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Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in high

dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman inversion, tend to be

robust, computationally cheap and often produce astonishingly accurate estimations despite the inherently wrong underlying

assumptions. Yet there is a lot of room for improvement specifically regarding the description of the associated statistics.

The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where resampling is based on5

optimal transport mapping. Unlike ensemble Kalman inversion it does not require any assumptions regarding the posterior

distribution and hence has shown to provide promising results for non-linear non-Gaussian inverse problems. However, the

improved accuracy comes with the price of much higher computational complexity and the method is not as robust as the

ensemble Kalman inversion in high dimensional problems. In this work, we add an entropy inspired regularisation factor to the

underlying optimal transport problem that allows to considerably reduce the high computational cost via Sinkhorn iterations.10

Further, the robustness of the method is increased via an ensemble Kalman inversion proposal step before each update of the

samples, which is also referred to as hybrid approach. The promising performance of the introduced method is numerically

verified by testing it on a steady-state single-phase Darcy flow model with two different permeability configurations. The results

are compared to the output of ensemble Kalman inversion, and Markov Chain Monte Carlo methods results are computed as a

benchmark.15

1 Introduction

If a solution of a considered partial differential equations (PDE) is highly sensitive to its parameters, accurate estimation of the

parameters and their uncertainties is essential to obtain a just approximation of the solution. Partial observations of the solution

are then used to infer uncertain parameters by solving a PDE-constrained inverse problem. For instance one can approach such

problems via methods induced by Bayes’s formula (Stuart, 2010). More specifically the posterior probability density of the20

parameters given the data, is then computed on the basis of a prior probability density and a likelihood which is the conditional

probability density associated with the given noisy observations. Well-posedness of an inverse problem and convergence to the

true posterior in the limit of observational noise going to zero was proven for different priors and under assumptions on the

parameter-to-observation map by Dashti and Stuart (2017), for example.
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When aiming at practical applications as in oil reservoir management (Lorentzen et al., 2020) and meteorology (Houtekamer25

and Zhang, 2016) for example, the posterior is approximated by means of a finite set of samples. Markov chain Monte Carlo

(MCMC) methods approximate the posterior with a chain of samples–a sequential update of samples according to the posterior.

The main drawback of MCMC is that this approach is not parallelizable. Therefore unless a speed up is introduced in a MCMC

chain (e.g., Cotter et al., 2013), MCMC is impractical for computationally expensive PDE models.

Adaptive Sequential Monte Carlo (SMC) methods, on the contrary, are parallelizable since they approximate the posterior30

with an ensemble of samples by computing their probability (e.g, Vergé et al., 2015). Adaptive intermediate probability mea-

sures are introduced between the prior measure and the posterior measure to improve upon method divergence due to the

curse of dimensionality following Del Moral et al. (2006); Neal (2001). Moreover, sampling from an invariant Markov kernel

with the target intermediate measure and the reference prior measure improves upon ensemble diversity due to parameters

stationarity as shown by Beskos et al. (2015). However, when parameter space is high dimensional, adaptive SMC requires35

computationally prohibitive ensemble sizes unless we approximate only the first two moments (e.g., Iglesias et al., 2018) or

we sample highly correlated samples (Ruchi et al., 2019).

Ensemble Kalman inversion (EKI) approximates only the first two moments of the posterior, which makes it computationally

attractive for estimating high dimensional parameters. For linear problems, Blömker et al. (2019) showed well-posedness and

convergence of EKI for a fixed ensemble size and without any assumptions of Gaussianity. However for nonlinear problems,40

Ernst et al. (2015); Evensen (2018) showed that in the large ensemble size limit an EKI approximation is not consistent with

the Bayesian approximation.

In order to sample highly correlated samples, one can employ optimal transport resampling that lies at the heart of the

ensemble transform particle filter (ETPF) proposed by Reich (2013). An optimal transport map between two consecutive prob-

ability measures provides a direct sample-to-sample map with maximized sample correlation. Along the lines of an adaptive45

SMC approach a probability measure is described via the importance weights and the deterministic mapping replaces the tradi-

tional resampling step. A so-called tempered ensemble transform particle filter (TETPF) was proposed by Ruchi et al. (2019).

Note that this ansatz does not require any distributional assumption for the posterior and it was shown by Ruchi et al. (2019)

that TETPF provides encouraging results for nonlinear high dimensional PDE-constrained inverse problems. However, the

computational cost of solving an optimal transport problem in each iteration is considerably high.50

In this work we address two issues arisen in the context of TETPF: (i) the immense computational costs of solving the

associated optimal transport problem and (ii) the lack of robustness of the TETPF with respect to high dimensional problems.

More specifically, the performance of ETPF has been found to be highly dependent on the initial guess. Although tempering

restrains any sharp fail in the importance sampling step due to a poor initial ensemble selection, the number of required

intermediate steps and the efficiency of ETPF still depends on it. Chustagulprom et al. (2016) suggested that the lack of55

robustness in high dimensions can be addressed via a hybrid approach that combines a Gaussian approximation with the ETPF.

