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Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in high-

dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman filtering
:::::::
inversion, tend

to be robust, computationally cheap and often produce astonishingly accurate estimations despite the simplifying underlying

assumptions. Yet there is a lot of room for improvement specifically regarding a correct approximation of a non-Gaussian

posterior distribution. The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where5

resampling is based on optimal transport mapping. Unlike ensemble Kalman filtering
:::::::
inversion

:
it does not require any as-

sumptions regarding the posterior distribution and hence has shown to provide promising results for nonlinear non-Gaussian

inverse problems. However, the improved accuracy comes with the price of much higher computational complexity and the

method is not as robust as the ensemble Kalman filtering
:::::::
inversion

:
in high-dimensional problems. In this work, we add an

entropy-inspired regularisation factor to the underlying optimal transport problem that allows to considerably reduce the high10

computational cost via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman filtering

:::::::
inversion

:
proposal step before each update of the samples, which is also referred to as hybrid approach. The promising per-

formance of the introduced method is numerically verified by testing it on a steady-state single-phase Darcy flow model with

two different permeability configurations. The results are compared to the output of ensemble Kalman filtering
::::::::
inversion, and

Markov Chain Monte Carlo methods results are computed as a benchmark.15

1 Introduction

If a solution of a considered partial differential equations (PDE) is highly-sensitive to its parameters, accurate estimation of

the parameters and their uncertainties is essential to obtain a correct approximation of the solution. Partial observations of

the solution are then used to infer uncertain parameters by solving a PDE-constrained inverse problem. For instance one can

approach such problems via methods induced by Bayes’s formula (Stuart, 2010). More specifically the posterior probability20

density of the parameters given the data, is then computed on the basis of a prior probability density and a likelihood which

is the conditional probability density associated with the given noisy observations. Well-posedness of an inverse problem and

convergence to the true posterior in the limit of observational noise going to zero was proven for different priors and under

assumptions on the parameter-to-observation map by Dashti and Stuart (2017), for example.
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When aiming at practical applications as in oil reservoir management (Lorentzen et al., 2020) and meteorology (Houtekamer25

and Zhang, 2016) for example, the posterior is approximated by means of a finite set of samples. Markov chain Monte Carlo

(MCMC) methods approximate the posterior with a chain of samples–a sequential update of samples according to the pos-

terior
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Robert and Casella, 2004; Rosenthal, 2009; Hoang et al., 2013). Typically, MCMC methods provide highly-correlated

samples. Therefore, in order to sample the posterior correctly MCMC requires a long chain, especially in the case of a multi-

modal or a peaked distribution. A peaked posterior is associated with very accurate observations. Therefore, unless a speed up30

is introduced in a MCMC chain (e.g., Cotter et al., 2013), MCMC is impractical for computationally expensive PDE models.

Adaptive Sequential Monte Carlo (SMC) methods are different approaches to approximate the posterior with an ensemble

of samples by computing their probability (e.g, Vergé et al., 2015). Adaptive intermediate probability measures are introduced

between the prior measure and the posterior measure to improve upon method divergence due to the curse of dimensionality fol-

lowing Del Moral et al. (2006); Neal (2001). Moreover, sampling from an invariant Markov kernel with the target intermediate35

measure and the reference prior measure improves upon ensemble diversity due to parameters stationarity as shown by Beskos

et al. (2015). However, when parameter space is high-dimensional, adaptive SMC requires computationally prohibitive en-

semble sizes unless we approximate only the first two moments (e.g., Iglesias et al., 2018) or we sample highly-correlated

samples (Ruchi et al., 2019).

Ensemble Kalman filtering (EnKF) approximates only
:::
The

:::::::::
ensemble

:::::::
Kalman

::::::::
inversion

::::::
(EKI)

:::::::::::
approximates

:::::::::
primarily40

the first two moments of the posterior, which makes it computationally attractive for estimating high-dimensional parame-

ters
:::::::::::::::::
(Iglesias et al., 2014). For linear problems, Blömker et al. (2019) showed well-posedness and convergence of EnKF

::
the

::::
EKI

for a fixed ensemble size and without any assumptions of Gaussianity. However for nonlinear problems, it has been shown by

Oliver et al. (1996); Bardsley et al. (2014); Ernst et al. (2015); Liu et al. (2017) that an EnKF
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Oliver et al. (1996); Bardsley et al. (2014); Ernst et al. (2015); Liu et al. (2017); Gland et al. (2011) that

::
the

::::
EKI

:
approximation is not consistent with the Bayesian approximation.45

As a side remark, EnKF was originally proposed for estimating a dynamical state of a chaotic system (e.g., Burgers et al., 1998).

It was latter shown by Anderson (2001) that EnKF can be used for parameter estimation by introducing a trivial

:::
We

:::
note

::::
that

:::
the

::::
EKI

:
is
:::
an

:::::::
iterative

:::::::
ensemble

::::::::
smoother

::::::::::::::
(Evensen, 2018).

:::::::
Iterative

::::::::
ensemble

::::::::::
smooothers

:::
for

::::::
inverse

::::::::
problems

::::::::
introduce

:
a
:::::
trivial

:::::::
artificial

:
dynamics to the unknown static parameter . We note that EnKF is well known under different names

in different scientific communities. In the reservoir community it is
::
and

:::::::::
iteratively

::::::
update

:::
an

:::::::::
estimation

::
of

::::
the

:::::::::
parameter.50

::::
Then

:::
the

:::::::::::::::::
parameter-dependent

::::::
model

::::::::
variables

:::
are

:::::::::
recomputed

:::::
using

::
a
:::::::
forward

:::::
model

::::
with

:
a
:::::::::
parameter

:::::::::
estimation.

:::::::::
Examples

::
of

:::::::
iterative

::::::::
ensemble

:::::::::
smoothers

:::
are

:
Ensemble Randomized Maximum Likelihood (Chen and Oliver, 2012), multiple data

assimilation
:::::::
Multiple

::::
Data

::::::::::
Assimilation (Emerick and Reynolds, 2013), and Randomize-Then-Optimize (Bardsley et al., 2014).

In the numerical weather prediction community, it falls under a large umbrella of Ensemble of Data Assimilation, see Carrassi et al. (2018) for

a recent review. In the inverse problem community, it is ensemble Kalman inversion (Chada et al., 2018).55

In order to sample highly-correlated samples,

::
As

:::
an

::::::::
alternative

::::::
ansatz one can employ optimal transport resampling that lies at the heart of the ensemble transform particle

filter (ETPF) proposed by Reich (2013). An optimal transport map between two consecutive probability measures provides a

direct sample-to-sample map with maximized sample correlation. Along the lines of an adaptive SMC approach a probability
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measure is described via the importance weights and the deterministic mapping replaces the traditional resampling step. A60

so-called tempered ensemble transform particle filter (TETPF) was proposed by Ruchi et al. (2019). Note that this ansatz does

not require any distributional assumption for the posterior and it was shown by Ruchi et al. (2019) that
:::
the TETPF provides

encouraging results for nonlinear high-dimensional PDE-constrained inverse problems. However, the computational cost of

solving an optimal transport problem in each iteration is considerably high.

