Answer to reviewer 1

General answer:

We thank the reviewer for the detailed comments on the paper. They have helped us to significantly
improve on the readability and clarity in the revised version. We have implemented changes for
every comment raised by the reviewer.

Please note:
The images in this file are excerpts of the revised version in latexdiff. Please apologize the formatting
problems of latexdiff that cuts off references at line breaks. This is not the case in the revised version.

Comment 1

| find there to be room for improvement on a few presentational issues. (i). There seems to be an
assumption of familiarity with other clustering methods. The paper would be more accessible, and
therefore useful, if the authors took just slightly more time in defining new terms and in providing
the intuitive content of mathematical concepts.

Answer to comment 1
Thank you for your comment. We have made the following changes in the revised version:

1. Additional paragraph in the methods section that briefly describes why embedding / clustering is
necessary, and also explains in one sentence what k-Means does

The embedding is necessary Lo represent the trajectories as points in 4 metric space. Different options for embedding the

180 frajector ist, e.c. a direct embedding of the dala poinis along the irajectories (Froyland and Padberg-Gehle, 2015), or

embeddings based on the eigenvectors derived from networks that are defined by physically motivated rajeclory similarities
(Banisch and Koltai, 2017; Padberg-Gehle and Schne

e, 2017; Banisch and Koltai, 2017; Froyland and Junge, 2018), Onee an

embedding of each frajectory as a point in a metric (typically Fuclidean) space is eslablished, one can apply a clusis

ing

algorithm. Roughly speaking, clusiering algorithms try to identify groups of points that are close 1o each other as a cluster

185 Farition-based clusiering methods divide the entire data into a (typically fixed) number of I clusters, such that each data

L e LANK e, the most popular
sed by Frovland and Padberg-Gehle (2013} in the coniext of finite-time coberent

method is fuzzy-c-means clustering, as dis

sets.

2. Additional explanation in the methods section that describes why the embedding we choose is
expected to create a detectable signal for OPTICS.



3.2 Trajectory embedding

321 Directembedding

The direct embedding of each trajectory in BP7 is the most séraizht- fopsard siraighiforward
pre-processing of the trajectory data. For simplicity, assume we are given a set of NV trajectories in a 3-dimensional space, i.e.
200 (zy(f)ow(E),=(t)) where: =1,... Nand £ =#,..., t4-. We then simply define the embedding of trajectory « in the abstract

3T'-dimensional space as

wy = (xltg ) oyt ) omlbr o (o ) (B ) wltr )zl s (). ozl b)) e BT 3)

and impose an Euclidean metric in B*7 o measure distances betwsen different embedded rajectories. The resulting em-
bedded data matrix X is then simply given by the vertical concatenation of the different embedding vectors. This kind of
205

210

To take into account the wrp-periodicity in x-dirction of the Bickley jet flow, we first put the individual 2-dimensional data

points on the surface of a cylinder with radius rp/2 in ®*, and interpret the msulting 42— 24 trajectories in a 3-dimensional

Euclidean space. The resulting data matrix is X < BY = with ¥ = 12,000 and T = 41. For the Agulhas particles. we put the

single data points on the eanh surface in a 3-dimensional Euclidean embedding space by the standard coordinate transformation
215 of spherical to Euclidean coordinates. The msulting data matrix is thus X « BV=3 with N = 23 821 and T = 21.

Comment 2

(ii) | find it a little strange that some figures are presented in the appendix, but discussed only in the
main text. Some of these make good illustrations of the performance of the method with respect to
others, e.g. D1&D2. | feel this tends to negatively impact the narrative. If figures are discussed in the
main text, | would present them there also.

Answer to comment 2

Thank you for this comment. We agree with the reviewer and have now included the clustering
results of the classical MDS method in the main text. In the revised version, we provide the results of
OPTICS together with its comparison to k-Means for both of the model flows. We have decided to
leave the discussion of the embedded network of Padberg-Gehle and Schneide (2017) together with
the previous figures D1-D3 in the appendix. This is because the major focus of the paper is the
OPTICS clustering on the direct embedding of the trajectories, as this removes the need of several
parameters compared to Padberg-Gehle and Schneide (2017), such as the cut-off parameter d, and
the embedding dimensions. A reader that is interested in the application of OPTICS to the spectral
embedding of Padberg-Gehle and Schneide (2017) gets a full account on that topic in the appendix.
We do not discuss these results in the main text, but only mention them quickly. The actual
discussion is contained in appendix C of the revised version.