Furthermore, Acevedo et al. (2017) suggested that the computational complexity of the ETPF can be significantly reduced

via a Sinkhorn approximation to the underlying transport problem. Along the lines of Chustagulprom et al. (2016); de Wiljes
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et al. (2020), we propose a tempered ensemble transform particle filter with Sinkhorn approximation (TESPF) and a tempered

hybrid approach.60

The remainder of the manuscript is organised as follows: in Sect. 2, the inverse problem setting is presented. There we de-

scribe the tempered ensemble transform particle filter (TETPF) proposed by Ruchi et al. (2019). Furthermore, we introduce the

tempered ensemble transform particle filter with Sinkhorn approximation (TESPF), a tempered hybrid approach that combines

EKI and TETPF (hybrid EKI-TETPF), and a tempered hybrid approach that combines EKI and TESPF (hybrid EKI-TESPF).

We discuss computational complexities of all the presented techniques and provide corresponding pseudocodes in Appendix A.65

In Sect. 3, we apply the adaptive SMC methods to an inverse problem of inferring high dimensional permeability parameters

for a steady-state single-phase Darcy flow model. Permeability is parameterized following Ruchi et al. (2019), where one

configuration of parametrization leads to Gaussian posteriors, while another one to non-Gaussian posteriors. Finally, we draw

conclusions in Sect. 4.

2 Bayesian inverse problem70

We assume u ∈ Ũ ⊂ Rn is a random variable that is related to partially observable quantities y ∈ Y ⊂ Rκ by a nonlinear

forward operator F : Ũ → Y , namely

y = F (u).

Further yobs ∈ Y denotes a noisy observation of y, i.e.,

yobs = y+η75

where η ∼N (0,R). The aim is to determine or approximate the posterior measure µ(u) conditioned on observations yobs and

given a prior measure µ0(u), which is referred to as Bayesian inverse problem. The posterior measure is absolutely continuous

with respect to the prior, i.e.,

dµ
dµ0

(u)∝ g(u;yobs), (1)

where ∝ is up to a constant of normalisation and g is referred to as the likelihood and depends on the forward operator F . The80

Gaussian observation noise of the observation yobs implies

g(u;yobs) = exp
[
−1

2
(F (u)−yobs)′R−1(F (u)−yobs)

]
, (2)

where ′ denotes the transpose.

2.1 Tempered Sequential Monte Carlo

We consider sequential Monte Carlo (SMC) methods that approximate the posterior measure µ(u) via an empirical measure85

µM (u) =
M∑

i=1

wiδui
(u).

3

https://doi.org/10.5194/npg-2020-24
Preprint. Discussion started: 22 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Here δ is the Dirac function, and the importance weights for the approximation of µ are

wi =
g(ui;yobs)∑M
j=1 g(uj ;yobs)

.

An ensemble U = {u1, . . . ,uM} ⊂ Ũ consists of M realizations ui ∈ Rn of a random variable u that are independent and

identically distributed according to ui ∼ µ0.90

When an easy to sample from prior µ0 does not approximate the complex posterior µ well, only a few weights wi have

significant value resulting in a degenerative approximation of the posterior measure. Potential reasons for this effect are high

dimensionality of the uncertain parameter, large number of observations, or accuracy of the observations. An existing solution

to a degenerative approximation is an iterative approach based on tempering by Del Moral et al. (2006) or annealing by Neal

(2001). The underlying idea is to introduce T intermediate artificial measures {µt}Tt=0 between µ0 and µT = µ. These measures95

are bridged by introducing T tempering parameters {φt}Tt=1 that satisfy 0 = φ0 < φ1 < .. . < φT = 1. An intermediate measure

µt is defined as a probability measure that has density proportional to g(u) with respect to the previous measure µt−1

dµt
dµt−1

(u)∝ g(u;yobs)(φt−φt−1).

Along the lines of Iglesias (2016) the tempering parameter φt is chosen such that effective ensemble size (ESS)

ESSt(φ) =

(∑M
i=1wt,i

)2

∑M
i=1w

2
t,i

100

with

wt,i =
g(ut−1,i;yobs)(φt−φt−1)

∑M
j=1 g(ut−1,j ;yobs)(φt−φt−1)

, (3)

does not drop below a certain threshold 1<Mthresh <M . Then an approximation of the posterior measure µt is

µMt (u) =
M∑

i=1

wt,iδut−1,i
(u). (4)

A bisection algorithm on the interval (φt−1,1] is employed to find φ. If ESSt >Mthresh we set φt = 1 which implies that no105

further tempering is required.

The choice of ESS to define a tempering parameter is supported by results of Beskos et al. (2014) on stability of a tempered

SMC method in terms of ESS. Moreover, for a Gaussian probability density approximated by importance sampling, Agapiou

et al. (2017) showed that ESS is related to the second moment of the Radon-Nikodym derivative Eq. (1).

