
We thank the anonymous reviewers for their careful reading of our manuscript and their insightful 
comments and suggestions. Following the suggestions, we included several improvements in the 
manuscript resulting in a stronger and clearer manuscript. Below, we will give a detailed replay 
to the comments. 
 
 

Anonymous Referee #1: 
 
``This paper presents a data-driven methodology for detecting early-warning signs of critical 
transitions on ice sheets. The approach is based on a spectral partitioning of image data acquired 
by remote sensing, using a directed graph equipped with an asymmetric affinity matrix constructed 
from lagged sequences of images. The method is applied to ice surface velocity data for the 
Antarctic, and is found to successfully detect the formation of the A68 iceberg in the Larsen C ice 
shelf that took place in 2017.  
Overall, my assessment is that this is an interesting paper, worthy of publication at NPG. I 
recommend revisions to clarify some aspects of the analysis and improve presentation, as detailed 
below.’’ 
 
We want to thank the referee for his careful read, positive feedback, and constructive 
comments. 
 
 

1. The introduction, as well as the conclusions, read overly critical of interferometric 
approaches as a tool for analysis and prediction of sea ice cracks. I wonder, however, if 
the issue here is not with interferometry itself but rather with how the data is processed in 
order to extract information pertinent to crack formation. After all, as stated in lines 169–
175, the velocity data utilized in this study are at least partly based on interferometry, so 
whatever information the proposed methodology extracts was at least partially present in 
interferometric data. 

 
We agree with the reviewer that ``the issue here is not with interferometry itself but rather with 
how the data is processed in order to extract information pertinent to crack formation''. We 
changed several sentences to reflect this tone, and we updated the manuscript to reflect more 
clarifications about the comparison. See the revised manuscript, line 206-222. We clarified 
that using the ice velocity data, our method revealed interesting details. Still, it could not 
predict the critical change and branching of the crack that happened in May 2017. On the 
other hand, using only the satellite images, our method was able to detect this critical 
branching by November 2016, and it was able to predict more accurate boundaries to the 
overall calved iceberg. 
 



2. Section 2 describes the graph affinity matrix as being constructed from color data, but the 
text in lines 169–175 suggests that ice surface was used. Please clarify and explicitly state 
the data sources employed in the analysis. 

 
We thank the reviewer for the comment on this important point. In lines 116-121, added a 
discussion to clarify that our method is not limited to a specific measured quantity, and we 
state that: "It is crucial to keep in mind that we chose the color as the evolving quantity for a 
designated spatial location for clarity and consistency with our primary application and 
approach introduced in this paper. However, we can select the evolving quantity to be the 
magnitude of the pixels obtained from spectral imaging or experimental measures obtained 
from the field, such as pressure, density, or velocity. The results section introduces examples 
where we used the ice surface velocity instead of the color to show how results may vary based 
on the selected measure".  
 
In the results section, we ensured that the data source is cited clearly in each figure caption. 
 
 

3. Although I believe that this is the case, it is not fully clear whether the results in figures 4, 
7, and elsewhere in the paper are predictive in nature. That is, if the directed partitioning 
method detects significant changes in July 2016, is this based solely on data up to that 
point in time? It would be helpful to explicitly state this. 

 
We updated the document, and we emphasized this point in the discussion on the caption of 
Figure 5, and we clarified that the results were based solely on data up to that point in time. 
 

4. What is the sensitivity of the results on τ, α, and σ parameters in the graph affinity function? 
In general, there is little information about how these parameters are chosen. Similarly, 
other than a high-level reference to k-means clustering, there is little information about 
how the eigenvectors of the graph Laplacian are employed to pro- duce the final image 
segmentation. These issues considerably affect the reproducibility of the results, and it is 
important that the implementation of the technique is adequately explained in the revised 
manuscript. 

 
In lines 110-114 and lines 126-131, we added a discussion on the parameters' sensitivity and 
selection. In lines 167-171, we added a paragraph that clarifies the main principle in applying 
the K-means clustering on the graph Laplacian's eigenvectors and how we obtain our labeled 
image. 
 
 



5. Consider rewording the sentence in lines 189-191 (describing the partitions Aj) as it 
appears to be grammatically incorrect. Similarly the text in lines 194-200 could be 
improved in terms of English/clarity. 

