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Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the
stochastic properties of geodetic time series, together with the estimated geophysical signals. The noise spectrum of these
time series is generally modelled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in
modelling the residual time series, after deterministically subtracting geophysical signals from the observations. This residual
time series is then assumed to be a sum of three stochastic processes, including the family of Lévy processes. The introduction
of a third stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time
series, we identify three classes of Lévy processes: Gaussian, fractional and stable. In the first case, residuals are predominantly
constituted of short-memory processes. The fractional Lévy process can be an alternative model to the fBm in the presence of
long-term correlations and self-similarity property. The stable process is here restrained to the special case of infinite variance,
which can be only satisfied in the case of heavy-tailed distributions in the application to geodetic time series. Therefore, the
model implies potential anxiety in the functional model selection where missing geophysical information can generate such

residual time series.

1 Introduction

Among the geodetic data, Global Navigation Satellite System (GNSS) time series have been of particular interest for the study
of geophysical phenomena at regional and global scales (e.g., study of the crustal deformation due to large earthquakes, sea-
level rise (Bock and Melgare , 2016; Herring et al. , 2016; He et al. , 2017)). These time series provide the estimated daily
positions of the receiver coordinates. The position vector of a station can be decomposed in a geocentric cartesian axis system
or in a local or topocentric cartesian axis system (£,N,U) in which the axes point East, North and Up. These coordinates are
influenced by the sum of three displacement modes (distinct classes of motion) that describe the progressive ground motion,
any instantaneous jumps in position, and periodic or cyclic displacements. The progressive ground motion is generally referred

to the tectonic rate. Jumps include coseismic offsets, which are real movements of the ground, and artificial offsets associated
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with changes in the GNSS antenna and/or its radome, or changes in the antenna monument, etc. Nearly all GNSS time series
exhibit a seasonal cycle of displacement which can be modelled as a Fourier series. These cycles are caused by seasonal
changes in the water, snow and ice loads supported by the solid earth or (less commonly) by seasonal changes in atmospheric
pressure. Therefore the model associated with each class of motion (or geophysical signals) is here defined as a functional
model following Bevis and Brown (2014) and Montillet and Bos (2019) [Chapter 1]. Furthermore, these time series contain
white noise and coloured noise. To model the different noise components, a stochastic noise model is defined. To name a
few, previous choices include the First Order Gauss-Markov (FOGM) model, the white noise with power-law noise including
flicker noise (Williams , 2003; Williams et al. , 2004), the Generalized Gauss Markov noise model (GGM), or the Band-pass
noise (Langbein , 2008; Langbein and Svarc , 2019). The scientific community agrees with the existence of a trade-off in
estimating both the stochastic and functional models (He et al. , 2017). More precisely, the choice of the stochastic model
directly influences the estimation of the geophysical signals included in the functional model (i.e., tectonic rate, seasonal
variations, slow-slip events (Bock and Melgare , 2016; He et al. , 2017, 2020)).

In addition, recent studies (Langbein and Svarc , 2019; He et al. , 2019) have also advocated the introduction of a random-
walk to model small jumps and residual transient signals which is a non-stationary stochastic process. Thus, several studies
(Montillet and Yu , 2015) proposed the use of the fractional Brownian motion (fBm), first developed by Mandelbrot et al.

(1968), in order to model long-memory processes. Botai et al. (2011) and Montillet and Yu (2015) focused on modelling
(residual) geodetic time series using the family of Lévy a-stable distributions (Samorodnitsky and Taqqu , 1994; Nolan , 2018).
The application of this family of distributions was supported by the ability to model long-memory processes and the existence
of impulsive signals/noise bursts in the data sets suggesting deviations from a Gaussian distribution (Botai et al. , 2011).

This work discusses several statistical assumptions (i.e. stationary properties, presence of long-term correlations) on the
underlying processes in the GNSS time series, justifying the application of the fBm and the family of Lévy a-stable distribu-
tions introduced by Montillet and Yu (2015). The Lévy stable distributions can model the heavy tail characteristics of some
data sets with generally infinite variance. For example, the presence of unmodelled large jumps within the data can produce a
distribution with large tails and infinite variance. In order to take into account a large variety of scenarios, we investigate and
identify within the family of Lévy processes, which process can be applied to model geodetic time series.