An SMC method with importance sampling Eq. (4) does not change the sample {ut−1,i}Mi=1, which leads to the method110

collapse due to a finite ensemble size. Therefore each tempering iteration t needs to be supplied with resampling. Resampling

provides a new ensemble {ũt,i}Mi=1 that approximates the measure µt. We will discuss different resampling techniques in

Sect. 2.3.
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2.2 Mutation

Due to stationarity of the parameters an SMC method requires ensemble perturbation. We use ensemble mutation of Cotter115

et al. (2013) with the target measure µt and the reference measure µ0. The mutation phase is initialized at v0,i = ũt,i, and at

the final inner iteration τmax we assign ut,i = vτmax,i for i= 1, . . . ,M .

For a Gaussian prior we use the preconditioned Crank-Nicolson pcn-MCMC method

vprop
i =

√
1− θ2vτ,i + (1−

√
1− θ2)m+ θξτ,i for i= 1, . . . ,M. (5)

Here m is the mean of the Gaussian prior measure µ0 and {ξτ,i}Mi=1 are from a Gaussian distribution with zero mean and a120

covariance matrix of the Gaussian prior measure µ0.

For a uniform prior U [a,b] we use random walk

vprop
i = vτ,i + ξτ,i i= 1, . . . ,M. (6)

Here {ξτ,i}Mi=1 ∼ U [a− b,b− a] and {vprop
i }Mi=1 are projected onto the [a,b] interval if necessary. Then the ensemble at the

inner iteration τ + 1 is125

vτ+1,i = vprop
i with the probability ρ(vprop

i ,ut−1,i) for i= 1, . . . ,M ; (7)

vτ+1,i = vτ,i with the probability 1− ρ(vprop
i ,ut−1,i) for i= 1, . . . ,M. (8)

Here vprop
i is from Eq. (5) for the Gaussian measure and from Eq. (6) for the uniform measure, and

ρ(vprop
i ,ut−1,i) = min

{
1,

g(vprop
i ;yobs)φt

g(ut−1,i;yobs)φt

}
.

The scalar θ ∈ (0, 1] controls the performance of the Markov chain. Small values of θ lead to high acceptance rates but poor130

mixing. Roberts and Rosenthal (2001) showed that for high-dimensional problems it is optimal to choose θ such that the

acceptance rate is between 20 % and 30 % by the last tempering iteration T . Cotter et al. (2013) proved that under some

assumptions this mutation produces a Markov kernel with an invariant measure µt.

Computational complexity. In each tempering iteration t the computational complexity of the pcn-MCMC mutation is

O(τmaxMC), where C is computational cost of a forward model F . For the pseudocode of the pcn-MCMC mutation please135

refer to the Algorithm 1 in Appendix A. Note that the computational complexity is not effected by the length of u which is a

very desirable property in high dimensions as shown by Cotter et al. (2013) and Hairer et al. (2014).

2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC method with importance sampling needs to be supplied with

resampling at each tempering iteration t. We consider a resampling method based on optimal transport mapping proposed140

by Reich (2013).
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2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an optimal way of redistributing mass which was first formulated

by Monge (1781). Given a distribution of matter, e.g., a pile of sand, the underlying question is how to reshape the matter into

another form such that the work done is minimal. A century later the original problem was rewritten by Kantorovich (1942)145

in a statistical framework that allowed to tackle it. Due to these contributions it was later named the Monge-Kantorovich

minimization problem.

Let us consider a scenario where the initial distribution of matter is represented by a probability measure µ on the measurable

space Ũ , that has to be moved and rearranged according to a given new distribution ν, defined on the measurable space Ṽ . Then

we seak a probability measure that is a solution to150

min





∫

Ũ×Ṽ

c(u, ũ)dω : ω ∈
∏

(µ,ν)




, (9)

where the minimum is compute over all joint probability measures ω on Ũ × Ṽ with marginals µ and ν, and c(u, ũ) is a

transport cost function on Ũ × Ṽ . The joint measures achieving the infinum are called optimal transport plans.

Let µ and ν be two measures on a measurable space (Ω,F) such that µ is the law of random variable U : Ω→ Ũ and ν is

the law of random variable V : Ω→ Ṽ . Then a coupling of (µ,ν) consists of a pair (U,V ). Note that couplings always exist,155

an example is the trivial coupling in which the random variables U and V are independent. A coupling is called deterministic

if there exists a measurable function ΨM : Ũ → Ṽ such that V = ΨM (U) and ΨM is called transport map. Unlike general

couplings, deterministic couplings do not always exist. On the other hand there may be infinitely many deterministic couplings.