 
We revised the sentence in lines 189-191 and reworded it for more clarity. You can see the 
revised paragraph in lines 196-202. Also, we carried an extensive review throughout the 
manuscript, for clarity, English, and grammatical errors. 
 
 
 
 

Anonymous Referee #2: 
 

``Please note, I am a geophysist who considered the glaciology and mechanics in this paper. I do 
not comment on the mathematical method. In that context I would like to say it is exciting to see 
new mathematical methods to extract discontinuities in velocity field in glacial ice. It is interesting 
that one can estimate the onset of the crack formation, and perhaps with subsequent images the 
crack propagation. I did not assess if the method is able to show the velocity discontinuity within 
measurement error, but if it is a real result the method should be of interest to the cryospheric 
community.’’ 
 
We want to thank the referee for his positive feedback and constructive comments. 
 
Specific points: 
 

1. line 22: "Still, this contribution starts to change in the 21st century because of the ice 
shelves cracks". This sentence is rather clunky. Ice shelf retreat? Or increased iceberg 
calving? There are other places with clunky English. For example line 35 "attribute in 
Greenland" is not grammatically correct. r line 55 "most massive known iceberg" is not 
formal language. I would suggest having someone proof read for professional English who 
is in the field. 

 
We thank the reviewer for his careful read and helpful comments. We revised the mentioned 
sentences and marked them in blue in our revised manuscript. And we carried an extensive 
review all over the manuscript, for clarity, English, and grammatical mistakes. 
 
 

2. paragraph 37-42: Not sure if this is needed. It is a little out of context. There are other 
examples of information that is interesting but is out of context of the immediate point of 
interest, ice shelf cracking.e.g. "Interestingly, two and a half years later, it remains mostly 
intact and has drifted from the near Antarctica seas into the more turbulent open Arctic 



Ocean where it is expected to break apart more quickly." .... I would suggest a proof read 
focused on direct narrative in the paper. In general the introduction could be more focused 
to ice shelf processes that involve it’s growth and ice loss through iceberg generation. 

 
We thank the reviewer for his careful read and helpful comments. We agree with the 
reviewer, and we removed the mentioned sentences, with several other sentences all through 
the manuscript to focus on our main objectives and subject. 
 
 

3. There are spelling mistakes in the manuscript 
 
We carried an extensive review all over the manuscript for spelling and grammatical 
mistakes. 
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Abstract8

This paper introduces a new tool for data-driven discovery of early warning signs of critical transitions9

in ice shelves, from remote sensing data. Our approach adopts a directed spectral clustering methodology10

considering an asymmetric affinity matrix and the associated directed graph Laplacian. We generally11

applied our approach to reprocessing the ice velocity data and remote sensing satellite images of the12

Larsen C ice shelf. Our results allow us to (post-cast) predict fault lines responsible for the critical13

transitions leading to the break up of the Larsen C ice shelf crack, which resulted in the A68 iceberg.14

We can do so months earlier before the actual occurrence and much earlier than any other previously15

available methodology, particularly those based on interferometry.16

1 Introduction17

Warming associated with global climate change causes global sea level to rise Mengel et al. (2016). Three18

primary reasons for this are ocean expansion McKay et al. (2011), ice sheets lose ice faster than it forms from19

snowfall, and glaciers at higher altitudes melt. During the 20th century, sea level rise has been dominated by20

glaciers’ retreat. Still, this contribution starts to change in the 21st century because of the increased iceberg21

calving. Ice sheets store most of the land ice (99.5%) Mengel et al. (2016), with a sea-level equivalent (SLE)22

of 7.4m for Greenland and 58.3m for Antarctica. Ice sheets form in areas where the snow that falls in winter23

does not melt entirely over the summer. Over thousands of years of this effect, the layers grow thicker and24

denser as the weight of new snow and ice layers compresses the older layers.25

Ice sheets are always in motion, slowly flowing downhill under their weight. Most of the ice moves through26

relatively fast-moving outlets called ice streams, glaciers, and ice shelves near the coast. When a marine ice27

sheet accumulates a mass of snow and ice at the same rate as it loses mass to the sea, it remains stable.28

Most of Antarctica has yet to see dramatic warming. However, the Antarctic Peninsula, which juts out into29

relatively warmer waters north of Antarctica, has warmed 2.5 degrees Celsius (4.5 degrees Fahrenheit) since30