Here, the statistical modelling is applied to residual time series following Montillet and Yu (2015). The residual time series
are defined as the remaining time series after subtracting deterministically modelled tectonic rate and seasonal components
(i.e. the functional model), from the GNSS observations. Therefore, our assumption is that the family of Lévy processes can
model the remaining geophysical signals and correlations which have not been captured by the initial model used to produce

the residual time series.

The next section starts with the statistical inference on the residual geodetic time series, including the application of the
fBm model and the relationship with the Fractional Autoregressive Integrated Moving Average (FARIMA) model. Section 2.3
presents the assumptions on the use of the Lévy processes in the model of the residual time series. To do so, we model the
residual geodetic time series as a sum of three stochastic processes, with the hypothesis that the third one is a Lévy process.

It involves some justifications compared with established models in the scientific community. In Section 3, we develop an
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N-step method based on the variations of the stochastic and functional models when varying the time series’ length. This algo-
rithm should verify our statistical assumptions on the third process. Section 3.1.1 and Section 3.1.2 focus on the application to

simulated and real time series. Finally, Section 3.2 discusses the limits of modelling geodetic time series with Lévy processes.

2 The Stochastic Properties of the Residual Time Series and Statistical Inferences
2.1 Stochastic Modelling of Residual GNSS Time Series

Let us model the GNSS observations and residual time series as an additive model:

zo(ti) = so(ti) +n(t:)
a(t;) = sp(ti) +n(t:)
sp(t;) = xo(ti) —so(t:) (1)

x is the time series defined as the GNSS observations, x the residual time series after subtracting the functional model (sg).
At each i-th observation, x(¢;) is a sum of a residual geophysical signal s,.(t;) and noise n(¢;). Following Williams (2003)
and He et al. (2017), the spectrum of the (residual) GNSS time series is best characterised by a stochastic process following a
power-law with index K (i.e. P(f) = Py(f/fs)¥, f is the frequency, Py is a constant, f, the sampling frequency). A power-law
noise model means that the frequency spectrum is not flat but is governed by long-range dependencies. An example is shown
in Fig. 3 using the ASCO station, other examples are displayed in supplementary material (Sect. ). Power-law noise is a type
of coloured noise. The coloured noise results from various parameters during the processing of the GNSS observations such
as the mismodelling of GNSS satellites orbits, Earth orientation parameters, large-scale atmospheric or hydrospheric effects
(Williams , 2003; Klos et al. , 2018). The stochastic noise model of the (residual) GNSS time series is then described with the

variance:

E{n"n} =0 I+05,J(K) )

where the vector n = [n(t1),n(t2),...,n(ty)] is a multivariate continuous-time stochastic process. At each time step, we
define n(t;) = nuyn(t;) +npi(ts), with ny,p(t;) and n,(¢;) the white Gaussian noise (zero mean) and the power-law noise
sample respectively. Note that this type of time series belongs to the family of mixed spectra, where the mixed spectrum results
from the sum of the spectra corresponding to the two kinds of noise (Li , 2013). 7" is the transposition operator, I the identity
matrix, Ugl the variance of the power-law noise and J(K) the covariance matrix of the power-law noise (X in ]0,2]). The
definition of J depends on the assumptions on the type of coloured noise (see supplementary material - Sect. B and D).

We estimate jointly the functional and stochastic models in order to produce z, based on a maximum likelihood estimator
(MLE). To recall Montillet and Bos (2019) (Chapter 2), for linear models, the log-likelihood for a time series of length L can

be rewritten as:

In(Lo) = [LIn(27) +In(det(C)) + (zo — Az)TC (xy— Az)] 3)

1
2
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This function must be maximised. Assuming that the covariance matrix C' is known, then it is a constant and does not
influence finding the maximum. C is here defined by Eq. (2). The term (2o — A z) represents the observations minus the fitted
model, also called z in Eq. (1). Note that (Az) is the matrix notation of 5. The last term can be written as 7 C ' and it is a
quadratic function, weighted by the inverse of matrix C'. To select the geophysical model, and therefore estimate the associated
parameters, one needs to consider carefully the location of the GNSS stations and the surrounding geodynamics. The model of
S0 is discussed in the supplementary material (Sect. A) together with the software used to carry out the maximisation of In(Lo).
The value of L is here at least 9 years (3285 observations) in order to be able to model properly the long-range dependencies
associated with the coloured noise and to detect slow transient signals according to He et al. (2019).

