Answer to reviewer 2

General answer:

We thank the reviewer for the critical comments, and in particular for the detailed analysis of other
methods and their comparison to our approach. We agree with most points raised by the reviewer.
We have made major adaptations to the formulations in the revised version, and explain the relation
of our method to existing studies in more detail.

Please note:

The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised
version.

Comment 1

There are already several clustering methods in the literature for finding finite-time coherent sets,
including a density-based clustering DBSCAN by Schneide-etal’18, which is a special case of the
OPTICS approach in the manuscript. The idea of a hierarchy of finite-time coherent sets has been
considered by Ma/Bollt’13. The paper Fr/Sa/Ro’19 develops a robust method to classify only those
sets are that coherent, not fully partitioning the domain. In Fr/Sa/Ro’19, coherent sets at different
spatial scales are also considered, similar to a hierarchy. Fr/Sa/Ro’19 also considers the Bickley jet
and ocean eddies, with ocean eddies listed as a motivation in Fr/Sa/Ro’19 for developing a non-
partitioning approach. Not limited to the work above, | would say there is some "upselling" of the
novelty in the manuscript, and that prior work is occasionally omitted, mischaracterized, or overly
criticized.

Answer to comment 1

Thank you for this comment. We did not intend to upsell our work, or omit, mischaracterize or
overly criticize existing work. In fact, our work has been majorly motivated by the paper of Froyland
et al. 2019. But we understand that the original manuscript appeared to do so, and we thank the
reviewer to making this clear to us. We have made the following changes in the new version.

1. We mainly removed the discussion of other methods in the introduction and moved it to a
separate section. In the introduction, we emphasize that our work is majorly inspired by
Froyland et al. 2019. We are also more specific about the actual problem at hand, i.e. the
detection of many small scale coherent sets in large-scale, noisy ocean flows.



The detection of coherent Lagrangian vortices using abstract embeddings of Laganglan trajectories tog:ﬂ'lcrw ith data clusr.eﬂng

40 tcchmq ues has meeived slgmﬁcant attention in the racent lilerature

45 sparse trajectory data, and it can in principle be applied to ocean drifter trajectories. as deme-demonstrated tg,' Froyland and
Padbarg-(‘nehle ("-'ﬂlS) and Banisch and Koltai (2017) for the detection of the five ocean basins. Yet, the-matheds propasad so

—maost of these methods cluster trajectory data with.

graph partitioning, which does not incorporake the difference between coherent, clustered trajectories and noisy trajectories that

should not belong to any cluster. Graph partitioning has been shown to work in situations where the finite-time coherent sets arg

50 nottoo small compared to the fluid dom jighase

. For applications 0 Lagrangian trajectory d datascls on_ basm scalc ocean domains, where multiple small- scalc coherent scls_
(add:csﬁ coexistwith noisy Lra_}ccloms in the background gmph paruuomngls however likely to fail. Similar observations wers
made cpactral clust chas ¢ ; csand by Froyland et al. (2019) for the partition-based
clusiering approaches based on transl'er and d}'namlc Laplace operators byFrovland e ol OodoyFroyland and Junge J018)

55 . Although some atiempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-

ditional cluster cormesponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al. (2019) have developed sssleertsm
a special form of trajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators
and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-
60 clusiered background noise.
Here—weshew—hew—the-Motivated by the results Froyland et al. (2019) obtained by developing 2 new form of trajectory
embedding, we here explome the potential of another clustering algorithm to overcome the inherent problems of partition-based
clustering. We use the density-based clustering method OPTICS {Ordering Points To Identlr)' the Clustering Structure) devel-
oped by Ankerst et al. {1999) 2 e - - daripeto delact

65 coherent sets in larpe ocean domains, using a very simplk choice of embedding (cf. section 3.2.1). Density-based clusiering

aims to detect groups of data points that are close to each other, Le. regions with high data density. Our data points correspond to

entire trajectories, and groups of trajectories staying close toeach other over a certain time interval #fe-detested-sscormespond o

such regions of high point densil}' Different from parsten-besed-partition-based methods such as k-Means or fuzz_',.' -C-means,
70 notion of a nms:,' data point: a pcml does not belong to an}' cluster (i.e. a finite-time mherem set) if it is not part of a dense re-

gion,

A mom detailed comparison of the method presented here (o existing related methods can be found in section 3.4.