In this work we address two issues arisen in the context of
::
the

:
TETPF: (i) the immense computational costs of solving the65

associated optimal transport problem and (ii) the lack of robustness of the TETPF with respect to high-dimensional problems.

More specifically, the performance of ETPF has been found to be highly-dependent on the initial guess. Although tempering

restrains any sharp fail in the importance sampling step due to a poor initial ensemble selection, the number of required

intermediate steps and the efficiency of ETPF still depends on the initialisation. The lack of robustness in high dimensions

can be addressed via a hybrid approach that combines a Gaussian approximation with a particle filter approximation (e.g.,70

Santitissadeekorn and Jones, 2015). Different algorithms are created by Frei and Künsch (2013); Stordal et al. (2011), for

example. In this paper, we adapt a hybrid approach of Chustagulprom et al. (2016) that uses EnKF
::
the

::::
EKI

:
as a proposal

step for
::
the

:
ETPF with a tuning parameter. Furthermore, it is well established that the computational complexity of solving an

optimal transport problem can be significantly reduced via a Sinkhorn approximation by Cuturi (2013). This ansatz has been

been implemented for the ETPF
::
by

:
Acevedo et al. (2017).75

Along the lines of Chustagulprom et al. (2016); de Wiljes et al. (2020), we propose a tempered ensemble transform particle

filter with Sinkhorn approximation (TESPF) and a tempered hybrid approach.

The remainder of the manuscript is organised as follows: in Sect. 2, the inverse problem setting is presented. There we de-

scribe the tempered ensemble transform particle filter (TETPF) proposed by Ruchi et al. (2019). Furthermore, we introduce the

tempered ensemble transform particle filter with Sinkhorn approximation (TESPF), a tempered hybrid approach that combines80

EnKF and
::
the

::::
EKI

:::
and

:::
the

:
TETPF (hybrid EnKF-TETPF

::::::::::
EKI-TETPF), and a tempered hybrid approach that combines EnKF

and
:::
the

::::
EKI

:::
and

:::
the

:
TESPF (hybrid EnKF-TESPF

::::::::::
EKI-TESPF). We discuss computational complexities of all the presented

techniques and provide corresponding pseudocodes in Appendix A. In Sect. 3, we apply the adaptive SMC methods to an

inverse problem of inferring high-dimensional permeability parameters for a steady-state single-phase Darcy flow model. Per-

meability is parameterized following Ruchi et al. (2019), where one configuration of parametrization lead
::::
leads to Gaussian85

posteriors, while another one
::::
leads to non-Gaussian posteriors. Finally, we draw conclusions in Sect. 4.

2 Bayesian inverse problem

We assume u 2 Ũ ⇢ Rn is a random variable that is related to partially observable quantities y 2 Y ⇢ R by a nonlinear

forward operator G : Ũ ! Y , namely

y =G(u).90
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Further yobs 2 Y denotes a noisy observation of y, i.e.,

yobs = y+⌘

where ⌘ ⇠N (0,R) and N (0,R) is a Gaussian distribution with zero mean and R covariance matrix. The aim is to determine or

approximate the posterior measure µ(u) conditioned on observations yobs and given a prior measure µ0(u), which is referred

to as Bayesian inverse problem. The posterior measure is absolutely continuous with respect to the prior, i.e.,95

dµ
dµ0

(u)/ g(u;yobs), (1)

where / is up to a constant of normalisation and g is referred to as the likelihood and depends on the forward operator G. The

Gaussian observation noise of the observation yobs implies

g(u;yobs) = exp


�
1

2
(G(u)�yobs)

0R�1(G(u)�yobs)

�
, (2)

where 0 denotes the transpose. In the following we will introduce a range of methods that can be employed to estimate solutions100

to the presented inverse problem under the overarching mantel of tempered Sequential Monte Carlo filters. Alongside these

methods we will also proposed
::::::
propose

:
several important add-on tools required to achieve feasibility and higher accuracy in

high-dimensional nonlinear settings.

2.1 Tempered Sequential Monte Carlo

We consider sequential Monte Carlo (SMC) methods that approximate the posterior measure µ(u) via an empirical measure105

µM (u) =
MX

i=1

wi�ui(u).

Here � is the Dirac function, and the importance weights for the approximation of µ are

wi =
g(ui;yobs)PM
j=1 g(uj ;yobs)

.

An ensemble U = {u1, . . . ,uM}⇢ Ũ consists of M realizations ui 2 Rn of a random variable u that are independent and

identically distributed according to ui ⇠ µ0.110

When an easy-to-sample from
::::::::
ensemble

::::
from

:::
the

:
prior µ0 does not approximate the complex posterior µ well, only a few

weights wi have significant value resulting in a degenerative approximation of the posterior measure. Potential reasons for this

effect are high dimensionality of the uncertain parameter, large number of observations, or
:::
lack

::
of

:
accuracy of the observations.

An existing solution to a degenerative approximation is an iterative approach based on tempering by Del Moral et al. (2006)

or annealing by Neal (2001). The underlying idea is to introduce T intermediate artificial measures {µt}
T
t=0 between µ0 and115

µT = µ. These measures are bridged by introducing T tempering parameters {�t}
T
t=1 that satisfy 0 = �0 < �1 < .. . < �T = 1.

An intermediate measure µt is defined as a probability measure that has density proportional to g(u) with respect to the previous

measure µt�1

dµt

dµt�1
(u)/ g(u;yobs)

(�t��t�1).
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Along the lines of Iglesias (2016) the tempering parameter �t is chosen such that effective ensemble size (ESS)120

ESSt(�) =

⇣PM
i=1wt,i

⌘2

PM
i=1w

2
t,i

with

wt,i =
g(ut�1,i;yobs)(�t��t�1)

PM
j=1 g(ut�1,j ;yobs)(�t��t�1)

, (3)

does not drop below a certain threshold 1<Mthresh <M . Then an approximation of the posterior measure µt is

µM
t (u) =

MX

i=1

wt,i�ut�1,i(u). (4)125

A bisection algorithm on the interval (�t�1,1] is employed to find �
::
�t. If ESSt >Mthresh we set �t = 1 which implies that no

further tempering is required.

