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Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in

high-dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman filtering, tend

to be robust, computationally cheap and often produce astonishingly accurate estimations despite the simplifying underlying

assumptions. Yet there is a lot of room for improvement specifically regarding a correct approximation of a non-Gaussian

posterior distribution. The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where5

resampling is based on optimal transport mapping. Unlike ensemble Kalman filtering it does not require any assumptions

regarding the posterior distribution and hence has shown to provide promising results for nonlinear non-Gaussian inverse

problems. However, the improved accuracy comes with the price of much higher computational complexity and the method

is not as robust as the ensemble Kalman filtering in high-dimensional problems. In this work, we add an entropy-inspired

regularisation factor to the underlying optimal transport problem that allows to considerably reduce the high computational10

cost via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman filtering proposal step

before each update of the samples, which is also referred to as hybrid approach. The promising performance of the introduced

method is numerically verified by testing it on a steady-state single-phase Darcy flow model with two different permeability

configurations. The results are compared to the output of ensemble Kalman filtering, and Markov Chain Monte Carlo methods

results are computed as a benchmark.15

1 Introduction

If a solution of a considered partial differential equations (PDE) is highly-sensitive to its parameters, accurate estimation of

the parameters and their uncertainties is essential to obtain a correct approximation of the solution. Partial observations of

the solution are then used to infer uncertain parameters by solving a PDE-constrained inverse problem. For instance one can

approach such problems via methods induced by Bayes’s formula (Stuart, 2010). More specifically the posterior probability20

density of the parameters given the data, is then computed on the basis of a prior probability density and a likelihood which

is the conditional probability density associated with the given noisy observations. Well-posedness of an inverse problem and

convergence to the true posterior in the limit of observational noise going to zero was proven for different priors and under

assumptions on the parameter-to-observation map by Dashti and Stuart (2017), for example.
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When aiming at practical applications as in oil reservoir management (Lorentzen et al., 2020) and meteorology (Houtekamer25

and Zhang, 2016) for example, the posterior is approximated by means of a finite set of samples. Markov chain Monte Carlo

(MCMC) methods approximate the posterior with a chain of samples–a sequential update of samples according to the posterior.

Typically, MCMC methods provide highly-correlated samples. Therefore, in order to sample the posterior correctly MCMC

requires a long chain, especially in the case of a multi-modal or a peaked distribution. A peaked posterior is associated with

very accurate observations. Therefore, unless a speed up is introduced in a MCMC chain (e.g., Cotter et al., 2013), MCMC is30

impractical for computationally expensive PDE models.

Adaptive Sequential Monte Carlo (SMC) methods are different approaches to approximate the posterior with an ensemble

of samples by computing their probability (e.g, Vergé et al., 2015). Adaptive intermediate probability measures are introduced

between the prior measure and the posterior measure to improve upon method divergence due to the curse of dimensionality fol-

lowing Del Moral et al. (2006); Neal (2001). Moreover, sampling from an invariant Markov kernel with the target intermediate35

measure and the reference prior measure improves upon ensemble diversity due to parameters stationarity as shown by Beskos

et al. (2015). However, when parameter space is high-dimensional, adaptive SMC requires computationally prohibitive en-

semble sizes unless we approximate only the first two moments (e.g., Iglesias et al., 2018) or we sample highly-correlated

samples (Ruchi et al., 2019).

Ensemble Kalman filtering (EnKF) approximates only the first two moments of the posterior, which makes it computationally40

attractive for estimating high-dimensional parameters. For linear problems, Blömker et al. (2019) showed well-posedness and

convergence of EnKF for a fixed ensemble size and without any assumptions of Gaussianity. However for nonlinear problems, it

has been shown by Oliver et al. (1996); Bardsley et al. (2014); Ernst et al. (2015); Liu et al. (2017) that an EnKF approximation

is not consistent with the Bayesian approximation.

As a side remark, EnKF was originally proposed for estimating a dynamical state of a chaotic system (e.g., Burgers et al.,45

1998). It was latter shown by Anderson (2001) that EnKF can be used for parameter estimation by introducing a trivial dynam-

ics to the unknown static parameter. We note that EnKF is well known under different names in different scientific commu-

nities. In the reservoir community it is Ensemble Randomized Maximum Likelihood (Chen and Oliver, 2012), multiple data

assimilation (Emerick and Reynolds, 2013), and Randomize-Then-Optimize (Bardsley et al., 2014). In the numerical weather

prediction community, it falls under a large umbrella of Ensemble of Data Assimilation, see Carrassi et al. (2018) for a recent50

review. In the inverse problem community, it is ensemble Kalman inversion (Chada et al., 2018).

In order to sample highly-correlated samples, one can employ optimal transport resampling that lies at the heart of the

ensemble transform particle filter (ETPF) proposed by Reich (2013). An optimal transport map between two consecutive prob-

ability measures provides a direct sample-to-sample map with maximized sample correlation. Along the lines of an adaptive

SMC approach a probability measure is described via the importance weights and the deterministic mapping replaces the55

traditional resampling step. A so-called tempered ensemble transform particle filter (TETPF) was proposed by Ruchi et al.

(2019). Note that this ansatz does not require any distributional assumption for the posterior and it was shown by Ruchi et al.

(2019) that TETPF provides encouraging results for nonlinear high-dimensional PDE-constrained inverse problems. However,

the computational cost of solving an optimal transport problem in each iteration is considerably high.
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In this work we address two issues arisen in the context of TETPF: (i) the immense computational costs of solving the60

associated optimal transport problem and (ii) the lack of robustness of the TETPF with respect to high-dimensional problems.

More specifically, the performance of ETPF has been found to be highly-dependent on the initial guess. Although tempering

restrains any sharp fail in the importance sampling step due to a poor initial ensemble selection, the number of required

intermediate steps and the efficiency of ETPF still depends on the initialisation. The lack of robustness in high dimensions

can be addressed via a hybrid approach that combines a Gaussian approximation with a particle filter approximation (e.g.,65

Santitissadeekorn and Jones, 2015). Different algorithms are created by Frei and Künsch (2013); Stordal et al. (2011), for

example. In this paper, we adapt a hybrid approach of Chustagulprom et al. (2016) that uses EnKF as a proposal step for ETPF

with a tuning parameter. Furthermore, it is well established that the computational complexity of solving an optimal transport

problem can be significantly reduced via a Sinkhorn approximation by Cuturi (2013). This ansatz has been been implemented

for the ETPF Acevedo et al. (2017).70

Along the lines of Chustagulprom et al. (2016); de Wiljes et al. (2020), we propose a tempered ensemble transform particle

filter with Sinkhorn approximation (TESPF) and a tempered hybrid approach.

