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Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task in particular in high-
dimensional and nonlinear settings. Gaussian approximations to the problem, such as ensemble Kalman filteringinversion, tend
to be robust, computationally cheap and often produce astonishingly accurate estimations despite the simplifying underlying
assumptions. Yet there is a lot of room for improvement specifically regarding a correct approximation of a non-Gaussian
posterior distribution. The tempered ensemble transform particle filter is an adaptive sequential Monte Carlo method, where
resampling is based on optimal transport mapping. Unlike ensemble Kalman filtering-inversion it does not require any as-
sumptions regarding the posterior distribution and hence has shown to provide promising results for nonlinear non-Gaussian
inverse problems. However, the improved accuracy comes with the price of much higher computational complexity and the
method is not as robust as the ensemble Kalman filtering-inversion in high-dimensional problems. In this work, we add an
entropy-inspired regularisation factor to the underlying optimal transport problem that allows to considerably reduce the high
computational cost via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman filtering
inversion proposal step before each update of the samples, which is also referred to as hybrid approach. The promising per-
formance of the introduced method is numerically verified by testing it on a steady-state single-phase Darcy flow model with
two different permeability configurations. The results are compared to the output of ensemble Kalman filteringinversion, and

Markov Chain Monte Carlo methods results are computed as a benchmark.

1 Introduction

If a solution of a considered partial differential equations (PDE) is highly-sensitive to its parameters, accurate estimation of
the parameters and their uncertainties is essential to obtain a correct approximation of the solution. Partial observations of
the solution are then used to infer uncertain parameters by solving a PDE-constrained inverse problem. For instance one can
approach such problems via methods induced by Bayes’s formula (Stuart, 2010). More specifically the posterior probability
density of the parameters given the data, is then computed on the basis of a prior probability density and a likelihood which
is the conditional probability density associated with the given noisy observations. Well-posedness of an inverse problem and
convergence to the true posterior in the limit of observational noise going to zero was proven for different priors and under

assumptions on the parameter-to-observation map by Dashti and Stuart (2017), for example.
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When aiming at practical applications as in oil reservoir management (Lorentzen et al., 2020) and meteorology (Houtekamer
and Zhang, 2016) for example, the posterior is approximated by means of a finite set of samples. Markov chain Monte Carlo
(MCMC) methods approximate the posterior with a chain of samples—a sequential update of samples according to the pos-
terior (Robert and Casella, 2004; Rosenthal, 2009; Hoang et al., 2013). Typically, MCMC methods provide highly-correlated
samples. Therefore, in order to sample the posterior correctly MCMC requires a long chain, especially in the case of a multi-
modal or a peaked distribution. A peaked posterior is associated with very accurate observations. Therefore, unless a speed up
is introduced in a MCMC chain (e.g., Cotter et al., 2013), MCMC is impractical for computationally expensive PDE models.

Adaptive Sequential Monte Carlo (SMC) methods are different approaches to approximate the posterior with an ensemble
of samples by computing their probability (e.g, Vergé et al., 2015). Adaptive intermediate probability measures are introduced
between the prior measure and the posterior measure to improve upon method divergence due to the curse of dimensionality fol-
lowing Del Moral et al. (2006); Neal (2001). Moreover, sampling from an invariant Markov kernel with the target intermediate
measure and the reference prior measure improves upon ensemble diversity due to parameters stationarity as shown by Beskos
et al. (2015). However, when parameter space is high-dimensional, adaptive SMC requires computationally prohibitive en-
semble sizes unless we approximate only the first two moments (e.g., Iglesias et al., 2018) or we sample highly-correlated
samples (Ruchi et al., 2019).

Ensemble Katman—filtering (EnkF)-approximates-onty The ensemble Kalman inversion (EKI) approximates primarily
the first two moments of the posterior, which makes it computationally attractive for estimating high-dimensional parame-
ters (Iglesias et al., 2014). For linear problems, Blomker et al. (2019) showed well-posedness and convergence of ErnkF-the EKT

for a fixed ensemble size and without any assumptions of Gaussianity. However for nonlinear problems, it has been shown by

We note that the EKI is an iterative ensemble smoother (Evensen, 2018). Iterative ensemble smooothers for inverse problems
introduce a trivial artificial dynamics to the unknown static parameter —We-note-thatEnkKFis-wel-known-under-differentnames

ts—and iteratively update an estimation of the parameter.

Then the parameter-dependent model variables are recomputed using a forward model with a parameter estimation. Examples
of iterative ensemble smoothers are Ensemble Randomized Maximum Likelihood (Chen and Oliver, 2012), multiple-data

asstmiattonMultiple Data Assimilation (Emerick and Reynolds, 2013), and Randomize-Then-Optimize (Bardsley et al., 2014).

Ay read OP-COFRMHRA nde e mbre ofF FEnrncemble-of D A A AR
v d 7

As an alternative ansatz one can employ optimal transport resampling that lies at the heart of the ensemble transform particle
filter (ETPF) proposed by Reich (2013). An optimal transport map between two consecutive probability measures provides a

direct sample-to-sample map with maximized sample correlation. Along the lines of an adaptive SMC approach a probability

liver et al. (1996); Bardsley et al. (2014); E
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measure is described via the importance weights and the deterministic mapping replaces the traditional resampling step. A
so-called tempered ensemble transform particle filter (TETPF) was proposed by Ruchi et al. (2019). Note that this ansatz does
not require any distributional assumption for the posterior and it was shown by Ruchi et al. (2019) that the TETPF provides
encouraging results for nonlinear high-dimensional PDE-constrained inverse problems. However, the computational cost of
solving an optimal transport problem in each iteration is considerably high.