The choice of ESS to define a tempering parameter is supported by results of Beskos et al. (2014) on stability of a tempered

SMC method in terms of ESS. Moreover, for a Gaussian probability density approximated by importance sampling, Agapiou

et al. (2017) showed that ESS is related to the second moment of the Radon-Nikodym derivative Eq. (1).130

SMC method with importance sampling Eq. (4) does not change the sample {ut�1,i}
M
i=1, which leads to the method collapse

due to a finite ensemble size. Therefore each tempering iteration t needs to be supplied with resampling. Resampling provides

a new ensemble {ũt,i}
M
i=1 that approximates the measure µt. We will discuss different resampling techniques in Sect. 2.3.

2.2 Mutation

Due to stationarity of the parameters SMC methods require ensemble perturbation. In the framework of particle filtering for135

dynamical systems, ensemble perturbation is achieved by rejuvenation, when ensemble members of the posterior measure are

perturbed with a random noise sampled from a Gaussian distribution with zero mean and a covariance matrix of the prior

measure. The covariance matrix of the ensemble is inflated and no acceptance step is performed due to the associated high

computational costs for a dynamical system.

Since we consider a static inverse problem, for ensemble perturbation we employ a Metropolis,ÄìHastings method (thus we140

mutate samples) but with a proposal that speeds up MCMC method for estimating a high-dimensional parameter. Namely, we

use ensemble mutation of Cotter et al. (2013) with the target measure µt and the reference measure µ0. The mutation phase is

initialized at v0,i = ũt,i, and at the final inner iteration ⌧max we assign ut,i = v⌧max,i for i= 1, . . . ,M .

For a Gaussian prior we use the preconditioned Crank-Nicolson MCMC (pcn-MCMC) method

vprop
i =

p
1� ✓2v⌧,i +(1�

p
1� ✓2)m+ ✓⇠⌧,i for i= 1, . . . ,M. (5)145

Here m is the mean of the Gaussian prior measure µ0 and {⇠⌧,i}Mi=1 are from a Gaussian distribution with zero mean and a

covariance matrix of the Gaussian prior measure µ0.
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For a uniform prior U [a,b] we use the following random walk

vprop
i = v⌧,i + ⇠⌧,i i= 1, . . . ,M. (6)

Here {⇠⌧,i}Mi=1 ⇠ U [a� b,b� a] and {vprop
i }

M
i=1 are projected onto the [a,b] interval if necessary. Then the ensemble at the150

inner iteration ⌧ +1 is

v⌧+1,i = vprop
i with the probability ⇢(vprop

i ,ut�1,i) for i= 1, . . . ,M ; (7)

v⌧+1,i = v⌧,i with the probability 1� ⇢(vprop
i ,ut�1,i) for i= 1, . . . ,M. (8)

Here vprop
i is from Eq. (5) for the Gaussian measure and from Eq. (6) for the uniform measure, and

⇢(vprop
i ,ut�1,i) = min

⇢
1,

g(vprop
i ;yobs)�t

g(ut�1,i;yobs)�t

�
.155

The scalar ✓ 2 (0, 1] in Eq. (5) controls the performance of the Markov chain. Small values of ✓ lead to high acceptance rates

but poor mixing. Roberts and Rosenthal (2001) showed that for high-dimensional problems it is optimal to choose ✓ such that

the acceptance rate is in between 20 % and 30 % by the last tempering iteration T . Cotter et al. (2013) proved that under some

assumptions this mutation produces a Markov kernel with an invariant measure µt.

Computational complexity. In each tempering iteration t the computational complexity of the pcn-MCMC mutation is160

O(⌧maxMC), where C is the computational cost of the forward model G. For the pseudocode of the pcn-MCMC mutation

please refer to the Algorithm 1 in Appendix A. Note that the computational complexity is not affected by the length of u which

is a very desirable property in high dimensions as shown by Cotter et al. (2013) and Hairer et al. (2014).

2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC method with importance sampling needs to be supplied with165

resampling at each tempering iteration t. We consider a resampling method based on optimal transport mapping proposed

by Reich (2013).

2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an optimal way of redistributing mass which was first formulated

by Monge (1781). Given a distribution of matter, e.g., a pile of sand, the underlying question is how to reshape the matter into170

another form such that the work done is minimal. A century
:::
and

:
a
::::
half later the original problem was rewritten by Kantorovich

(1942) in a statistical framework that allowed to tackle it. Due to these contributions it was later named the Monge-Kantorovich

minimization problem. The reader is also referred to Peyré and Cuturi (2019) for a comprehensible overview.

Let us consider a scenario where the initial distribution of matter is represented by a probability measure µ on the measurable

space Ũ
::
U , that has to be moved and rearranged according to a given new distribution ⌫, defined on the measurable space Ṽ .175

Then we seek a probability measure
::
Ũ .

:::
In

:::::
order

::
to

:::::::
describe

:::
the

::::
link

:::::::
between

:::
the

::::
two

::::::::::
probability

::::::::
measures

::
µ

:::
and

::
⌫
:::
and

:::
to
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::::::::
minimize

:
a
:::::::::
predefined

::::
cost

::::::::
associated

::::
with

:::
the

::::::::::::
transportation

:::
one

::::
aims

::
to

::::
find

:
a
::::
joint

:::::::
measure

:::
on

::::::
U ⇥ Ũ that is a solution to

inf

(Z
Ũ⇥ṼU⇥Ũ

:::
c(u, ũ)d!(u,ũ) : ! 2

Y
(µ,⌫)

)
, (9)

where the minimum is computed over all joint probability measures ! on Ũ ⇥ Ṽ
::::::
U ⇥ Ũ ,

:::::::
denoted

:::::::

Q
(µ,⌫),

:
with marginals µ

and ⌫, and c(u, ũ) is a transport cost function on Ũ ⇥ Ṽ
:::::::::::::
(u, ũ) 2 U ⇥ Ũ . The joint measures achieving the infinum are called180

optimal transport plans.