The remainder of the manuscript is organised as follows: in Sect. 2, the inverse problem setting is presented. There we de-

scribe the tempered ensemble transform particle filter (TETPF) proposed by Ruchi et al. (2019). Furthermore, we introduce the

tempered ensemble transform particle filter with Sinkhorn approximation (TESPF), a tempered hybrid approach that combines75

EnKF and TETPF (hybrid EnKF-TETPF), and a tempered hybrid approach that combines EnKF and TESPF (hybrid EnKF-

TESPF). We discuss computational complexities of all the presented techniques and provide corresponding pseudocodes in

Appendix A. In Sect. 3, we apply the adaptive SMC methods to an inverse problem of inferring high-dimensional permeabil-

ity parameters for a steady-state single-phase Darcy flow model. Permeability is parameterized following Ruchi et al. (2019),

where one configuration of parametrization leads to Gaussian posteriors, while another one to non-Gaussian posteriors. Finally,80

we draw conclusions in Sect. 4.

2 Bayesian inverse problem

We assume u ∈ Ũ ⊂ Rn is a random variable that is related to partially observable quantities y ∈ Y ⊂ Rκ by a nonlinear

forward operator G : Ũ → Y , namely

y =G(u).85

Further yobs ∈ Y denotes a noisy observation of y, i.e.,

yobs = y+η

where η ∼N (0,R) andN (0,R) is a Gaussian distribution with zero mean and R covariance matrix. The aim is to determine or

approximate the posterior measure µ(u) conditioned on observations yobs and given a prior measure µ0(u), which is referred
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to as Bayesian inverse problem. The posterior measure is absolutely continuous with respect to the prior, i.e.,90

dµ
dµ0

(u)∝ g(u;yobs), (1)

where ∝ is up to a constant of normalisation and g is referred to as the likelihood and depends on the forward operator G. The

Gaussian observation noise of the observation yobs implies

g(u;yobs) = exp

[
−1

2
(G(u)−yobs)

′R−1(G(u)−yobs)

]
, (2)

where ′ denotes the transpose. In the following we will introduce a range of methods that can be employed to estimate solutions95

to the presented inverse problem under the overarching mantel of tempered Sequential Monte Carlo filters. Alongside these

methods we will also proposed several important add-on tools required to achieve feasibility and higher accuracy in high-

dimensional nonlinear settings.

2.1 Tempered Sequential Monte Carlo

We consider sequential Monte Carlo (SMC) methods that approximate the posterior measure µ(u) via an empirical measure100

µM (u) =

M∑
i=1

wiδui
(u).

Here δ is the Dirac function, and the importance weights for the approximation of µ are

wi =
g(ui;yobs)∑M
j=1 g(uj ;yobs)

.

An ensemble U = {u1, . . . ,uM} ⊂ Ũ consists of M realizations ui ∈ Rn of a random variable u that are independent and

identically distributed according to ui ∼ µ0.105

When an easy-to-sample from prior µ0 does not approximate the complex posterior µ well, only a few weights wi have

significant value resulting in a degenerative approximation of the posterior measure. Potential reasons for this effect are high

dimensionality of the uncertain parameter, large number of observations, or accuracy of the observations. An existing solution

to a degenerative approximation is an iterative approach based on tempering by Del Moral et al. (2006) or annealing by Neal

(2001). The underlying idea is to introduce T intermediate artificial measures {µt}Tt=0 between µ0 and µT = µ. These measures110

are bridged by introducing T tempering parameters {φt}Tt=1 that satisfy 0 = φ0 < φ1 < .. . < φT = 1. An intermediate measure

µt is defined as a probability measure that has density proportional to g(u) with respect to the previous measure µt−1

dµt
dµt−1

(u)∝ g(u;yobs)
(φt−φt−1).

Along the lines of Iglesias (2016) the tempering parameter φt is chosen such that effective ensemble size (ESS)

ESSt(φ) =

(∑M
i=1wt,i

)2
∑M
i=1w

2
t,i

115
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with

wt,i =
g(ut−1,i;yobs)

(φt−φt−1)∑M
j=1 g(ut−1,j ;yobs)(φt−φt−1)

, (3)

does not drop below a certain threshold 1<Mthresh <M . Then an approximation of the posterior measure µt is

µMt (u) =

M∑
i=1

wt,iδut−1,i
(u). (4)

A bisection algorithm on the interval (φt−1,1] is employed to find φ. If ESSt >Mthresh we set φt = 1 which implies that no120

further tempering is required.

The choice of ESS to define a tempering parameter is supported by results of Beskos et al. (2014) on stability of a tempered

SMC method in terms of ESS. Moreover, for a Gaussian probability density approximated by importance sampling, Agapiou

et al. (2017) showed that ESS is related to the second moment of the Radon-Nikodym derivative Eq. (1).

SMC method with importance sampling Eq. (4) does not change the sample {ut−1,i}Mi=1, which leads to the method collapse125

due to a finite ensemble size. Therefore each tempering iteration t needs to be supplied with resampling. Resampling provides

a new ensemble {ũt,i}Mi=1 that approximates the measure µt. We will discuss different resampling techniques in Sect. 2.3.

2.2 Mutation

Due to stationarity of the parameters SMC methods require ensemble perturbation. In the framework of particle filtering for

dynamical systems, ensemble perturbation is achieved by rejuvenation, when ensemble members of the posterior measure are130

perturbed with a random noise sampled from a Gaussian distribution with zero mean and a covariance matrix of the prior

measure. The covariance matrix of the ensemble is inflated and no acceptance step is performed due to the associated high

computational costs for a dynamical system.

Since we consider a static inverse problem, for ensemble perturbation we employ a Metropolis–Hastings method (thus we

mutate samples) but with a proposal that speeds up MCMC method for estimating a high-dimensional parameter. Namely, we135

use ensemble mutation of Cotter et al. (2013) with the target measure µt and the reference measure µ0. The mutation phase is

initialized at v0,i = ũt,i, and at the final inner iteration τmax we assign ut,i = vτmax,i for i= 1, . . . ,M .

For a Gaussian prior we use the preconditioned Crank-Nicolson MCMC (pcn-MCMC) method

vprop
i =

√
1− θ2vτ,i + (1−

√
1− θ2)m+ θξτ,i for i= 1, . . . ,M. (5)

Here m is the mean of the Gaussian prior measure µ0 and {ξτ,i}Mi=1 are from a Gaussian distribution with zero mean and a140

covariance matrix of the Gaussian prior measure µ0.

For a uniform prior U [a,b] we use the following random walk

vprop
i = vτ,i + ξτ,i i= 1, . . . ,M. (6)
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Here {ξτ,i}Mi=1 ∼ U [a− b,b− a] and {vprop
i }Mi=1 are projected onto the [a,b] interval if necessary. Then the ensemble at the

inner iteration τ + 1 is145

vτ+1,i = vprop
i with the probability ρ(vprop

i ,ut−1,i) for i= 1, . . . ,M ; (7)

vτ+1,i = vτ,i with the probability 1− ρ(vprop
i ,ut−1,i) for i= 1, . . . ,M. (8)

Here vprop
i is from Eq. (5) for the Gaussian measure and from Eq. (6) for the uniform measure, and

ρ(vprop
i ,ut−1,i) = min

{
1,

g(vprop
i ;yobs)

φt

g(ut−1,i;yobs)φt

}
.