1950 NASA (2017).31

A large area of the Western Antarctic Ice Sheet is also losing mass, probably due to warmer water up-32

welling from the deeper ocean near the Antarctic coast. In Eastern Antarctica, no clear trend has emerged,33

although some stations report slight cooling. Overall, scientists believe that Antarctica is starting to lose34

ice NASA (2017), but so far, the process is not considered relatively fast as compared to the widespread35

changes in Greenland NASA (2017).36

Since 1957, the continent-wide average’s current record reveals a surface temperature trend of Antarctica37

that has been positive and significant at > 0.05 ◦ C/decade Steig et al. (2009); Gagne et al. (2015). Western38

Antarctica has warmed by more than 0.1 ◦C/decade in the last 50 years, and this warming is most active39
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Figure 1: A-68 iceberg. The fractured berg and shelf are visible in these images, acquired on July 21, 2017,
by the Thermal Infrared Sensor (TIRS) on the Landsat 8 satellite. Credit: NASA Earth Observatory images
by Jesse Allen, using Landsat data from the U.S. Geological Survey.

during the winter and spring. Although this is partly offset by autumn cooling in Eastern Antarctica, this40

effect is prevalent in the 1980s and 1990s Steig et al. (2009).41

Of particular interest to us in this presentation, the Larsen Ice Shelf extends like a ribbon of the ice shelf,42

down from the East Coast of the Antarctic Peninsula, from James Ross Island to the Ronne Ice Shelf. It43

consists of several distinct ice shelves, separated by headlands. The major Larsen C ice crack was already44

noted to have started in 2010 Jansen et al. (2015). Still, it was initially very slowly evolving, and there were45

no signs of radical changes according to Interferometry processing of the remote sensing imagery Jansen46

et al. (2010b). However, since October 2015, the major ice crack of Larsen C has been growing faster, until47

the point more recently, it finally failed, resulting in calving the massive A68 iceberg. See Fig. 1; this is48

the largest known iceberg, with an area of more than 2,000 square miles, or nearly the size of Delaware.49

In summary, A68 detached from one of the largest floating ice shelves in Antarctica and floated off in the50

Weddell Sea.51

In Glasser et al. (2009), the authors presented a structural glaciological description of the system and52

subsequent analysis of surface morphological features of the Larsen C ice shelf, as seen from satellite images53

spanning the period 1963–2007. The research results and conclusions stated that: “Surface velocity data54

integrated from the grounding line to the calving front along a central flow line of the ice shelf indicate55

that the residence time of ice (ignoring basal melt and surface accumulation) is 560 years. Based on the56

distribution of ice-shelf structures and their change over time, we infer that the ice shelf is likely to be a57

relatively stable feature and that it has existed in its present configuration for at least this length of time.”.58

In Jansen et al. (2010a), the authors modeled the flow of the Larsen C and northernmost Larsen D59

ice shelves using a model of continuum mechanics of the ice flow. They applied a fracture criterion to the60

simulated velocities to investigate the ice shelf’s stability. The conclusion of that analysis shows that the61

Larsen C ice shelf is inferred to be stable in its current dynamic regime. This work was published in 2010.62

According to analytic studies, the Larsen C ice crack already existed in the same year, but at its slow-growing63

rate. There were no expectations at that time for the fast-growing and collapse that happened for Larsen C.64

Interferometry has traditionally been the primary technique to analyze and predict ice cracks based on65

remote sensing. Interferometry Bassan (2014); Lämmerzahl et al. (2001), is based on a family of techniques66

in which waves, usually electromagnetic waves, are superimposed, causing the phenomenon of interference67
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Figure 2: Directed partitioning method. We see the image sequence to the left, and to the right, we reshape
each image as a single column vector. Following the resultant trajectories, we see that the pairwise distance
between the two matrices will result in an asymmetric matrix. Raw images source Scambos et al. (1996).

patterns, which in turn are used to extract information concerning the underlying viewed materials. In-68

terferometers are widely used across science and industry to measure small displacements, refractive index69

changes, and surface irregularities. So it is considered a robust and familiar tool that is successful in the70

macro-scale application of monitoring the structural health of the ice shelves. So it is our job here to con-71

trast our methodology to interferometry. Here we will take a data-driven approach directly from the remote72

sensing imagery to infer structural changes of the impending tipping point to Larsen C’s break’s critical73

transition.74

Fig. A.1 shows the interferometry image as of April 20, 2017, and although it clearly shows the crack that75

already existed, but may provide no information or forecasting powers indicating what can happen next.76