Let µ and ⌫ be two measures on a measurable space (⌦,F) such that µ is the law of random variable U : ⌦! Ũ
:::::::::
U : ⌦! U

and ⌫ is the law of random variable V : ⌦! Ṽ
:::::::::
Ũ : ⌦! Ũ . Then a coupling of (µ,⌫) consists of a pair (U,V )

::::::
(U,Ũ). Note

that couplings always exist, an example is the trivial coupling in which the random variables U and V
::
Ũ are independent. A

coupling is called deterministic if there exists a measurable function  M : Ũ ! Ṽ such that V = M (U)
::::::::::
 M : U ! Ũ

:::::
such185

:::
that

:::::::::::
Ũ = M (U)

:
and  M is called transport map. Unlike general couplings, deterministic couplings do not always exist. On

the other hand there may be infinitely many deterministic couplings. One famous variant of Eq. (9), where the optimal coupling

is known to be a deterministic coupling, is given by

!⇤ = arg inf

(Z
Ũ⇥ṼU⇥Ũ

:::
ku� ũk2d!(u, ũ) : ! 2

Y
(µ,⌫)

)
. (10)

The aim of the resampling step is to obtain equally probable samples. Therefore, in resampling based on optimal transport190

of Reich (2013), the Monge-Kantorovich minimization problem Eq. (10) is considered for the current posterior measure µM
t (u)

given by its samples approximation Eq. (4) and a uniform measure (here the weights in the sample approximation are set to

1/M ). The discretized objective functional of the associate optimal transport problem is given by

J(S) :=
MX

i,j=1

sijkut�1,i �ut�1,jk
2

subject to sij > 0 and constraints195

MX

i=1

sij =
1

M
, j = 1, . . .M ;

MX

j=1

sij = wt,i, i= 1, . . .M,

where matrix S describes a joint probability measure under the assumption that the state space is finite. Then samples {ũt,i}
M
i=1

are obtained by a deterministic linear transform, i.e.,

ũt,j :=M
MX

i=1

ut�1,isij for j = 1, . . . ,M. (11)

Reich (2013) showed weak convergence of the deterministic optimal transformation Eq. (11) to a solution of the Monge-200

Kantorovich problem Eq. (9) as M !1.

Computational complexity. The computational complexity of solving the optimal transport problem with an efficient earth

mover distance algorithm such as FastEMD of Pele and Werman (2009) is of order O(M3 logM). Consequently the compu-

tational complexity of the adaptive tempering SMC with optimal transport resampling (TETPF) is O[T (MC+M3 logM +

7



⌧maxMC)], where T is the number of tempering iterations, ⌧max is the number of pcn-MCMC inner iterations, and C is compu-205

tational cost of a forward model G. For the pseudocode of the TETPF please refer to the Algorithm 4
:
2
:
in Appendix A.

2.3.2 Sinkhorn approximation

As discussed above solving the optimal transport problem has a computational complexity of O =M3 log(M) in every iter-

ation of the tempering procedure. Thus the TETPF becomes very expensive for large M . On the other hand an increase in

the number of samples directly correlates with an improved accuracy of the estimation. In order to allow for as many samples210

as possible one needs to reduce the associate computational cost of the optimal transport problem. This can be achieved by

replacing the optimal transport distance with a Sinkhorn distance and subsequently exploiting the new structure to elude the

immense computational time of the EMD solver as shown by Cuturi (2013). More precisely the ansatz is built on the fact that

the original transport problem has a natural entropic bound that is obtained for S = [ 1
M IMw>] where w = [w1, . . . ,wM ] and

IM = [1, . . . ,1] 2 RM which constitutes an independent joint probability. Therefore, one can consider the problem of finding215

a matrix S 2 RM⇥M that is constraint
:::::::::
constrained

:
by an additional lower entropic bound (Sinkhorn distance). This additional

constraint can be incorporated via a Lagrange multiplier, which leads to the above regularised form, i.e.,

JSH(S) =
MX

i,j=1

⇢
sijkut�1,i �ut�1,jk

2 +
1

↵
sij logsij

�
(12)

where ↵> 0. Due to additional smoothness the minimum of Eq. (12) can be unique and has the form

S↵ = diag(b)exp
⇣
�↵Z

⌘
diag(a)220

where Z is matrix with entries zij = kut�1,i�ut�1,jk
2 and b and a non-negative vectors determined by employing Sinkhorn’s

fixpoint iteration described by Sinkhorn (1967). We will refer to this approach as tempered ensemble Sinkhorn particle filter

(TESPF).

Computational complexity. Solving this regularise optimal transport problems rather than original transport problem given

in Eq. (9) reduces the complexity to O(M2C(↵)) . Note however that
:::::
where

:
C(↵)

::::::
denotes

:
a
::::::::::::
computational

::::::
scaling

:::::
factor

::::
that225

depends on the chosen regularisation and
:::::
choice

::
of

:::
the

::::::::::::
regularisation

:::::
factor

::
↵.

::
In

::::::::
particular

:::::
C(↵)

:
grows with ↵. Therefore, one

needs to balance between reducing computational time and finding a reasonable approximate solution of the original transport

problem when choosing a value for ↵. For the pseudocode of the Sinkhorn adaptation of solving the optimal transport problem

please refer to the Algorithm 3 in Appendix A. For the pseudocode of the TESPF please refer to the Algorithm 4 in Appendix A.

2.4 Ensemble Kalman Filter
:::::::::
Inversion230

For Bayesian inverse problems with Gaussian measures, ensemble Kalman filter (EnKF
:::
the

::::::::
ensemble

:::::::
Kalman

::::::::
inversion

::::
(EKI)

is one of the widely used algorithms. EnKF
:::
The

::::
EKI is an adaptive SMC method that approximates only

::::::::
primarily the first two

statistical moments of a posterior distribution. For a linear forward model, EnKF
::
the

::::
EKI is optimal in a sense it minimizes the

error in the mean (Blömker et al., 2019). For a nonlinear forward model, EnKF
::
the

::::
EKI

:
still provides a good estimation of the
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posterior (e.g., Iglesias et al., 2018). Here we consider EnKF
:::
the

::::
EKI method of Iglesias et al. (2018), since it is based on the235

tempering approach.

The intermediate measures {µt}
T
t=0 are approximated by Gaussian distributed variables with empirical mean mt and em-

pirical variance Ct. Empirical mean mt�1 and empirical covariance Ct�1 are defined in terms of {ut�1,i}
M
i=1 as following

mt�1 =
1

M

MX

i=1

ut�1,i, Ct�1 =
1

M � 1

MX

i=1

(ut�1,i �mt�1)⌦ (ut�1,i �mt�1),

where ⌦ denotes Kroneker product. Then the mean and the covariance are updated as240

mt =mt�1 +CuG
t�1(C

GG
t�1 +�tR)�1(yobs �Gt�1) and Ct = Ct�1 �CuG

t�1(C
GG
t�1 +�tR)�1(CuG

t�1)
0,

respectively. Here 0 denotes the transpose,

CuG
t�1 =

1

M � 1

MX

i=1

(ut�1,i�mt�1)⌦ (G(ut�1,i)�Gt�1), CGG
t�1 =

1

M � 1

MX

i=1

[G(ut�1,i)�Gt�1]⌦ [G(ut�1,i)�Gt�1],

Gt�1 =
1

M

MX

i=1

G(ut�1,i), and �t =
1

�t ��t�1
.245

We recall that the nonlinear forward problem is y =G(u), the observation yobs has a Gaussian observation noise with zero

mean and the covariance matrix R, and �t is a temperature associated with the measure µt.

