10

15

20

https://doi.org/10.5194/npg-2020-24
Preprint. Discussion started: 22 June 2020
(© Author(s) 2020. CC BY 4.0 License.

Application of ensemble transform data assimilation methods for
parameter estimation in nonlinear problems

Sangeetika Ruchi!, Svetlana Dubinkina', and Jana de Wiljes?

ICentrum Wiskunde & Informatica, P.O. Box 94079, 1098 XG Amsterdam, The Netherlands
2University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476, Potsdam, Germany

Correspondence: Jana de Wiljes (wiljes @uni-potsdam.de)

Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in high
dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman inversion, tend to be
robust, computationally cheap and often produce astonishingly accurate estimations despite the inherently wrong underlying
assumptions. Yet there is a lot of room for improvement specifically regarding the description of the associated statistics.
The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where resampling is based on
optimal transport mapping. Unlike ensemble Kalman inversion it does not require any assumptions regarding the posterior
distribution and hence has shown to provide promising results for non-linear non-Gaussian inverse problems. However, the
improved accuracy comes with the price of much higher computational complexity and the method is not as robust as the
ensemble Kalman inversion in high dimensional problems. In this work, we add an entropy inspired regularisation factor to the
underlying optimal transport problem that allows to considerably reduce the high computational cost via Sinkhorn iterations.
Further, the robustness of the method is increased via an ensemble Kalman inversion proposal step before each update of the
samples, which is also referred to as hybrid approach. The promising performance of the introduced method is numerically
verified by testing it on a steady-state single-phase Darcy flow model with two different permeability configurations. The results
are compared to the output of ensemble Kalman inversion, and Markov Chain Monte Carlo methods results are computed as a

benchmark.

1 Introduction

If a solution of a considered partial differential equations (PDE) is highly sensitive to its parameters, accurate estimation of the
parameters and their uncertainties is essential to obtain a just approximation of the solution. Partial observations of the solution
are then used to infer uncertain parameters by solving a PDE-constrained inverse problem. For instance one can approach such
problems via methods induced by Bayes’s formula (Stuart, 2010). More specifically the posterior probability density of the
parameters given the data, is then computed on the basis of a prior probability density and a likelihood which is the conditional
probability density associated with the given noisy observations. Well-posedness of an inverse problem and convergence to the
true posterior in the limit of observational noise going to zero was proven for different priors and under assumptions on the

parameter-to-observation map by Dashti and Stuart (2017), for example.
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When aiming at practical applications as in oil reservoir management (Lorentzen et al., 2020) and meteorology (Houtekamer
and Zhang, 2016) for example, the posterior is approximated by means of a finite set of samples. Markov chain Monte Carlo
(MCMC) methods approximate the posterior with a chain of samples—a sequential update of samples according to the posterior.
The main drawback of MCMC is that this approach is not parallelizable. Therefore unless a speed up is introduced in a MCMC
chain (e.g., Cotter et al., 2013), MCMC is impractical for computationally expensive PDE models.

Adaptive Sequential Monte Carlo (SMC) methods, on the contrary, are parallelizable since they approximate the posterior
with an ensemble of samples by computing their probability (e.g, Vergé et al., 2015). Adaptive intermediate probability mea-
sures are introduced between the prior measure and the posterior measure to improve upon method divergence due to the
curse of dimensionality following Del Moral et al. (2006); Neal (2001). Moreover, sampling from an invariant Markov kernel
with the target intermediate measure and the reference prior measure improves upon ensemble diversity due to parameters
stationarity as shown by Beskos et al. (2015). However, when parameter space is high dimensional, adaptive SMC requires
computationally prohibitive ensemble sizes unless we approximate only the first two moments (e.g., Iglesias et al., 2018) or
we sample highly correlated samples (Ruchi et al., 2019).

Ensemble Kalman inversion (EKI) approximates only the first two moments of the posterior, which makes it computationally
attractive for estimating high dimensional parameters. For linear problems, Blomker et al. (2019) showed well-posedness and
convergence of EKI for a fixed ensemble size and without any assumptions of Gaussianity. However for nonlinear problems,
Ernst et al. (2015); Evensen (2018) showed that in the large ensemble size limit an EKI approximation is not consistent with
the Bayesian approximation.

In order to sample highly correlated samples, one can employ optimal transport resampling that lies at the heart of the
ensemble transform particle filter (ETPF) proposed by Reich (2013). An optimal transport map between two consecutive prob-
ability measures provides a direct sample-to-sample map with maximized sample correlation. Along the lines of an adaptive
SMC approach a probability measure is described via the importance weights and the deterministic mapping replaces the tradi-
tional resampling step. A so-called tempered ensemble transform particle filter (TETPF) was proposed by Ruchi et al. (2019).
Note that this ansatz does not require any distributional assumption for the posterior and it was shown by Ruchi et al. (2019)
that TETPF provides encouraging results for nonlinear high dimensional PDE-constrained inverse problems. However, the
computational cost of solving an optimal transport problem in each iteration is considerably high.