Just a couple of weeks after the image shown in Fig. A.1, the Larsen C ice crack changed significantly and77

took a different dynamic that quickly after that divided into two branches, as shown in Fig. A.2. As we78

will show, our method will achieve a much more successful and early data-driven indicator of this important79

outcome.80

2 Directed Partitioning81

In our previous work Al Momani (2017); AlMomani and Bollt (2018), we developed the method of Directed82

Affinity Segmentation (DAS). We showed high performance in successfully detecting coherent structures in83

fluidic systems, observed from “movie data” and without the need for the intermediate stage of finding the84

vector field responsible for underlying advection.85

Two of the most commonly used and successful image segmentation methods are based on 1) the k-means86

Kanungo et al. (2002), and 2) spectral segmentation Ng et al. (2002), respectively. However, while these were87

developed successfully for static images, these methods need major adjustments for successful application88

to sequences of images. The spatiotemporal problem of motion segmentation is associated with coherence,89

despite that traditionally, they are considered well suited to static images Shi and Malik (2000). The key90

difference is what underlies a notion of coherent observations that we must also understand directionality91

associated with the arrow of time.92

Affinity measure is the phrasing for comparison, or cost, between states, and as such, a loss function of93

some kind of often the starting point for many algorithms in machine learning. However, when there is an94

underlying arrow of time, the loss functions that most naturally arise when tracking coherence are inherently95

not symmetric. Correspondingly, affinity matrices associate the affinity measure for each pairwise comparison96

across a finite data set. It is also useful to consider the undirected graph associated with the affinity matrix,97

where there is an edge between each state for which there is a nonzero affinity. Generally, in the symmetric98
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case, these graphs are undirected. Now consider that if the affinity matrices are not symmetric, then these99

are associated with directed graphs. This is a theoretical complication to standard methodology since much100

of the theoretical underpinnings of standard spectral partitioning assumes a symmetric matrix corresponding101

to an undirected graph and then considers the spectrum of its corresponding symmetric Laplacian matrix102

that follows. This can be accommodated by methods considering the spectral theory of graph Laplacian for103

weighted directed graphs, built upon the theoretical work of F. Chung Chung and Oden (2000), and as we104

built upon in AlMomani and Bollt (2018).105

Before proceeding with our directed partitioning method, we formulate the (movie) imagry data set as106

the following matrices;107

X 0 = [X1|X2|...|XT−τ ], (1)

X τ = [Xτ+1|Xτ+2|...|XT ], (2)

where each Xi is the ith image (or the image at ith time step) reformed as a column vector, See Fig. 2, τ is the108

time delay, X0 and Xτ are the images sequences stacked as column vectors with a time delay at the current109

and future times respectively. Choosing the value of the time delay τ , can results in significant differences in110

the segmentation process. Consider that in the case of a relatively slowly evolving dynamical system, where111

the change between two consecutive images is not significantly distinguishable, then choosing a large value112

for τ may be better suited. In our work, we considered the mean image over a period of one-month as a113

moving window generates our images, which implies τ to be one month.114

Note that the rows of X 0,X τ ∈ Rd×T−τ represent the change of the color of the pixel at a fixed spatial115

location zi. It is crucial to keep in mind that we chose the color as the evolving quantity for a designated116

spatial location for clarity and consistency with our primary application and approach introduced in this117

paper. However, we can select the evolving quantity to be the magnitude of the pixels obtained from spectral118

imaging or experimental measures obtained from the field, such as pressure, density, or velocity. The results119

section introduces examples where we used the ice surface velocity instead of the color to show how results120

may vary based on the selected measure.121

We introduced AlMomani and Bollt (2018) an affinity matrix in terms of a pairwise distance function122

between the pixels i and j as,123

Di,j = S(X 0
i ,X τj ) + αC(X 0

i ,X τj , τ) (3)

where S : R2 7→ R is the spatial distance between zi and zj , and C : RT−τ × RT−τ × R 7→ R is a distance124

function describing “color distance” the ith and the jth color channels. The parameter α ≥ 0 regularizes125

balancing these two effects. The value of α can be seen as a degree of importance of the function C to the126

spatial change. Large values of α will make the change color, for example, dominate the distance in Eq. 3.127