2. We have added an additional section to compare our method to existing approaches. There,
we stress what our contribution is compared to Froyland et al. 2019: the study of an
improved clustering step, instead of an improved embedding step. We also mention the
downside of our method compared to Froyland and Junge (2018) and Froyland et al. (2019).
Note that the hierarchical method of Ma and Bollt (2013) is powerful, but it is partition-
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based and not intrinsic to the clustering algorithm, as there is a cut-off chosen at each step
of the hierarchical clustering. Also, note that many of the existing methods that use k-Means
did work for examples where the coherent sets are not very small compared to the fluid
domain. Finally, DBSCAN has been used by Schneide et al. (2018), but not to derive explicit
clustering results, and also not in the ocean context. We explain this in this new section.

34 Comparison to related methods

Our method is closely related to existing methods to detect finite-time coherent sets with clustering echnigues. Most notably,

T almosl-

..... eans clustering. These studies show appli examp
sets is not too small compared to the fuid domain. Such examples are the Bickley jet flow, which we also study in section
4.1, the five major ocean basins (Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017). or few individual eddies in an
oczan or atmospheric fow (Hadjighasem et al., 2016; Padberg-Gehle and Schneide. 2017 Froyland and Junge. 2018). In such
situations, noisy backpround trajectories can be detected as individual clusiers by the partitoning method, as discussed by
Hadjighasem et gl (20161, For applications in large ocean domains, where the number of eddies is not known beforehand
and where there are many more noisy trajectories than coherent trajectories, such an approach is likely to fail, see also the
discussion by Froyland et al. {2019). OFTICS does not require to fix the number of clusters beforehand, and also contains an

intrinsic concept of noisy trajectories that do not belang to any cluster, making OPTICS suitable for challenging fows in large

coherent  larger sc
Froyland et al. (2010}, in the spirit

also partifion-hased, i.¢. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy. a fixed cut-off has

io be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of
OPTICS, the reachability plot, contains such hierarchical information in a smooth and intrinsic manner,
DBSCAN algorithm (Ester et al., 1996) can be derived from the reachability

Asdescribed in section 3.3, clusiering results of the |
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plot of OPTICS, DESCAN has been used in the conlext of coherent sets before by Schneide et al (2018), although not o
identify specific clusiers, but w distinguish
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Froyland and Junge (2018) and with individual thresholding by Froyland et al. (201%). Froyland et al. (2019) also show how
the low-order eigenvectors comespond 1o large-scale coherent features, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of sigenvectors. The latler approach is ¢ ssentially a transformation of the embedding to

365 represent the most reliable features, such that a superposition of the eigenvectors alone vields the information about the location

choi 1M

ovland and Junge (2018) and Froyland et

270 nes of Banisch and Koltai (2017),

- this type of embedding is not derived from a meaning ful dynamical operator. 1t could be fruitful to explore a combination of

these more meaning ful embeddings topether with OPTICS as a clustering algorithm in future research.

Comment 2

A positive aspect is that the (standard) "DBSCAN" and "\xi" clustering outputs of the OPTICS
clustering could provide potentially useful hierarchical information, and to my knowledge this is a
new way of analyzing the dynamics. Unfortunately, this is not explored much, and the authors do
not provide an intuitive explanation of what the "DBSCAN" and "\xi" clustering algorithms are
actually doing in their dynamical context. It would be beneficial for the authors to link the algorithms
more with the dynamical inputs (trajectories) and the dynamical problem being solved. As this is the
main contribution of the paper, | think this needs to be expanded much more. The reasons behind
the choices of which clustering algorithm is applied to the different datasets should also be
explained.

Answer to comment 2
Thank you for this comment. We were indeed lacking some form of intuition behind the two
clustering methods and their application. We have made the following changes.

1. More explanation about the embedding and why the embedded trajectories create a signal
in terms of data density.



12 Trajectory embedding
31 Direct embedding

The direct embedding of each trajectory in BT is the most straishit-forward siraightforward embedding as it requires no further
pre-processing of the trajectory data For simplicity, assume we are given a set of V trajectories in a 3-dimensional space, ie.
200 (xy(t)wit).z(t)) wherei =1,..., N and ¢ =¢#y,... 7. We then simply define the embedding of trajectory 1 in the abstract