In this work we address two issues arisen in the context of TETPF: (i) the immense computational costs of solving the
associated optimal transport problem and (ii) the lack of robustness of the TETPF with respect to high dimensional problems.
More specifically, the performance of ETPF has been found to be highly dependent on the initial guess. Although tempering
restrains any sharp fail in the importance sampling step due to a poor initial ensemble selection, the number of required
intermediate steps and the efficiency of ETPF still depends on it. Chustagulprom et al. (2016) suggested that the lack of
robustness in high dimensions can be addressed via a hybrid approach that combines a Gaussian approximation with the ETPF.
Furthermore, Acevedo et al. (2017) suggested that the computational complexity of the ETPF can be significantly reduced
via a Sinkhorn approximation to the underlying transport problem. Along the lines of Chustagulprom et al. (2016); de Wiljes
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O

et al. (2020), we propose a tempered ensemble transform particle filter with Sinkhorn approximation (TESPF) and a tempered
hybrid approach.

The remainder of the manuscript is organised as follows: in Sect. 2, the inverse problem setting is presented. There we de-
scribe the tempered ensemble transform particle filter (TETPF) proposed by Ruchi et al. (2019). Furthermore, we introduce the
tempered ensemble transform particle filter with Sinkhorn approximation (TESPF), a tempered hybrid approach that combines
EKI and TETPF (hybrid EKI-TETPF), and a tempered hybrid approach that combines EKI and TESPF (hybrid EKI-TESPF).
We discuss computational complexities of all the presented techniques and provide corresponding pseudocodes in Appendix A.
In Sect. 3, we apply the adaptive SMC methods to an inverse problem of inferring high dimensional permeability parameters
for a steady-state single-phase Darcy flow model. Permeability is parameterized following Ruchi et al. (2019), where one
configuration of parametrization leads to Gaussian posteriors, while another one to non-Gaussian posteriors. Finally, we draw

conclusions in Sect. 4.

2 Bayesian inverse problem

We assume w € I{ C R" is a random variable that is related to partially observable quantities y € Y C R” by a nonlinear

forward operator F': Uu— Y, namely
y=F(u).
Further yo,s € ) denotes a noisy observation of y, i.e.,

Yobs =Y+ 1

where 7 ~ A/(0,R). The aim is to determine or approximate the posterior measure y(u) conditioned on observations yps and
given a prior measure £io(w), which is referred to as Bayesian inverse problem. The posterior measure is absolutely continuous
with respect to the prior, i.e.,

dp
dug
where o is up to a constant of normalisation and g is referred to as the likelihood and depends on the forward operator F'. The

(u) OCg(“?yobs)y (D

Gaussian observation noise of the observation y,ps implies

1 _
g(u;yobs) = exXp *i(F(u) - yobs)/R 1(F(u) - yobs) , (2
where ’ denotes the transpose.
2.1 Tempered Sequential Monte Carlo

We consider sequential Monte Carlo (SMC) methods that approximate the posterior measure 1(w) via an empirical measure

M _ - .
i () = 3" wid (w).
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Here § is the Dirac function, and the importance weights for the approximation of x4 are

_ g(uza yobs)
2 j=19(%;3Yobs)
An ensemble U = {uq,...,up} C U consists of M realizations u; € R” of a random variable w that are independent and

identically distributed according to w; ~ pig.

When an easy to sample from prior py does not approximate the complex posterior p well, only a few weights w; have
significant value resulting in a degenerative approximation of the posterior measure. Potential reasons for this effect are high
dimensionality of the uncertain parameter, large number of observations, or accuracy of the observations. An existing solution
to a degenerative approximation is an iterative approach based on tempering by Del Moral et al. (2006) or annealing by Neal
(2001). The underlying idea is to introduce 7" intermediate artificial measures { ¢ }7_, between p1o and p7 = p. These measures
are bridged by introducing 7" tempering parameters {¢; }7_; that satisfy 0 = ¢g < ¢; < ... < ¢ = 1. An intermediate measure
(¢ is defined as a probability measure that has density proportional to g(u) with respect to the previous measure fi;—1
du

(pr—¢i-1)
dpg—1

(u) o< g(u; Yobs)

Along the lines of Iglesias (2016) the tempering parameter ¢, is chosen such that effective ensemble size (ESS)

, 2
(va; wt,i)

ESS;:(¢) =
with
_ Q(Ut—l,i;yobs)(d’t*@’l)
Wi = —7 ; (3
Z]‘:l 9(Wi 1,3 Yobs) (Pt —91-1)

does not drop below a certain threshold 1 < Mesn < M. Then an approximation of the posterior measure i is
M

it (w) = wi b, (w). “
i=1

A bisection algorithm on the interval (¢;_1,1] is employed to find ¢. If ESS; > Mypesn We set ¢, = 1 which implies that no
further tempering is required.

The choice of ESS to define a tempering parameter is supported by results of Beskos et al. (2014) on stability of a tempered
SMC method in terms of ESS. Moreover, for a Gaussian probability density approximated by importance sampling, Agapiou
et al. (2017) showed that ESS is related to the second moment of the Radon-Nikodym derivative Eq. (1).