It will then classify “very” close (spatially) regions as different coherent sets when they have small color128

differences. On the other hand, small values of α may classify spatially neighboring regions as one coherent129

set, even when they have a significant color difference. In our work, we scaled the value of S and C to be130

in [0, 1], then we choose α = 0.25, to keep the focus on the spatial change, where we choose the functions S131

and C each to be L2-distances,132

S(X 0
i ,X τj ) = ‖zi − zj‖2, (4)

and133

C(X 0
i ,X τj , τ) = ‖X 0

i −X τj ‖2. (5)

We see that the spatial distance matrix S is symmetric, however, the color distance matrix C is asymmetric134

for all τ > 0. Then, while the matrix generated by C(X 0
i ,X τj , 0) refers to the symmetric case of spectral135

clustering approaches, we see that the matrix given by C(X 0
i ,X τj , τ), τ > 0 implies an asymmetric cost136

naturally due to the directionality of the arrow of time. Thus we require an asymmetric clustering approach137

should be adopted.138

First we define our affinity matrix from Eq. 3 as,139

Wi,j = e−D
2
i,j/2σ

2

. (6)
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This has the effect that both spatial and measured (color) effects have “almost” Markov properties, as far140

field effects are almost “forgotten” in the sense that they are almost zero, and near field values are largest.141

Notice we have suppressed including all the parameters in writing Wi,j , and that besides time parameter142

τ that serve as sampling and history parameters, together the parameters α and σ serve to balance spatial143

scale and resolution of color histories.144

We proceed to cluster the spatiotemporal regions of the system, in terms of the directed affinity W by145

interpreting the problem as random walks through the weighted directed graph, G = (V,E) designed by W146

as a weighted adjacency matrix. Let,147

P = D−1W, (7)

where148

Di,j =

{∑
kWi,k, i = j,

0, i 6= j,
(8)

is the degree matrix, and P is a row stochastic matrix representing probabilities of a Markov chain through149

the directed graph G. Note that P is row stochastic implies that it row sums to one. This is equivalently150

stated that the right eigenvector is the ones vector, P1 = 1, but the left eigenvector corresponding to left151

eigenvalue 1 represents the steady state row vector of the long term distribution,152

u = uP, (9)

which for example if P is irreducible, then u = (u1, u2, ..., upq) has all positive entries, uj > 0 for all j, or153

say for simplicity u > 0. Let Π be the corresponding diagonal matrix,154

Π = diag(u), (10)

and likewise,155

Π±1/2 = diag(u±1/2) = diag((u
±1/2
1 , u

±1/2
2 , ..., u±1/2

pq )), (11)

which is well defined for either ± sign branch when u > 0.156

Then, we may cluster the directed graph by concepts of spectral graph theory for directed graphs,157

following the weighted directed graph Laplacian described by Fan Chung Chung (2005), and a similar158

computation has been used for transfer operators in Froyland and Padberg (2009); Hadjighasem et al.159

(2016) and as reviewed Bollt and Santitissadeekorn (2013); Santitissadeekorn and Bollt (2007); Bollt et al.160

(2012), including in oceanographic applications. The Laplacian of the directed graph G is defined, Chung161

(2005),162

L = I − Π1/2PΠ−1/2 + Π−1/2PTΠ1/2

2
. (12)

The first smallest eigenvalue larger than zero, λ2 > 0 such that,163

Lv2 = λ2v2, (13)

allows a bi-partition, by,164

y = Π−1/2v2, (14)

by sign structure. Analogously to the Ng-Jordan-Weiss symmetric spectral image partition method Ng165

et al. (2002), the first k eigenvalues larger than zero, and their eigenvectors, can be used to associate a166

multi-part partition, by the assistance of k-means clustering these eigenvectors. By defining the matrix167

V = [v1, v2, . . . , vk], that have the eigenvectors associated with the kth largest eigenvalues on its columns,168

then we use the k-means clustering to multi partition V based on the L2 distance between V ’s rows. Each169

row in the matrix V is associated with a specific spatial location (pixel), then by reshaping the labels vector170

that results from the k-means clustering, we obtain our labeled image.171
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Figure 3: Ice surface velocity. The figure shows the data set for three different years around the beginning
of the Larsen C ice crack in 2010. The data from the years 2007,2008 and 2010 have corrupted data on the
region of interest, and then they are excluded. The color scale indicates the magnitude of the velocity from
light red (low velocity) to dark red (high velocity), and the arrow points to the starting tip of the crack.
The result of the directed partitioning is shown in Fig. 4. Source of data: E. Rignot, J. Mouginot and B.
Scheuchl (2017).