In the modelling of GNSS time series, a strong assumption is the so-called Gauss-Markov hypothesis (e.g., Montillet and
Bos (2019) - Chapter 2) which states that the noise is Gaussian distributed. In order to keep applying the Gauss-Markov
assumption on the noise observations of geodetic time series, we assume that the mean of the coloured noise is equal to pc(t),
slowly varying with time. We then rule out the occurrence of specific events of large amplitude such as aggregations or bursts
of spikes (i.e. intermittency) which could invalidate such assumption (see Supplementary material for more information - Sect.
A and D).

Moreover, if the probability density function of the noise is Gaussian or has a different density function with a finite value of
variance, its fractal properties can be described by the Hurst parameter (H ). The authors in Montillet et al. (2013) use the fBm
in order to model the statistical properties of the residual time series. The essential features of this process are its self-similar
behaviour, meaning that magnified and re-scaled versions of the process appear statistically identical to the original, together
with its non-stationary property implying a never-ending growth of variance with time (Mandelbrot et al. , 1968). Previous

studies (e.g., Mandelbrot et al. , 1968; Eke et al. , 2002) showed that H is directly connected with K by the relation:
K=2H-1 “)

With this definition, flicker noise corresponds to K equal to 1 or H equal to 1, a random walk to K equal to 2 or H equal to 1.5,
and white noise to K equal to 0 (H equal to 0.5). Note that Eq. (4) is established for the fractional Gaussian noise according to
Eke et al. (2002). The random-walk and the flicker noise are then classified as long-term dependency phenomena (Montillet
etal., 2013).

Long-memory processes are modelled with a specific class of ARIMA models called FARIMA by allowing for non-integer
differentiating. A comprehensive literature on the application of FARIMA can be found in financial analysis (Granger and
Joyeux , 1980; Panas , 2001) and in geodesy (Li et al. , 2000; Montillet and Yu , 2015; Montillet and Bos , 2019). This
model can generate long-memory processes based on different values of the fractional index d (Granger and Joyeux , 1980).
When d equal to 0 it is an Autoregressive Moving Average (ARMA) process exhibiting short memory; when —0.5 < d < 0 the
FARIMA process is said to exhibit intermediate memory or anti-persistence (Pipiras and Taqqu , 2017). This is very similar to
the description of H in the fBm. In the supplementary material (Sect. B), we recall the relationship between FARIMA, ARMA
and fBm.
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2.2 « Stable Random Variable and the Lévy «-Stable Distribution

The fBm and the fractional Lévy distribution are well-known in statistics (Samorodnitsky and Taqqu , 1994) and in financial
analysis (Panas , 2001; Wooldridge , 2010). The fractional Lévy distribution can model the Lévy processes and in particular
the general family of « stable Lévy processes which can be self-similar and stationary (Samorodnitsky and Taqqu , 1994). Let

us recall the definition of a stable random variable.

Definition (Nolan, 2018)[chap. 1, definition, 1.6] A random variable X is stable if and only if X 4 aZ+b, where 0 < o < 2,
—1<B<1,a#0,beRand Z is arandom variable with characteristic function ¢(u) = E{exp (iuZ)} = [*_exp (iuz)F(2)
dz. F(z) is the distribution function of Z. E{.} is the expectation operator. The characteristic function is:
exp (—|u|*[1 —iftan T2 (sign(u))]), if a#1
¢(u) = DU _ )
exp (—|ul|[1 +iB=sign(u)]), if a=1
Where sign(.) is the signum function, « is the characteristic exponent which measures the thickness of the tails of these
distributions (the smaller the values of «, the thicker the tails of distribution are), 3 € [—1,1] is the symmetry parameter
which sets the skewness of the distribution. In general, no closed-form expression exists for these distributions, except for the

Gaussian (« equal to 2), Pearson (« equal to 0.5, 5 equal to —1) and Cauchy (« equal to 1, 5 equal to 0) distributions.