An SMC method with importance sampling Eq. (4) does not change the sample {u;_1;}*,, which leads to the method
collapse due to a finite ensemble size. Therefore each tempering iteration ¢ needs to be supplied with resampling. Resampling
provides a new ensemble {,;}}, that approximates the measure p;. We will discuss different resampling techniques in

Sect. 2.3.
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2.2 Mutation

Due to stationarity of the parameters an SMC method requires ensemble perturbation. We use ensemble mutation of Cotter
et al. (2013) with the target measure p; and the reference measure (1. The mutation phase is initialized at vg ; = u; ;, and at
the final inner iteration 7y, We assign u; ; = v, ; fori=1,..., M.

For a Gaussian prior we use the preconditioned Crank-Nicolson pcn-MCMC method

WP =/1-0%2v,,;+(1-V1-02)m+0¢,; for i=1,...,M. 5)

Here m is the mean of the Gaussian prior measure 9 and {&, ;}, are from a Gaussian distribution with zero mean and a
covariance matrix of the Gaussian prior measure .

For a uniform prior Ula,b] we use random walk

'lJProp:’lJT77;+£T~,i Z:1a7M (6)

K2

Here {&,i}M, ~Ula—b,b—a] and {0 "}M | are projected onto the [a,b] interval if necessary. Then the ensemble at the

i

inner iteration 7+ 1 is

Vo1 =087 with the probability p(v?" P, us—1,) for i=1,...,M; (7)
Vrgli =Ur; with the probability 1—p(v? P, us_q,;) for i=1,...,M. (8)
Here v!"" is from Eq. (5) for the Gaussian measure and from Eq. (6) for the uniform measure, and

10, ’
p(V" P up_q ;) = min {1, m} )
The scalar § € (0, 1] controls the performance of the Markov chain. Small values of 6 lead to high acceptance rates but poor
mixing. Roberts and Rosenthal (2001) showed that for high-dimensional problems it is optimal to choose 6 such that the
acceptance rate is between 20 % and 30 % by the last tempering iteration 7". Cotter et al. (2013) proved that under some
assumptions this mutation produces a Markov kernel with an invariant measure ;.

Computational complexity. In each tempering iteration ¢ the computational complexity of the pcn-MCMC mutation is
O(TmaxMC), where C is computational cost of a forward model F'. For the pseudocode of the pcn-MCMC mutation please
refer to the Algorithm 1 in Appendix A. Note that the computational complexity is not effected by the length of w which is a

very desirable property in high dimensions as shown by Cotter et al. (2013) and Hairer et al. (2014).
2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC method with importance sampling needs to be supplied with
resampling at each tempering iteration . We consider a resampling method based on optimal transport mapping proposed
by Reich (2013).



145

150

155

160

165

https://doi.org/10.5194/npg-2020-24
Preprint. Discussion started: 22 June 2020
(© Author(s) 2020. CC BY 4.0 License.

2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an optimal way of redistributing mass which was first formulated
by Monge (1781). Given a distribution of matter, e.g., a pile of sand, the underlying question is how to reshape the matter into
another form such that the work done is minimal. A century later the original problem was rewritten by Kantorovich (1942)
in a statistical framework that allowed to tackle it. Due to these contributions it was later named the Monge-Kantorovich
minimization problem.

Let us consider a scenario where the initial distribution of matter is represented by a probability measure ;. on the measurable
space U, that has to be moved and rearranged according to a given new distribution v, defined on the measurable space V. Then

we seak a probability measure that is a solution to

min / c(u,t)dw: we H(u,v) , )
Uxvy

where the minimum is compute over all joint probability measures w on {f x V with marginals p and v, and c(u,a) is a

transport cost function on U x V. The joint measures achieving the infinum are called optimal transport plans.

Let 1 and v be two measures on a measurable space (2, F) such that p is the law of random variable U: 2 — U and v is
the law of random variable V : 2 — V. Then a coupling of (u,v) consists of a pair (U, V). Note that couplings always exist,
an example is the trivial coupling in which the random variables U and V' are independent. A coupling is called deterministic
if there exists a measurable function W, : U —V such that V = M (U) and Uy, is called transport map. Unlike general
couplings, deterministic couplings do not always exist. On the other hand there may be infinitely many deterministic couplings.
One famous variant of Eq. (9), where the optimal coupling is known to be a deterministic coupling, is given by

w' = argweiir%f )\/EHU— V|2 (10)

)

where II(u, ) denotes the set of measures joining  and v (see Villani (2008) for details). The aim of the resampling step is to
obtain equally probable samples. Therefore, in resampling based on optimal transport of Reich (2013), the Monge-Kantorovich
minimization problem Eq. (10) is considered for the current posterior measure p (u) given by its samples approximation
Eq. (4) and a uniform measure (here the weights in the sample approximation are set to 1/M). The discretized objective

functional of the associate optimal transport problem is given by

M
J(S) = Z Sijllwe—1,i — 1,5 2

ij=1

subject to s;; > 0 and constraints

M 1 M
Zsij:M7 j=1,... M, Zsij:wt,ia i=1,...M,
=1 j=1
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where matrix S describes a joint probability measure under the assumption that the state space is finite. Then samples {@, ;} 2,

are obtained by a deterministic linear transform, i.e.,

M
Uy, :MZUt—l,iSij for j=1,...,M. (11
i=1

Reich (2013) showed weak convergence of the deterministic optimal transformation Eq. (11) to a solution of the Monge-
Kantorovich problem Eq. (9) as M — oo.