Comment 3
(iii) The paper has a highly technical focus throughout. More framing of the import of this problem at
the start and end would have been appreciated.

Answer to comment 3

Thank you for this suggestion. We have now added more content on the problem itself, i.e. the
detection of many small coherent structures in a large, noisy ocean domain.

1. Introduction

should not belong to any cluster. Graph partitioning has been shown to work in situations where the finite-time coherent sets are
50 notioo small compared to the Auid domain (Froyland and Padherg-Gehle, 2015; Hadjighmm et al, 2016; Padberg-Gehle and Schneide, 1
- For applications (o Laprangian trajectory datasets on basin-scale ocean
(eddies) coe bajzkgmu dgmphpm‘tl is however | Ill.cl'..' o fzul Sirrula.r abﬁer\'auonswere
made £ - 5 e : : by Froyland et al. (2019} for the partition-based
tlumnng_appm\achcs based on transfer and d}'namlc Laplme operators y-Frevland adal 20004 Froyland and Junge, 2018)
55 . Although some atiempts have been made to accommodate such concepts in hard partitioning, e.g. by incorporating one ad-

noisy ““.}ccwm sin

ditional cluster corresponding to noise (Hadjighasem et al., 2016), this approach is likely to fail for large ocean domains, as

discussed by Froyland et al. (2019) and shown in section 4 of this paper. Froyland et al (2019) have developed ss-sleerithm
a special fom

1 of rajectory embedding based on sparse eigenbasis decomposition given the eigenvectors of transfer operators
and dynamic Laplacians. By superposing different sparse eigenvectors, they successfully separate coherent vortices from un-
60 clusiered background noise.

2. Conclusion

The abstract embedding of particle trajectories in a metric space with suhseque:nt c]ustenng is a promising field of reszarch
470 for the detection of finite-time coherent sets in oceanographyss+ ¥

MMMW Yet, most of the e:usung mﬂmds&k—hha—ahﬂﬂj—h}mp&mﬂ-ﬁm&a—&ma—e@ham

-B&&Hia—tha—&ﬂ-ﬂe&&g—&t&ﬁrﬂdﬁ-pﬁp&i&ﬂ—%ﬂ—ﬁf—hﬂe been based on gmph pamuunmg which frests-has no co WP[ of mis].'

unclustered detep
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475 This is a problem for applications in the ocean, where many eddies are transporied in a noisy background fiow on large
domains, This study is motivated by the success of Froyland et al. (2019) in overcoming the problem of graph partiioning by 2
sophisticated form of trajectory embedding. Here, we show how the density-based clustering algorithm OPTICS (Ankerstetal.,
1999) can be used insiead of graph partitioning, in order to detect small-scale eddies in large ocean domains. Different from
parttenbased-partition-based clustering methods such as k-Means, OPTICS deteststhechusternastetum-of theembaddad

480 {rafretodas by locking fordoes nol require fo fix the number of clusters beforehand. Clusiers are detzcied by identifying dense
accumulations of points, Le. groups of rajectories that are close to each other in embedding space. Coherent groups of particle
trajectorizs can be identified as valleys in the reachability plot computed by the OPTICS algorithm. This plot also has a natural
interpretation in &erms of clusier hierarchies, Le. finite-time coherent sets that are by themselves part of a larger scale finite-time
coherent set. Such hierarchies are present in the surface ocean flow, where the subtropical basins are approximately coherent

485 and at the same time essspris=—contain other finike-time coherent structures such as eddies and jets Fhishierrrekiest-property

3. We have now also discussed the relation of our method to existing methods. In particular, we
stress that we focus on a new clustering algorithm instead of a new form of embedding, as e.g. done
by Froyland et al. (2018).