The scalar θ ∈ (0, 1] in Eq. (5) controls the performance of the Markov chain. Small values of θ lead to high acceptance rates150

but poor mixing. Roberts and Rosenthal (2001) showed that for high-dimensional problems it is optimal to choose θ such that

the acceptance rate is in between 20 % and 30 % by the last tempering iteration T . Cotter et al. (2013) proved that under some

assumptions this mutation produces a Markov kernel with an invariant measure µt.

Computational complexity. In each tempering iteration t the computational complexity of the pcn-MCMC mutation is

O(τmaxMC), where C is the computational cost of the forward model G. For the pseudocode of the pcn-MCMC mutation155

please refer to the Algorithm 1 in Appendix A. Note that the computational complexity is not affected by the length of u which

is a very desirable property in high dimensions as shown by Cotter et al. (2013) and Hairer et al. (2014).

2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC method with importance sampling needs to be supplied with

resampling at each tempering iteration t. We consider a resampling method based on optimal transport mapping proposed160

by Reich (2013).

2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an optimal way of redistributing mass which was first formulated

by Monge (1781). Given a distribution of matter, e.g., a pile of sand, the underlying question is how to reshape the matter into

another form such that the work done is minimal. A century later the original problem was rewritten by Kantorovich (1942)165

in a statistical framework that allowed to tackle it. Due to these contributions it was later named the Monge-Kantorovich

minimization problem. The reader is also referred to Peyré and Cuturi (2019) for a comprehensible overview.

Let us consider a scenario where the initial distribution of matter is represented by a probability measure µ on the measurable

space Ũ , that has to be moved and rearranged according to a given new distribution ν, defined on the measurable space Ṽ . Then

we seek a probability measure that is a solution to170

inf


∫
Ũ×Ṽ

c(u, ũ)dω : ω ∈
∏

(µ,ν)

 , (9)
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where the minimum is computed over all joint probability measures ω on Ũ × Ṽ with marginals µ and ν, and c(u, ũ) is a

transport cost function on Ũ × Ṽ . The joint measures achieving the infinum are called optimal transport plans.

Let µ and ν be two measures on a measurable space (Ω,F) such that µ is the law of random variable U : Ω→ Ũ and ν is

the law of random variable V : Ω→ Ṽ . Then a coupling of (µ,ν) consists of a pair (U,V ). Note that couplings always exist,175

an example is the trivial coupling in which the random variables U and V are independent. A coupling is called deterministic

if there exists a measurable function ΨM : Ũ → Ṽ such that V = ΨM (U) and ΨM is called transport map. Unlike general

couplings, deterministic couplings do not always exist. On the other hand there may be infinitely many deterministic couplings.

One famous variant of Eq. (9), where the optimal coupling is known to be a deterministic coupling, is given by

ω∗ = arg inf


∫
Ũ×Ṽ

‖u− ũ‖2dω(u, ũ) : ω ∈
∏

(µ,ν)

 . (10)180

The aim of the resampling step is to obtain equally probable samples. Therefore, in resampling based on optimal transport

of Reich (2013), the Monge-Kantorovich minimization problem Eq. (10) is considered for the current posterior measure µMt (u)

given by its samples approximation Eq. (4) and a uniform measure (here the weights in the sample approximation are set to

1/M ). The discretized objective functional of the associate optimal transport problem is given by

J(S) :=

M∑
i,j=1

sij‖ut−1,i−ut−1,j‖2185

subject to sij > 0 and constraints

M∑
i=1

sij =
1

M
, j = 1, . . .M ;

M∑
j=1

sij = wt,i, i= 1, . . .M,

where matrix S describes a joint probability measure under the assumption that the state space is finite. Then samples {ũt,i}Mi=1

are obtained by a deterministic linear transform, i.e.,

ũt,j :=M

M∑
i=1

ut−1,isij for j = 1, . . . ,M. (11)190

Reich (2013) showed weak convergence of the deterministic optimal transformation Eq. (11) to a solution of the Monge-

Kantorovich problem Eq. (9) as M →∞.

Computational complexity. The computational complexity of solving the optimal transport problem with an efficient earth

mover distance algorithm such as FastEMD of Pele and Werman (2009) is of order O(M3 logM). Consequently the compu-

tational complexity of the adaptive tempering SMC with optimal transport resampling (TETPF) is O[T (MC+M3 logM +195

τmaxMC)], where T is the number of tempering iterations, τmax is the number of pcn-MCMC inner iterations, and C is compu-

tational cost of a forward model G. For the pseudocode of the TETPF please refer to the Algorithm 4 in Appendix A.
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2.3.2 Sinkhorn approximation

As discussed above solving the optimal transport problem has a computational complexity of O =M3 log(M) in every iter-

ation of the tempering procedure. Thus the TETPF becomes very expensive for large M . On the other hand an increase in200

the number of samples directly correlates with an improved accuracy of the estimation. In order to allow for as many samples

as possible one needs to reduce the associate computational cost of the optimal transport problem. This can be achieved by

replacing the optimal transport distance with a Sinkhorn distance and subsequently exploiting the new structure to elude the

immense computational time of the EMD solver as shown by Cuturi (2013). More precisely the ansatz is built on the fact that

the original transport problem has a natural entropic bound that is obtained for S = [ 1
M IMw

>] where w = [w1, . . . ,wM ] and205

IM = [1, . . . ,1] ∈ RM which constitutes an independent joint probability. Therefore, one can consider the problem of finding

a matrix S ∈ RM×M that is constraint by an additional lower entropic bound (Sinkhorn distance). This additional constraint

can be incorporated via a Lagrange multiplier, which leads to the above regularised form, i.e.,

JSH(S) =

M∑
i,j=1

{
sij‖ut−1,i−ut−1,j‖2 +

1

α
sij logsij

}
(12)

where α > 0. Due to additional smoothness the minimum of Eq. (12) can be unique and has the form210

Sα = diag(b)exp
(
−αZ

)
diag(a)

where Z is matrix with entries zij = ‖ut−1,i−ut−1,j‖2 and b and a non-negative vectors determined by employing Sinkhorn’s

fixpoint iteration described by Sinkhorn (1967). We will refer to this approach as tempered ensemble Sinkhorn particle filter

(TESPF).

Computational complexity. Solving this regularise optimal transport problems rather than original transport problem given215

in Eq. (9) reduces the complexity to O(M2C(α)). Note however that C(α) depends on the chosen regularisation and grows

with α. Therefore, one needs to balance between reducing computational time and finding a reasonable approximate solution

of the original transport problem when choosing a value for α. For the pseudocode of the Sinkhorn adaptation of solving the

optimal transport problem please refer to the Algorithm 3 in Appendix A. For the pseudocode of the TESPF please refer to the

Algorithm 4 in Appendix A.220

2.4 Ensemble Kalman Filter

For Bayesian inverse problems with Gaussian measures, ensemble Kalman filter (EnKF) is one of the widely used algorithms.

