusions

The abstract embedding of particle trajectories in a metric space with subsequent clustering is a promising field of research
for the detection of finite-time coherent sets in oceanography;-as-itecan-be-potentially-applied-to-sparse-sets-of-trajectoriese—g-
from-drifter release-experiments—, Yet, most of the existing methods laek-the-ability-to-separate-finite-time-coherent-structures

because-the-clustering-methodsproposed-sofar-have been based on graph partitioning, which treats-has no concept of noisy,

unclustered data-points-insufheienttytn-thisa S s e e s s s e B s p Lees s Lee rgTectories.
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Figure 10. Result of the k-Means clustering with / = 40 applied to the 2-dimensional embedding with classical MDS, cf. fig. 8c.

This is a problem for applications in the ocean, where many eddies are transported in a noisy background flow on large
domains. This study is motivated by the success of Froyland et al. (2019) in overcoming the problem of graph partitioning by a
sophisticated form of trajectory embedding. Here, we show how the density-based clustering algorithm OPTICS (Ankerst et al.,
1999) can be used instead of graph partitioning, in order to detect small-scale eddies in large ocean domains. Different from
partition-based-partition-based clustering methods such as k-Means, OPTICS detects-the-clusteringstructure-of-the-embedded

trajectories-byloekingfor-does not require to fix the number of clusters beforehand. Clusters are detected by identifying dense

accumulations of points, i.e. groups of trajectories that are close to each other in embedding space. Coherent groups of particle
trajectories can be identified as valleys in the reachability plot computed by the OPTICS algorithm. This plot also has a natural
interpretation in terms of cluster hierarchies, i.e. finite-time coherent sets that are by themselves part of a larger scale finite-time
coherent set. Such hierarchies are present in the surface ocean flow, where the subtropical basins are approximately coherent

and at the same time eomprise-contain other finite-time coherent structures such as eddies and jets. Fhis-hierarchical-property

We apply OPTICS to Lagrangian particle trajectories directly, in the spirit of Froyland and Padberg-Gehle (2015). OPTICS

successfully detects the expected coherent structures in the Bickley jet model flow, separating the six vortices and the jet
from background noise. We also apply our-methed-+te-OPTICS to simulated trajectories in the eastern South Atlantic and
successfully identify Agulhas rings, separated by noise. We visualize the difference of-OPTICS-to-between OPTICS and k-
Means with a 2-dimensional embedding of the trajectories based on classical multidimensional scaling. We also show how
OPTICS can be applied to the spectral embedding of the particle-based-particle-based network proposed by Padberg-Gehle
and Schneide (2017), providing a necessary amendment to this-their method to detect coherent vortices in a large ocean

domain, i.e. when k-Means fails. Our method is
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conditions—Finally—eur-method-is-very simple to implement in Python, as OPTICS is available in the SciPy sklearn pack-
age. While we here present the results of OPTICS with three different kinds of embeddingembeddings, it is likely that OP-

TICS also works for other trajectory embeddings, er—even—other-metheds—using-clustering—suech-as—transfer-oeperater-base

of Banisch and Koltai (2017) or Froyland and Junge (2018). Using such dynamically motivated embeddings instead of the

ad-hoc direct embedding presented here could be a promising direction for future research.
Extending our method to datasets with more trajectories can be made more efficient by choosing a finite generating distance

for OPTICS (Ankerst et al., 1999). While this is better from a computational point of view, it requires some knowledge or
intuition about the spatial distribution of the embedded trajectories. A major challenge for the method proposed here is the em-
bedding dimension. For very-long trajectories, it is impertant-necessary to reduce the dimensionality of the trajectories before
applying OPTICS. A complication here is the desired property of an embedding to preserve both local and global distances in
order to make full use of the hierarchical properties of OPTICS. This means, for example, that the popular method of a locally
linear embedding (Roweis and Saul, 2000) is not suitable, unless only the smal-seale-small-scale (densest finite-time coherent

sets) are to be detected. Using classical multidimensional scaling (MDS), as we did here to visualize the clustering results, in

principle preserves local and global distances, butis-although our results indicate that the large-scale coherence structure in the

Agulhas flow is less pronounced for the classical MDS embedding compared to the full embedding of trajectories. In any case
classical MDS is not an option for very large data-sets-datasets, as it requires the diagonalization of a dense symmetric square

matrix of size equal to the particle number. Spectral embeddings of derived networks such as the ones of Hadjighasem et al.
(2016), Padberg-Gehle and Schneide (2017) and Banisch and Koltai (2017) are useful to achieve lower-dimensional embed-
dings, but they come with the introduction of additional parameters for the network construction and heuristics to truncate the
embedding dimension. Further research into other non-linear dimensionality reduction techniques that have not been explored

in the context of finite-time coherent sets can lead to more efficient and robust methods.