One famous variant of Eq. (9), where the optimal coupling is known to be a deterministic coupling, is given by

ω∗ = arg inf
ω∈Π(µ,ν)

√
E‖U −V ‖2 (10)160

where Π(µ,ν) denotes the set of measures joining µ and ν (see Villani (2008) for details). The aim of the resampling step is to

obtain equally probable samples. Therefore, in resampling based on optimal transport of Reich (2013), the Monge-Kantorovich

minimization problem Eq. (10) is considered for the current posterior measure µMt (u) given by its samples approximation

Eq. (4) and a uniform measure (here the weights in the sample approximation are set to 1/M ). The discretized objective

functional of the associate optimal transport problem is given by165

J(S) :=
M∑

i,j=1

sij‖ut−1,i−ut−1,j‖2

subject to sij > 0 and constraints

M∑

i=1

sij =
1
M
, j = 1, . . .M ;

M∑

j=1

sij = wt,i, i= 1, . . .M,
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where matrix S describes a joint probability measure under the assumption that the state space is finite. Then samples {ũt,i}Mi=1

are obtained by a deterministic linear transform, i.e.,170

ũt,j :=M

M∑

i=1

ut−1,isij for j = 1, . . . ,M. (11)

Reich (2013) showed weak convergence of the deterministic optimal transformation Eq. (11) to a solution of the Monge-

Kantorovich problem Eq. (9) as M →∞.

Computational complexity. The computational complexity of solving the optimal transport problem with an efficient earth

mover distance algorithm such as FastEMD of Pele and Werman (2009) is of order O(M3 logM). Consequently the compu-175

tational complexity of the adaptive tempering SMC with optimal transport resampling (TETPF) is O[T (MC+M3 logM +

τmaxMC)], where T is the number of tempering iterations, τmax is the number of pcn-MCMC inner iterations, and C is compu-

tational cost of a forward model F . For the pseudocode of the TETPF please refer to the Algorithm 4 in Appendix A.

2.3.2 Sinkhorn approximation

As discussed above solving the optimal transport problem has a computational complexity of O =M3 log(M) in every iter-180

ation of the tempering procedure. Thus the TETPF becomes very expensive for large M . One the other hand an increase in

the number of samples directly correlates with an improved accuracy of the estimation. In order to allow for as many samples

as possible one needs to reduce the associate computational cost of the optimal transport problem. This can be achieved by

replacing the optimal transport distance with a Sinkhorn distance and subsequently exploiting the new structure to elude the

immense computational time of the EMD solver as shown by Cuturi (2013). More precisely the ansatz is built on the fact that185

the original transport problem has a natural entropic bound that is obtained for S = [ 1
M IMw

>] where w = [w1, . . . ,wM ] and

IM = [1, . . . ,1] ∈ RM which constitutes an independent joint probability. Therefore one can consider the problem of finding a

matrix S ∈ RM×M , that is constraint by an additional lower entropic bound (Sinkhorn distance). This additional constraint can

be incorporated via a Lagrange multiplier, which leads to the above regularised form, i.e.,

JSH(S) =
M∑

i,j=1

{
sij‖ut−1,i−ut−1,j‖2 +

1
α
sij logsij

}
(12)190

where α > 0. Due to additional smoothness the minimum of Eq. (12) can be unique and has the form

Sα = diag(b)exp
(
−αZ

)
diag(a)

where Z is matrix with entires zij = ‖ut−1,i−ut−1,j‖2 and b and a non-negative vectors determined by employing Sinkhorn’s

fixpoint iteration described by Sinkhorn (1967). We will refer to this approach as tempered ensemble Sinkhorn particle filter

(TESPF).195

Computational complexity. Solving this regularise optimal transport problems rather than original transport problem given in

Eq. (9) reduces the complexity toO(M2C(α)). For the pseudocode of the Sinkhorn adaptation of solving the optimal transport

problem please refer to the Algorithm 3 in Appendix A. For the pseudocode of the TESPF please refer to the Algorithm 4 in

Appendix A.
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2.4 Ensemble Kalman inversion200

For Bayesian inverse problems with Gaussian measures, ensemble Kalman inversion (EKI) is one of the widely used algorithm.

EKI is an adaptive SMC method that approximates the first two statistical moments of a posterior distribution. For a linear

forward model, EKI is optimal in a sense it minimizes the error in the mean (Blömker et al., 2019). For a nonlinear forward

model, EKI still provides a good estimation of posterior (e.g., Iglesias et al., 2018). Here we consider EKI method of Iglesias

et al. (2018), since it is based on the tempering approach.205

The intermediate measures {µt}Tt=0 are approximated by Gaussian distributed variables with empirical mean mt and em-

pirical variance Ct. Given empirical meanmt−1 and empirical covariance Ct−1 defined in terms of {ut−1,i}Mi=1

mt−1 =
1
M

M∑

i=1

ut−1,i, Ct−1 =
1

M − 1

M∑

i=1

(ut−1,i−mt−1)⊗ (ut−1,i−mt−1),

the mean and covariance are updated by

mt =mt−1 + Cu F
t−1(CFF

t−1 + ∆tR)−1(yobs−F t−1), Ct = Ct−1−Cu F
t−1(CFF

t−1 + ∆tR)−1CuF
t−1′,210

where

CuF
t−1 =

1
M − 1

M∑

i=1

(ut−1,i−mt−1)⊗ (F (ut−1,i)−F t−1), CFF
t−1 =

1
M − 1

M∑

i=1

[F (ut−1,i)−F t−1]⊗ [F (ut−1,i)−F t−1],

∆t =
1

φt−φt−1
, F t−1 =

1
M

M∑

i=1

F (ut−1,i).