Computational complexity. The computational complexity of solving the optimal transport problem with an efficient earth
mover distance algorithm such as FastEMD of Pele and Werman (2009) is of order O(M?log M ). Consequently the compu-
tational complexity of the adaptive tempering SMC with optimal transport resampling (TETPF) is O[T'(MC + M3log M +
TmaxMC)], where T is the number of tempering iterations, 7y, is the number of pcn-MCMC inner iterations, and C is compu-

tational cost of a forward model F'. For the pseudocode of the TETPF please refer to the Algorithm 4 in Appendix A.
2.3.2 Sinkhorn approximation

As discussed above solving the optimal transport problem has a computational complexity of O = M?3log(M) in every iter-
ation of the tempering procedure. Thus the TETPF becomes very expensive for large M. One the other hand an increase in
the number of samples directly correlates with an improved accuracy of the estimation. In order to allow for as many samples
as possible one needs to reduce the associate computational cost of the optimal transport problem. This can be achieved by
replacing the optimal transport distance with a Sinkhorn distance and subsequently exploiting the new structure to elude the

immense computational time of the EMD solver as shown by Cuturi (2013). More precisely the ansatz is built on the fact that

the original transport problem has a natural entropic bound that is obtained for S = [%I MwT] where w = [w1,...,wy] and
I, =1[1,...,1] € RM which constitutes an independent joint probability. Therefore one can consider the problem of finding a

matrix § € RM*M that is constraint by an additional lower entropic bound (Sinkhorn distance). This additional constraint can

be incorporated via a Lagrange multiplier, which leads to the above regularised form, i.e.,

M

Jsu(S) = Z {Sij||ut1,i—ut1,j|

ij=1

1
2
—s;:logs;; 12
+ ~sijlogs J} (12)
where o > 0. Due to additional smoothness the minimum of Eq. (12) can be unique and has the form
S = diag(b) exp ( - aZ) diag(a)

where Z is matrix with entires z;; = H'u,t_L W1 ||? and b and a non-negative vectors determined by employing Sinkhorn’s
fixpoint iteration described by Sinkhorn (1967). We will refer to this approach as tempered ensemble Sinkhorn particle filter
(TESPF).

Computational complexity. Solving this regularise optimal transport problems rather than original transport problem given in
Eq. (9) reduces the complexity to O(M?2C/(«)). For the pseudocode of the Sinkhorn adaptation of solving the optimal transport
problem please refer to the Algorithm 3 in Appendix A. For the pseudocode of the TESPF please refer to the Algorithm 4 in
Appendix A.
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2.4 Ensemble Kalman inversion

For Bayesian inverse problems with Gaussian measures, ensemble Kalman inversion (EKI) is one of the widely used algorithm.
EKI is an adaptive SMC method that approximates the first two statistical moments of a posterior distribution. For a linear
forward model, EKI is optimal in a sense it minimizes the error in the mean (Blomker et al., 2019). For a nonlinear forward
model, EKI still provides a good estimation of posterior (e.g., Iglesias et al., 2018). Here we consider EKI method of Iglesias
et al. (2018), since it is based on the tempering approach.

The intermediate measures {yi; }7_ are approximated by Gaussian distributed variables with empirical mean m; and em-
pirical variance C;. Given empirical mean m;_; and empirical covariance C;_; defined in terms of {ut_lﬂ»}f\il

M M
1

1
my_1 = M;ut—l,ia Ci1= m ;(Ut—u - mt—l) ® (Ut—l,i - mt—l)a

the mean and covariance are updated by

my=my;_1 +CF (CF + AR) ™ (yons — Fr1), C:=C,, —CF (CFE, +AR)TICE

where

S
i

1i—my 1)@ (F(ugr)—Fq), Cioy= F(ui—1;)— Fi_1) @ [F(u—1,) — Fi_1],

1 1 &
A= F_Zf F’U/_l'.
t = ¢t by’ t—1 MZ(tl,)

Since we are interested in an ensemble approximation of the posterior distribution, we update the ensemble members by
ﬁm :Utfl’i'i‘czllil(clzil —&-AtR)_l[yt’i—F(ut,l}i)] for )= 1,...,M. (13)

Here y; ; = Yobs + M¢,; and 7 ; ~ N(0,A¢R) fori=1,..., M.