325 34 Comparison fo related methods

; I:-crg-___ chnclde {70 ') and Froyland and 1
use spectral cmbaddmgs nfg;raphs that are defined on some form Dfph'.'s:cal intuition or of dvnamical operators, together with

330 k-Means clustering. These studies show applications of their methods to example flows where the size of almost-coherent
sets is not too small compared to the fuid domain. Such examples are the Bickley jet flow, which we also study in section
4.1, the five major ocean basins (Froyland and Padbera-Gehle, 2015; Banisch and Koltai, 2017). or few individual eddies in an
ocean or atmospheric flow (Hadjighasem et al., 2016; Padbers-Gehle and Schneide. 2017 Froyland and Junge. 2018). In such
situations, noisy background trajectories can be detected as individual clusiers by the partitioning method, as discussed by
335 Hadjighasem et al (2016). For applications in lare ocean domains, where the number of eddies is not known beforehand
am:l where there are many more noisy trajectories than coharent trajectories, such an_gpp;‘_q_ag:_g__l_s___l_i_l@_lg__t_g__tja._i];__s-_z_sgg_l_sg__rj_:_lg_
discussion by Froyland et al. (2019). OPTICS does not require to fix the number of clusters beforehand, and also contains an

340 As mentioned, OPTICS also contains an intrinsic notion of cluster hierarchy. Le. coherent sets that are themselves part of
coherent sefs at larger scales. Ma and Bollt (2013) studied hierarchical coherent sets in the transfer operator framework of
Froyland et al. (2010), in the spirit of the hierarchical clustering method proposed by Shi and Malik (2000). Their approach is
also partition-hased. i.e. there is no concept of noisy trajectories. In addition, at each stage of the hierarchy, a fixed cut-off has
Io be chosen based on minimizing an objective function (Ma and Bollt, 2013). Different from that approach, the main result of

345 OPTICS, the reachability plot, containg such higrarchical information in a smooth and intrinsic manner,

Asdescribed in section 3.3, clustering results of the DBSCAN algorithm (Ester et al.. 1996) can ba derived from the reachability

12



not fo
g The pote density-based clustering for

applications in the ocean and its comparison to other existing clusiering methods for flow examples such as the Bickley jet (cf.
350 section 2.1) has not been explored so far. Different from OPTICS, DBSCAN detects clusters with a cerfain ficed minimum

identify spe ngL

density, although clusters with varying densities might be present in a dataset (Ankerstet al., 1999). More specifically, the
value for the cut-off parameter «, cf, section 3.3, has to be set beforzhand. Choosing a good value for the density parameter
in DBSCAN is challenging if there is no underlying physical infuition for the density structure. As described in section 3.3,

OPTICS allows one to derive any DBSCAN clustering result, with the same value for the parameter sy, ., afler computing the

aspre
based on dynam 2019} apply their method to
a frajectory dataset in the Western Boundary Current region in the North Atlantic Ocean, and successfully defect many eddies

19)

on dynamic Lapl operal and Junge, 2

360 by superposing individual eigenvectors. The methods presented there are based on a form of spectral embedding. derived
from discretized dynamical operators. Based on this embedding, clusiering results have also been derived with k-Means by
Froyland and Junge (2018) and with individual thresholding by Froyland et al. (2019). Froyland et al. (2019) also show how
the low-order gigenvectors comespond to large-scale coherent features, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of eigenvectors. The latter approach is essentially a transformation of the embedding to

365 represent the most reliable features, such that a superposition of the eipenvectors alone yields the information about the location

and size of finite-time coherent sets

(without a clusiering step). This is essentially an optimized form of embedding, ie, the

sepin fig, heme is s on ird step in fig

clusiering algorithm OPTICS, together with a very simple embedding of eq. (3).
A downside of our method compared to other approaches is the rather ad-hoe choice of embedding, cf. eq, (3). Different from
370 many other methods, most notably the ones of Banisch and Koltai (2017). Froyland and Junge (2018) and Froyland et al. {2019)
+ this type of embedding is not derived from a meaningful dynamical operator. 1t could be fruitful to explore a combination of

these more meaning ful embeddings together with OFTICS as a clustering algorithm in future research.

Comment 4
(iv) For a short paper, the abstract is perhaps disproportionately long.

Answer to comment 4
Thanks for noting. We have shortened the abstract a bit in the new version.



Abstract The detection of finit2-time coherant particke s2ts in Lagrangian trajactory data using data clustering techniques is an
active resedrch fizld at the moment. Yet. the clustering methods mostly employed so far have baen basad on graph partitioning.

which assigns each trajectory to a clusier. i.e. there is no concept of noisy, incoherent rajectories. This is problematic for

applications +=in the ocean, where many small coberent eddies are present in a larg

of finita tima cohammat cate o diffarans coatial coalae Quob cobampen biararobine sea oracans in tha ceagn oohar bacin coala

, mostly noisy fluid Aow. Here, for

10 Hderived clusiering results contain a concepd of noise, such

that not every trajectory needs to be part of a cluster. OPTICS also has a major advantage mmpared to the prew-muhl'. used