Since we are interested in an ensemble approximation of the posterior distribution, we update the ensemble members by

ũt,i = ut�1,i +CuG
t�1(C

GG
t�1 +�tR)�1[yt,i �G(ut�1,i)] for i= 1, . . . ,M. (13)

Here yt,i = yobs +⌘t,i and ⌘t,i ⇠N (0,�tR) for i= 1, . . . ,M .250

Computational complexity. The computational complexity of solving Eq. (13) is O(2n), where n is the parameter space

dimension, and  is the observation space dimension. Then the computational complexity of EnKF
::
the

::::
EKI

:
is O[T (MC+

2n+ ⌧maxMC)], where T is the number of tempering iterations, ⌧max is the number of pcn-MCMC inner iterations, and C is

computational cost of a forward model G. For the pseudocode of the EnKF
:::
EKI

:
method please refer to the Algorithm 5 in

Appendix A.255

2.5 Hybrid

Despite the underlying Gaussian assumption the EnKF
::::
EKI is remarkably robust in nonlinear high-dimensional settings op-

posed to consistent SMC methods such as the TET(S)PF. For many nonlinear problems it is desirable to have better uncertainty

estimates while maintaining a level of robustness. This can be achieved by factorising the likelihood given by Eq. (2), e.g,

g(u;yobs) = g1(u;yobs) · g2(u;yobs),260

where

g1(u;yobs) = g(u;yobs)
� = exp


�
1

2
(G(u)�yobs)

0(�R)�1(G(u)�yobs)

�
(14)
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and

g2(u;yobs) = g(u;yobs)
(1��) = exp


�
1

2
(G(u)�yobs)

0[(1��)R]�1(G(u)�yobs)

�
. (15)

Then it is possible to alternate between methods with complementing properties such as the EnKF
:::
EKI

:
and the TET(S)PF265

updates e.g., likelihood

exp


�
�

2
(G(u)�yobs)

0R�1(G(u)�yobs)

�(�t��t�1)

is used for an EnKF
::::
EKI update followed by an update with a TET(S)PF on the basis of

exp


�
(1��)

2
(G(u)�yobs)

0R�1(G(u)�yobs)

�(�t��t�1)

.

Note that � 2 [0,1] and should be tuned according to underlying forward operator. This combination of an approximative270

Gaussian method and a consistent SMC method has been referred to as hybrid filters in the data assimilation literature1(Stordal

et al., 2011; Frei and Künsch, 2013; Chustagulprom et al., 2016). This ansatz can also be understood as using the EnKF
::::
EKI

as a more elaborate proposal density for the importance sampling step within SMC (e.g., Oliver et al., 1996).

Computational complexity. The computational complexity of combining the two algorithms is O[T (MC+2n+MC+

M3 logM + ⌧maxMC)] for the hybrid EnKF-TETPF
::::::::::
EKI-TETPF

:
and O[T (MC+2n+MC+M2C(↵)+ ⌧maxMC)] for the275

hybrid EnKF-TESPF
::::::::::
EKI-TESPF. For the pseudocode of the hybrid methods please refer to the Algorithm 6 in Appendix A.

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,6]⇥ [0,6], which is given by

�r · [k(x,y)rP (x,y)] = f(x,y), (x,y) 2D, (16)280

where r= (@/@x @/@y)0, · the dot product, P (x,y) the pressure, k(x,y) the permeability, f(x,y) the source term which

accounts for groundwater recharge, and (x,y) are horizontal dimensions. The boundary conditions are

P (x,0) = 100,
@P

@x
(6,y) = 0, �k(0,y)

@P

@x
(0,y) = 500,

@P

@y
(x,6) = 0, (17)

where @D is the boundary of domain D. The source term is

f(x,y) =

8
>>>><

>>>>:

0 if 0< y  4,

137 if 4< y < 5,

274 if 5< y  6.

285

1Note that the terminology is also used in the context of data assimilation filters combining variational and sequential approaches.
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Figure 1. Geometrical configuration of channel flow: amplitude d1, frequency d2, angle d3, initial point d4, and width d5.

We implement a cell-centered finite-difference method and a linear algebra solver (backslash operator in MATLAB) to solve

the forward model Eqs. (16)–(17) on an N ⇥N grid.

We note that a single-phase Darcy flow model, though not a steady-state, is widely used to model the flow in a subsurface

aquifer and to infer uncertain permeability using data assimilation. For example, Zovi et al. (2017) used an EnKF
:::
EKI

:
to infer

permeability of an existing aquifer located in North-East Italy. The area of this aquifer is 2.7 km2 and exhibits several channels,290

such as the one depicted in Fig. 1. There a size of a computational cell was ranging from 2 m (near wells) to 20 m away from

the wells.

3.1 Parameterisation of permeability

We consider the following two parameterisations of the permeability function k(x,y)

F1: log permeability over the entire domain D, u(x,y) = logk(x,y);295

F2: permeability over domain D that has a channel, k(x,y) = k1(x,y)�Dc(x,y)+ k2(x,y)�D\Dc
(x,y) as by Iglesias et al.

(2014).

Here Dc denotes a channel, � the Dirac function, k1 = exp(u1(x,y)) and k2 = exp(u2(x,y)) denote permeabilities inside and

outside the channel. The geometry of the channel is parameterized by five parameters {di}5i=1: amplitude, frequency, angle,

initial point, and width, correspondingly. The lower boundary of the channel is given by y = d1 sin(d2x/6)+ tan(d3)x+ d4.300

The upper boundary of the channel is given by y+ d5. These parameters are depicted in Fig. 1.
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We assume that the log permeability for both F1 and F2 is drawn from a Gaussian distribution µ0 =N (m,C) with mean m

and covariance C. We define C via a correlation function given by the Wittle-Matern correlation function defined by Matérn

(1986)

c(x,y) =
1

�(1)

kx� yk

�
⌥1

 
kx� yk

�

!
,305

where � is the gamma function, � = 0.5 is the characteristic length scale, and ⌥1 is the modified Bessel function of the second

kind of order 1.

We denote by � and V eigenvalues and eigenfunctions of the corresponding covariance matrix C, respectively. Then, fol-

lowing a Karhunen-Loeve expansion, log permeability is

log(kl) = log(m)+
N2X

`=1

p

�`V `lu` for l = 1, . . . ,N2,310

where u` is i.i.d. from N (0,1) for `= 1, . . . ,N2.

For F1, the prior for log permeability is a Gaussian distribution with mean 5. The grid dimension is N = 70, and thus the

uncertain parameter u= {u`
}
N2

`=1 has dimension 4900.