In this work we address two issues arisen in the context of the TETPF: (i) the immense computational costs of solving the
associated optimal transport problem and (ii) the lack of robustness of the TETPF with respect to high-dimensional problems.
More specifically, the performance of ETPF has been found to be highly-dependent on the initial guess. Although tempering
restrains any sharp fail in the importance sampling step due to a poor initial ensemble selection, the number of required
intermediate steps and the efficiency of ETPF still depends on the initialisation. The lack of robustness in high dimensions
can be addressed via a hybrid approach that combines a Gaussian approximation with a particle filter approximation (e.g.,
Santitissadeekorn and Jones, 2015). Different algorithms are created by Frei and Kiinsch (2013); Stordal et al. (2011), for
example. In this paper, we adapt a hybrid approach of Chustagulprom et al. (2016) that uses EakF-the EKI as a proposal
step for the ETPF with a tuning parameter. Furthermore, it is well established that the computational complexity of solving an
optimal transport problem can be significantly reduced via a Sinkhorn approximation by Cuturi (2013). This ansatz has been
been implemented for the ETPF by Acevedo et al. (2017).

Along the lines of Chustagulprom et al. (2016); de Wiljes et al. (2020), we propose a tempered ensemble transform particle
filter with Sinkhorn approximation (TESPF) and a tempered hybrid approach.

The remainder of the manuscript is organised as follows: in Sect. 2, the inverse problem setting is presented. There we de-
scribe the tempered ensemble transform particle filter (TETPF) proposed by Ruchi et al. (2019). Furthermore, we introduce the
tempered ensemble transform particle filter with Sinkhorn approximation (TESPF), a tempered hybrid approach that combines
EnkF-and-the EKI and the TETPF (hybrid ErkF-FETPEEKI-TETPF), and a tempered hybrid approach that combines EnkE
and-the EKI and the TESPF (hybrid EalKE-FESPEEKI-TESPF). We discuss computational complexities of all the presented
techniques and provide corresponding pseudocodes in Appendix A. In Sect. 3, we apply the adaptive SMC methods to an
inverse problem of inferring high-dimensional permeability parameters for a steady-state single-phase Darcy flow model. Per-
meability is parameterized following Ruchi et al. (2019), where one configuration of parametrization fead-leads to Gaussian

posteriors, while another one leads to non-Gaussian posteriors. Finally, we draw conclusions in Sect. 4.

2 Bayesian inverse problem

We assume u € i/ C R™ is a random variable that is related to partially observable quantities y € } C R” by a nonlinear

forward operator G : U — Y, namely

y=G(u).
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Further yons € ) denotes a noisy observation of y, i.e.,

Yobs =Y+ 1

where n ~ N (0,R) and (0, R) is a Gaussian distribution with zero mean and R covariance matrix. The aim is to determine or
approximate the posterior measure i (u) conditioned on observations ybs and given a prior measure zo(u), which is referred
to as Bayesian inverse problem. The posterior measure is absolutely continuous with respect to the prior, i.e.,

dp
duo

where o is up to a constant of normalisation and ¢ is referred to as the likelihood and depends on the forward operator GG. The

(u) (Xg(u;yobs)a (1)

Gaussian observation noise of the observation y,ps implies

1

g(’“’;yobs) = €xp _§(G(u) - yobs)/Ril(G(u) - yobs) , 2

where ’ denotes the transpose. In the following we will introduce a range of methods that can be employed to estimate solutions
to the presented inverse problem under the overarching mantel of tempered Sequential Monte Carlo filters. Alongside these
methods we will also prepesed-propose several important add-on tools required to achieve feasibility and higher accuracy in

high-dimensional nonlinear settings.

2.1 Tempered Sequential Monte Carlo

We consider sequential Monte Carlo (SMC) methods that approximate the posterior measure ;(w) via an empirical measure
M

1) = wid, (u).
i=1

Here § is the Dirac function, and the importance weights for the approximation of y are

_ g(ui; yobs)
> =195 Yobs)
An ensemble U = {uy,...,up} C U consists of M realizations u; € R™ of a random variable u that are independent and

identically distributed according to w; ~ pg.

When an easy-to-sample from-ensemble from the prior jio does not approximate the complex posterior 1 well, only a few
weights w; have significant value resulting in a degenerative approximation of the posterior measure. Potential reasons for this
effect are high dimensionality of the uncertain parameter, large number of observations, or lack of accuracy of the observations.
An existing solution to a degenerative approximation is an iterative approach based on tempering by Del Moral et al. (2006)
or annealing by Neal (2001). The underlying idea is to introduce 7" intermediate artificial measures {y;}7_, between i and
pr = . These measures are bridged by introducing 7' tempering parameters {¢; }._, that satisfy 0 = ¢ < ¢1 < ... < ¢ = 1.
An intermediate measure y; is defined as a probability measure that has density proportional to g(w) with respect to the previous
measure fi;_1
du

)(@*@—1).
dug—q

(u) X g(“’? Yobs



120

125

130

135

140

145

Along the lines of Iglesias (2016) the tempering parameter ¢, is chosen such that effective ensemble size (ESS)

(Z?il wtw')?

ESS;(¢) =
RS
with
Wy = (w133 Yons) PP 3)
) Zj]wzlg(utfl,j;y()bs)((bt_(btil)

does not drop below a certain threshold 1 < Miyesn < M. Then an approximation of the posterior measure iy is
M

/’Liw(u) = Zwtyi(sut—l,i(u)' “4)
i=1

A bisection algorithm on the interval (¢;_1,1] is employed to find ¢¢;. If ESS; > Mipesn We set ¢, = 1 which implies that no
further tempering is required.

The choice of ESS to define a tempering parameter is supported by results of Beskos et al. (2014) on stability of a tempered
SMC method in terms of ESS. Moreover, for a Gaussian probability density approximated by importance sampling, Agapiou
et al. (2017) showed that ESS is related to the second moment of the Radon-Nikodym derivative Eq. (1).