Since we are interested in an ensemble approximation of the posterior distribution, we update the ensemble members by215

ũt,i = ut−1,i + CuF
t−1(CFF

t−1 + ∆tR)−1[yt,i−F (ut−1,i)] for i= 1, . . . ,M. (13)

Here yt,i = yobs +ηt,i and ηt,i ∼N (0,∆tR) for i= 1, . . . ,M .

Computational complexity. By implementing a sequential observation update of Whitaker et al. (2008), the computational

complexity of solving Eq. (13) can be reduced to O(2Mκn), where n is the parameter space dimension, κ is the observation

space dimension, and M is the ensemble size. Then the computational complexity of EKI is O[T (MC+ 2Mκn+ τmaxMC)],220

where T is the number of tempering iterations, τmax is the number of pcn-MCMC inner iterations, and C is computational cost

of a forward model F . For the pseudocode of the EKI method please refer to the Algorithm 5 in Appendix A.

2.5 Hybrid

Despite the underlying Gaussian assumption the EKI is remarkable robust in non-linear high-dimensional settings opposed

to consistent SMC methods such as the TET(S)PF. For many non-linear problems it is desirable to have better uncertainty225

estimates while maintaining a level of robustness. This can be achieved by factorising the likelihood given by Eq. (2), e.g,

g(u;yobs) = g1(u;yobs) · g2(u;yobs),
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where

g1(u;yobs) = βg(u;yobs) = exp
[
−1

2
(F (u)−yobs)′(βR)−1(F (u)−yobs)

]
(14)

and230

g2(u;yobs) = (1−β)g(u;yobs) = exp
[
−1

2
(F (u)−yobs)′[(1−β)R]−1(F (u)−yobs)

]
. (15)

Then it is possible to alternate between methods with complementing properties such as the EKI and the TET(S)PF updates

e.g., likelihood

exp
[
−β

2
(F (u)−yobs)′R−1(F (u)−yobs)

](φt−φt−1)

is used for an EKI update followed by an update with a TET(S)PF on the basis of235

exp
[
− (1−β)

2
(F (u)−yobs)′R−1(F (u)−yobs)

](φt−φt−1)

.

This combination of an approximative Gaussian method and a consistent SMC method has been referred to as hybrid filters

in the data assimilation literature1(Chustagulprom et al., 2016; Frei and Künsch, 2013). This ansatz can also be understood as

using the EKI as an more elaborate proposal density for the importance sampling step within SMC.

Computational complexity. The computational complexity of combining the two algorithms is O[T (MC+ 2Mκn+MC+240

M3 logM + τmaxMC)] for the hybrid EKI-TETPF and O[T (MC+ 2Mκn+MC+M2C(α) + τmaxMC)] for the hybrid EKI-

TESPF. For the pseudocode of the hybrid methods please refer to the Algorithm 6 in Appendix A.

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,6]× [0,6], which is given by245

−∇ · [k(x,y)∇P (x,y)] = f(x,y), (x,y) ∈D, (16)

where ∇= (∂/∂x ∂/∂y)′, · the dot product, P (x,y) the pressure, k(x,y) the permeability, and f(x,y) the source term. The

source term is

f(x,y) =





0 if 0< y ≤ 4,

137 if 4< y < 5,

274 if 5< y ≤ 6.

(17)

The boundary conditions are250

P (x,0) = 100,
∂P

∂x
(6,y) = 0, −k(0,y)

∂P

∂x
(0,y) = 500,

∂P

∂y
(x,6) = 0, (18)

where ∂D is the boundary of domain D.
1Note that the terminology is also used in the context of data assimilation filters combining variational and sequential approaches.
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Figure 1. Geometrical configuration of channel flow: amplitude d1, frequency d2, angle d3, initial point d4, and width d5.

3.1 Parameterisation of permeability

We consider the following two parameterisations of the permeability function k(x,y)

P1: log permeability over the entire domain D, u(x,y) = logk(x,y);255

P2: permeability over domain D that has a channel, k(x,y) = k1(x,y)δDc
(x,y) + k2(x,y)δD\Dc

(x,y) as by Iglesias et al.

(2014).

Here Dc denotes a channel, δ Dirac function, k1 = exp(u1(x,y)) and k2 = exp(u2(x,y)) denote permeabilities inside and

outside the channel. The geometry of the channel is parameterized by five parameters {di}5i=1: amplitude, frequency, angle,

initial point, and width, correspondingly. The lower boundary of the channel is given by y = d1 sin(d2x/6) + tan(d3)x+ d4.260

The upper boundary of the channel is given by y+ d5. These parameters are depicted in Fig. 1.