Computational complexity. By implementing a sequential observation update of Whitaker et al. (2008), the computational
complexity of solving Eq. (13) can be reduced to O(2M kn), where n is the parameter space dimension,  is the observation
space dimension, and M is the ensemble size. Then the computational complexity of EKI is O[T (MC + 2M kn + Tmax MC)],
where 7" is the number of tempering iterations, Tmax is the number of pcn-MCMC inner iterations, and C is computational cost

of a forward model F'. For the pseudocode of the EKI method please refer to the Algorithm 5 in Appendix A.
2.5 Hybrid

Despite the underlying Gaussian assumption the EKI is remarkable robust in non-linear high-dimensional settings opposed
to consistent SMC methods such as the TET(S)PF. For many non-linear problems it is desirable to have better uncertainty

estimates while maintaining a level of robustness. This can be achieved by factorising the likelihood given by Eq. (2), e.g,

(s Yobs) = 91 (U; Yobs) - 92(W; Yobs),
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where

153 = B = x|~ (F (1) ~ o) () (F(w) ) (14
and

92(U; Yobs) = (1 — B)g(u; Yobs) = exp [—;(F(U) — Yobs)' [(1 = B)R] 1 (F(u) — yobs):| : 15)

Then it is possible to alternate between methods with complementing properties such as the EKI and the TET(S)PF updates
e.g., likelihood
3 ) (pt—i—1)
exp |~ (F(0) = g R (F(w) - )
is used for an EKI update followed by an update with a TET(S)PF on the basis of
(1-6)
2

This combination of an approximative Gaussian method and a consistent SMC method has been referred to as hybrid filters

(Pt —dt—1)
(F(u) - yobs)/R_l(F(u) - yobs):| .

exp {—

in the data assimilation literaturel(Chustagulprom et al., 2016; Frei and Kiinsch, 2013). This ansatz can also be understood as
using the EKI as an more elaborate proposal density for the importance sampling step within SMC.

Computational complexity. The computational complexity of combining the two algorithms is O[T'(MC +2Mkn + MC +
M?310g M + Tinax MC)] for the hybrid EKI-TETPF and O[T (MC + 2M rin+ MC + M?C () + Timax M C)] for the hybrid EKI-
TESPF. For the pseudocode of the hybrid methods please refer to the Algorithm 6 in Appendix A.

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =
[0,6] x [0,6], which is given by
=V [k(z,y) VP(z,y)] = f(z,y), (z,y)€D, (16)
where V = (0/0x 0/0y)’, - the dot product, P(x,y) the pressure, k(z,y) the permeability, and f(x,y) the source term. The
source term is
0 if 0<y<d4,
fley)=4137 if 4<y<5, (17
274 if 5 <y<6.

The boundary conditions are
oP OP oP

where 0D is the boundary of domain D.

"Note that the terminology is also used in the context of data assimilation filters combining variational and sequential approaches.
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Figure 1. Geometrical configuration of channel flow: amplitude d', frequency d?, angle d°, initial point d*, and width d°.

3.1 Parameterisation of permeability

We consider the following two parameterisations of the permeability function k(x,y)

P1: log permeability over the entire domain D, u(z,y) = logk(z,y);

P2: permeability over domain D that has a channel, k(x,y) = k*(2,9)dp. (2,y) + k*(2,4)0p\ p. (x,y) as by Iglesias et al.
(2014).

Here D, denotes a channel, 6 Dirac function, k' = exp(u'(x,y)) and k% = exp(u?(z,y)) denote permeabilities inside and
outside the channel. The geometry of the channel is parameterized by five parameters {d’}>_;: amplitude, frequency, angle,
initial point, and width, correspondingly. The lower boundary of the channel is given by y = d' sin(d?x/6) + tan(d®)x + d*.
The upper boundary of the channel is given by 3 4 d®. These parameters are depicted in Fig. 1.

We assume log permeability for both P1 and P2 is drawn from a Gaussian distribution i = N (m,C) with mean m and

covariance C. We define C' via a correlation function given by the Wittle-Matern correlation function defined by Matérn (1986)

1 Jjz— T —
oy = ] y||T1( y||>’

~(1) v v

where +y is the gamma function, v = 0.5 is the characteristic length scale, and T is the modified Bessel function of the second
kind of order 1.
We implement a cell-centered finite difference method to solve the forward model Eqgs. (16)—(18) on an IV x N grid. We

denote by A and V eigenvalues and eigenfunctions of the corresponding covariance matrix C, respectively. Then, following a

10
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Karhunen-Loeve expansion, log permeability is

log(k') = log(m —&—Z\/»V” t for 1=1,...,N?
=1

where u’ is i.i.d. from A/(0,1) for £ =1,..., N2

For P1, the prior for log permeability is a Gaussian distribution with mean 5. The grid dimension is 70, and thus the uncertain
parameter u = {u‘} ¥ 21 has dimension 4900.