AT-dimensional space as

uy = (xglta) my(ty ) mobr)we (o). we (B ) - b s (). = (B1) - omltr)) e RIT, 3)

and impose an Euclidean metric in B*7 to measure distances between different embedded rajectories. The resulting em-
bedded data matrix X is then simply given by the vertical concatenation of the different embedding vectors. This kind of
205 embedding was alsoexplored by Froyland and Padberg-Gehle (2015}, together with a fuzzy -c-means clusiering. Intuitively, if
twa trajectories : and 7 belong (o the same finite-time coherent set, the corresponding particles follow very similar pathways,
Le. the Euclidean distance of the embedding vectors dy = ||u, - 1| is expected to be small. On the other hand, a partick 1
that belongs (o a coherent set is expected to have a larger distance to a particle j that is not part of the set. In other words,
groups of particles that form a finie-time coherent sel are dense in the embedding space. This motivates to use a density-based
210 clustering algorithm to detect finite-time coherent sets,
To take into account the wrp-periodicity in x-direction of the Bickley jet flow, we first put the individual 2-dimensional data
points on the surface of a cylinder with radius r;/2 in B, and interpret the resulting {2 — 2 Hrajectories in a 3-dimensional
Euclidean space. The resulting data matrix is ¥ = RY ™ with ¥ = 12,000 and T = 41. For the Agulhas particles, we put the
single data points on the earth surface in a 3-dimensional Euclidzan e mbedding space by the standard coordinate transformation
215 of spherical to Euclidean coordinates. The msulting data matrix is thus X = BV=% with ¥ — 23 821 and T — 21.

2. Anintuitive explanation of the two clustering methods and their major properties.

Intuitively, the two cluslering methods can be undersiood as follows DBSCAN detects those proups of points that have a

not

220 based on absolute densities. This has the advantage that clusiers of different absolute density can be detected. Such a situation
can arise if the distribution of particles is inhomogeneous over the fluid domain, or if the spatial extend of the fluid domain is
very large such that the properties of finite-time coherent sets vary significantly. It is important to note that the main result of
OPTICS is the reachability plot itself. The DBSCAMN- and £-clustering methods should be seen as useful tools to identify the
most important features of that plot.

3. We have included a DBSCAN clustering result in the main figure of the Agulhas flow example, and
discuss the differences between xi and DBSCAN clustering.
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Figure 6. Result of the OFTICS algorithm applicd to the direct embedding of the trajectorics, with different clustering methods. Grey

particles comespond to nodse.

435  WeFigure 6 shows that for this situation, the £-clustering method detects more Agulhas rings than DESCAN, Whike the
clusiering results shown in the figure all depends on the parameter values for £ and ¢, it s visible in the reachability plot of fig.
fig that the definition of some eddies includes the entire boundary of the valleys, i.e. up to very high reachability values, At the
in fact expected, cf. the discussion of the two clusiering methods at the end of section 3.3, DBSCAN is best to detect global

440 density structures, i.e. when the reachability values of all points are compared w the same cut-off ¢, Regions that are dense

C
8oL e

locally but not necessarily globally are betier detected with the £-clustering method. Despite these differences hetween the two

clusizring methods, we again emphasize that the main result of OPTICS is the reachability plot itself. Fig. 7 shows a colour
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map at initial time of the reachability values. We clearly see Agulhas rings as the dark regions corresponding o lowest values
of reachability. The regions of large reachability commespond to trajectories that are relatively noisy compared to all the other
445  rajectorias.

Comment 3

The (uncited) paper Froyland/Junge’18 develops a finite-element approximation of the dynamic
Laplacian, which is a very accurate and robust method of finite-time coherent set extraction for low-
dimensional systems of the type treated in the Wichmann manuscript. In Froyland/Junge’18 there
are no free parameters, the method is unaffected by the density of the data points, and estimates
are produced on the whole domain. A comparison can be made for the Bickley example in the
Wichmann manuscript because the setup is identical. Wichmann et al uses a 200x60 grid of points
and particle positions at times t=0, 1, 2, 3,..., 39, 40. Froyland/Junge’18 studied the same Bickley
flow as in Wichmann, except that Froyland/Junge’18 used a coarser 100x30 grid of points and only
particle positions at time 0 and time 40. Figure 15 in Froyland/Junge’18 shows much clearer images
with fewer trajectory inputs. Thus, | think there is not a strong case for the approach in the
manuscript being a better performer.