We assume log permeability for both P1 and P2 is drawn from a Gaussian distribution µ0 =N (m,C) with mean m and

covariance C. We define C via a correlation function given by the Wittle-Matern correlation function defined by Matérn (1986)

c(x,y) =
1

γ(1)
‖x− y‖

υ
Υ1

(
‖x− y‖

υ

)
,

where γ is the gamma function, υ = 0.5 is the characteristic length scale, and Υ1 is the modified Bessel function of the second265

kind of order 1.

We implement a cell-centered finite difference method to solve the forward model Eqs. (16)–(18) on an N ×N grid. We

denote by λ and V eigenvalues and eigenfunctions of the corresponding covariance matrix C, respectively. Then, following a
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Karhunen-Loeve expansion, log permeability is

log(kl) = log(m) +
N2∑

`=1

√
λ`V `lu` for l = 1, . . . ,N2,270

where u` is i.i.d. from N (0,1) for `= 1, . . . ,N2.

For P1, the prior for log permeability is a Gaussian distribution with mean 5. The grid dimension is 70, and thus the uncertain

parameter u= {u`}N2

`=1 has dimension 4900.

For P2, we assume geometrical parameters d= {di}5i=1 are drawn from uniform priors, namely d1 ∼ U [0.3, 2.1], d2 ∼
U [π/2, 6π], d3 ∼ U [−π/2, π/2], d4 ∼ U [0, 6], d5 ∼ U [0.12, 4.2]. Furthermore, we assume independence between geometric275

parameters and log permeability. The prior for log permeability is a Gaussian distribution with mean 15 outside the channel

and with mean 100 inside the channel. The grid dimension is 50. Log permeability inside channel u1 = {u1,`}N2

`=1 and log

permeability outside channel u2 = {u2,`}N2

`=1 are defined over the entire domain 50× 50. Therefore, for P2 inference the

uncertain parameter u= {d,u1,u2} has dimension 5005. Moreover, for P2 we use the Metropolis-within-Gibbs methodology

following Iglesias et al. (2014) to separate geometrical parameters and log permeability parameters within the mutation step,280

since it allows to better exploit the structure of the prior.

3.2 Observations

Both the true permeability and an initial ensemble are drawn from the same prior distribution as the prior includes knowledge

about geological properties. However, an initial guess is computed on a coarse grid and the true solution is computed on a fine

grid that has twice the resolution of the coarse grid. The synthetic observations are obtained by285

yobs =L(P true) +η.

An element of L(P true) is a linear functional of pressure, namely

Lj(P true) =
1

2πσ2

Nf∑

i=1

exp
(
−‖X

i−hj‖2
2σ2

)
(P true)j∆x2 for j = 1, . . . ,κ.

Here σ = 0.01, ∆x2 is the size of a grid cellXi = (Xi,Y i),Nf is resolution of a fine grid, hj is the location of the observation

and κ is the number of observations. This form of the observation functional and the parameterization P1 and P2 guaranty290

the continuity of the forward map from the uncertain parameters to the observations and thus the existence of the posterior

distribution as shown by Iglesias et al. (2014). The observation noise η is drawn from a normal distribution with zero mean and

known covariance matrix R. We choose the observation noise to be 2 % of L2-norm of the true pressure. Such a small noise

makes the data assimilation problem hard to solve, since the likelihood is very peaked and a non-iterative data assimilation

approach fails.295

To save computational costs, we choose ESS thresholdMthresh =M/3 for tempering, and the length of Markov chain τmax =

20 for mutation.
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3.3 Metrics

We conduct numerical experiments with ensemble sizes 100 and 500, and 20 simulations with different initial ensemble real-

izations to check the robustness of results. We analyze the method’s performance with respect to a pcn-MCMC solution from300

here on referred to as reference. An MCMC solution was obtained by combining 50 independent chains each of length 106,

105 burn-in period and 103 thinning. For log permeability, we compute RMSE of the mean

RMSE =
√

(u−uref)′(u−uref), where u=
1
M

M∑

i=1

ui, (19)

and uref is the reference solution.

For geometrical parameters d, we compute the Kullback-Leibler divergence305

DiKL(pref ‖ p) =
Mb∑

j=1

pref(dij) log
pref(dij)
p(dij)

, (20)

where pref(di) is the reference posterior, p(di) is approximated by the weights, and Mb =M/10 is a chosen number of bins.

3.4 Application to P1 inference

For P1, we perform numerical experiments using 36 uniformly distributed observations, which are displayed in circles in

Fig. 3(a). We plot box plot of RMSE given by Eq. (19) over 20 independent simulations in Fig. 2(a) using Sinkhorn approxi-310

mation and in Fig. 2(b) using optimal transport. The x-axis is for the hybrid parameter β, whose value 0 corresponds to EKI

and 1 to an adaptive SMC method with either Sinkhorn approximation (TESPF) or optimal transport (TETPF). Ensemble size

M = 100 is shown in red and M = 500 in green. First, we observe that at a small ensemble size 100 TESPF outperforms

TETPF. Since Sinkhorn approximation is a regularization of an optimal transport solution, TESPF provides a smoother solu-

tion than TETPF that can be seen in Fig. 3(c) and Fig. 3(f), respectively, where we plot mean log permeability. Next, we see315

in Fig. 2 that the hybrid approach decreases RMSE compared to TET(S)PF: the smaller β the smaller median of RMSE. EKI

gives the smallest error due to the Gaussian parametrization of permeability. The advantage of the hybrid approach is most

pronounced at a large ensemble size 500 and optimal transport resampling.