For F2, we assume geometrical parameters d= {di}5i=1 are drawn from uniform priors, namely d1 ⇠ U [0.3, 2.1], d2 ⇠

U [⇡/2, 6⇡], d3 ⇠ U [�⇡/2, ⇡/2], d4 ⇠ U [0, 6], d5 ⇠ U [0.12, 4.2]. Furthermore, we assume independence between geometric315

parameters and log permeability. The prior for log permeability is a Gaussian distribution with mean 15 outside the channel

and with mean 100 inside the channel. The grid dimension is N = 50. Log permeability inside channel u1 = {u1,`
}
N2

`=1 and

log permeability outside channel u2 = {u2,`
}
N2

`=1 are defined over the entire domain 50⇥ 50. Therefore, for F2 inference the

uncertain parameter u= {d,u1,u2
} has dimension 5005. Moreover, for F2 we use the Metropolis-within-Gibbs methodology

following Iglesias et al. (2014) to separate geometrical parameters and log permeability parameters within the mutation step,320

since it allows to better exploit the structure of the prior.

3.2 Observations

Both the true permeability and an initial ensemble are drawn from the same prior distribution as the prior includes knowledge

about geological properties. However, an initial guess is computed on a coarse grid and the true solution is computed on a fine

grid that has twice the resolution of the coarse grid. The synthetic observations of pressure are obtained by325

yobs =L(P true)+⌘.

An element of L(P true) is a linear functional of pressure, namely

Lj(P true) =
1

2⇡�2

NfX

i=1

exp

✓
�
kXi

�hj
k
2

2�2

◆
(P true)j�x2 for j = 1, . . . ,.

Here � = 0.01,�x2 is the size of a grid cell Xi = (Xi,Y i), Nf is resolution of a fine grid, hj is the location of the observation

and  is the number of observations. This form of the observation functional and the parameterization F1 and F2 guaranty330
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the continuity of the forward map from the uncertain parameters to the observations and thus the existence of the posterior

distribution as shown by Iglesias et al. (2014). The observation noise ⌘ is drawn from a normal distribution with zero mean

and known covariance matrix R. We choose the observation noise to be 2 % of L2-norm of the true pressure. With such a small

noise the likelihood is a peaked distribution. Therefore, a non-iterative data assimilation approach requires a computationally

unfeasible number of ensemble members to sample the posterior.335

To save computational costs, we choose ESS threshold Mthresh =M/3 for tempering, and the length of Markov chain ⌧max =

20 for mutation.

3.3 Metrics

We conduct numerical experiments with ensemble sizes M = 100 and M = 500, and 20 simulations with different initial

ensemble realizations to check the robustness of results. We analyze the method’s performance with respect to a pcn-MCMC340

solution from here on referred to as reference. An MCMC solution was obtained by combining 50 independent chains each of

length 106, 105 burn-in period and 103 thinning. For log permeability, we compute RMSE of the mean

RMSE =
q
(u�uref)0(u�uref), where u=

1

M

MX

i=1

ui, (18)

and uref is the reference solution.

For geometrical parameters d, we compute the Kullback-Leibler divergence345

Di
KL(p

ref
k p) =

MbX

j=1

pref(dij) log
pref(dij)

p(dij)
, (19)

where pref(di) is the reference posterior, p(di) is approximated by the weights, and Mb =M/10 is a chosen number of bins.

3.4 Application to F1 inference

For F1, we perform numerical experiments using 36 uniformly distributed observations, which are displayed in circles in

Fig. 3(a). We plot a box plot of RMSE given by Eq. (18) over 20 independent simulations in Fig. 2(a) using Sinkhorn ap-350

proximation and in Fig. 2(b) using optimal transport. The x-axis
::::::::
horizontal

::::
axis

:
is for the hybrid parameter �, whose value 0

corresponds to EnKF
::
the

::::
EKI

:
and 1 to an adaptive SMC method with either a Sinkhorn approximation (TESPF) or optimal

transport (TETPF). Ensemble size M = 100 is shown in red and M = 500 in green. First, we observe that at a small ensemble

size M = 100 and a large � (namely � � 0.6) TESPF outperforms
:::
the TETPF as the RMSE error is lower. Since Sinkhorn

approximation is a regularization of an optimal transport solution,
:::
the TESPF provides a smoother solution than

::
the

:
TETPF355

that can be seen in Fig. 3(c) and Fig. 3(f), respectively, where we plot mean log permeability. Next, we see in Fig. 2 that

the hybrid approach decreases RMSE compared to TET(S)PF: the smaller � the smaller median of RMSE. EnKF
:::
The

::::
EKI

gives the smallest error due to the Gaussian parametrization of permeability. The advantage of the hybrid approach is most

pronounced at a large ensemble size M = 500 and optimal transport resampling. Furthermore, we note a discrepancy between
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Figure 2. Application to F1 parameterization: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20

independent simulations of RMSE of mean log permeability. X-axis
::::::::
Horizontal

:::
axis

:
is for the hybrid parameter, where � = 0 corresponds to

EnKF
::
the

:::
EKI

:
and � = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in green. Central mark is the median, edges

of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.

the M = 100 and the M = 500 experiments at � = 0, thus EnKF
::
the

::::
EKI alone. This is related to the curse of dimensionality. It360

appears that the ensemble size M = 100 is too small to estimate an uncertain parameter of the dimension 103 using 36 accurate

observations. However, at the ensemble size M = 500 EnKF
:::
the

::::
EKI alone (� = 0) gives an excellent performance compared

to any combination (� > 0).

We plot mean log permeability at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 3(b)–(f) and of

reference in Fig. 3(a). We see that EnKF and
::
the

::::
EKI

::::
and

:::
the TETPF(0.2) estimate well not only large-scale feature but also365

small-scale feature (e.g., negative mean at the top right corner) unlike
:::
the TET(S)PF and TESPF(0.2)

::::
well.

3.5 Application to F2 inference

For F2, we perform numerical experiments using 9 uniformly distributed observations. which are displayed in circles in

Fig. 9(a). First, we display results obtained by Sinkhorn approximation. In Fig. 4, we plot box plot over 20 independent

runs of KL divergence given by Eq. (19) for amplitude (a), frequency (b), angle (c), initial point (d), and width (e) that define370

channel. We see that EnKF
::
the

::::
EKI

:
outperforms any TESPF(·) including

::
the

:
TESPF for amplitude (a) and width (e). This is

due to Gaussian-like posteriors of these two geometrical parameters displayed in Fig. 6(c) and Fig. 6(o), respectively. Due to

Gaussian-like posteriors the hybrid approach decreases RMSE compared to
::
the

:
TESPF: the smaller � the smaller median of

RMSE.