EnKF is an adaptive SMC method that approximates the first two statistical moments of a posterior distribution. For a linear

forward model, EnKF is optimal in a sense it minimizes the error in the mean (Blömker et al., 2019). For a nonlinear forward

model, EnKF still provides a good estimation of the posterior (e.g., Iglesias et al., 2018). Here we consider EnKF method225

of Iglesias et al. (2018), since it is based on the tempering approach.
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The intermediate measures {µt}Tt=0 are approximated by Gaussian distributed variables with empirical mean mt and em-

pirical variance Ct. Empirical meanmt−1 and empirical covariance Ct−1 are defined in terms of {ut−1,i}Mi=1 as following

mt−1 =
1

M

M∑
i=1

ut−1,i, Ct−1 =
1

M − 1

M∑
i=1

(ut−1,i−mt−1)⊗ (ut−1,i−mt−1),

where ⊗ denotes Kroneker product. Then the mean and the covariance are updated as230

mt =mt−1 + CuG
t−1(CGG

t−1 + ∆tR)−1(yobs−Gt−1) and Ct = Ct−1−CuG
t−1(CGG

t−1 + ∆tR)−1(CuG
t−1)′,

respectively. Here ′ denotes the transpose,

CuG
t−1 =

1

M − 1

M∑
i=1

(ut−1,i−mt−1)⊗ (G(ut−1,i)−Gt−1), CGG
t−1 =

1

M − 1

M∑
i=1

[G(ut−1,i)−Gt−1]⊗ [G(ut−1,i)−Gt−1],

Gt−1 =
1

M

M∑
i=1

G(ut−1,i), and ∆t =
1

φt−φt−1
.235

We recall that the nonlinear forward problem is y =G(u), the observation yobs has a Gaussian observation noise with zero

mean and the covariance matrix R, and φt is a temperature associated with the measure µt.

Since we are interested in an ensemble approximation of the posterior distribution, we update the ensemble members by

ũt,i = ut−1,i + CuG
t−1(CGG

t−1 + ∆tR)−1[yt,i−G(ut−1,i)] for i= 1, . . . ,M. (13)

Here yt,i = yobs +ηt,i and ηt,i ∼N (0,∆tR) for i= 1, . . . ,M .240

Computational complexity. The computational complexity of solving Eq. (13) is O(κ2n), where n is the parameter space

dimension, and κ is the observation space dimension. Then the computational complexity of EnKF is O[T (MC+κ2n+

τmaxMC)], where T is the number of tempering iterations, τmax is the number of pcn-MCMC inner iterations, and C is compu-

tational cost of a forward model G. For the pseudocode of the EnKF method please refer to the Algorithm 5 in Appendix A.

2.5 Hybrid245

Despite the underlying Gaussian assumption the EnKF is remarkably robust in nonlinear high-dimensional settings opposed

to consistent SMC methods such as the TET(S)PF. For many nonlinear problems it is desirable to have better uncertainty

estimates while maintaining a level of robustness. This can be achieved by factorising the likelihood given by Eq. (2), e.g,

g(u;yobs) = g1(u;yobs) · g2(u;yobs),

where250

g1(u;yobs) = g(u;yobs)
β = exp

[
−1

2
(G(u)−yobs)

′(βR)−1(G(u)−yobs)

]
(14)

and

g2(u;yobs) = g(u;yobs)
(1−β) = exp

[
−1

2
(G(u)−yobs)

′[(1−β)R]−1(G(u)−yobs)

]
. (15)

9



Then it is possible to alternate between methods with complementing properties such as the EnKF and the TET(S)PF updates

e.g., likelihood255

exp

[
−β

2
(G(u)−yobs)

′R−1(G(u)−yobs)

](φt−φt−1)

is used for an EnKF update followed by an update with a TET(S)PF on the basis of

exp

[
− (1−β)

2
(G(u)−yobs)

′R−1(G(u)−yobs)

](φt−φt−1)

.

Note that β ∈ [0,1] and should be tuned according to underlying forward operator. This combination of an approximative

Gaussian method and a consistent SMC method has been referred to as hybrid filters in the data assimilation literature1(Stordal260

et al., 2011; Frei and Künsch, 2013; Chustagulprom et al., 2016). This ansatz can also be understood as using the EnKF as a

more elaborate proposal density for the importance sampling step within SMC (e.g., Oliver et al., 1996).

Computational complexity. The computational complexity of combining the two algorithms is O[T (MC+κ2n+MC+

M3 logM +τmaxMC)] for the hybrid EnKF-TETPF andO[T (MC+κ2n+MC+M2C(α)+τmaxMC)] for the hybrid EnKF-

TESPF. For the pseudocode of the hybrid methods please refer to the Algorithm 6 in Appendix A.265

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,6]× [0,6], which is given by

−∇ · [k(x,y)∇P (x,y)] = f(x,y), (x,y) ∈D, (16)

where ∇= (∂/∂x ∂/∂y)′, · the dot product, P (x,y) the pressure, k(x,y) the permeability, f(x,y) the source term which270

accounts for groundwater recharge, and (x,y) are horizontal dimensions. The boundary conditions are

P (x,0) = 100,
∂P

∂x
(6,y) = 0, −k(0,y)

∂P

∂x
(0,y) = 500,

∂P

∂y
(x,6) = 0, (17)

where ∂D is the boundary of domain D. The source term is

f(x,y) =


0 if 0< y ≤ 4,

137 if 4< y < 5,

274 if 5< y ≤ 6.

We implement a cell-centered finite-difference method and a linear algebra solver (backslash operator in MATLAB) to solve275

the forward model Eqs. (16)–(17) on an N ×N grid.

1Note that the terminology is also used in the context of data assimilation filters combining variational and sequential approaches.
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Figure 1. Geometrical configuration of channel flow: amplitude d1, frequency d2, angle d3, initial point d4, and width d5.

We note that a single-phase Darcy flow model, though not a steady-state, is widely used to model the flow in a subsurface

aquifer and to infer uncertain permeability using data assimilation. For example, Zovi et al. (2017) used an EnKF to infer

permeability of an existing aquifer located in North-East Italy. The area of this aquifer is 2.7 km2 and exhibits several channels,

such as the one depicted in Fig. 1. There a size of a computational cell was ranging from 2 m (near wells) to 20 m away from280

the wells.

3.1 Parameterisation of permeability

We consider the following two parameterisations of the permeability function k(x,y)

F1: log permeability over the entire domain D, u(x,y) = logk(x,y);

F2: permeability over domain D that has a channel, k(x,y) = k1(x,y)δDc
(x,y) + k2(x,y)δD\Dc

(x,y) as by Iglesias et al.285

(2014).

Here Dc denotes a channel, δ the Dirac function, k1 = exp(u1(x,y)) and k2 = exp(u2(x,y)) denote permeabilities inside and

outside the channel. The geometry of the channel is parameterized by five parameters {di}5i=1: amplitude, frequency, angle,

initial point, and width, correspondingly. The lower boundary of the channel is given by y = d1 sin(d2x/6) + tan(d3)x+ d4.