Figure 4: Directed Affinity result. (Left) The directed partitioning results for the ice surface velocity of
2006, 2009, 2011, and 2012. Note that the ice shelf crack started in 2010. (Right) A narrow field zoom to the
region of interest shows large variations of ice surface velocity within a small area, to give a clearer focused
view of the differences in speeds. In Appendix, Fig. B.1 shows the surface plot for the same result.

6



3 Results172

We apply the directed affinity segmentation to satellite images of Larsen C ice shelf and ice surface velocity173

data. Here we show that the directed affinity segmentation of spatiotemporal changes can work as an early174

warning sign tool for critical transition in marine ice sheets. We will apply our “post-casting” experiments175

on Larsen C images before the splitting of the A68 iceberg. Then we will compare our forecasting based on176

segmentation results to the actual unfolding of the event.177

In Fig. 3, we see different snapshots of the ice surface velocity data set E. Rignot, J. Mouginot and178

B. Scheuchl (2017); Rignot et al. (2011); Mouginot et al. (2012), which is part of the NASA Earth system179

data records for use in research environments (MEaSUREs) program. It provides the first comprehensive180

E. Rignot, J. Mouginot and B. Scheuchl (2017), high-resolution, digital mosaics of ice motion in Antarctica181

assembled from multiple satellite interferometric synthetic-aperture radar systems. We apply our directed182

affinity partitioning algorithm to these available data sets, and the results are shown as a labeled image in183

Fig. 4.184

As shown in Fig. 4, we note the following:185

• The data collected from eight different sources E. Rignot, J. Mouginot and B. Scheuchl (2017); Map186

(2017), with different coverage and various error ranges, and interpolating the data from different187

sources explains the smooth curves in segmentation around the region of interest.188

• The directed partitioning shows the Larsen C ice shelf as a nested set of coherent structures that are189

contained successively within each other.190

• The zoom picture highlights shown in the right of Fig. 4 show the region where the Larsen C ice191

crack starts. Furthermore, we see a significant change of velocity within a narrow spatial distance (4192

miles). More precisely, the outer boundaries of coherent sets become spatially very close (considering193

the margin of error in the measurements Map (2017). We conclude with high probability that these194

contact).195

Directed partitioning gives us informative clustering, meaning that each cluster has homogeneous prop-196

erties, such as the magnitude and the direction of the velocity. Consider the nested coherent sets, A1 ⊂ A2 ⊂197

... ⊂ An, shown in Fig. 5. Each set Ai−1 maintains its coherence within Ai because of a set of properties198

(i.e., chemical or mechanical properties) that rules the interaction between them. However, observe that the199

contact between the boundaries of the sets Ai−1 and Ai, can mean a direct interaction between Ai−1 and200

Ai+1. These later sets may significantly differ in their properties, such as a significant difference of velocity,201

which may require different analysis under different assumptions than the gradual increase in the velocity.202

However, since the sets boundaries are not entirely contacted. The velocities’ directions reveal no critical203

changes; we believe this results implicitly from the data preprocessing nature that includes interpolation and204

smoothing of the measurements. We believe that the interpolation and smoothing of the measurements cause205

loss of data informativity about critical transitions. Our method, using the ice surface velocity data, was206

able to detect more details. However, it still cannot detect critical transitions such as the crack branching, as207

discussed in the introduction, and shown as in Fig. A.2. Based on our results using the ice velocity data, we208

state nothing more than such close interaction between coherent sets boundaries, as shown in Fig. 4, can be209

an early warning sign that should be considered and investigated by applying potential hypothesis (“what210

if” assumptions) and analyzing the consequences from any change or any error in the measured data.211