SMC method with importance sampling Eq. (4) does not change the sample {ut_lﬂ-}?il , which leads to the method collapse
due to a finite ensemble size. Therefore each tempering iteration ¢ needs to be supplied with resampling. Resampling provides

anew ensemble {,;}}, that approximates the measure 4, We will discuss different resampling techniques in Sect. 2.3.
2.2 Mutation

Due to stationarity of the parameters SMC methods require ensemble perturbation. In the framework of particle filtering for
dynamical systems, ensemble perturbation is achieved by rejuvenation, when ensemble members of the posterior measure are
perturbed with a random noise sampled from a Gaussian distribution with zero mean and a covariance matrix of the prior
measure. The covariance matrix of the ensemble is inflated and no acceptance step is performed due to the associated high
computational costs for a dynamical system.

Since we consider a static inverse problem, for ensemble perturbation we employ a Metropolis,AiHastings method (thus we
mutate samples) but with a proposal that speeds up MCMC method for estimating a high-dimensional parameter. Namely, we
use ensemble mutation of Cotter et al. (2013) with the target measure y; and the reference measure po. The mutation phase is
initialized at v ; = U, ;, and at the final inner iteration 7.« we assign u; ; = v, ; fori=1,..., M.

For a Gaussian prior we use the preconditioned Crank-Nicolson MCMC (pcn-MCMC) method
WP =/1-0%2v,,;,+(1—1-02)m+0¢,; for i=1,...,M. (5)

Here m is the mean of the Gaussian prior measure 9 and {&, ;}, are from a Gaussian distribution with zero mean and a

covariance matrix of the Gaussian prior measure fi.
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For a uniform prior U[a,b] we use the following random walk

VWP =v,  +&,; i=1,...,M. ©

?

Here {&,;}M, ~Ula—b,b— a] and {v?""}}, are projected onto the [a,b] interval if necessary. Then the ensemble at the

inner iteration 7 + 1 is

Vg1, =007 with the probability p(v? P, u_1,;) for i=1,...,M; (7
Vrgli =Ur; with the probability 1—p(v?®,us_q,;) for i=1,...,M. (8)
Here v!"" is from Eq. (5) for the Gaussian measure and from Eq. (6) for the uniform measure, and

prop

prop, bt
(0" mH,i):min{Lg(%w}.

9(We—1,53Yobs) **

The scalar 6 € (0, 1] in Eq. (5) controls the performance of the Markov chain. Small values of 6 lead to high acceptance rates
but poor mixing. Roberts and Rosenthal (2001) showed that for high-dimensional problems it is optimal to choose 6 such that
the acceptance rate is in between 20 % and 30 % by the last tempering iteration 7. Cotter et al. (2013) proved that under some
assumptions this mutation produces a Markov kernel with an invariant measure ;.

Computational complexity. In each tempering iteration ¢ the computational complexity of the pcn-MCMC mutation is
O(TmaxMC), where C is the computational cost of the forward model G. For the pseudocode of the pcn-MCMC mutation
please refer to the Algorithm 1 in Appendix A. Note that the computational complexity is not affected by the length of « which
is a very desirable property in high dimensions as shown by Cotter et al. (2013) and Hairer et al. (2014).

2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC method with importance sampling needs to be supplied with
resampling at each tempering iteration . We consider a resampling method based on optimal transport mapping proposed

by Reich (2013).
2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an optimal way of redistributing mass which was first formulated
by Monge (1781). Given a distribution of matter, e.g., a pile of sand, the underlying question is how to reshape the matter into
another form such that the work done is minimal. A century and a half later the original problem was rewritten by Kantorovich
(1942) in a statistical framework that allowed to tackle it. Due to these contributions it was later named the Monge-Kantorovich
minimization problem. The reader is also referred to Peyré and Cuturi (2019) for a comprehensible overview.

Let us consider a scenario where the initial distribution of matter is represented by a probability measure 1 on the measurable

space % , that has to be moved and rearranged according to a given new distribution v, defined on the measurable space 3=

?heﬂwv&seelﬁﬂambabfmyﬂﬂeaﬁw&(;{ . In order to describe the link between the two probability measures p and v and to
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minimize a predefined cost associated with the transportation one aims to find a joint measure on I/ x { that is a solution to

inf{/wwc(u w)dw(u,i): we H v }, &)

where the minimum is computed over all joint probability measures w on U Mwwith marginals
and v, and c(u, @) is a transport cost function on 44V (u, @) € U x U. The joint measures achieving the infinum are called
optimal transport plans.

Let 12 and v be two measures on a measurable space ({2, F) such that / is the law of random variable &+ Q—2£U: Q — U
and v is the law of random variable ¥+Q—U: Q — U. Then a coupling of (u,v) consists of a pair {E5¥}(U,U). Note

that couplings always exist, an example is the trivial coupling in which the random variables U and %LQ are independent. A

coupling is called deterministic if there exists a measurable function
that U = WU, (U) and U ; is called transport map. Unlike general couplings, deterministic couplings do not always exist. On

the other hand there may be infinitely many deterministic couplings. One famous variant of Eq. (9), where the optimal coupling

is known to be a deterministic coupling, is given by

W= arginf{/uXW,qu @l ?dw(u,@): we H Ly V } (10)

The aim of the resampling step is to obtain equally probable samples. Therefore, in resampling based on optimal transport

of Reich (2013), the Monge-Kantorovich minimization problem Eq. (10) is considered for the current posterior measure 1.2 ()
given by its samples approximation Eq. (4) and a uniform measure (here the weights in the sample approximation are set to
1/M). The discretized objective functional of the associate optimal transport problem is given by

M

T(8) = sijlluers — w4

ij=1

subject to s;; > 0 and constraints

M 1 M
Zsij:M7 j=1,...M; Zsij:wm7 i=1,...M,
=1 j=1

where matrix S describes a joint probability measure under the assumption that the state space is finite. Then samples {@, ;} ;

are obtained by a deterministic linear transform, i.e.,
M

Ut 5:Mzut—1,isij for j=1,...,M. (1
i=1

Reich (2013) showed weak convergence of the deterministic optimal transformation Eq. (11) to a solution of the Monge-
Kantorovich problem Eq. (9) as M — oo.