For frequency, angle, and initial point, whose KL divergence is displayed in Fig. 4(b), (c), and (d), respectively, the behaviour375

of adaptive SMC is nonlinear in terms of �. This is due to non Gaussian-like posteriors of these three geometrical parameters

shown in Fig. 6(f), (i), and (l), respectively. Due to non Gaussian-like posteriors the hybrid approach gives an advantage over

both TESPF and EnKF—there
:::
the

::::::
TESPF

:::
and

:::
the

::::::::::
EKI—there

:
exists a � 6= 0 for which the KL divergence is lowest although

it is inconsistent between geometrical parameters.

14



0 6
0

6
OT  = 1(f)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 6
0

6
OT  = 0.2(e)

0 6
0

6
EKI  = 0(d)

0 6
0

6
Sinkhorn  = 1(c)

0 6
0

6
Sinkhorn  = 0.2(b)

0 6
0

6
Reference(a)

Figure 3. Mean log permeability for F1 inference for the lowest error at ensemble size M = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EnKF
:::
EKI (d), TETPF(0.2) (e), and TETPF (f).

When comparing
:::
the TESPF(·) to

::
the

:
TETPF(·), we observe the same type of behaviour in terms of �: linear for amplitude380

and width, whose KL divergence is displayed in Fig. 5(a) and (e), respectively, and nonlinear for frequency, angle, and initial

point, whose KL divergence is displayed in Fig. 5(b), (c), and (d), respectively. However, the KL divergence is smaller when

optimal transport resampling is used instead of Sinkhorn approximation.

In Fig. 6, we plot posterior of geometrical parameters: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l),

and width (m)–(o), where on the left
:::
the TESPF(0.2), in the middle

::
the

:
TETPF(0.2), and on the right EnKF

:::
the

::::
EKI are shown.385

In black is the reference, in red 20 simulations of ensemble size M = 100, in green 20 simulations of ensemble size M = 500.

The true parameters are shown as black cross. We see that as ensemble size increases posteriors approximated by TET(S)PF

converge to the reference posterior unlike EnKF
:::
the

::::
EKI.

Now we investigate adaptive SMC performance for permeability estimation. First, we display results obtained by Sinkhorn

approximation. The box plot shows over 20 independent simulations of RMSE given by Eq. (18) for log permeability outside390

channel in Fig. 7(a) and inside channel in Fig. 7(b). Even though log permeability is Gaussian distributed, for a small ensemble

size M = 100 there exists a � 6= 0 that gives lowest RMSE both outside and inside channel. As ensemble size increases,

methods performance becomes equivalent.

Next, we compare
:::
the TESPF(·) to

::
the

:
TETPF(·) for log permeability estimation outside and inside channel whose RMSE

is displayed in Fig. 8(a) and (b), respectively. We observe the same type of behaviour in terms of �: nonlinear for a small395

15



0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.2

0.4

0.6

E
rr

o
r 

in
 K

L
 d

iv

amplitude(a)(a)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.2

0.4

0.6

E
rr

o
r 

in
 K

L
 d

iv

frequency(b)(b)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.2

0.4

0.6

E
rr

o
r 

in
 K

L
 d

iv

angle(c)(c)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.2

0.4

0.6
E

rr
o

r 
in

 K
L

 d
iv

in. point(d)(d)

100

500

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.2

0.4

0.6

E
rr

o
r 

in
 K

L
 d

iv

width(e)(e)

100

500

Figure 4. Application to F2 parameterization using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence

for geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d), and width (e). X-axis
::::::::
Horizontal

:::
axis

:
is for the hybrid

parameter, where � = 0 corresponds to EnKF
::
the

:::
EKI

:
and � = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in

green. Central mark is the median, edges of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and

crosses are outliers.
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Figure 5. The same as Fig. 4 but using optimal transport resampling.
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Figure 6. Posterior of geometrical parameters for F2 inference: amplitude (a)–(c), frequency (d)–(f), angle (g)–(i), initial point (j)–(l), and

width (m)–(o). On the left is
:::
the TESPF(0.2); in the middle is

::
the

:
TETPF(0.2), and on the right is EnKF

::
the

:::
EKI. In black is reference, in

red 20 simulations of ensemble size M = 100, in green 20 simulations of ensemble size M = 500. The true parameters are shown as black

cross.
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Figure 7. Application to F2 parameterization with Sinkhorn approximation. Box plot over 20 independent simulations of RMSE of mean

log permeability outside channel (a) and inside channel (b). X-axis
:::::::
Horizontal

::::
axis is for the hybrid parameter, where � = 0 corresponds to

EnKF
::
the

:::
EKI

:
and � = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in green. Central mark is the median, edges

of the box are the 25th and 75th percentiles, whiskers extend to the most extreme data points, and crosses are outliers.
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Figure 8. The same as Fig. 7 but using optimal transport resampling.

ensemble size M = 100, and equivalent for a larger ensemble size M = 500. Furthermore, at a small ensemble size M = 100

TESPF outperforms
::
the

::::::
TESPF

:::::::::::
outperforms

::
the

:
TETPF, which was also the case for F1 parameterization Sec. 3.4.

In Fig. 9, we show mean field of permeability over the channelized domain for reference for the lowest error at ensemble size

M = 100 for
::
the

:
TESPF(0.2) (b), TESPF (c), EnKF

:::
EKI (d), TETPF(0.2) (e), and TETPF (f). We plot mean log permeability

over the channelized domain at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 9(b)–(f) and of400

reference in Fig. 9(a). We see that TESPF(0.2) does an excellent job at such a small ensemble size by estimating well log

permeability outside and inside channel, and parameters of the channel itself.

4 Conclusions

A Sinkhorn adaptation, namely the TESPF, of the previously proposed TETPF has been introduced and numerically investi-

gated on a parameter estimation problem. The TESPF has similar accuracy results than the TETPF (see Fig. 7, 8 and 6) while405

it can have considerable smaller computational complexity. Specifically, the TESPF has compelxity O[T (MC+M2C(↵)+

⌧maxMC)] and the TETPF O[T (MC+M3 logM+⌧maxMC)], (for a complete overview see table B1). In particular, the TESPF
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Figure 9. Mean log permeability for F2 inference for the lowest error at ensemble size M = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EnKF
:::
EKI (d), TETPF(0.2) (e), and TETPF (f).

outperforms the EnKF
:::
EKI

:
for non-Gaussian distributed parameters (e.g., initial point and angle in F2). This makes the pro-

posed method a promising option for the high-dimensional nonlinear problems one is typically faced with in reservoir engi-

neering. Further, to counter balance potential robustness problems of the TETPF and its Sinkhorn adaptation a hybrid between410