Now, restricting to our case study, we assume that if the stochastic process exhibits a self-similar property, then it can be
modelled by the fBm. Following Weron et al. (2005), the most commonly used extension of the fBm to the a-stable case is
the fractional Lévy stable motion (fLsm). The fLsm is H-self-similar and has stationary increments, with H being the Hurst
parameter described before. Both the fBm and the fLsm follow an integral representation, with different properties of their
kernel (see the supplementary material - Sect. C). The relationship between the fLsm reduces to the fBm when o = 2. If
H =1/, we obtain the Lévy a-stable motion which is an extension of the Brownian motion to the a-stable case. Note that

the Lévy a-stable motion belongs to the Lévy processes.
2.3 The Residual Time Series Modelled as a Sum of Three Stochastic Processes

The residual time series is now modelled as a sum of three stochastic processes. Namely, it is the sum of a white noise, a
coloured noise and a third process. It is a similar approach as used in previous works (Langbein , 2008; Davis et al. , 2012;
Langbein and Svarc , 2019; He et al. , 2019) looking at the presence of a random-walk component in the stochastic model,
hence adding a third covariance matrix in Eq. (2). We postulate that this unknown stochastic process belongs to the Lévy

processes, classified in three types depending on the assumptions on the underlying process:

1. (Gaussian Lévy) The Lévy process is a Gaussian Lévy process if the process follows the properties of a pure Brownian
motion also called a Wiener process (identity variance matrix, zero-mean, stationary independent increment - (Haykin
, 2002; Wooldridge , 2010)). This is the special case of the fLsm and fBm with H = 1/2. The residual time series is
assumed to contain mostly short-term correlations modelled with an ARMA process. The residual time series should be

modelled with a multivariate Gaussian distribution.
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2. (Fractional Lévy) The residual time series exhibits self-similarity with possibly long-term correlations. The Fractional
Lévy process is described by the model of the fL.sm for the specific case reduced to the fBm. The long-term correlation
process is mostly due to the presence of coloured noise (He et al. , 2017). As explained in Montillet and Yu (2015),
the ratio between the amplitudes of the coloured and white noise components determines which stochastic model of the
residual time series should be the most suitable among the FARIMA and ARMA processes. However, the Gauss-Markov

assumption is still valid, therefore the residual time series should be modelled with a multivariate Gaussian distribution.

3. (Stable Lévy) The Lévy process is a Lévy a-stable motion (not reduced to the fBm case). The Gauss-Markov assumption
is not holding anymore. The distribution of the residual time series is potentially skewed, not symmetric, with possibly
heavy tails, hence modelling with a Lévy a-stable distribution. With the relationship between the Lévy a-stable motion,
the fBm and the FARIMA, we assume that the stochastic properties of the residual time series should be described with

the FARIMA, especially in the presence of large amplitude coloured noise.

In the application to geodetic time series, the third case occurs mainly due to a misfit between the selected (stochastic and
functional) model and the observations. Therefore, the residual time series withholds some remaining unmodelled geophysical
signals or unfiltered large outliers which can potentially undermine the Gauss-Markov assumption (e.g., presence of heavy
tails in the distribution of the residual time series). For example, if small jumps (or Markov jumps), outliers or other unknown
processes are present, it results in a distribution of the residual time series not symmetric and with heavy tails. The functional
model describing those jumps is a Heaviside step function (Herring et al. , 2016; He et al. , 2017) as shown in the appendix. In
order to assume a Lévy a-stable motion as the underlying stochastic model in geodetic time series, we restrict our assumption

to small undetectable offsets, modelling them potentially as a random-walk.
2.4 The N-Step Method

To recall Section 2.1, let us describe the functional model and the stochastic noise model described in Eq. (2) as a functional
interpretation called F(6;) and G(62). The functional model is the modelled geophysical signals, whereas the stochastic noise
model described using the covariance matrix in Eq. (2) is equal to G(62). We define 61 = [a,b, (cj,d;)—{1,n}] and 6 =
[@wh,bpi, K], the vector parameters for the functional and stochastic noise model respectively. For simplification, we have not
included in the functional model the estimation of possible offsets in the time series (see the appendix for the discussion). Also,

ap, and by, are the amplitude of the white and power-law noise respectively.