Computational complexity. The computational complexity of solving the optimal transport problem with an efficient earth
mover distance algorithm such as FastEMD of Pele and Werman (2009) is of order O(M?3log M ). Consequently the compu-
tational complexity of the adaptive tempering SMC with optimal transport resampling (TETPF) is O[T'(MC + M3log M +
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Tmax M C)], where T is the number of tempering iterations, Ty,x is the number of pcn-MCMC inner iterations, and C is compu-

tational cost of a forward model G. For the pseudocode of the TETPF please refer to the Algorithm 4-2 in Appendix A.
2.3.2 Sinkhorn approximation

As discussed above solving the optimal transport problem has a computational complexity of O = M3log(M) in every iter-
ation of the tempering procedure. Thus the TETPF becomes very expensive for large M. On the other hand an increase in
the number of samples directly correlates with an improved accuracy of the estimation. In order to allow for as many samples
as possible one needs to reduce the associate computational cost of the optimal transport problem. This can be achieved by
replacing the optimal transport distance with a Sinkhorn distance and subsequently exploiting the new structure to elude the
immense computational time of the EMD solver as shown by Cuturi (2013). More precisely the ansatz is built on the fact that
the original transport problem has a natural entropic bound that is obtained for S = [ ay;w '] where w = [w1,...,w;] and
I, =][1,...,1] € RM which constitutes an independent joint probability. Therefore, one can consider the problem of finding
a matrix S € RM*M that is eenstraint-constrained by an additional lower entropic bound (Sinkhorn distance). This additional

constraint can be incorporated via a Lagrange multiplier, which leads to the above regularised form, i.e.,

M

Jsu(S) = Z {Sij”ut—l,i_ut—l,j|

1,j=1

1

2—‘—*32‘3‘ IOgSij} (12)
!

where e > 0. Due to additional smoothness the minimum of Eq. (12) can be unique and has the form

S = diag(b) exp ( - aZ) diag(a)

where Z is matrix with entries z;; = [lu,_; ;—ui—1,; ||? and b and a non-negative vectors determined by employing Sinkhorn’s
fixpoint iteration described by Sinkhorn (1967). We will refer to this approach as tempered ensemble Sinkhorn particle filter
(TESPF).

Computational complexity. Solving this regularise optimal transport problems rather than original transport problem given
in Eq. (9) reduces the complexity to O(M?C(«a)) —Nete-howeverthat-where C(«v) denotes a computational scaling factor that
depends on the ehosenregularisation-and-choice of the regularisation factor ¢ In particular C'(«v) grows with .. Therefore, one
needs to balance between reducing computational time and finding a reasonable approximate solution of the original transport
problem when choosing a value for a. For the pseudocode of the Sinkhorn adaptation of solving the optimal transport problem

please refer to the Algorithm 3 in Appendix A. For the pseudocode of the TESPF please refer to the Algorithm 4 in Appendix A.
2.4 Ensemble Kalman FilterInversion

For Bayesian inverse problems with Gaussian measures, ensemble-Kalman-filter(EnkKFthe ensemble Kalman inversion (EKI)
is one of the widely used algorithms. EalE-The EKI is an adaptive SMC method that approximates enty-primarily the first two
statistical moments of a posterior distribution. For a linear forward model, Eakd-the EKI is optimal in a sense it minimizes the

error in the mean (Blomker et al., 2019). For a nonlinear forward model, EnkF-the EKI still provides a good estimation of the



235

240

245

250

255

260

posterior (e.g., Iglesias et al., 2018). Here we consider EnlF-the EKI method of Iglesias et al. (2018), since it is based on the
tempering approach.

The intermediate measures {1;}_, are approximated by Gaussian distributed variables with empirical mean m; and em-
pirical variance C;. Empirical mean m;_; and empirical covariance C;_; are defined in terms of {ut_l_,i}ﬁl as following
M

M
1 1
mi1 =5 E ot Cir=371 E l(ut—u —m 1) @ (Wi — M),
i= =

where ® denotes Kroneker product. Then the mean and the covariance are updated as
my=my_1 +CiO (CES + AR) " (yors —Gy—1)  and €, =Cy_y — Ci9(CYS + AR)H(C}E, ),

respectively. Here / denotes the transpose,

M M
1 — 1 _ _
Ccc, = U1 ;Zl(ut—u —my_1) @ (G(u—1,) — Gi—1), €99 = V1 ;ZI[G(ut—l,i) -G ®[G(up—1,) — Gi—1],
1 < 1
Gyi_ :—gGu,i, and A= —.
M~ (the-1.) " o=

We recall that the nonlinear forward problem is y = G(u), the observation y.ps has a Gaussian observation noise with zero
mean and the covariance matrix R, and ¢; is a temperature associated with the measure fs;.

Since we are interested in an ensemble approximation of the posterior distribution, we update the ensemble members by
~ uG (GG -1 .
Ut i *utfl,i'i_ct—l(ct—l +AtR) [yt,i —G(’Uztfl’i)] for i=1,...,M. (13)

Here y; ; = Yobs + Mr,; and 7 ; ~ N(0,A¢R) fori=1,..., M.