The upper boundary of the channel is given by y+ d5. These parameters are depicted in Fig. 1.290

We assume that the log permeability for both F1 and F2 is drawn from a Gaussian distribution µ0 =N (m,C) with mean m

and covariance C. We define C via a correlation function given by the Wittle-Matern correlation function defined by Matérn

11



(1986)

c(x,y) =
1

γ(1)

‖x− y‖
υ

Υ1

(
‖x− y‖

υ

)
,

where γ is the gamma function, υ = 0.5 is the characteristic length scale, and Υ1 is the modified Bessel function of the second295

kind of order 1.

We denote by λ and V eigenvalues and eigenfunctions of the corresponding covariance matrix C, respectively. Then, fol-

lowing a Karhunen-Loeve expansion, log permeability is

log(kl) = log(m) +

N2∑
`=1

√
λ`V `lu` for l = 1, . . . ,N2,

where u` is i.i.d. from N (0,1) for `= 1, . . . ,N2.300

For F1, the prior for log permeability is a Gaussian distribution with mean 5. The grid dimension is N = 70, and thus the

uncertain parameter u= {u`}N2

`=1 has dimension 4900.

For F2, we assume geometrical parameters d= {di}5i=1 are drawn from uniform priors, namely d1 ∼ U [0.3, 2.1], d2 ∼
U [π/2, 6π], d3 ∼ U [−π/2, π/2], d4 ∼ U [0, 6], d5 ∼ U [0.12, 4.2]. Furthermore, we assume independence between geometric

parameters and log permeability. The prior for log permeability is a Gaussian distribution with mean 15 outside the channel305

and with mean 100 inside the channel. The grid dimension is N = 50. Log permeability inside channel u1 = {u1,`}N2

`=1 and

log permeability outside channel u2 = {u2,`}N2

`=1 are defined over the entire domain 50× 50. Therefore, for F2 inference the

uncertain parameter u= {d,u1,u2} has dimension 5005. Moreover, for F2 we use the Metropolis-within-Gibbs methodology

following Iglesias et al. (2014) to separate geometrical parameters and log permeability parameters within the mutation step,

since it allows to better exploit the structure of the prior.310

3.2 Observations

Both the true permeability and an initial ensemble are drawn from the same prior distribution as the prior includes knowledge

about geological properties. However, an initial guess is computed on a coarse grid and the true solution is computed on a fine

grid that has twice the resolution of the coarse grid. The synthetic observations of pressure are obtained by

yobs =L(P true) +η.315

An element of L(P true) is a linear functional of pressure, namely

Lj(P true) =
1

2πσ2

Nf∑
i=1

exp

(
−‖X

i−hj‖2

2σ2

)
(P true)j∆x2 for j = 1, . . . ,κ.

Here σ = 0.01, ∆x2 is the size of a grid cellXi = (Xi,Y i),Nf is resolution of a fine grid, hj is the location of the observation

and κ is the number of observations. This form of the observation functional and the parameterization F1 and F2 guaranty

the continuity of the forward map from the uncertain parameters to the observations and thus the existence of the posterior320
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distribution as shown by Iglesias et al. (2014). The observation noise η is drawn from a normal distribution with zero mean

and known covariance matrix R. We choose the observation noise to be 2 % of L2-norm of the true pressure. With such a small

noise the likelihood is a peaked distribution. Therefore, a non-iterative data assimilation approach requires a computationally

unfeasible number of ensemble members to sample the posterior.

To save computational costs, we choose ESS thresholdMthresh =M/3 for tempering, and the length of Markov chain τmax =325

20 for mutation.

3.3 Metrics

We conduct numerical experiments with ensemble sizes M = 100 and M = 500, and 20 simulations with different initial

ensemble realizations to check the robustness of results. We analyze the method’s performance with respect to a pcn-MCMC

solution from here on referred to as reference. An MCMC solution was obtained by combining 50 independent chains each of330

length 106, 105 burn-in period and 103 thinning. For log permeability, we compute RMSE of the mean

RMSE =
√

(u−uref)′(u−uref), where u=
1

M

M∑
i=1

ui, (18)

and uref is the reference solution.

For geometrical parameters d, we compute the Kullback-Leibler divergence

DiKL(pref ‖ p) =

Mb∑
j=1

pref(dij) log
pref(dij)

p(dij)
, (19)335

where pref(di) is the reference posterior, p(di) is approximated by the weights, and Mb =M/10 is a chosen number of bins.

3.4 Application to F1 inference

For F1, we perform numerical experiments using 36 uniformly distributed observations, which are displayed in circles in

Fig. 3(a). We plot a box plot of RMSE given by Eq. (18) over 20 independent simulations in Fig. 2(a) using Sinkhorn approxi-

mation and in Fig. 2(b) using optimal transport. The x-axis is for the hybrid parameter β, whose value 0 corresponds to EnKF340

and 1 to an adaptive SMC method with either a Sinkhorn approximation (TESPF) or optimal transport (TETPF). Ensemble

size M = 100 is shown in red and M = 500 in green. First, we observe that at a small ensemble size M = 100 and a large β

(namely β ≥ 0.6) TESPF outperforms TETPF as the RMSE error is lower. Since Sinkhorn approximation is a regularization

of an optimal transport solution, TESPF provides a smoother solution than TETPF that can be seen in Fig. 3(c) and Fig. 3(f),

respectively, where we plot mean log permeability. Next, we see in Fig. 2 that the hybrid approach decreases RMSE compared345

to TET(S)PF: the smaller β the smaller median of RMSE. EnKF gives the smallest error due to the Gaussian parametrization

of permeability. The advantage of the hybrid approach is most pronounced at a large ensemble size M = 500 and optimal

transport resampling. Furthermore, we note a discrepancy between the M = 100 and the M = 500 experiments at β = 0, thus

EnKF alone. This is related to the curse of dimensionality. It appears that the ensemble size M = 100 is too small to estimate

13



0
0.

2
0.

4
0.

6
0.

8
1.

0
2

4

6

8

10

12

14

16

18

20

E
rr

o
r 

in
 m

e
a
n

Log permeabilty(a)(a)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
2

4

6

8

10

12

14

16

18

20

E
rr

o
r 

in
 m

e
a
n

Log permeabilty(b)(b)

100

500

Figure 2. Application to F1 parameterization: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20

independent simulations of RMSE of mean log permeability. X-axis is for the hybrid parameter, where β = 0 corresponds to EnKF and

β = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in green. Central mark is the median, edges of the box are the

25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.

an uncertain parameter of the dimension 103 using 36 accurate observations. However, at the ensemble size M = 500 EnKF350

alone (β = 0) gives an excellent performance compared to any combination (β > 0).

We plot mean log permeability at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 3(b)–(f) and of

reference in Fig. 3(a). We see that EnKF and TETPF(0.2) estimate well not only large-scale feature but also small-scale feature

(e.g., negative mean at the top right corner) unlike TET(S)PF and TESPF(0.2).

3.5 Application to F2 inference355

For F2, we perform numerical experiments using 9 uniformly distributed observations. which are displayed in circles in

Fig. 9(a). First, we display results obtained by Sinkhorn approximation. In Fig. 4, we plot box plot over 20 independent runs of

KL divergence given by Eq. (19) for amplitude (a), frequency (b), angle (c), initial point (d), and width (e) that define channel.