We plot mean log permeability at ensemble size 100 and a smallest RMSE over 20 simulations in Fig. 3(b)–(f) and of

reference in Fig. 3(a). We see that EKI and TETPF(0.2) estimate well mot only large-scale feature but also small-scale feature320

(e.g., negative mean at the top right corner) unlike TET(S)PF and TESPF(0.2).

3.5 Application to P2 inference

For P2, we perform numerical experiments using 9 uniformly distributed observations. which are displayed in circles in

Fig. 9(a). First, we display results obtained by Sinkhorn approximation. In Fig. 4, we plot box plot over 20 independent

runs of KL divergence given by Eq. (20) for amplitude (a), frequency (b), angle (c), initial point (d), and width (e) that define325
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Figure 2. Application to P1 parameterization: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20

independent simulations of RMSE of mean log permeability. X-axis is for the hybrid parameter, where β = 0 corresponds to EKI and β = 1

to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges of the box are the 25th and 75th

percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.
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Figure 3. Mean log permeability for P1 inference for the lowest error at ensemble size 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EKI (d), TETPF(0.2) (e), and TETPF (f).

channel. We see that EKI outperforms any TESPF(·) including TESPF for amplitude (a) and width (e). This is due to Gaussian-

like posteriors of these two geometrical parameters displayed in Fig. 6(c) and Fig. 6(o), respectively. Due to Gaussian-like

posteriors the hybrid approach decreases RMSE compared to TESPF: the smaller β the smaller median of RMSE.

For frequency, angle, and initial point, whose KL divergence is displayed in Fig. 4(b), (c), and (d), respectively, the behaviour

of adaptive SMC is nonlinear in terms of β. This is due to non Gaussian-like posteriors of these three geometrical parameters330

shown in Fig. 6(f), (i), and (l), respectively. Due to non Gaussian-like posteriors the hybrid approach gives an advantage over
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Figure 4. Application to P2 parameterization using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence

for geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d), and width (e). X-axis is for the hybrid parameter, where

β = 0 corresponds to EKI and β = 1 to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges

of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.

both TESPF and EKI—there exists a β 6= 0 for which the KL divergence is lowest though it is inconsistent between geometrical

parameters.

When comparing TESPF(·) to TETPF(·), we observe the same type of behaviour in terms of β: linear for amplitude and

width, whose KL divergence is displayed in Fig. 5(a) and (e), respectively, and nonlinear for frequency, angle, and initial point,335

whose KL divergence is displayed in Fig. 5(b), (c), and (d), respectively. However, the KL divergence is smaller when optimal

transport resampling is used instead of Sinkhorn approximation.

In Fig. 6, we plot posterior of geometrical parameters: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l),

and width (m)–(o), where on the left TESPF(0.2), in the middle TETPF(0.2), and on the right EKI are shown. In black is the

reference, in red 20 simulations of ensemble size 100, in green 20 simulations of ensemble size 500. The true parameters are340

shown as black cross. We see that as ensemble size increases posteriors approximated by TET(S)PF converge to the reference

posterior unlike EKI.

Now we investigate adaptive SMC performance for permeability estimation. First, we display results obtained by Sinkhorn

approximation. We plot box plot over 20 independent simulations of RMSE given by Eq. (19) for log permeability outside

channel in Fig. 7(a) and inside channel in Fig. 7(b). Even though log permeability is Gaussian distributed, for a small ensemble345

size 100 there exists a β 6= 0 that gives lowest RMSE both outside and inside channel. As ensemble size increases, methods

performance becomes equivalent.
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Figure 5. The same as Fig. 4 but using optimal transport resampling.

Next, we compare TESPF(·) to TETPF(·) for log permeability estimation outside and inside channel whose RMSE is dis-

played in Fig. 8(a) and (b), respectively. We observe the same type of behaviour in terms of β: nonlinear for a small ensemble

size 100, and equivalent for a larger ensemble size 500. Furthermore, at a small ensemble size 100 TESPF outperforms TETPF,350

which was also the case for P1 parameterization Sec. 3.4.

In Fig. 9, we show mean field of permeability over the channelized domain for reference for the lowest error at ensemble

size 100 for TESPF(0.2) (b), TESPF (c), EKI (d), TETPF(0.2) (e), and TETPF (f). We plot mean log permeability over the

channelized domain at ensemble size 100 and a smallest RMSE over 20 simulations in Fig. 9(b)–(f) and of reference in Fig. 9(a).