Furthermore, our method is based on varying the length of the time series resulting in the variations of the stochastic and
functional models, which should allow classifying the type of Lévy process. The variations of the length of the time series
should take into account that the coloured noise is a non-stationary signal (around the mean - see supplementary material Sect.
A), and thus the properties (i.e. b,;, K) vary non-linearly. However, varying the length of the time series over several years is
not realistic taking into account that real time series can record undetectable transient signals, undocumented offsets and other
non-deterministic signals unlikely to be modelled precisely (Montillet et al. , 2015). That is why we restrain the variations of

the time series length to 1 year.



Let us call the geodetic time series s; = [$(t1), ..., s(t1)], s2 = [s(¢1),...,8(tr+1)] and sy = [s(t1), ..., s(tr4 )] at the first,

185 second and N-th variation respectively.The IV samples are equal to 1 year in this example, and for simplification we add only

1 sample at each step. That is not realistic, but the sole purpose is to be a pedagogical example. According to the functional

notation above, the GNSS observations s and the estimated stochastic noise and functional models § are equal to:

s = F(01)+G(62)
3 F(01) +G(02)

w
Il

190 Let us describe the method for the first, second and N-th step such as:

1% step:

S1

[61]1, [62]1

S1

195 Asy

2nd

step :

S2

[61]2, 622

200 S2

ASQ

N —th step:

SN

205  [61]n,[02]n

SN

ASN

1R

[s(t1),...,s(tr)] (Time Series)

areng’gL;Lx{Sl — (F(6h) + g(92))}

F([61]1) +G([62]1) (Estimated model)
sy — F([61]1) (residual T.S.)
G([02]1) + e

[s(t1),...,8(tr+1)] (Time Series)

argmax{SQ —(F(61) + g(92))}

01,02

F ([91]2)—&—9([0;}2) ( Estimated model)
so — F([f1]2) (residual T.S.)
g([éz]z) + €2

[s(t1),...,8(tr+n)] (Time Series)

arggn;ax{SN — (F(61) +G(62))}

F([61]n) +G([f2]n) (Estimated model)
sy — F([01]n) (residual T.S.)

G([f2]n) +en

(6)

)

®)

®)

where _ corresponds to the estimated vector or observations. [.]; means the j-th iteration of the estimated quantity. As; is the

210 residual time series at the j-th step. €; (with j in [1,2,.., N]) is the unmodelled signals and stochastic processes at the j-th step.

Note that the methodology requires the estimation of the parameters of the functional and stochastic noise models [9}] s [9;] j
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via MLE as described in Section 2.1 in the maximization of In(Lo) in Eq. (3) (see also Hector software Bos et al. (2013) in
the supplementary material Sect. A).

To recall the assumptions in Section 2.3, the residual time series Asy is modelled as a sum of three stochastic processes
corresponding to the white noise, coloured noise and a Lévy process. Using [V iterations/steps and our statistical inferences
on the Lévy processes (i.e., Gaussian Lévy, Fractional Lévy and Stable Lévy), we make several assumptions on the estimated
parameters and selected stochastic models in order to characterize the third process. Tab. 1 summarises these assumptions. We
use specific mathematical symbols to differentiate between them. = means the equality in terms of distribution. ~, ~ and #
are related to the variations of the estimated parameters of the stochastic model associated with the first and the N-th step. The
symbol ~ means that there are little differences (less than 3%) between the estimated parameters of the stochastic noise model
associated with the first and the N-th iteration. The symbol ~ means that we allow bigger differences up to 20% . With much
larger values, we use the symbol #. The variation of the estimated stochastic noise parameters [0}] j between the first and the
j-th step is calculated using the sum of the difference in absolute value between the estimates (e.g., between the first and 5 + 1

step, ||[62]1 — [f2];+1]])- We deduce a percentage of the variations based on the sum in absolute value of the estimates [f];.

Table 1. Assumptions on the functional model and the stochastic parameters estimated via IV iterations (see,/N-Step method) to characterize

the type of Lévy processes within the geodetic time series. The symbols and notations are explained in Section 2.4.