Computational complexity. The computational complexity of solving Eq. (13) is O(k?n), where n is the parameter space
dimension, and  is the observation space dimension. Then the computational complexity of EnkF-the EKI is O[T (MC +
K21 4 Tmax MC )], where T is the number of tempering iterations, Tmax is the number of pcn-MCMC inner iterations, and C is
computational cost of a forward model G. For the pseudocode of the Erl<F-EKI method please refer to the Algorithm 5 in
Appendix A.

2.5 Hybrid

Despite the underlying Gaussian assumption the ErKF-EKI is remarkably robust in nonlinear high-dimensional settings op-
posed to consistent SMC methods such as the TET(S)PF. For many nonlinear problems it is desirable to have better uncertainty

estimates while maintaining a level of robustness. This can be achieved by factorising the likelihood given by Eq. (2), e.g,

g(u;yobs) =01 (u;yobs) iy (u;yobs)v

where

9105 o) = 9005 1)” = 5D | ~3 (G (0) — i) (FR) ™ (Ga0) — o) (14)
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and

92(u§yobs) = g(u;yobs)(liﬁ) = €exp [—;(G(’U,) - yobs)/[(l - ﬂ)R]il(G(u) - yobs) . (15)

Then it is possible to alternate between methods with complementing properties such as the EnKF-EKI and the TET(S)PF
updates e.g., likelihood
B

exp |~ 2 (Gu) - yam) R (G (w) — yans)

(pt—bt—1)
: |

is used for an EnkFEKI update followed by an update with a TET(S)PF on the basis of

(1-5)
2

€xXp | — (G(u) - yobs)/R_l(G(u) - yobs)

:| (pt—bt—1)

Note that 8 € [0,1] and should be tuned according to underlying forward operator. This combination of an approximative
Gaussian method and a consistent SMC method has been referred to as hybrid filters in the data assimilation literature' (Stordal
et al., 2011; Frei and Kiinsch, 2013; Chustagulprom et al., 2016). This ansatz can also be understood as using the EaKFE-EKI
as a more elaborate proposal density for the importance sampling step within SMC (e.g., Oliver et al., 1996).

Computational complexity. The computational complexity of combining the two algorithms is O[T'(MC + x*n + MC +
M?31og M + Tiax MC)] for the hybrid EakF-FETPEEKI-TETPF and O[T (MC + k?n + MC + M>C() + Tmax MC)] for the
hybrid EnkKFE-FESPEEKI-TESPF. For the pseudocode of the hybrid methods please refer to the Algorithm 6 in Appendix A.

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,6] x [0,6], which is given by
=V [k(z,y)VP(z,y)] = f(z,y), (2,9) €D, (16)

where V = (9/0z 9/0y)’, - the dot product, P(z,y) the pressure, k(z,y) the permeability, f(z,y) the source term which

accounts for groundwater recharge, and (x,y) are horizontal dimensions. The boundary conditions are

Py=0, k092 0,y =500, (w6 =0, amn

P =1 bl
(2,0)=100, Z- o 3

where 0D is the boundary of domain D. The source term is

0 if 0<y<4,
flz,y) =<9137 if 4<y<5,
274 if 5<y<6.

"Note that the terminology is also used in the context of data assimilation filters combining variational and sequential approaches.

10
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Figure 1. Geometrical configuration of channel flow: amplitude d', frequency d?, angle d°, initial point d*, and width d°.

We implement a cell-centered finite-difference method and a linear algebra solver (backslash operator in MATLAB) to solve
the forward model Eqs. (16)—(17) on an N x N grid.

We note that a single-phase Darcy flow model, though not a steady-state, is widely used to model the flow in a subsurface
aquifer and to infer uncertain permeability using data assimilation. For example, Zovi et al. (2017) used an EalF-EKI to infer
permeability of an existing aquifer located in North-East Italy. The area of this aquifer is 2.7 km? and exhibits several channels,
such as the one depicted in Fig. 1. There a size of a computational cell was ranging from 2 m (near wells) to 20 m away from

the wells.
3.1 Parameterisation of permeability

We consider the following two parameterisations of the permeability function k(z,y)

F1: log permeability over the entire domain D, u(z,y) = logk(z,y);

F2: permeability over domain D that has a channel, k(x,y) = k*(2,9)dp, (2,y) + k*(z,y)dp\ p. (x,y) as by Iglesias et al.
(2014).

Here D, denotes a channel, § the Dirac function, k! = exp(u!(x,y)) and k? = exp(u?(z,)) denote permeabilities inside and
outside the channel. The geometry of the channel is parameterized by five parameters {d’}?_,: amplitude, frequency, angle,
initial point, and width, correspondingly. The lower boundary of the channel is given by y = d' sin(d?x/6) + tan(d®)x + d*.
The upper boundary of the channel is given by y + d°. These parameters are depicted in Fig. 1.
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We assume that the log permeability for both F1 and F2 is drawn from a Gaussian distribution g = A (m,C) with mean m
and covariance C'. We define C' via a correlation function given by the Wittle-Matern correlation function defined by Matérn
(1986)

_ b =yl =yl
c(m,y)—v(l) " T1< y >,

where 7 is the gamma function, v = 0.5 is the characteristic length scale, and Y'; is the modified Bessel function of the second

kind of order 1.

We denote by A and V eigenvalues and eigenfunctions of the corresponding covariance matrix C, respectively. Then, fol-

lowing a Karhunen-Loeve expansion, log permeability is

log (k') = log(m —&-Z\ﬁV” ¢ for 1=1,... N2,
=1

where u! is i.i.d. from A(0,1) for £ =1,..., N2

For F1, the prior for log permeability is a Gaussian distribution with mean 5. The grid dimension is N = 70, and thus the
uncertain parameter u = {u’}", has dimension 4900.