Answer to comment 3



Thank you for this comment, and we apologize for not having cited that paper. Note however that
the clustering results presented there are also based on k-Means clustering, and there are no free
parameters only up to the choice of embedding dimension and the number of clusters. The paper
also shows that the approach with k-Means works for situations where the coherent sets are not
very small compared to the fluid domain, see the problems of k-Means in this context in the paper
by Froyland et al. 2019. Nevertheless, the concepts presented there are powerful, as they provide a
type of embedding that has a clear dynamical motivation, which is an advantage compared to our
heuristic embedding. We refer to the paper at many places in the new version in different contexts:

1. End of the new section on comparison to other methods

370 many other methods, most notably the ones of Banisch and Koltai (2017), Froyland and Junge (2018) and Froyland et al. (2019)

. this type of embedding is not derived from a meaningful dynamical operator, It could be fruitful to explore a combination of
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2. We now also tested our method with the Bickley jet using less particles and less data points
for each trajectory. Our method does indeed not perform as well as the method of Froyland
and Junge (2018), and we want to thank the reviewer for explicitly mentioning this possible
comparison.

We finally also ested the performance of our algorithm with a random subset of 2,000 particles, using data for every five
days instead of every day, cf. fig. Al in the appendix, OPTICS still deiecis the six vortices and the jet. although the cluster
boundaries are less clearly defined compared o fig. 2. Froyland and Junge (2018) detect the vortices and the jet by using data

15

of 3,000 particles only at initial and final times (¢ = 0 and ¢ = 40 days). Our method is not able to detect the expected finite-time
415 coherent sets with using only initial and final particle data. This is likely to be a result of the ad-hoc direct embedding, cf. eq.

(3), see the discussion at the end of section 3.4,
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3. Inthe conclusion, we come back to the problems of our form of embedding and mention
again that a combination of the embedding of Froyland and Junge (2018) together with
OPTICS could yield better results.



490 ‘W apply OPTICS to Lagrangian particle trajectories directly, in the spirit of Froyland and Padberg-Gehle (2015). OPTICS
successfully detects the expectzd coherent structums in the Bickley jet model flow, separating the six vortices and the jet

successfully identify Agulhas rings, separated by noise. We visualize the differznce sFOPTICSte-between OPTICS and k-
Means with a 2-dimensional embedding of the trajectories based on classical multidimensional scaling. We also show how
4g5 OPTICS can be applied to the spectral embedding of the ges besed-particke-based network proposed by Padberg-Gehle
and Schneide (2017), providing a necessary amendment to S+s-their method to detect coherent vortices in a large ocean

domain, i.e. when k-Means fails. Our method is difemat-Ge e e e e

20

tHem— ity —our =very simple to implement in Python, as OFTICS is available in the SciPy skleam pack-
age. While we here present the results of OPTICS with three different kinds of embeddinsembeddings, it is likely that OP-
TICS also works for other trajectory embeddings, s — — - --

finita time cohamat sate (Brovland at al 0100 ae denamic aslacians (lrovland ab sl 30104 cuch as the spectral embeddings

505 of Banisch and Koltai (2017) or Frovland and Junge (2018). Using such dynamically motivated embeddings insiead of the

Comment 4

The idea to not fully partition the domain has already been treated in Fr/Sa/Ro’19. Regarding the
ocean eddy example in the manuscript, Fr/Sa/Ro’19 also applied the method of Froyland/Junge’18
to ocean flow and successfully extracted a greater number of eddies than Wichmann at a higher
quality. On the other hand, Fr/Sa/Ro’19 used AVISO-derived trajectories rather than model output,
so it could be that Wichmann is using a rougher velocity field. Wichmann also used lower trajectory
density than Fr/Sa/Ro’19 by a factor of about 4; both of these items could make Wichmann's task
more difficult, compared to Fr/Sa/Ro’19.

Answer to comment 4

Thank you for pointing this out. For a detailed comparison of the both methods, it would indeed be
necessary to choose exactly the same flows. Detecting a greater number of eddies in a specific ocean
domain does not necessarily have an implication for the usefulness of a method. We would like to
note again that the results of Froyland et al. (2019) were a major motivation for our paper, and we
do not aim to compete with their method any aspects. We would rather like to show how a change
of clustering algorithm, instead of a change of embedding, can also yield better results compared to
partition-based clustering, see the paragraph below in the revised paper on the comparison to other
methods. We believe that a combination of the embedding of Froyland and Junge 2018 together
with OPTICS could be a useful extension of our method. See our answer to your comments 1 and 3
for more content relating to their method.