We see that EnKF outperforms any TESPF(·) including TESPF for amplitude (a) and width (e). This is due to Gaussian-like

posteriors of these two geometrical parameters displayed in Fig. 6(c) and Fig. 6(o), respectively. Due to Gaussian-like posteriors360

the hybrid approach decreases RMSE compared to TESPF: the smaller β the smaller median of RMSE.

For frequency, angle, and initial point, whose KL divergence is displayed in Fig. 4(b), (c), and (d), respectively, the behaviour

of adaptive SMC is nonlinear in terms of β. This is due to non Gaussian-like posteriors of these three geometrical parameters

shown in Fig. 6(f), (i), and (l), respectively. Due to non Gaussian-like posteriors the hybrid approach gives an advantage

over both TESPF and EnKF—there exists a β 6= 0 for which the KL divergence is lowest although it is inconsistent between365

geometrical parameters.

When comparing TESPF(·) to TETPF(·), we observe the same type of behaviour in terms of β: linear for amplitude and

width, whose KL divergence is displayed in Fig. 5(a) and (e), respectively, and nonlinear for frequency, angle, and initial point,

whose KL divergence is displayed in Fig. 5(b), (c), and (d), respectively. However, the KL divergence is smaller when optimal

transport resampling is used instead of Sinkhorn approximation.370
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Figure 3. Mean log permeability for F1 inference for the lowest error at ensemble sizeM = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EnKF (d), TETPF(0.2) (e), and TETPF (f).

In Fig. 6, we plot posterior of geometrical parameters: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l),

and width (m)–(o), where on the left TESPF(0.2), in the middle TETPF(0.2), and on the right EnKF are shown. In black is

the reference, in red 20 simulations of ensemble size M = 100, in green 20 simulations of ensemble size M = 500. The true

parameters are shown as black cross. We see that as ensemble size increases posteriors approximated by TET(S)PF converge

to the reference posterior unlike EnKF.375

Now we investigate adaptive SMC performance for permeability estimation. First, we display results obtained by Sinkhorn

approximation. The box plot shows over 20 independent simulations of RMSE given by Eq. (18) for log permeability outside

channel in Fig. 7(a) and inside channel in Fig. 7(b). Even though log permeability is Gaussian distributed, for a small ensemble

size M = 100 there exists a β 6= 0 that gives lowest RMSE both outside and inside channel. As ensemble size increases,

methods performance becomes equivalent.380

Next, we compare TESPF(·) to TETPF(·) for log permeability estimation outside and inside channel whose RMSE is dis-

played in Fig. 8(a) and (b), respectively. We observe the same type of behaviour in terms of β: nonlinear for a small ensemble

size M = 100, and equivalent for a larger ensemble size M = 500. Furthermore, at a small ensemble size M = 100 TESPF

outperforms TETPF, which was also the case for F1 parameterization Sec. 3.4.

In Fig. 9, we show mean field of permeability over the channelized domain for reference for the lowest error at ensemble385

size M = 100 for TESPF(0.2) (b), TESPF (c), EnKF (d), TETPF(0.2) (e), and TETPF (f). We plot mean log permeability over
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Figure 4. Application to F2 parameterization using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence

for geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d), and width (e). X-axis is for the hybrid parameter, where

β = 0 corresponds to EnKF and β = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in green. Central mark is the

median, edges of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.
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Figure 5. The same as Fig. 4 but using optimal transport resampling.
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Figure 6. Posterior of geometrical parameters for F2 inference: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l), and

width (m)–(o). On the left is TESPF(0.2); in the middle is TETPF(0.2), and on the right is EnKF. In black is reference, in red 20 simulations

of ensemble size M = 100, in green 20 simulations of ensemble size M = 500. The true parameters are shown as black cross.
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Figure 7. Application to F2 parameterization with Sinkhorn approximation. Box plot over 20 independent simulations of RMSE of mean log

permeability outside channel (a) and inside channel (b). X-axis is for the hybrid parameter, where β = 0 corresponds to EnKF and β = 1 to
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75th percentiles, whiskers extend to the most extreme data points, and crosses are outliers.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

1

2

3

4

5

6

7

8

9

10

E
rr

o
r 

in
 m

e
a
n

Log permeabilty outside(a)(a)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

1

2

3

4

5

6

7

8

9

10

E
rr

o
r 

in
 m

e
a
n

Log permeabilty inside(b)(b)

100

500

Figure 8. The same as Fig. 7 but using optimal transport resampling.

the channelized domain at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 9(b)–(f) and of reference

in Fig. 9(a). We see that TESPF(0.2) does an excellent job at such a small ensemble size by estimating well log permeability

outside and inside channel, and parameters of the channel itself.

4 Conclusions390

A Sinkhorn adaptation, namely the TESPF, of the previously proposed TETPF has been introduced and numerically investi-

gated on a parameter estimation problem. The TESPF has similar accuracy results than the TETPF (see Fig. 7, 8 and 6) while

it can have considerable smaller computational complexity. Specifically, the TESPF has compelxity O[T (MC+M2C(α) +

τmaxMC)] and the TETPFO[T (MC+M3 logM+τmaxMC)], (for a complete overview see table B1). In particular, the TESPF

outperforms the EnKF for non-Gaussian distributed parameters (e.g., initial point and angle in F2). This makes the proposed395

method a promising option for the high-dimensional nonlinear problems one is typically faced with in reservoir engineering.

Further, to counter balance potential robustness problems of the TETPF and its Sinkhorn adaptation a hybrid between EnKF

and TET(S)PF is proposed and studied by means of the two configurations of the steady-state single-phase Darcy flow model.
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Figure 9. Mean log permeability for F2 inference for the lowest error at ensemble sizeM = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EnKF (d), TETPF(0.2) (e), and TETPF (f).

The combination of the two adaptive SMC methods with complementing properties, i.e., β ∈ (0,1), is superior to the individual

adaptive SMC method, i.e., β = 0 or 1, for all non-Gaussian distributed parameters and performs better than the pure TETPF400

and the TETSPF for Gaussian distributed parameters in F1. This suggests a hybrid approach has a great potential to obtain

robust and highly-accurate approximate solutions of nonlinear high-dimensional Bayesian inference problems. Note that we

have considered a synthetic case, where the truth is available, and thus chose β in terms of accuracy of an estimate. However,

in a realistic application the truth is not provided. In the context of state estimation with an underlying dynamical system it has

been suggested to adaptively change the hybrid parameter with respect to the effective sample size. As the tempering scheme is405

already changed according to the effective sample size this ansatz would require to define the interplay between the two tuning

variables. An ad-hoc choice for β could be 0.2 or 0.3. This is motivated by the fact that the particle filter is too unstable in high

dimensions and it is therefore sensible to use a tuning parameter prioritising the EnKF. The ad-hoc choice is supported by the

numerical results in Section 3 and in Acevedo et al. (2017); de Wiljes et al. (2020) in the context of state-estimation.
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Appendix A: Pseudocode410