For F2, we assume geometrical parameters d = {d’}?_, are drawn from uniform priors, namely d' ~ U[0.3, 2.1], d* ~

Ulr/2, 67),d> ~U[—m/2, /2], d* ~ U[0, 6], d> ~ U[0.12, 4.2]. Furthermore, we assume independence between geometric
parameters and log permeability. The prior for log permeability is a Gaussian distribution with mean 15 outside the channel
and with mean 100 inside the channel. The grid dimension is N = 50. Log permeability inside channel u! = {ulve}é\fl and
log permeability outside channel u? = {uQ*‘f}é\f , are defined over the entire domain 50 x 50. Therefore, for F2 inference the
uncertain parameter u = {d,u',u?} has dimension 5005. Moreover, for F2 we use the Metropolis-within-Gibbs methodology
following Iglesias et al. (2014) to separate geometrical parameters and log permeability parameters within the mutation step,

since it allows to better exploit the structure of the prior.
3.2 Observations

Both the true permeability and an initial ensemble are drawn from the same prior distribution as the prior includes knowledge
about geological properties. However, an initial guess is computed on a coarse grid and the true solution is computed on a fine

grid that has twice the resolution of the coarse grid. The synthetic observations of pressure are obtained by
yobs — L(Plrue) + ,,7

An element of L(P"™¢) is a linear functional of pressure, namely
; X K hJ 2 ,
L7 (P™) = o Z exp < | ” > (P™)i Az for j=1,....,

Here o = 0.01, Ax? is the size of a grid cell X P = (X & Yi), Nt is resolution of a fine grid, h7 is the location of the observation

and « is the number of observations. This form of the observation functional and the parameterization F1 and F2 guaranty
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the continuity of the forward map from the uncertain parameters to the observations and thus the existence of the posterior
distribution as shown by Iglesias et al. (2014). The observation noise 7 is drawn from a normal distribution with zero mean
and known covariance matrix R. We choose the observation noise to be 2 % of L2-norm of the true pressure. With such a small
noise the likelihood is a peaked distribution. Therefore, a non-iterative data assimilation approach requires a computationally
unfeasible number of ensemble members to sample the posterior.

To save computational costs, we choose ESS threshold Mpesn = M /3 for tempering, and the length of Markov chain 7. =

20 for mutation.
3.3 Metrics

We conduct numerical experiments with ensemble sizes M = 100 and M = 500, and 20 simulations with different initial
ensemble realizations to check the robustness of results. We analyze the method’s performance with respect to a pcn-MCMC
solution from here on referred to as reference. An MCMC solution was obtained by combining 50 independent chains each of

length 105, 10° burn-in period and 10? thinning. For log permeability, we compute RMSE of the mean

. . 1
RMSEz\/(a—ﬂref)/(ﬂ—ﬂref), where ﬁ:MZui, (18)

ref ;

and u™ is the reference solution.

For geometrical parameters d, we compute the Kullback-Leibler divergence

) ret d
z ref H p Zpref dz (((i ))7 (19)
J

where pf(d") is the reference posterior, p(d*) is approximated by the weights, and My, = M /10 is a chosen number of bins.
3.4 Application to F1 inference

For F1, we perform numerical experiments using 36 uniformly distributed observations, which are displayed in circles in
Fig. 3(a). We plot a box plot of RMSE given by Eq. (18) over 20 independent simulations in Fig. 2(a) using Sinkhorn ap-
proximation and in Fig. 2(b) using optimal transport. The x-axis-horizontal axis is for the hybrid parameter 3, whose value 0
corresponds to EnkF-the EKI and 1 to an adaptive SMC method with either a Sinkhorn approximation (TESPF) or optimal
transport (TETPF). Ensemble size M = 100 is shown in red and M = 500 in green. First, we observe that at a small ensemble
size M =100 and a large 8 (namely 3 > 0.6) TESPF outperforms the TETPF as the RMSE error is lower. Since Sinkhorn
approximation is a regularization of an optimal transport solution, the TESPF provides a smoother solution than the TETPF
that can be seen in Fig. 3(c) and Fig. 3(f), respectively, where we plot mean log permeability. Next, we see in Fig. 2 that
the hybrid approach decreases RMSE compared to TET(S)PF: the smaller 3 the smaller median of RMSE. EnkF-The EKI
gives the smallest error due to the Gaussian parametrization of permeability. The advantage of the hybrid approach is most

pronounced at a large ensemble size M = 500 and optimal transport resampling. Furthermore, we note a discrepancy between
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Figure 2. Application to F1 parameterization: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20
independent simulations of RMSE of mean log permeability. X-axis-Horizontal axis is for the hybrid parameter, where 3 = 0 corresponds to
EnkF-the EKI and 8 = 1 to TET(S)PF. Ensemble size M = 100 is shown in red, and M = 500 in green. Central mark is the median, edges

of the box are the 25th and 75th percentiles, whiskers extend to the most extreme datapoints, and crosses are outliers.

the M = 100 and the M = 500 experiments at 3 = 0, thus Enl<F-the EKI alone. This is related to the curse of dimensionality. It
appears that the ensemble size M = 100 is too small to estimate an uncertain parameter of the dimension 103 using 36 accurate
observations. However, at the ensemble size M = 500 EnlF-the EKI alone (3 = 0) gives an excellent performance compared
to any combination (3 > 0).

We plot mean log permeability at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 3(b)—(f) and of
reference in Fig. 3(a). We see that EnkF-and-the EKI and the TETPF(0.2) estimate well-not only large-scale feature but also
small-scale feature (e.g., negative mean at the top right corner) unlike the TET(S)PF and TESPF(0.2) well.