As a matter of declaring our approach’s success over standard methodology, observe that our directed212

partitioning method achieves better results using the remote sensing satellite images Scambos et al. (1996)213

as in contrast to the standard and already respected interferometry concept. To reduce the obscuration214

effects of noise (clouds and image variable intensity), we used the averaged images, over one month, as a215

single snapshot for the directed affinity constructions. Fig. 6, the directed affinity partitioning for two time-216

windows starts from December 2015. Notice that the directed partitioning begins to detect the Larsen C ice217

shelf’s significant change in July 2016. In Fig. 7, we see that by September 2016, we detect a structure very218

close in shape to the eventual and actual iceberg A-68, which calved from Larsen C in July 2017. Moreover,219
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Figure 5: Two coherent sets dynamic. As the inner set contact the boundaries of the outer one, than give
the chance for a new reactions that “may” cause critical transition.

by November 2016, see Fig. B.2, the boundaries of the detected partitions match the crack dividing into two220

branches that happened in later in May 2017 and shown in Fig. A.2.221

4 Discussion222

We have presented a new approach for predicting possible critical transitions in spatiotemporal systems,223

specifically marine ice sheets, based on remote sensing satellite imagery. Our approach shows reliability224

in detecting coherent structures, and when the object of concern is a rigid body such as ice sheets. The225

main idea is that observing a significant and perhaps topological form change of a coherent structure may226

indicate an essential underlying critical structural change of the ice over time. The computational approach227

is based on spectral graph theory in terms of the directed graph Laplacian. In the case of the Larsen C ice228

shelf, this is born out. We successfully observe the calving of the A68 iceberg months before the primary229

competing method based on interferometry. This transition of the coherent structure can indicate a possible230

fracture along the edges of directed affinity partitioning. We see that the directed affinity partitioning can231

be a useful early warning sign that indicates the possibility of critical spatiotemporal transitions, and it can232

help to bring the attention to specific regions to investigate different possible scenarios in the analytic study,233

whether computational or possibly even supporting further field studies and deployed aerial remote sensing234

missions.235

In our future work, we plan to pursue the idea of connecting our data-driven approach of computing236

boundaries by directed partitioning with the computational science approach in terms of stress/strain analysis237

of rigid bodies and an understanding of the underlying physics. In addition to expressing the risk of the238

possible critical transitions of multiple coherent structures that surround each other in terms of Lyapunov239

exponent analysis of the minimum distance between two evolving shape coherence described by finite time240

curvatures Ma and Bollt (2014, 2015); Ma et al. (2016) that surround each other.241
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A Figures322

Figure A.1: Interferometry (April 20, 2017). Two Sentinel-1 radar images from 7 and 14 April 2017 were
combined to create this interferogram showing the growing crack in Antarctica’s Larsen-C ice shelf. Polar
scientist Anna Hogg said: “We can measure the iceberg crack propagation much more accurately when using
the precise surface deformation information from an interferogram like this, rather than the amplitude (or
black and white image) alone where the crack may not always be visible.” Source Agency (2017).

Figure A.2: Lrasen C crack development (new branch) as of May 1, 2017. Labels highlight significant jumps.
Tip positions are derived from Landsat (USGS) and Sentinel-1 InSAR (ESA) data. Background image blends
BEDMAP2 Elevation (BAS) with MODIS MOA2009 Image mosaic (NSIDC). Other data from SCAR ADD
and OSM. Credit: MIDAS project, A. Luckman, Swansea University.
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B More Numerical Results323

Figure B.1: Directed affinity partitions with the mean velocity (speed) of the partition assigned for each
label entries. The spatial distance between the arrows tips is less than two miles, while the difference in the
speed is more than 200 m/year.

Figure B.2: The mean image and the directed affinity partitioning as of November 2016. The results shows
similar structure to the crack branching that occurred on May 2017 and shown in Fig. A.2, and similar
structure the final iceberge that calved from Larsen C on July 2017. Raw images source Scambos et al.
(1996).
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Figure B.3: The mean image and the directed affinity partitioning as of February 2016. Raw images source
Scambos et al. (1996).

Figure B.4: The mean image and the directed affinity partitioning as of July 2016. Raw images source
Scambos et al. (1996).
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Figure B.5: The mean image and the directed affinity partitioning as of September 2016. Raw images source
Scambos et al. (1996).

Figure B.6: The mean image and the directed affinity partitioning as of November 2016. Raw images source
Scambos et al. (1996).

16



Figure B.7: The mean image and the directed affinity partitioning as of April 2017. Raw images source
Scambos et al. (1996).
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