For P2, we assume geometrical parameters d = {d’}?_, are drawn from uniform priors, namely d' ~ U[0.3, 2.1], d* ~

Ulr/2, 6r],d> ~U[-7/2, ©/2],d* ~ U[0, 6], d> ~ U[0.12, 4.2]. Furthermore, we assume independence between geometric
parameters and log permeability. The prior for log permeability is a Gaussian distribution with mean 15 outside the channel

s

and with mean 100 inside the channel. The grid dimension is 50. Log permeability inside channel u' = {u *, and log

permeability outside channel u? = {u** }é\f , are defined over the entire domain 50 x 50. Therefore, for P2 inference the
uncertain parameter u = {d,u',u?} has dimension 5005. Moreover, for P2 we use the Metropolis-within-Gibbs methodology
following Iglesias et al. (2014) to separate geometrical parameters and log permeability parameters within the mutation step,

since it allows to better exploit the structure of the prior.
3.2 Observations

Both the true permeability and an initial ensemble are drawn from the same prior distribution as the prior includes knowledge
about geological properties. However, an initial guess is computed on a coarse grid and the true solution is computed on a fine

grid that has twice the resolution of the coarse grid. The synthetic observations are obtained by
yobs — L(Plrue) + T]

An element of L(P"™¢) is a linear functional of pressure, namely
; | X hJ 2 ,
L (P™) = 53 Z xp< | I )(P”“e)JAxQ for j=1,....k

Here o = 0.01, Az? is the size of a grid cell X = (X*,Y"*), Nt is resolution of a fine grid, h7 is the location of the observation
and ~ is the number of observations. This form of the observation functional and the parameterization P1 and P2 guaranty
the continuity of the forward map from the uncertain parameters to the observations and thus the existence of the posterior
distribution as shown by Iglesias et al. (2014). The observation noise 7 is drawn from a normal distribution with zero mean and
known covariance matrix R. We choose the observation noise to be 2 % of L2-norm of the true pressure. Such a small noise
makes the data assimilation problem hard to solve, since the likelihood is very peaked and a non-iterative data assimilation
approach fails.

To save computational costs, we choose ESS threshold Miyesn = M /3 for tempering, and the length of Markov chain 7,x =

20 for mutation.

11
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3.3 Metrics

We conduct numerical experiments with ensemble sizes 100 and 500, and 20 simulations with different initial ensemble real-
izations to check the robustness of results. We analyze the method’s performance with respect to a pcn-MCMC solution from
here on referred to as reference. An MCMC solution was obtained by combining 50 independent chains each of length 108,

10 burn-in period and 10 thinning. For log permeability, we compute RMSE of the mean

1
— (1 — wret) (G — gref U= — ,
RMSE—\/(u urel) (uw —wu™), where U_ME U, (19)

ref :

and u™ is the reference solution.

For geometrical parameters d, we compute the Kullback-Leibler divergence

My, ref(d )

i ref ref ( 71
p) p(d;) (20)
[ Z @)

where pf(d") is the reference posterior, p(d*) is approximated by the weights, and M = M /10 is a chosen number of bins.
3.4 Application to P1 inference

For P1, we perform numerical experiments using 36 uniformly distributed observations, which are displayed in circles in
Fig. 3(a). We plot box plot of RMSE given by Eq. (19) over 20 independent simulations in Fig. 2(a) using Sinkhorn approxi-
mation and in Fig. 2(b) using optimal transport. The x-axis is for the hybrid parameter (3, whose value 0 corresponds to EKI
and 1 to an adaptive SMC method with either Sinkhorn approximation (TESPF) or optimal transport (TETPF). Ensemble size
M =100 is shown in red and M = 500 in green. First, we observe that at a small ensemble size 100 TESPF outperforms
TETPFE. Since Sinkhorn approximation is a regularization of an optimal transport solution, TESPF provides a smoother solu-
tion than TETPF that can be seen in Fig. 3(c) and Fig. 3(f), respectively, where we plot mean log permeability. Next, we see
in Fig. 2 that the hybrid approach decreases RMSE compared to TET(S)PF: the smaller 3 the smaller median of RMSE. EKI
gives the smallest error due to the Gaussian parametrization of permeability. The advantage of the hybrid approach is most
pronounced at a large ensemble size 500 and optimal transport resampling.

We plot mean log permeability at ensemble size 100 and a smallest RMSE over 20 simulations in Fig. 3(b)—(f) and of
reference in Fig. 3(a). We see that EKI and TETPF(0.2) estimate well mot only large-scale feature but also small-scale feature

(e.g., negative mean at the top right corner) unlike TET(S)PF and TESPF(0.2).
3.5 Application to P2 inference

For P2, we perform numerical experiments using 9 uniformly distributed observations. which are displayed in circles in
Fig. 9(a). First, we display results obtained by Sinkhorn approximation. In Fig. 4, we plot box plot over 20 independent
runs of KL divergence given by Eq. (20) for amplitude (a), frequency (b), angle (c), initial point (d), and width (e) that define

12
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Figure 2. Application to P1 parameterization: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20
independent simulations of RMSE of mean log permeability. X-axis is for the hybrid parameter, where 3 = 0 corresponds to EKI and 8 =1
to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges of the box are the 25th and 75th

percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.
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Figure 3. Mean log permeability for P1 inference for the lowest error at ensemble size 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EKI (d), TETPF(0.2) (), and TETPF (f).

channel. We see that EKI outperforms any TESPF(-) including TESPF for amplitude (a) and width (e). This is due to Gaussian-

like posteriors of these two geometrical parameters displayed in Fig. 6(c) and Fig. 6(0), respectively. Due to Gaussian-like
posteriors the hybrid approach decreases RMSE compared to TESPF: the smaller 3 the smaller median of RMSE.