DBSCAN method, as it can detzct clusters of varyving density.

rs-The resulting clusters have an intrinsically hierarchical structure,
which allows one to deLecl onhemnt trajectory sets at different spatial scales at once. We apply OFTICS directly to Lagrangian
15 trajectory data in the Bickley jet modzl fliow and successfully detect the expected vortices and the jet. The resulting clusiring
separates the vortices and the jet from background noise, with an imprint of the hizrarchical clustering structure of coherent,
smalsealasmall-scale vortices in a coherent, large-scale, background flow. We then apply our method to a set of virtual

rajectories released in the eastern South Atlantic Ocean in an eddying ocean model and successfully detect A gulhas rings.

—We illusiraie the

20
of the trajectories derived from classical mullld:rnensmnal scaling. "-\.-e also show how [JP’TICS can he applled fo the spectral
embedding of a sFajacten-basadrajectory-based network to overcome the problems of k-Means spectral clustering in detecting
Agulhas rings.

Comment 5

There is one point raised in the paper that | felt required more elaboration. A selling point the
authors bring up for this method is that it can in principle be applied to real-world trajectory data,
see line 86 and also line 306. This is true but incomplete. Real-world Lagrangian instruments are
sufficiently sparse that it is rare to find more than one in the same eddy at the same time. Thus, the
application presented herein—finding eddies is idealized configurations—is not really relevant for
how one would apply this method to real-world trajectories. The data density used here is orders of
magnitude greater than for real-world instruments. Since the authors bring this up as an advantage
of the method, a more fair and nuanced discussion of its potential and limitations with respect to
real-world data is called for. | would say, rather, that the method seems more suitable in application
to model data or virtual trajectories from altimetry, where it benefits from a simplicity with respect
to some other proposed methods.

Answer to comment 5

The reviewer is correct that an application of our method to real drifters to detect eddies is not
possible due to the limited coverage of drifter data. Note that two studies applied their methods to
real drifters, as we mentioned in the introduction (Froyland and Padberg-Gehle (2015) and Banisch
and Koltai (2017)), however to detect the five major ocean basins and not eddies. In the new version,
we omit the reference to real ocean drifters at other places but the introduction, where we now
explicitly mention the application to ocean basins (and not eddies).



1. Changes in introduction to clarify that trajectory-based clustering has been applied to real drifter
data only in the context of detecting the ocean basins, not individual eddies.

The detection of coherent Lagrangian vortices using abstract embeddings Ul'l.agmnqmn Lra]ecloncs topetherwith data clustering

40 technigues has received significant attention in the recent litzrature

—{Froyland and Padberg Gehle, 2013; Hadjighasem et al., 2016; PadbergGehle and Schneide, 2017; Banisch and Koltai, 2017 Schne
. Using embeddad Lrajeclorics for the detzction of finite-time coberent sets is intcreslinq as it allows t5-tse-—searee—0ne 10 Use

2. End of the introduction

In section 4, we first show how OPTICS detects finite-time coherent sets at different scales for the Bickley jet model flow
95 (also discussed e.g. by Hadjighasem et al. {2017)). successfully detecting the six coherent vortices and the jet as the steepest
valleys in the reachability plot The general structure of the reachability plot also reveals the large-scale finite-time coherznt
sets, Le. the northem and southemn parts of the model flow, separated by the jet. We then apply our method to Lagrangian
particle trajectories released in the eastern South Atlantic Ocean, where large rings detach from the A gulhas Current (e.g.
Schouten et al. (20007). We detect several Agulhas rings, and on the larger scale also separate the eastward and westward
100 moving branches of the South Atlantic Subtropical Gyre. While the traditional approach to study Aguthas rings is based
on sea surface height analysis (see e.g. Dencausse et al (2010)), several methods based on virtual Lagrangian trajectories
have been applied to Agulhas ring deection before (Haller and Beron-Vera, 2013; Beron-Vera et al., 2013; Froyland et al..
2013; Hadjighasem et al.. 2006; Tarshish et al.. 2018). Our method is different from these approaches in that it is directly
applicable o0 a trajectory eeta-setdatasel, Le. without much pre-processing of the data As the OPTICS algorithm is read-
105 ily available in the sklearn package of SciPy. the detection of finite-time coherent sets can be done without much effort and

with only a few lines of code. A further difference is the mentioned intrinsic notion of coberence hierarchy, which allows for

simultaneous analysis of trajectory data at different scales.

initiat-conditiers—While we mainly focus on the direct embedding of trajectories in an abstract high-dimensional Euclidzan
110 space, we also show in ﬁH@n—[—:-n—Lhe—aﬁpeﬂde;mndlx C that OPTICS can be used to overcome the limits of k-Means
clumnnq in the context of spactral clustcnng of phvsic - e —————

Tuthe trajectory-based network

of, F.‘%ﬂh?.fet.f?ﬂh??. and Schneide (2017).