Type of Process Gaussian Lévy Fractional Lévy Stable Lévy
Mathematical G([02)1) ~G([02]n) | G([162]1) ~G([2]n) | G([2]1) # G([62]w)
Assumptions F([62]:) = F([6a]n) | F([a]s) ~ F([a]n) | F([ba]r) # F([fa]w)

(Distribution) A's £

Gaussian

Gaussian

Lévy a-stable

Model To Characterize

Processes

ARMA(p.q)

ARMA(p,q) or
FARIMA(p.d,q)

FARIMA(p,d,q)

Furthermore, the fitting of the ARMA(p,q) and FARIMA(p,d,q) models to the residual time series is carried out by maximum-
likelihood following Sowell (1991). The model orders p and ¢ vary within the interval [0, 5]. Also, the selection of the model
which best fits the residual time series, is performed by minimizing the Bayesian Information Criterion (BIC) following Mon-
tillet and Yu (2015). Finally, one can wonder if the anxiety in the model in presence of heavy-tails can modify the performance
of the BIC. This topic is currently debated in the statistical community (e.g., Panahi , 2016). Large tails should be detected in
the fitting of the Lévy a-stable distribution. Various methods exist to estimate the parameters of this distribution (Koutrouvelis
, 1980), however we use the maximum-likelihood method of Nikias and Shao (1995). Due to the direct relationship between
the index « and H recalled in Section 2.1, we assume that the amplitude of the coloured noise is higher than that of the white

noise, therefore the FARIMA should be chosen de facto over the ARMA model.
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3 Lévy Processes Applied to Geodetic Time Series Analysis

This section deals with the application of the N-step algorithm to simulated and real time series. This approach should verify
our statistical inferences formulated in Section 2.3. Note that the simulations of the GNSS time series are comprehensively

explained in the supplementary material (Sect. D).
3.1 Application to Simulated and Real Time Series

We have restrained our simulations to the stochastic model corresponding to the flicker noise (with white noise - F'N + W N)
and power-law noise (with white noise - PL-+ W N). In addition to simplify our study, we have preliminary applied the method
based on the Akaike information criterion developed in He et al. (2019) on the real time series to select the optimal stochastic
noise model. Therefore we have selected real time series with stochastic models F'N +W N and PL+ W N. We are not going
to develop further this topic in this study, but readers can refer to He et al. (2019).

3.1.1 Simulated Time Series

We simulate 10 years long time series fixing a,,p, to 1.6 mm; the tectonic parameters a varying between [1 — 3] mm/yr and b
equal 0; and the seasonal signal with only the first harmonic (c1,e1) equal to (0.4,0.2) mm/yr. According to Tab. 1, we vary

the amplitude of coloured noise b.; following three scenarios:

A. low value (i.e. by < 0.1 mm/yr¥/4)

B. intermediate value (i.e. lmm/er/4 > by > 0.1 mm/yr/4)
C. high value (i.e. 1mm /yr’/* < by < 4mm/yr¥/*)

Note that in the scenario C, the process is unlikely zero-mean stationary. Also, it is mentioned when K is equal to 1 (flicker
noise) or 1.5 (power-law noise) in the simulations of the coloured noise.

Fig. la, 1b and lc display the results when averaging over 50 time series. The variations are in steps of [0,0.3,0.5,0.7,0.8,1]
year (see X-axis [Years]). We show both the variations of the stochastic and functional models. The Y-axis displays the varia-
tions of the models in terms of percentage as discussed in the previous section.

The first result which is common to all three figures, is that the variations in terms of variance of the functional model
increases faster than for the results associated with the stochastic model. Previous studies have shown that there is a part of
the noise amplitude absorbed in the functional model (Williams , 2003; Montillet et al. , 2015). In our scenario, the estimation
of the linear trend may fit partially into the power-law noise, hence reducing the variations of the stochastic noise model.
This effect can be amplified with higher spectral indexes (Montillet and Bos , 2019). Now, Fig. 1 shows that over 1 year the
variations of the stochastic and functional models are less than 4% (on average) for small amplitude coloured noise, whereas
when increasing the coloured noise amplitude the variations increase quickly (e.g., more than 20% for the large coloured noise
amplitude corresponding to the scenario C') . We assume that part of the large variations of the coloured noise is wrongly

absorbed in the estimation of the functional model.



Figure 1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the time series. The letters (A), (B) and (C) refer to the various scenarios with different coloured noise amplitudes.
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Table 2. Statistics on the error when fitting the ARMA and FARIMA model to the residual time series following the three scenarios.