We see that TESPF(0.2) does an excellent job at such a small ensemble size by estimating well log permeability outside and355

inside channel, and parameters of the channel itself.

4 Conclusions

A Sinkhorn adaptation, namely the TESPF, of the previously proposed TETPF has been introduced and numerically investi-

gated on a parameter estimation problem. The TESPF has considerable smaller computational complexity than the TETPF,

namely O[T (MC+M2C(α) + τmaxMC)] vs O[T (MC+M3 logM + τmaxMC)], yet has similar accuracy results (see Fig. 7,360

8 and 6). In particular, the TESPF outperforms the EKI for non-Gaussian distributed parameters (e.g., initial point and angle in

P2). This makes the proposed method a promising option for the high dimensional nonlinear problems one is typically faced

with in geophysical applications. Further, to counter balance potential robustness problems of the TETPF and its Sinkhorn

adaptation a hybrid between EKI and TET(S)PF is proposed and studied by means of the two configurations of the steady-

state single-phase Darcy flow model. The combination of the two adaptive SMC methods with complementing properties, i.e.,365
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Figure 6. Posterior of geometrical parameters for P2 inference: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l), and

width (m)–(o). On the left is TESPF(0.2); in the middle is TETPF(0.2), and on the right is EKI. In black is reference, in red 20 simulations

of ensemble size 100, in green 20 simulations of ensemble size 500. The true parameters are shown as black cross.

β ∈ (0,1), is superior to the individual adaptive SMC method, i.e., β = 0 or 1, for all non-Gaussian distributed parameters

and performs better than the pure TETPF and the TETSPF for Gaussian distributed parameters in P1. This suggests a hybrid
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Figure 7. Application to P2 parameterization with Sinkhorn approximation. Box plot over 20 independent simulations of RMSE of mean

log permeability outside channel (a) and inside channel (b). X-axis is for the hybrid parameter, where β = 0 corresponds to EKI and β = 1

to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges of the box are the 25th and 75th

percentiles, whiskers extend to the most extreme data points, and crosses are outliers.
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Figure 8. The same as Fig. 7 but using optimal transport resampling.

approach provides all the desirable properties required to obtain robust and highly accurate approximate solutions of nonlinear

high dimensional Bayesian inference problems.
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Appendix A: Pseudocode370

Algorithm 1 Sample mutation

Require: θ ∈ (0,1) and an integer τmax

for i= 1, . . . ,M do

Initialize vi(0) = ũt,i

while τ ≤ τmax do

Propose vprop
i using Eq. (5) for Gaussian probability or Eq. (6) for uniform probability

Set vi(τ +1) = vprop
i with probability Eq. (7) and set vi(τ +1) = ũt,i with probability Eq. (8)

τ ← τ +1

end while

Set ut,i = vi(τmax)

end for

Algorithm 2 Resampling based on optimal transport

Require: {ut−1,i}Mi=1 and wt−1 = {wt−1,1, . . . ,wt−1,M}
Compute Z with zij = ‖ut−1,i−ut−1,j‖2

Supply Z and wt−1 to the FastEMD algorithm of Pele & Werman with the output being the coupling S

Compute new samples {ũt,i}Mi=1 from Eq. (11)

Algorithm 3 Sinkhorn iteration for optimal transport problem with entropic regularisation

Require: regularisation parameter α, {ut−1,i}Mi=1 and wt−1 = {wt−1,1, . . . ,wt−1,M}
Compute Z with zij = ||ut−1,i−ut−1,j ||2

Normalise Z with respect to its maximum entry

while ε≥ 1.0e− 8 do

b = wt−1./[exp(−αZ)a]

a =
(

1
M
IM/M

)
./[exp(−αZ)b]

S = diag(b)exp(−αZ)diag(a)

ŵ = SIM
ε= ‖ŵ−wt−1‖

end while

return S∗ = S
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Algorithm 4 Adaptive SMC: TET(S)PF

Require: an initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1) and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g(ut−1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Compute weights wt−1 = {wt−1,1, . . . ,wt−1,M} from Eq. (3)

Create new samples {ũt,i}Mi=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while

Algorithm 5 EKI

Require: an initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1) and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g(ut−1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Create new samples {ũt,i}Mi=1 using Eq. (13)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while
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Algorithm 6 Hybrid EKI-TET(S)PF

Require: initial initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1), hybrid parameter β and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g1(ut−1,i;yobs) from Eq. (14) (for i= 1, . . . ,M )

Set g(ut−1,i;yobs) = g1(ut−1,i;yobs) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Create new samples {ũβt,i}Mi=1 using Eq. (13)

Compute the likelihood g2(ũβt,i;yobs) from Eq. (15) (for i= 1, . . . ,M )

Set g(ut−1,i;yobs) = g2(ũ
β
t,i;yobs) (for i= 1, . . . ,M )

Compute weights wt−1 = {wt−1,1, . . . ,wt−1,M} from Eq. (3)

Create new samples {ũt,i}Mi=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while
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