3.5 Application to F2 inference

For F2, we perform numerical experiments using 9 uniformly distributed observations. which are displayed in circles in
Fig. 9(a). First, we display results obtained by Sinkhorn approximation. In Fig. 4, we plot box plot over 20 independent
runs of KL divergence given by Eq. (19) for amplitude (a), frequency (b), angle (c), initial point (d), and width (e) that define
channel. We see that EniF-the EKI outperforms any TESPF(-) including the TESPF for amplitude (a) and width (e). This is
due to Gaussian-like posteriors of these two geometrical parameters displayed in Fig. 6(c) and Fig. 6(0), respectively. Due to
Gaussian-like posteriors the hybrid approach decreases RMSE compared to the TESPF: the smaller 3 the smaller median of
RMSE.

For frequency, angle, and initial point, whose KL divergence is displayed in Fig. 4(b), (c), and (d), respectively, the behaviour
of adaptive SMC is nonlinear in terms of 3. This is due to non Gaussian-like posteriors of these three geometrical parameters
shown in Fig. 6(f), (i), and (1), respectively. Due to non Gaussian-like posteriors the hybrid approach gives an advantage over
both TESPF-and-EnkKF—there-the TESPF and the EKI—there exists a 3 # 0 for which the KL divergence is lowest although

it is inconsistent between geometrical parameters.
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Figure 3. Mean log permeability for F1 inference for the lowest error at ensemble size M = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), ErKFEKI (d), TETPF(0.2) (e), and TETPF (f).

When comparing the TESPF(-) to the TETPF(-), we observe the same type of behaviour in terms of /3: linear for amplitude
and width, whose KL divergence is displayed in Fig. 5(a) and (e), respectively, and nonlinear for frequency, angle, and initial
point, whose KL divergence is displayed in Fig. 5(b), (c), and (d), respectively. However, the KL divergence is smaller when
optimal transport resampling is used instead of Sinkhorn approximation.

In Fig. 6, we plot posterior of geometrical parameters: amplitude (a)—(c), frequency (d)—(f), angle (g)—(i), initial point (j)—(1),
and width (m)—(o), where on the left the TESPF(0.2), in the middle the TETPF(0.2), and on the right EnkF-the EKI are shown.
In black is the reference, in red 20 simulations of ensemble size M = 100, in green 20 simulations of ensemble size M = 500.
The true parameters are shown as black cross. We see that as ensemble size increases posteriors approximated by TET(S)PF
converge to the reference posterior unlike ErlcFthe EKI.

Now we investigate adaptive SMC performance for permeability estimation. First, we display results obtained by Sinkhorn
approximation. The box plot shows over 20 independent simulations of RMSE given by Eq. (18) for log permeability outside
channel in Fig. 7(a) and inside channel in Fig. 7(b). Even though log permeability is Gaussian distributed, for a small ensemble
size M =100 there exists a 3 # 0 that gives lowest RMSE both outside and inside channel. As ensemble size increases,
methods performance becomes equivalent.

Next, we compare the TESPF(-) to the TETPF(-) for log permeability estimation outside and inside channel whose RMSE

is displayed in Fig. 8(a) and (b), respectively. We observe the same type of behaviour in terms of 3: nonlinear for a small
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Figure 4. Application to F2 parameterization using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence
for geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d), and width (e). X-axis-Horizontal axis is for the hybrid
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Figure 5. The same as Fig. 4 but using optimal transport resampling.
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Figure 8. The same as Fig. 7 but using optimal transport resampling.

ensemble size M = 100, and equivalent for a larger ensemble size M = 500. Furthermore, at a small ensemble size M = 100
TESPF-outperforms-the TESPF outperforms the TETPF, which was also the case for F1 parameterization Sec. 3.4.

In Fig. 9, we show mean field of permeability over the channelized domain for reference for the lowest error at ensemble size
M =100 for the TESPF(0.2) (b), TESPF (c), EaKFEKI (d), TETPF(0.2) (e), and TETPF (f). We plot mean log permeability
over the channelized domain at ensemble size M = 100 and a smallest RMSE over 20 simulations in Fig. 9(b)—(f) and of
reference in Fig. 9(a). We see that TESPF(0.2) does an excellent job at such a small ensemble size by estimating well log

permeability outside and inside channel, and parameters of the channel itself.

4 Conclusions

A Sinkhorn adaptation, namely the TESPF, of the previously proposed TETPF has been introduced and numerically investi-
gated on a parameter estimation problem. The TESPF has similar accuracy results than the TETPF (see Fig. 7, 8 and 6) while
it can have considerable smaller computational complexity. Specifically, the TESPF has compelxity O[T'(MC + M?C(a) +
TmaxMC)] and the TETPF O[T (MC + M3 1og M + Tiax MC)], (for a complete overview see table B1). In particular, the TESPF
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Figure 9. Mean log permeability for F2 inference for the lowest error at ensemble size M = 100. Observation locations are shown in circles.

Reference (a), TESPF(0.2) (b), TESPF (c), EsKFEKI (d), TETPF(0.2) (e), and TETPF (f).

outperforms the ErKF-EKI for non-Gaussian distributed parameters (e.g., initial point and angle in F2). This makes the pro-
posed method a promising option for the high-dimensional nonlinear problems one is typically faced with in reservoir engi-
neering. Further, to counter balance potential robustness problems of the TETPF and its Sinkhorn adaptation a hybrid between
EnlcF-and-the EKI and the TET(S)PF is proposed and studied by means of the two configurations of the steady-state single-
phase Darcy flow model. The combination of the two adaptive SMC methods with complementing properties, i.e., 8 € (0,1),
is superior to the individual adaptive SMC method, i.e., 5 = 0 or 1, for all non-Gaussian distributed parameters and performs
better than the pure TETPF and the TETSPF for Gaussian distributed parameters in F1. This suggests a hybrid approach has
a great potential to obtain robust and highly-accurate approximate solutions of nonlinear high-dimensional Bayesian inference
problems. Note that we have considered a synthetic case, where the truth is available, and thus chose 3 in terms of accuracy of
an estimate. However, in a realistic application the truth is not provided. In the context of state estimation with an underlying
dynamical system it has been suggested to adaptively change the hybrid parameter with respect to the effective sample size. As
the tempering scheme is already changed according to the effective sample size this ansatz would require to define the interplay
between the two tuning variables. An ad-hoc choice for 3 could be 0.2 or 0.3. This is motivated by the fact that the particle
filter is too unstable in high dimensions and it is therefore sensible to use a tuning parameter prioritising the ErKFEEKI. The
ad-hoc choice is supported by the numerical results in Section 3 and in Acevedo et al. (2017); de Wiljes et al. (2020) in the

context of state-estimation.
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Appendix A: Pseudocode