2. First sentence in conclusion

The abstract embedding of particle trajectories in a metric space with subseque:nt c]ustenng is a promising field of research
470 for the detection of finie-time coherent sets in oceanography-esit dHers o

From-drifler mleass axperimente— Yt most of the existing methods

Comment 6

Line 99. Do you not want to cite Bickley? My understanding is that the term “Bickley jet” itself is used
to refer to a steady solution with a sech”2 u-velocity, see e.g. Swaters (1999). The authors’ Eq. (2) is
an added perturbation. As read, it sounds like the whole thing is the Bickley jet.

Answer to comment 6
Thank you for this comment and the careful check of our references of the flow. You are indeed right
that the Bickley Jet is a steady, sech”2 velocity profile. We have added the reference to Bickley now,



together with a reference to the paper of del Castillo-Negrete and Morrison (1993), where the
perturbed form of the jet is motivated.

Comment 7

Section 3.2.2. | didn’t really understand this section, or what B is encoding in Eq. (4). A more intuitive
description would be helpful. When you say, “pairwise distances are approximately preserved”, this
is with respect to what? Also, why are two dimensions chosen?

Answer to comment 7

Thank you for this comment. In the new version, we elaborate more on the intuitive goal of classical
MDS in this section. We choose two dimensions because we wish to visualize the data in the plane.
We have made this more clear in the new version.



312 CasslealDimensionality reduction with classical multidimensional scaling

To get an intuition for what the OPTICS algorithm does, and the differences to k-Means, we wish to visualize the data structure

phaneplane. For this. il is necessary to reduce the embedding dimension of each trajectory from 37" w two in a way that
220  the density structure, and hence the individual Euclidean distances between embedded trajectories dy = ||uy — uyl|. cf eq.
3), are preserved. We do so by a common method of nonlinear dimensionality reduction, called classical #utidimensionat
multidimensional scaling (MDS), s22 e.g. chapter 10.3 of Fouss et al. (2016). Classical MDS tries to find an embedding of
the high-dimensional data points in a low dimensional space such that the pairwise distances are approximately preserved.

Etasstest-Similar to a principal component analysis, classical MDS makes use of the eigenvectors comresponding to the largest
225 eigenvalues of the-kernalmatrica kernel matrix, which is in this case defined by

1
B= —EH&QH: )

where A% = BV =" js a matrix containing all squared distances between the pmnls =l — 2|7, and H is the centring
matrix with Hyy = &; —1/N, whem &;; denotes the Kronecker delta. The i
mafrix. If B is the matrix of inner products of the embedded data poi

lar produu:'l, then
230 B can be obtained by emoving the mean of all rows and columns of H cf. -:haptcr 10.3 of Fouss et al. (2016). An embedding

of the data points using the eigenvectors comesponding to the leading non-negative eipenvalues of B in eq. (4) ensums o
capture the main variance of the (squared) distance siructure, similar to a principal component analysis.

We compute A with the Euclidean embeddings-embedding described in section 3.2.1 and restrict ourselves to the first two
dimensions to visualize the data structure in the plane, ie. the embedding is defined by

235 = (wgy.w4), 1 =1, N, (3)

where K wy = Aywy, and Mg = Ay = Ay forall k= 2,.. N — 1. This choice of embedding ensures o capiure the main variance
of the data points, and we themfore also expect to capture the main structure in tzrms of data density. For large particle sets
however, computing the spectrum of H in eq. (4) is computationally not feasible, as the matrix B is i-gesesat-dense and
computing the spectrum scales with O(N?). We apply classical MDS to the 12,000 particles of the Bickley jet model flow,

240  and a random selection of the equal number of particles for the Agulhas flow. In our context, the method is most useful for
visualization purposes, as it provides a good 2-dimensional approximation of the point distances, 2. also the density structure
of the embeddad rajectories.