Error (mm) case A case B case C'

K be < 0.1 mn]/er/4 1mm/y7“K/4 >be > 0.1 mm/er/4 lmm/er/4 <bg < 3mm/er/4
ARMA 1.0 | 1.44 £0.01 1.74 £ 0.01 1.89 £+ 0.04

1.5 | 1.46 £0.01 1.76 £ 0.04 1.95 £0.05
FARIMA 1.0 | 1.91 £0.02 1.85 £0.02 1.46 £ 0.02

1.5 | 1.89 £0.01 1.75 £0.03 1.59 £ 0.05
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Table 3. Correlation between the distribution of the residuals and the Normal (Corr. Normal ) distribution or the Lévy a-stable distribution
(Corr. Lévy ) and the Anderson-Darling test (AD) following scenario A, B and C'. The results of the AD test is the probability over the 50

trials of not rejecting the null hypothesis. [Lévy | or [Normal ] means the type of distribution uses as the null hypothesis.

Corr. [0—1] case A case B case C
K ba < 0.1 mm/er/4 1mm/er/4 > bo > 0.1 mm/er/4 1mm/er/4 < by < ?ﬂnm/yrk/4
Corr. Normal 1.0 | 0.93 £0.04 0.92 £ 0.06 0.92 £ 0.04
1.5 | 0.92 £0.04 0.91 £0.04 0.91 £+ 0.05
Corr. Lévy 1.0 | 0.92 £0.05 0.94 £0.04 0.96 £+ 0.03
1.5 | 0.93£0.03 0.94 £0.03 0.95 £ 0.03
AD test [Normal] | 1.0 | 0.98 £ 0.01 0.96 £ 0.01 0.94 £+ 0.03
1.5 | 0.97 £0.01 0.96 £ 0.02 0.93 £ 0.04
AD test [Lévy] 1.0 | 0.97 £0.02 0.97 £0.01 0.97 £ 0.03
1.5 | 0.98 +£0.01 0.97 £0.02 0.98 £ 0.02

Now, Tab. 2 shows the standard deviation of the difference (Mean Square Error) between the ARMA /FARIMA model
and the residuals (i.e. res; in Eq. (7)). We do not display any mean, because the fits of the models are done on the zero-mean
residuals. Note that the value is averaged over 50 simulations, together with the variations of the length of the time series de-
scribed above. The table also displays the average correlation between the distribution of the residuals and the Normal or Lévy
a-stable distribution. In agreement with the theory, we can see that the ARMA model fits well residuals with small amplitude
coloured noise (b.;), whereas with the increase of b.; the FARIMA model fits better than the ARMA model. Looking at Tab.
3 in terms of correlation, the Lévy a-stable distribution fits as good as the Normal distribution as long as the distribution of
the residuals is Gaussian without large tails or asymmetry. That is why the Anderson-Darling test accepts the two distributions
when the residual time series is Gaussian distributed without tails.In Section 2, we emphasized that the family of Lévy a-stable
distributions includes the Normal distribution with specific values for the parameters of the characteristic function (see Eq.
(5)). Thus, the results show that for the amplitude of coloured noise corresponding to scenario B (i.e. Intermediate - in Tab.2
and 3), the two distributions show similar results. However, scenario C can potentially generate some aggregation processes in
the simulated time series and introduce an asymmetry or large tails in the distribution of the residuals, therefore it emphasizes
that the family of Lévy a-stable distributions performs the best in modelling the residuals’ distribution. To further support this
result, we have added the Anderson-Darling test (AD) (Anderson and Darling , 1952) in order to test for the large tails in the
distribution of the residuals in Tab.3. However, we acknowledge that the (Pearson) correlation coefficient could be biased due
to inherent normalized sum constraint between the distributions estimated directly from the data. Therefore, in this instance
the AD test should be more reliable. The results displayed in Tab.2 give the probability of not rejecting the null hypothesis.
Following our previous development, we have used the Normal and the Lévy a-stable distributions as null hypothesis. The
results show that this test detects mostly large tails for the scenario C' which corresponds to when the family of Lévy a-stable