For frequency, angle, and initial point, whose KL divergence is displayed in Fig. 4(b), (c), and (d), respectively, the behaviour

330 of adaptive SMC is nonlinear in terms of 8. This is due to non Gaussian-like posteriors of these three geometrical parameters

shown in Fig. 6(f), (i), and (1), respectively. Due to non Gaussian-like posteriors the hybrid approach gives an advantage over
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Figure 4. Application to P2 parameterization using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence
for geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d), and width (e). X-axis is for the hybrid parameter, where
8 = 0 corresponds to EKI and 3 = 1 to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges

of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.

both TESPF and EKI—there exists a 3 # 0 for which the KL divergence is lowest though it is inconsistent between geometrical
parameters.

When comparing TESPF(-) to TETPF(-), we observe the same type of behaviour in terms of 3: linear for amplitude and
width, whose KL divergence is displayed in Fig. 5(a) and (e), respectively, and nonlinear for frequency, angle, and initial point,
whose KL divergence is displayed in Fig. 5(b), (c), and (d), respectively. However, the KL divergence is smaller when optimal
transport resampling is used instead of Sinkhorn approximation.

In Fig. 6, we plot posterior of geometrical parameters: amplitude (a)—(c), frequency (d)—(f), angle (g)—(i), initial point (j)—(1),
and width (m)—(0), where on the left TESPF(0.2), in the middle TETPF(0.2), and on the right EKI are shown. In black is the
reference, in red 20 simulations of ensemble size 100, in green 20 simulations of ensemble size 500. The true parameters are
shown as black cross. We see that as ensemble size increases posteriors approximated by TET(S)PF converge to the reference
posterior unlike EKI.

Now we investigate adaptive SMC performance for permeability estimation. First, we display results obtained by Sinkhorn
approximation. We plot box plot over 20 independent simulations of RMSE given by Eq. (19) for log permeability outside
channel in Fig. 7(a) and inside channel in Fig. 7(b). Even though log permeability is Gaussian distributed, for a small ensemble
size 100 there exists a § # 0 that gives lowest RMSE both outside and inside channel. As ensemble size increases, methods

performance becomes equivalent.
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Figure 5. The same as Fig. 4 but using optimal transport resampling.

Next, we compare TESPF(-) to TETPF(-) for log permeability estimation outside and inside channel whose RMSE is dis-
played in Fig. 8(a) and (b), respectively. We observe the same type of behaviour in terms of 3: nonlinear for a small ensemble
size 100, and equivalent for a larger ensemble size 500. Furthermore, at a small ensemble size 100 TESPF outperforms TETPF,
which was also the case for P1 parameterization Sec. 3.4.

In Fig. 9, we show mean field of permeability over the channelized domain for reference for the lowest error at ensemble
size 100 for TESPF(0.2) (b), TESPF (c), EKI (d), TETPF(0.2) (e), and TETPF (f). We plot mean log permeability over the
channelized domain at ensemble size 100 and a smallest RMSE over 20 simulations in Fig. 9(b)—(f) and of reference in Fig. 9(a).
We see that TESPF(0.2) does an excellent job at such a small ensemble size by estimating well log permeability outside and

inside channel, and parameters of the channel itself.

4 Conclusions

A Sinkhorn adaptation, namely the TESPF, of the previously proposed TETPF has been introduced and numerically investi-
gated on a parameter estimation problem. The TESPF has considerable smaller computational complexity than the TETPF,
namely O[T(MC + M2C(c) + Tmax MC)] vs O[T (MC + M3log M + Tinax MC)], yet has similar accuracy results (see Fig. 7,
8 and 6). In particular, the TESPF outperforms the EKI for non-Gaussian distributed parameters (e.g., initial point and angle in
P2). This makes the proposed method a promising option for the high dimensional nonlinear problems one is typically faced
with in geophysical applications. Further, to counter balance potential robustness problems of the TETPF and its Sinkhorn
adaptation a hybrid between EKI and TET(S)PF is proposed and studied by means of the two configurations of the steady-

state single-phase Darcy flow model. The combination of the two adaptive SMC methods with complementing properties, i.e.,
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Figure 6. Posterior of geometrical parameters for P2 inference: amplitude (a)—(c), frequency (d)—(f), angle (g)—(i), initial point (j)—(1), and

width (m)—(0). On the left is TESPF(0.2); in the middle is TETPF(0.2), and on the right is EKI. In black is reference, in red 20 simulations

x Truth

x Truth
100

of ensemble size 100, in green 20 simulations of ensemble size 500. The true parameters are shown as black cross.