Algorithm 1 Sample mutation

Require: 6 € (0,1) and an integer Tinax
for i=1,...,M do
Initialize v;(0) = @,
while 7 < 7.« do
prop

Propose v; ™ using Eq. (5) for Gaussian probability or Eq. (6) for uniform probability
Set v; (7 + 1) = v!"* with probability Eq. (7) and set v;(7 + 1) = @,; with probability Eq. (8)
T T+1

end while

Set ut,; = Vi (Tmax)

end for

Algorithm 2 Resampling based on optimal transport

Require: {ut—l,i}?il and Wi—1 = {wt_l,l,...,wt_l,M}
|2

Compute Z with z;; = ||[us—1,; — Ut—1,j
Supply Z and w; 1 to the FastEMD algorithm of Pele & Werman with the output being the coupling S

Compute new samples {ﬁtl}fil from Eq. (11)

Algorithm 3 Sinkhorn iteration for optimal transport problem with entropic regularisation

Require: regularisation parameter v, {w¢—1,;}72; and we—1 = {w—1,1,...,we—1,0r}
Compute Z with zij = [[w,_; ; — w1,
Normalise Z with respect to its maximum entry
while ¢ > 1.0e — 8 do
b=w;_1./[exp(—aZ)a]
a= (ﬁIM/M)./[exp(faZ)b}
S = diag(b) exp(—aZ)diag(a)

w=SIy
£= [l —wi|
end while

return S* =S

425 Appendix B: Computational Complexity
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Algorithm 4 Adaptive SMC: TET(S)PF

Require: an initial ensemble {wo,;}2, ~ 1o, 8 € (0,1) and integers Tmax and 1 < Mipresh < M
Set o =0
while ¢; < 1 do
t—t+1
Compute the likelihood g(w¢—1,:;Yobs) from Eq. (2) (fori =1,..., M)
Compute the tempering parameter ¢;:
if minge (s, ,.1)ESS:(4) > Miesn then
set pr =1
else
compute ¢; such that ESS;(¢) ~ Minesn using a bisection algorithm on (¢¢—1,1]
end if
Compute weights w1 = {w¢—1,1,...,wi—1,m } from Eq. (3)
Create new samples {i¢ ; }22, using optimal (Sinkhorn) resampling via Algorithm 2(3)
Compute {u;; }72£, using sample mutation via Algorithm 1

end while

Algorithm 5 EKI

Require: an initial ensemble {wo,; }12; ~ ji0, 0 € (0,1) and integers Tmax and 1 < Mipgesh < M
Set o =0
while ¢; <1 do
t—t+1
Compute the likelihood g(w¢—1,:;Yobs) from Eq. (2) (fori =1,..., M)
Compute the tempering parameter ¢;:
if minge(g, ,,1) ESSt(¢) > Minwesh then
set gy =1
else
compute ¢ such that ESS¢(¢$) &~ Minresh using a bisection algorithm on (¢:—1,1]
end if
Create new samples { ; 12, using Eq. (13)
Compute {u¢;} 2, using sample mutation via Algorithm 1

end while
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Algorithm 6 Hybrid EKI-TET(S)PF

Require: initial initial ensemble {uo’i}f\il ~ o, 0 € (0,1), hybrid parameter 3 and integers Tmax and 1 < Minresh < M
Set o =0
while ¢; <1 do
t—t+1
Compute the likelihood g1 (ws—1,i;Yobs) from Eq. (14) (fori =1,..., M)
Set g(we—1,i;Yobs) = g1 (Ue—1,i;Yobs) (fori=1,..., M)
Compute the tempering parameter ¢;:
if minge(, ,,1)ESSt(¢)) > Minresh then
set gy =1
else
compute ¢ such that ESS¢(#) &~ Minresn using a bisection algorithm on (¢:—1,1]
end if
Create new samples {ﬁfl}{‘il using Eq. (13)
Compute the likelihood g2 (i ;; Yobs) from Eq. (15) (fori = 1,..., M)
Set g(wi—1,i;Yobs) = gz(ﬁii;yobs) (fori=1,...,M)
Compute weights w¢—1 = {w¢—1,1,...,wi—1,0m } from Eq. (3)
Create new samples {i¢ ; };=, using optimal (Sinkhorn) resampling via Algorithm 2(3)
Compute {u;;} >, using sample mutation via Algorithm 1

end while

Algorithm Complexity

TETPF O[T (MC + M?*1og M + Tumax MC)]
TESPF O[T(MC + M?*C(c) 4 Tmax MC)]
EnKFEKI O[T (MC + k*n + Taax MC)]

Hybrid EaKE-FETPEEKI-TETPF | O[T(MC + r°n+ MC + M?log M 4 Tmux MC))]
Hybrid EaKE-TESPEEKI-TESPF | O[T(MC + £°n+ MC + M?*C(c) + Tmax MC))

Forward model G O(MC)
pen-MCMC mutation O(Tmax MC)
FastEMD O(M?3log M)
Sinkhorn approximation O(M?C(a))

Table B1. The table provides an overview of the computational complexity of all the algorithms considered in the manuscript.
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