Algorithm 1 Sample mutation

Require: θ ∈ (0,1) and an integer τmax

for i= 1, . . . ,M do

Initialize vi(0) = ũt,i

while τ ≤ τmax do

Propose vprop
i using Eq. (5) for Gaussian probability or Eq. (6) for uniform probability

Set vi(τ +1) = vprop
i with probability Eq. (7) and set vi(τ +1) = ũt,i with probability Eq. (8)

τ ← τ +1

end while

Set ut,i = vi(τmax)

end for

Algorithm 2 Resampling based on optimal transport

Require: {ut−1,i}Mi=1 and wt−1 = {wt−1,1, . . . ,wt−1,M}

Compute Z with zij = ‖ut−1,i−ut−1,j‖2

Supply Z and wt−1 to the FastEMD algorithm of Pele & Werman with the output being the coupling S

Compute new samples {ũt,i}Mi=1 from Eq. (11)

Algorithm 3 Sinkhorn iteration for optimal transport problem with entropic regularisation

Require: regularisation parameter α, {ut−1,i}Mi=1 and wt−1 = {wt−1,1, . . . ,wt−1,M}

Compute Z with zij = ||ut−1,i−ut−1,j ||2

Normalise Z with respect to its maximum entry

while ε≥ 1.0e− 8 do

b=wt−1./[exp(−αZ)a]

a=
(

1
M
IM/M

)
./[exp(−αZ)b]

S = diag(b)exp(−αZ)diag(a)

ŵ = SIM
ε= ‖ŵ−wt−1‖

end while

return S∗ = S

Appendix B: Computational Complexity
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Algorithm 4 Adaptive SMC: TET(S)PF

Require: an initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1) and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g(ut−1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Compute weights wt−1 = {wt−1,1, . . . ,wt−1,M} from Eq. (3)

Create new samples {ũt,i}Mi=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while

Algorithm 5 EnKF

Require: an initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1) and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g(ut−1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Create new samples {ũt,i}Mi=1 using Eq. (13)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while
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Algorithm 6 Hybrid EnKF-TET(S)PF

Require: initial initial ensemble {u0,i}Mi=1 ∼ µ0, θ ∈ (0,1), hybrid parameter β and integers τmax and 1<Mthresh <M

Set φ0 = 0

while φt ≤ 1 do

t→ t+1

Compute the likelihood g1(ut−1,i;yobs) from Eq. (14) (for i= 1, . . . ,M )

Set g(ut−1,i;yobs) = g1(ut−1,i;yobs) (for i= 1, . . . ,M )

Compute the tempering parameter φt:

if minφ∈(φt−1,1) ESSt(φ)>Mthresh then

set φt = 1

else

compute φt such that ESSt(φ)≈Mthresh using a bisection algorithm on (φt−1,1]

end if

Create new samples {ũβt,i}
M
i=1 using Eq. (13)

Compute the likelihood g2(ũβt,i;yobs) from Eq. (15) (for i= 1, . . . ,M )

Set g(ut−1,i;yobs) = g2(ũ
β
t,i;yobs) (for i= 1, . . . ,M )

Compute weights wt−1 = {wt−1,1, . . . ,wt−1,M} from Eq. (3)

Create new samples {ũt,i}Mi=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}Mi=1 using sample mutation via Algorithm 1

end while

Algorithm Complexity

TETPF O[T (MC+M3 logM + τmaxMC)]

TESPF O[T (MC+M2C(α)+ τmaxMC)]

EnKF O[T (MC+κ2n+ τmaxMC)]

Hybrid EnKF-TETPF O[T (MC+κ2n+MC+M3 logM + τmaxMC)]

Hybrid EnKF-TESPF O[T (MC+κ2n+MC+M2C(α)+ τmaxMC)]

Forward model G O(MC)

pcn-MCMC mutation O(τmaxMC)

FastEMD O(M3 logM)

Sinkhorn approximation O(M2C(α))

Table B1. The table provides an overview of the computational complexity of all the algorithms considered in the manuscript.

22



Data availability. Data and MATLAB codes for generating the plots are available in Ruchi et al. (2020).

Author contributions. S.R., S.D. and J.dW. designed the research, S.D. ran the numerical experiments, S.R., S.D. and J.dW. analyzed the

results and wrote the manuscript.

Competing interests. The authors declare that they have no conflict of interest.415

Acknowledgements. The research of J.dW. and S.R. have been partially funded by Deutsche Forschungsgemeinschaft (DFG) - SFB1294/1

- 318763901. Further J.dW. has been supported by Simons CRM Scholar-in-Residence Program and ERC Advanced Grant ACRCC (grant

339390). S.R. has been supported by the research programme Shell-NWO/FOM Computational Sciences for Energy Research (CSER) with

project number 14CSER007 which is partly financed by the Netherlands Organization for Scientific Research (NWO).

23



References420

Acevedo, W., de Wiljes, J., and Reich, S.: Second-order Accurate Ensemble Transform Particle Filters, SIAM J. Sci. Comput., 39,

A1834–A1850, 2017.

Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., and Stuart, A. M.: Importance sampling: computational complexity and intrinsic dimen-

sion, Statistical Science, 32, 405–431, https://doi.org/10.1214/17-STS611, 2017.

Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Monthly Weather Review, 129, 2884–2903, 2001.425

Bardsley, J., Solonen, A., Haario, H., and Laine, M.: Randomize-then-optimize: A method for sampling from posterior distributions in

nonlinear inverse problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014.

Beskos, A., Crisan, D., and Jasra, A.: On the stability of sequential Monte Carlo methods in high dimensions, Ann. Appl. Probab., 24,

1396–1445, https://doi.org/10.1214/13-AAP951, 2014.

Beskos, A., Jasra, A., Muzaffer, E. A., and Stuart, A. M.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems, Statistics430

and Computing, 25, 727–737, https://doi.org/10.1007/s11222-015-9556-7, 2015.

Blömker, D., Schillings, C., Wacker, P., and Weissmann, S.: Well posedness and convergence analysis of the ensemble Kalman inversion,

Inverse Problems, 35, 085 007, https://doi.org/10.1088/1361-6420/ab149c, https://doi.org/10.1088%2F1361-6420%2Fab149c, 2019.

Burgers, G., Leeuwen, P., and Evensen, G.: Analysis Scheme in the Ensemble Kalman Filter, Monthly Weather Review, 126, 1719–1724,

https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.435

Carrassi, A., Bocquet, M., Bertino, ., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspec-

tives, WIREs Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.

Chada, N., Iglesias, M., Roininen, L., and Stuart, A.: Parameterizations for Ensemble Kalman Inversion, Inverse Problems, 34, 055 009,

2018.

Chen, Y. and Oliver, D.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother, Math. Geosci., 44, 1–26,440

2012.

Chustagulprom, N., Reich, S., and Reinhardt, M.: A Hybrid Ensemble Transform Particle Filter for Nonlinear and Spatially Extended

Dynamical Systems, SIAM/ASA Journal on Uncertainty Quantification, 4, 592–608, https://doi.org/10.1137/15M1040967, 2016.