distributions perform better than the Normal distribution.
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Finally, those three scenarios support the theory where in the case of small amplitude coloured noise, the stochastic noise
properties are dominated by the Gaussian noise, hence defining a third process as a Gaussian Lévy. However, the increase of
the coloured noise amplitude shows that it is much more difficult to discriminate between the fractional Lévy and the stable
Lévy . The results indicate that the third process can be modelled as a stable Lévy process when mostly the FARIMA fits the
residuals due to large amplitude long-memory processes, hence creating a heavy-tail distribution. This result is restrictive for

the application to geodetic time series.
3.1.2 Real Time Series

We process the daily position time series of the three GNSS stations namely DRAO, ASCO and ALBH retrieved from
the UNAVCO website (UNAVCO , 2009). The functional model includes the tectonic rate, the first and second harmonic of
the seasonal signal, and the occurrence time of the offsets. This occurrence time is obtained from the log file of each station.
However, ALBH is known to record slow-slip events from the Cascadia subduction zone (Melbourne et al. , 2005). Thus,
we include the offsets provided by the Pacific Northwest Geodetic Array (Miller et al. , 1998). In this scenario we do not
know which stochastic model could fit the best the observations. Thus, we use two models: the PL + W N together with the
FN + W N (see supplementary material for the display of the time series and the fitting of the distributions - Sect. E).

Similar to the previous section, Fig. 2 displays the percentage of variations of the stochastic and functional models averaged
over the East and North coordinates of each station. Because the Up coordinate contains much more noise than the East and
North coordinates (Williams et al. , 2004; Montillet et al. , 2013), it amplifies the variation of both stochastic and functional
models.

Looking at Fig. 2, the first result is that for all the stations, there is a strong dependence of the selected noise model. When
selecting the power-law noise over the flicker noise model, there is an additional variable to estimate (i.e. the power-law noise
exponent, K, in Eq. (4) ) within the stochastic noise model. This dependence is already discussed in previous studies (He et al.
,2017,2019).

The second result is the large variations of the functional model compared with the stochastic model. To recall the simulation
results, the functional model partially absorbs the variations of the noise, i.e. the tectonic rate partially fits into the power-law
noise. In addition, to some extend at ASCO, the sudden increase in the functional model variations at 0.5 year may be explained
by the absorption of some of the noise with the second harmonic of the seasonal signal.

When comparing the variations of the stochastic and functional models with amplitude below 20% for DRAO and ASCO,
the results agree with the definition of the fractional Lévy process defined in Tab.1 as third process modelling the residuals of
the East and North components. The variations of the functional model associated with ALBH are much larger than the other
two stations, especially for the PL + W N model with variations up to 50%. Those large variations can be explained due to the
slow-slip events and the difficulty to model the post-seismic relaxations between two consecutive events (He et al. , 2019).

Furthermore, Tab.4 displays the statistics on the error when fitting the ARMA and FARIMA models to the residuals estimated
with the PL + W N stochastic noise model. Fig. 3 shows the time series ASCO for the East coordinate using the full time

series (for more results see the supplementary material - Sect. ). The FARIMA and ARMA models perform closely for all
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Figure 2. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of
the daily position GNSS time series corresponding to the stations DRAO, ASCO and ALBH. The statistics are estimated over the East

and North coordinates.
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Table 4. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations
ALBH, DRAO and ASCO based on the PL + W N stochastic noise model. Correlation between the distribution of the residuals and the

Normal (Corr. Normal ') and the Lévy a-stable distributions (Corr. Lévy ). The last column is the Anderson-Darling test. [Lévy ] or [Normal

] means the type of distribution uses as the null hypothesis (1 not rejected, O rejected).

DRAO | (err. inmm)ARMA | (err. in mm) FARIMA | Corr. Normal | Corr. Lévy AD test [Lévy ] AD test [Normal ]
East 1.07 £0.01 1.10 + 0.07 0.94 0.97 1 1
North 1.02 +£0.02 1.01 +£0.01 0.96 0.96 1 1
Up 2324021 2.15+0.30 0.97 0.98 1 1
ASCO

East 0.77 £ 0.01 0.77 £ 0.06 0.98 0.97 1 1
North 0.84 £ 0.03 0.73 £ 0.03 0.97 0.96 1 1
Up 271 £0.12 234 +£0.17 0.92 0.96 1 0
ALBH

East 0.97 £ 0.06 0.87 + 0.06 0.98 0.98 1 1
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