EnKF and
::
the

::::
EKI

::::
and

:::
the TET(S)PF is proposed and studied by means of the two configurations of the steady-state single-

phase Darcy flow model. The combination of the two adaptive SMC methods with complementing properties, i.e., � 2 (0,1),

is superior to the individual adaptive SMC method, i.e., � = 0 or 1, for all non-Gaussian distributed parameters and performs

better than the pure TETPF and the TETSPF for Gaussian distributed parameters in F1. This suggests a hybrid approach has

a great potential to obtain robust and highly-accurate approximate solutions of nonlinear high-dimensional Bayesian inference415

problems. Note that we have considered a synthetic case, where the truth is available, and thus chose � in terms of accuracy of

an estimate. However, in a realistic application the truth is not provided. In the context of state estimation with an underlying

dynamical system it has been suggested to adaptively change the hybrid parameter with respect to the effective sample size. As

the tempering scheme is already changed according to the effective sample size this ansatz would require to define the interplay

between the two tuning variables. An ad-hoc choice for � could be 0.2 or 0.3. This is motivated by the fact that the particle420

filter is too unstable in high dimensions and it is therefore sensible to use a tuning parameter prioritising the EnKF
::::
EKI. The

ad-hoc choice is supported by the numerical results in Section 3 and in Acevedo et al. (2017); de Wiljes et al. (2020) in the

context of state-estimation.
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Appendix A: Pseudocode

Algorithm 1 Sample mutation

Require: ✓ 2 (0,1) and an integer ⌧max

for i= 1, . . . ,M do

Initialize vi(0) = ũt,i

while ⌧  ⌧max do

Propose vprop
i using Eq. (5) for Gaussian probability or Eq. (6) for uniform probability

Set vi(⌧ +1) = vprop
i with probability Eq. (7) and set vi(⌧ +1) = ũt,i with probability Eq. (8)

⌧  ⌧ +1

end while

Set ut,i = vi(⌧max)

end for

Algorithm 2 Resampling based on optimal transport

Require: {ut�1,i}
M
i=1 and wt�1 = {wt�1,1, . . . ,wt�1,M}

Compute Z with zij = kut�1,i�ut�1,jk
2

Supply Z and wt�1 to the FastEMD algorithm of Pele & Werman with the output being the coupling S

Compute new samples {ũt,i}
M
i=1 from Eq. (11)

Algorithm 3 Sinkhorn iteration for optimal transport problem with entropic regularisation

Require: regularisation parameter ↵, {ut�1,i}
M
i=1 and wt�1 = {wt�1,1, . . . ,wt�1,M}

Compute Z with zij = ||ut�1,i�ut�1,j ||
2

Normalise Z with respect to its maximum entry

while "� 1.0e� 8 do

b=wt�1./[exp(�↵Z)a]

a=
⇣

1
M IM/M

⌘
./[exp(�↵Z)b]

S = diag(b)exp(�↵Z)diag(a)

ŵ = SIM

"= kŵ�wt�1k

end while

return S⇤ = S

Appendix B: Computational Complexity425
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Algorithm 4 Adaptive SMC: TET(S)PF

Require: an initial ensemble {u0,i}
M
i=1 ⇠ µ0, ✓ 2 (0,1) and integers ⌧max and 1<Mthresh <M

Set �0 = 0

while �t  1 do

t! t+1

Compute the likelihood g(ut�1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter �t:

if min�2(�t�1,1) ESSt(�)>Mthresh then

set �t = 1

else

compute �t such that ESSt(�)⇡Mthresh using a bisection algorithm on (�t�1,1]

end if

Compute weights wt�1 = {wt�1,1, . . . ,wt�1,M} from Eq. (3)

Create new samples {ũt,i}
M
i=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}
M
i=1 using sample mutation via Algorithm 1

end while

Algorithm 5 EKI

Require: an initial ensemble {u0,i}
M
i=1 ⇠ µ0, ✓ 2 (0,1) and integers ⌧max and 1<Mthresh <M

Set �0 = 0

while �t  1 do

t! t+1

Compute the likelihood g(ut�1,i;yobs) from Eq. (2) (for i= 1, . . . ,M )

Compute the tempering parameter �t:

if min�2(�t�1,1) ESSt(�)>Mthresh then

set �t = 1

else

compute �t such that ESSt(�)⇡Mthresh using a bisection algorithm on (�t�1,1]

end if

Create new samples {ũt,i}
M
i=1 using Eq. (13)

Compute {ut,i}
M
i=1 using sample mutation via Algorithm 1

end while
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Algorithm 6 Hybrid EKI-TET(S)PF

Require: initial initial ensemble {u0,i}
M
i=1 ⇠ µ0, ✓ 2 (0,1), hybrid parameter � and integers ⌧max and 1<Mthresh <M

Set �0 = 0

while �t  1 do

t! t+1

Compute the likelihood g1(ut�1,i;yobs) from Eq. (14) (for i= 1, . . . ,M )

Set g(ut�1,i;yobs) = g1(ut�1,i;yobs) (for i= 1, . . . ,M )

Compute the tempering parameter �t:

if min�2(�t�1,1) ESSt(�)>Mthresh then

set �t = 1

else

compute �t such that ESSt(�)⇡Mthresh using a bisection algorithm on (�t�1,1]

end if

Create new samples {ũ�
t,i}

M
i=1 using Eq. (13)

Compute the likelihood g2(ũ
�
t,i;yobs) from Eq. (15) (for i= 1, . . . ,M )

Set g(ut�1,i;yobs) = g2(ũ
�
t,i;yobs) (for i= 1, . . . ,M )

Compute weights wt�1 = {wt�1,1, . . . ,wt�1,M} from Eq. (3)

Create new samples {ũt,i}
M
i=1 using optimal (Sinkhorn) resampling via Algorithm 2(3)

Compute {ut,i}
M
i=1 using sample mutation via Algorithm 1

end while

Algorithm Complexity

TETPF O[T (MC+M3 logM + ⌧maxMC)]

TESPF O[T (MC+M2C(↵)+ ⌧maxMC)]

EnKF
:::
EKI O[T (MC+2n+ ⌧maxMC)]

Hybrid EnKF-TETPF
:::::::::
EKI-TETPF O[T (MC+2n+MC+M3 logM + ⌧maxMC)]

Hybrid EnKF-TESPF
:::::::::
EKI-TESPF O[T (MC+2n+MC+M2C(↵)+ ⌧maxMC)]

Forward model G O(MC)

pcn-MCMC mutation O(⌧maxMC)

FastEMD O(M3 logM)

Sinkhorn approximation O(M2C(↵))

Table B1. The table provides an overview of the computational complexity of all the algorithms considered in the manuscript.
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