Comment 8
Line 193. The intuitive meaning of the ‘generating distances’ that are not being used here should be
mentioned

Answer to comment 8
Than you for the comment. In the new version, we briefly mention what a finite generating distance
would mean.



Mg (p) as the number of points that is in the =5-neighbourhood of p, including p itself. OFTICS requires one parameter. an

INEBEET 5y (called MinPts by &=

255 cfp) = {min(f) | M:5(p) = #mn }. (&)

Comment 9

Line 196. The definition of the epsilon neighborhood appears incomplete. Is it not the M-dimensional
sphere of radius epsilon? Otherwise, what is the epsilon?

Answer to comment 9

Indeed the epsilon-neighborhood of p is just the M-dimensional ball around the point p, and the
previous version was incomplete. We have changed this in the new version, together with renaming
epsilon to delta, see our answer to comment 8.

Comment 10

Line 200. It would be very helpful to write out in words the meaning of Eq. (6). My understanding is
that c(p) is minimum distance epsilon such that the number of points in an epsilon neighborhood is
greater than a specified number.

Answer to comment 10
Thank you for your comment. Your interpretation was correct. We have made it more clear in the
new version, see the answer to comment 8.

Comment 11
Line 213. | did not immediately understand how it arises that there are valleys in the reachability if
you have sorted iteratively on the reachability. You might explain that this happens as you encounter



groups of points that are all near to each other, thus replacing earlier high values of reachability with
lower values.

Answer to comment 11
Thank you for the comment. Indeed, it is the sorting that is the most important step in the algorithm.
We added some more explanation in the new version.

275

Comment 12

Line 216. The phrasing here made me wonder if this was a second, different epsilon. It would be
clearer to say that you choose a value for the parameter epsilon. Also, it appears this is conditional
on a choice of s_min which should then be emphasized.

Answer to comment 12

Thank you for very much for pointing this out. Indeed, this was a second epsilon, and the
presentation in the first version was confusing. We have made the appropriate changes in the new
version by re-naming one of the epsilons into delta. See our answer to comment 8.

Comment 13
Line 228. What are the permissible values of k in condition (a)?

Answer to comment 13
We have made this more precise in the new version. It can be any integer larger than zero and
smaller than N - 1.

Comment 14
Figure 2, what are the units of the y-axis in the left column of plots?

Answer to comment 14

Thank you for this comment. Indeed, we missed to specify the units of all reachability values. We do
so in all figures in the new version (apart from the network embedding case in the appendix, where
quantities are dimensionless), see the example below.
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Comment 15
Figs 2 and 3, some of the colored dots lie above the epsilon threshold.

Answer to comment 15

This is correct, DBSCAN classifies the points below the line only up to boundary points, i.e. there can

be points at the cluster boundary that belong to the cluster. We have made this more clear in the
new version.

ars

380

4 Resulis
4.1 Bickley jet flow

We start with the direct embedding of the —t=Rickley jet flow trajectories, cf. section
2. The data matrix has dimension J.—LRMX 3 R12 000133 Wy apply the OPTICS algorithm to the resulting points -
tugel]'ler with DBSCAN clustering, choosing s, = 80 as a minimum size of the finite-time coherent sets. In the following, all

axis units are in multiples of 1000 km. Figure 2 shows the reachability plot, together with the DBSCAN clustering result of three
different choices of e. The six vortices and the jet are clearly visible as the major valleys in the reachability plot. The hierachical

13

structure of the DBSCAN clustering with decreasing « is visible in the ﬁgums from top {+ai=g—sen-la—lalm scale culmme} to
bottom (smab-seate-small-scale coherence). Bainzabla = this reh 2

-_a-rewdaa—Nole that for the DBSCAN clustering m}mﬁmm%smwfgdg§5wd ary points of the
clusiers can be above the hozitonal line at y — e This is because of the definition of the DESCAN clustering in section 3.3.




Comment 16

Figure 4. | really don’t understand the two dimensions of these plots, nor the star-shaped patterns,
could you explain these more?

Answer to comment 16

We have now made the presentation of the methods regarding classical MDS more clear, also
relating it to principal component analysis, see the answer to your comment 7. In addition, we have
provided more explanation on the star-shaped structure in the results section.