Cotter, S., Roberts, G., Stuart, A., and White, D.: MCMC methods for functions: modifying old algorithms to make them faster, Statistical

Science, 28, 424–446, 2013.445

Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport, in: Advances in Neural Information Processing Systems

26, edited by Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., pp. 2292–2300, Curran Associates, Inc.,

http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf, 2013.

Dashti, M. and Stuart, A. M.: The Bayesian Approach to Inverse Problems, pp. 311–428, Springer International Publishing, Cham,

https://doi.org/10.1007/978-3-319-12385-1_7, 2017.450

de Wiljes, J., Pathiraja, S., and Reich, S.: Ensemble Transform Algorithms for Nonlinear Smoothing Problems, SIAM J. Sci. Comput.„ 42,

A87–A114, 2020.

Del Moral, P., Doucet, A., and Jasra, A.: Sequential Monte Carlo samplers, Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68, 411–436, https://doi.org/10.1111/j.1467-9868.2006.00553.x, 2006.

Emerick, A. and Reynolds, A.: Ensemble smoother with multiple data assimilation, Computers & Geosciences, 55, 3–15, 2013.455

24

https://doi.org/10.1214/17-STS611
https://doi.org/10.1214/13-AAP951
https://doi.org/10.1007/s11222-015-9556-7
https://doi.org/10.1088/1361-6420/ab149c
https://doi.org/10.1088%2F1361-6420%2Fab149c
https://doi.org/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2
https://doi.org/10.1002/wcc.535
https://doi.org/10.1137/15M1040967
http://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf
https://doi.org/10.1007/978-3-319-12385-1_7
https://doi.org/10.1111/j.1467-9868.2006.00553.x


Ernst, O. G., Sprungk, B., and Starkloff, H.-J.: Analysis of the Ensemble and Polynomial Chaos Kalman Filters in Bayesian Inverse Problems,

SIAM/ASA Journal on Uncertainty Quantification, 3, 823–851, https://doi.org/10.1137/140981319, 2015.

Frei, M. and Künsch, H.: Bridging the ensemble Kalman and particle filters, Biometrika, 100, 781–800, 2013.

Frei, M. and Künsch, H. R.: Bridging the ensemble Kalman and particle filters, Biometrika, 100, 781–800,

https://doi.org/10.1093/biomet/ast020, 2013.460

Hairer, M., Stuart, A., and Vollmer, S.: Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions, Ann. Appl. Probab., 24,

2455–2490, 2014.

Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation, Monthly Weather Review, 144,

4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016.

Iglesias, M., Park, M., and Tretyakov, M.: Bayesian inversion in resin transfer molding, Inverse Problems, 34, 105 002, 2018.465

Iglesias, M. A.: A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems, Inverse Problems, 32, 025 002,

2016.

Iglesias, M. A., Lin, K., and Stuart, A. M.: Well-posed Bayesian geometric inverse problems arising in subsurface flow, inverse problems,

30, 114 001, 2014.

Kantorovich, L. V.: On the translocation of masses, in: Dokl. Akad. Nauk. USSR (NS), vol. 37, pp. 199–201, 1942.470

Liu, Y., Haussaire, J., Bocquet, M., Roustan, Y., Saunier, O., and Mathieu, A.: Uncertainty quantification of pollutant source retrieval:

comparison of Bayesian methods with application to the Chernobyl and Fukushima-Daiichi accidental releases of radionuclides, Q. J. R.

Meteorol. Soc., 143, 2886–2901, 2017.

Lorentzen, R. J., Bhakta, T., Grana, D., Luo, X., Valestrand, R., and Nævdal, G.: Simultaneous assimilation of production and seismic data:

application to the Norne field, Computational Geosciences, 24, 907–920, https://doi.org/10.1007/s10596-019-09900-0, 2020.475

Matérn, B.: Spatial Variation, Lecture Notes in Statistics, No. 36, Springer, 1986.

Monge, G.: Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie Royale des Sciences de Paris, 1781.

Neal, R. M.: Annealed importance sampling, Statistics and computing, 11, 125–139, 2001.

Oliver, D., He, N., and Reynolds, A.: Conditioning permeability fields to pressure data, ECMOR V-5th European Conference on the Mathe-

matics of Oil Recovery, pp. 259–269, 1996.480

Pele, O. and Werman, M.: Fast and robust earth mover’s distances, in: Computer vision, 2009 IEEE 12th international conference on, pp.

460–467, IEEE, 2009.

Peyré, G. and Cuturi, M.: Computational Optimal Transport: With Applications to Data Science, 2019.

Reich, S.: A nonparametric ensemble transform method for Bayesian inference, SIAM Journal on Scientific Computing, 35, A2013–A2024,

2013.485

Roberts, G. O. and Rosenthal, J. S.: Optimal scaling for various Metropolis-Hastings algorithms, Statist. Sci., 16, 351–367,

https://doi.org/10.1214/ss/1015346320, 2001.

Ruchi, S., Dubinkina, S., and Iglesias, M. A.: Tempered ensemble transform particle filter for non-Gaussian elliptic problems, Inverse

Problems, 35, 115 005, 2019.

Ruchi, S., Dubinkina, S., and de Wiljes, J.: Data underlying the paper: Fast hybrid tempered ensemble transform filter formulation for490

Bayesian elliptical problems via Sinkhorn approximation, 4TU, Centre for Research Data, Dataset, https://doi.org/10.4121/12987719,

2020.

25

https://doi.org/10.1137/140981319
https://doi.org/10.1093/biomet/ast020
https://doi.org/10.1175/MWR-D-15-0440.1
https://doi.org/10.1007/s10596-019-09900-0
https://doi.org/10.1214/ss/1015346320
https://doi.org/10.4121/12987719


Santitissadeekorn, N. and Jones, C.: Two-Stage Filtering for Joint State-Parameter Estimation, Monthly Weather Review, 143, 2028–2042,

https://doi.org/10.1175/MWR-D-14-00176.1, 2015.

Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums, The American Mathematical Monthly, 74, 402–405,495

1967.

Stordal, A., Karlsen, H. A., Nævdal, G., Skaug, H., and Vallès, B.: Bridging the ensemble Kalman filter and particle filters: the adaptive

Gaussian mixture filter, Computational Geosciences, 15, 293–305, https://doi.org/10.1007/s10596-010-9207-1, 2011.

Stuart, A. M.: Inverse problems: a Bayesian perspective, Acta Numerica, 19, 451–559, 2010.

Vergé, C., Dubarry, C., Del Moral, P., and Moulines, E.: On parallel implementation of sequential Monte Carlo methods: the island particle500

model, Statistics and Computing, 25, 243–260, https://doi.org/10.1007/s11222-013-9429-x, 2015.

Zovi, F., Camporese, M., Hendricks Franssen, H.-J., Huisman, J. A., and Salandin, P.: Identification of high-permeability subsur-

face structures with multiple point geostatistics and normal score ensemble Kalman filter, Journal of Hydrology, 548, 208–224,

https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.02.056, 2017.

26

https://doi.org/10.1175/MWR-D-14-00176.1
https://doi.org/10.1007/s10596-010-9207-1
https://doi.org/10.1007/s11222-013-9429-x
https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.02.056