B € (0,1), is superior to the individual adaptive SMC method, i.e., 3 =0 or 1, for all non-Gaussian distributed parameters

and performs better than the pure TETPF and the TETSPF for Gaussian distributed parameters in P1. This suggests a hybrid
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Figure 7. Application to P2 parameterization with Sinkhorn approximation. Box plot over 20 independent simulations of RMSE of mean
log permeability outside channel (a) and inside channel (b). X-axis is for the hybrid parameter, where 3 = 0 corresponds to EKI and =1
to TET(S)PF. Ensemble size 100 is shown in red, and 500 in green. Central mark is the median, edges of the box are the 25th and 75th

percentiles, whiskers extend to the most extreme data points, and crosses are outliers.
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Figure 8. The same as Fig. 7 but using optimal transport resampling.

approach provides all the desirable properties required to obtain robust and highly accurate approximate solutions of nonlinear

high dimensional Bayesian inference problems.
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Appendix A: Pseudocode

Algorithm 1 Sample mutation

Require: 6 € (0,1) and an integer Tinax
for i=1,...,M do
Initialize v;(0) = @,
while 7 < 7. do
prop

Propose v; * using Eq. (5) for Gaussian probability or Eq. (6) for uniform probability
Set v; (7 + 1) = v!"* with probability Eq. (7) and set v;(7 + 1) = @:,; with probability Eq. (8)
T—T+1

end while

Set ut,; = Vi (Tmax)

end for

Algorithm 2 Resampling based on optimal transport

Require: {ut—l,i}?il and Wi—1 = {wt_l,l,...,wt_l,M}
|2

Supply Z and w;_ to the FastEMD algorithm of Pele & Werman with the output being the coupling S

Compute Z with z;; = ||[us—1,; — Ur—1,j

Compute new samples {am}ﬁl from Eq. (11)

Algorithm 3 Sinkhorn iteration for optimal transport problem with entropic regularisation

Require: regularisation parameter o, {w¢—1,;}72; and we—1 = {w—1,1,...,we—1,0r}
Compute Z with zij = [[w,_; ;, — w1,
Normalise Z with respect to its maximum entry
while ¢ > 1.0e — 8 do
b=w;_1./[exp(—aZ)a]
a= (ﬁIM/M)./[exp(faZ)b}
S = diag(b) exp(—aZ)diag(a)

w=SIy
£= [l —wi|
end while

return S* =S
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Algorithm 4 Adaptive SMC: TET(S)PF

Require: an initial ensemble {wo,;}2, ~ o, 8 € (0,1) and integers Tmax and 1 < Mipresh < M
Set o =0
while ¢; < 1 do
t—t+1
Compute the likelihood g(w¢—1,:;Yobs) from Eq. (2) (fori =1,..., M)
Compute the tempering parameter ¢;:
if minge (s, ,.1)ESS:($) > Miesn then
set oy =1
else
compute ¢; such that ESS;(¢) ~ Minesn using a bisection algorithm on (¢¢—1,1]
end if
Compute weights w¢—1 = {w¢—1,1,...,wi—1,m } from Eq. (3)
Create new samples {i: ; }22, using optimal (Sinkhorn) resampling via Algorithm 2(3)
Compute {u;; }72£, using sample mutation via Algorithm 1

end while

Algorithm 5 EKI

Require: an initial ensemble {wuo,; }12; ~ ji0, 0 € (0,1) and integers Tmax and 1 < Mipgesh < M
Set o =0
while ¢; <1 do
t—t4+1
Compute the likelihood g(w¢—1,:;Yobs) from Eq. (2) (fori =1,..., M)
Compute the tempering parameter ¢:
if minge(g, ,,1)ESSt(¢) > Minwesh then
set oy =1
else
compute ¢ such that ESS¢ () ~ Minresh using a bisection algorithm on (¢$:—1,1]
end if
Create new samples {@ ; }12, using Eq. (13)
Compute {u¢;} >, using sample mutation via Algorithm 1

end while

20



https://doi.org/10.5194/npg-2020-24
Preprint. Discussion started: 22 June 2020
(© Author(s) 2020. CC BY 4.0 License.

Algorithm 6 Hybrid EKI-TET(S)PF

Require: initial initial ensemble {uo,i}gl ~ 1o, 0 € (0,1), hybrid parameter 3 and integers Tmax and 1 < Mpresn < M
Set o =0
while ¢;: <1 do
t—t+1
Compute the likelihood g1 (wt—1,i;Yobs) from Eq. (14) (fori =1,..., M)
Set g(wi—1,i;Yobs) = g1 (Ut—1,i;Yobs) (fori=1,..., M)
Compute the tempering parameter ¢.:
if minge(g, ,,1)ESSt(¢) > Minwesh then
set pr =1
else
compute ¢; such that ESS;(¢) = Minwesh using a bisection algorithm on (¢¢—1,1]
end if
Create new samples {ﬁfz}gl using Eq. (13)
Compute the likelihood g2 (ﬂfl, Yobs ) from Eq. (15) (fori=1,..., M)
Set g(wt—1,:;Yobs) = gg(ﬂﬁi;yobs) (fori=1,...,M)
Compute weights wi—1 = {w¢—1,1,...,w¢—1,0 } from Eq. (3)
Create new samples {; ; }:~, using optimal (Sinkhorn) resampling via Algorithm 2(3)
Compute {u;;} >, using sample mutation via Algorithm 1

end while
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