385 MextTo illustrate the difference between OPTICS and k-Means, we use the embedded rajectories and apply classical MDS

R i A R

to obtain a 2-dimensional embedding. As sestiersd-described in section 3.2.2, this assures to capture the major variance along
the embedding axes. The spectrum of B in eq. (4) is shown in fig. A1 in the appendix. with two clearly dominant eigenvalues.

300 eentres-and-thejein-the-middieThe fact that them are two very dominant eigenvalues assures that the llustration of the data
in the plane captures the major variance of the data points. Figure 3a shows the corresponding embedding of the trajectories in
the 2-dimensional emsbedding-spees—snd-fiz—2E-Huclidean space, The star-shaped distribution of data points reflect the strong

14

O 5.
g e

symmetries of the underlying idzalized Bickley jet flow. Such symmetry is not engcted. to be gl'_esent for more realistic fow

Ewgures 3b and 3¢ show the cluster labels for OFTICS with DBSCAN clusenng at

£ = 10F km, and for a k-Means clusiering with K = 8 clusters, w—h;sh-msvpgclwe]v K=
jet, and one noise cluster as suggested by Hadjighasem et al. (2016).

In addition, we have further discussed the failure of k-Means in relation to the star-shaped structure
of the embedding.

The comesponding clustering 2

st : fesults in real space am shown in figs. 4 and 5
for OPTICS and k-Means, espectively. The jet and the six vortices are clearly recognizable as dense accumulations of points in
400  the 2-dimensional space of fig. 3b. see fig. 4 for the coresponding colours. The clustering result with k-Means in fig. 3 shows

that the clusers coresponding to the vortices are much less focussed. In addition, 2ach of the eight clusters in fig. 3¢ contains

some of the noisy pc:lnts of fig. 3b, which shows that using one additional cluster for noise does not £

& ork in this situation. It is mteresunLG note that capturing the
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Comment 17
Data locations at Zenodo should be cited, not only the papers referring to them.

Answer to comment 17

The reference is actually a Zenodo link, not a paper. Note that there were two references Wichmann
2020 (Zenodo link) and Wichmann et al. (2020) (previous paper). In the new version, there is now
also a Zenodo link to an animation for the Agulhas flow.




Comment 18

Throughout the paper, the authors consistently omit the subject ahead of an infinitive, e.g. “which
allows to detect”. | believe this is grammatically incorrect (in US usage anyway). “allows one to
detect” or “allowing the detection of” sound better

Answer to comment 18
Thank you, we have made appropriate changes in the new version.

Comment 19
| 42 and 90. “sparse” should probably be used instead of “scarce”. The former means thinly
distributed while the latter means hard to come by.

Answer to comment 19
We have made appropriate changes in the new version.

Comment 20
| 128. NumPy and Zenodo are the standard capitalizations

Answer to comment 20
We made the suggested changes in the new version. Thank you for noting.

Comment 21
1 141. “method” should be “methods”

Answer to comment 21
Thank you for noting, we corrected it in the new version.

Comment 22
| 156. Straightforward

Answer to comment 22
Thank you for noting, we corrected it in the new version.

Comment 23
1 191. “and as will become clear”



Answer to comment 23
Thank you for noting, we corrected it in the new version.

Comment 24
1 217. “is equal to” should be “set of points is equivalent to”.

Answer to comment 24
Thank you for noting, we corrected it in the new version.

Comment 25
| 243. “a priory” should be “a priori”

Answer to comment 25
We corrected it in the new version.

Comment 26
| 279. “large- and small-scale”

Answer to comment 26
Thank you for noting, we corrected it in the new version.

Comment 27
| 354. GitHub

Answer to comment 27
Thank you for noting, we corrected it in the new version.

Comment 28
| 359. There is a title of an appendix with no appendix.

Answer to comment 28

The content of appendix C consisted of only two figures, C1 and C2. It appeared as without content
due to the page break. In the new version, we have removed one appendix as we include the figures
in the main text, such that the formatting looks better.




Comment 29
| 360 & 361. “particle-based”

Answer to comment 29

Thank you for noting, we corrected it in the new version.

Comment 30
| 383. “ot”

Answer to comment 30
Thanks for the careful read, we made the changes in the revised manuscript.

Comment 31
| 389. There should be a period at the end of this sentence

Answer to comment 31
Done. Thanks for noting.

Comment 32
Figure C1, “three” eigenvalues should be “two”, correct?

Answer to comment 32
Yes, indeed. Thanks for reading also the appendix figure captions so carefully! We corrected this in
the new version.