Code and data availability. All code is available at https://github.com/OceanParcels/coherent_vortices_OPTICS, including the code to gen-
erate the Bickley jet trajectories. The data for the virtual particles in the South Atlantic is available on Zenodo (Wichmann, 2020b).
Details on the Parcels simulation for the virtual trajectories in the ocean can be found at the GitHub repository of our previous paper,
https://github.com/OceanParcels/near_surface_microplastic. The data from the NEMO ORCA-006 run are available at http://opendap4gws.

jasmin.ac.uk/thredds/nemo/root/catalog.html

Appendix A: Agulhasrings-with-smaller partiele setAdditional figures for the Bickley jet flow

Appendix B: Additienal-figuresfor-the-elassicalkMDS-embedding
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Figure Al. ResultSpectrum of the OPFICS-atgorithmclassical MDS kernel matrix B for the Aguthas-particles-applied-to-5;000-randomty
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Figure Al. Result of /==8kMeans—elustering-the OPTICS algorithm for a random subset of 2,000 particles in the 2-dimensional
embedding-from-classtealMBSBickley jet flow, efwith particle data every 5 days instead of every day. figTo account for the smaller number

of particles, we set S,.;n, = 15 for this case. 4—Axisunits-The six vortices and the jet are in-1000-kmstill clearly visible.

Appendix B: Additional figures for the Agulhas flow
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Figure B1. Result-Spectrum of the k-Means-clastering-with—/<—40-applied-to-the 2-dimensional-embedding-with-classical MDS kernel

matrix B for the Agulhas flow, efwhere we first constrain the particle data to 12,000 randomly selected trajectories. figThere are again two
dominant eigenvalues, for which we choose the corresponding vectors for the embedding in section 4.2.8e-

Appendix C: Speetra-of the MDSkernelmatriees

Appendix C: Detecting Agulhas rings with a partiele-basedparticle-based network

To demonstrate that OPTICS can also be applied to the spectral embedding of a particle-based-particle-based network, we use
the network proposed by Padberg-Gehle and Schneide (2017). If we have a set of particle trajectories x;(t), where i = 1,..., N,

t =ty,ts,...,t7 with N the number of particles and 7" the number of time steps, the network A € RY*¥ is defined as:

1, ifJte{ty,ta,....t0} s.t. ||z (t) —z;(t)|| <d,
iy = {to,ta,. o tr} st o) —a; (0] €

0, otherwise.

Here, ||.|| denotes the Euclidean norm and d-<R-d > 0 is a fixed pre-determined cut-off parameter, see Padberg-Gehle and

Schneide (2017) for a discussion on the choice of d (called € in Padberg-Gehle and Schneide (2017)). Similar to Padberg-Gehle
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and Schneide (2017), we embed the nodes in a lower dimensional space R by means of the eigenvectors of its random walk

Laplacian, (see e.g. Von Luxburg (2007))

L.=D7'4, (C2)

where D is a diagonal matrix with D;; =}, A;;. The embedding of node i is defined by

yi:(vl,ivwl,iw"avK,i) 6RK7 (C3)

where +the-v;, i =0,..., N — 1 are the right eigenvectors corresponding to the largest eigenvalues \; of L,.. The eigenvalues

are assumed to be ordered in descending order, i.e. 1 = A\g > A1 > ..., > A\y. Thisisthe-mostecommonnetworkembeddingfor

—The classical simultaneous K-way normalized cut proceeds with applying the k-Means algorithm to the embedding defined
in eq. (C3) to detect K clusters (Von Luxburg, 2007), resulting in an approximate solution to the normalized cut problem (Shi
and Malik, 2000).

Figure C1 shows the spectrum of the resulting random walk Laplacian with d = 200 km. No obvious spectral gap is visible
that would suggest a truncation of the embedding space. Figure C2 shows the clustering result if we apply a k-Means al-
gorithm as suggested by Padberg-Gehle and Schneide (2017) to detect K = 40 clusters. It is visible that the partition-based
partition-based k-Means clustering method does not detect any individual Agulhas rings, but partitions the state space into

regions of approximately equal size.

Eigenvalues of L,

1.0+,
0.9
0.8
0.7
0.6
0.5
0.4

0.3 1

Figure C1. Spectrum of the random walk Laplacian, cf. eq. (C2) of the network proposed by Padberg-Gehle and Schneide (2017) applied to

the Agulhas trajectory data. No clear gap exists that suggest a truncation of the embedding.

Applying OPTICS instead ot-of k-Means with a subsequent {-clustering detects some of the Agulhas rings, see fig. C3,
where we choose s,,, = 100 as in section 4.2. Note that also other structures than typical circular eddies are detected. While
this depends on the clustering parameter £ (or e for DBSCAN)), this is also a consequence of the physically motivated network
defined by eq. (C3), where particles are connected equally if they are close to each other at least once in time. This is different

from the direct embedding, where we require particles to stay close to each other along the entire trajectory.
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(a) t = 0 days

Figure C2. Result of k-Means clustering applied to the 40 leading eigenvectors of the random walk Laplacian, cf. eq. (C2), looking for 40

clusters. No individual vortices are detected.
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smin = 100. Grey particles are classified as noise.
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