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Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the

stochastic properties of geodetic time series, together with the estimated geophysical signals. The noise spectrum of these time

series is generally modelled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in modelling

the residual time series, after deterministically subtracting geophysical signals from the observations. This residual time series

is then assumed to be a sum of three stochastic processes, including the family of Lévy processes. The introduction of a third5

stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time series,

we identify three classes of Lévy processes: Gaussian, fractional and stable. In the first case, residuals are predominantly

constituted of short-memory processes. Fractional Lévy process can be an alternative model to the fBm in the presence of

long-term correlations and self-similarity property. Stable process is here restrained to the special case of infinite variance,

which can be only satisfied in the case of heavy-tailed distributions in the application to geodetic time series. Therefore, it10

implies potential anxiety in the functional model selection where missing geophysical information can generate such residual

time series.

1 Introduction

Among the geodetic data, Global Navigation Satellite System (GNSS) time series have been of particular interest for the study

of geophysical phenomenon at regional and global scales (e.g., study of the crustal deformation due to large Earthquakes,15

sea-level rise (Bock and Melgare , 2016; Herring et al. , 2016; He et al. , 2017)). This time series are the estimated daily

position of the receiver coordinates. The position vector of a station can be decomposed in a geocentric cartesian axis system

or in a local or topocentric cartesian axis system (E,N ,U ) in which the axes point east, north and up. These coordinates are

influenced by the sum of three displacement modes (distinct classes of motion) that describes the progressive ground motion,

any instantaneous jumps in position, and periodic or cyclical displacements. The progressive ground motion is generally refers20

as the tectonic rate. Jumps include coseismic offsets, which are real movements of the ground, and artificial offsets associated
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with changes in the GNSS antenna and/or its radome, or changes in the antenna monument, etc. Nearly all GNSS time series

exhibit a seasonal cycle of displacement which can be modelled as a Fourier series. These cycles are caused by seasonal

changes in the water, snow and ice loads supported by the solid earth or (less commonly) by seasonal changes in atmospheric

pressure. Therefore the model associated with each class of motion (or geophysical signals) is here defined as a functional25

model following Bevis and Brown (2014) and Montillet and Bos (2019) [Chapter 1]. Furthermore, these time series contain

white noise and coloured noise. To model the different noise components, a stochastic noise model is defined. To name a few,

it includes the First Order Gauss-Markov (FOGM) model, the white noise with power-law noise (Williams , 2003; Williams et

al. , 2004), the Generalized Gauss Markov noise model (GGM), or the Band-pass noise (Langbein , 2008; Langbein and Svarc ,

2019). (e.g., Flicker noise and white noise). The scientific community agrees with the existence of a trade-off in estimating both30

the stochastic and functional models (He et al. , 2017). More precisely, the choice of the stochastic model directly influences

the estimation of the geophysical signals included in the functional model (i.e., tectonic rate, seasonal variations, slow-slip

events (Bock and Melgare , 2016; He et al. , 2017)).

In addition, recent studies (Langbein and Svarc , 2019; He et al. , 2019) have also advocated the introduction of a random-

walk to model small jumps and residual transient signals which is a non-stationary stochastic process. Thus, several studies35

(Montillet and Yu , 2015) proposed the use of the fractional Brownian motion (fBm), first developed by Mandelbrot et al.

(1968), in order to model long-memory processes. Botai et al. (2011) and Montillet and Yu (2015) focused on modelling

(residual) geodetic time series using the family of Lévy α-stable distributions (Samorodnitsky and Taqqu , 1994; Nolan , 2018).

The application of this family of distribution was supported by the ability to model long-memory processes and the existence

of impulsive signals/noise bursts in the data sets suggesting deviations from Gaussian distribution (Botai et al. , 2011).40

This work discusses several statistical assumptions (i.e. stationary properties, presence of long-term correlations) on the

underlying processes in the GNSS time series, justifying the application of the fBm and the family of Lévy α-stable distribu-

tions introduced by Montillet and Yu (2015). The Lévy stable distributions can model the heavy tail characteristics of some

data sets with generally infinite variance. For example, the presence of unmodelled large jumps within the data can produce a

distribution with large tails and infinite variance. In order to take into account a large variety of scenarios, we investigate and45

identify within the family of Lévy processes, which process can be applied to model geodetic time series.

Here, the statistical modelling is applied to residual time series following Montillet and Yu (2015). The residual time series

are defined as the remaining time series after subtracting deterministically modelled tectonic rate and seasonal components

(i.e. the functional model), from the GNSS observations. Therefore, our assumption is that the family of Lévy processes can

model the remaining geophysical signals and correlations which have not been captured by the initial model used to produce50

the residual time series.

The next section starts with the statistical inference on the residual geodetic time series, including the application of the

fBm model and the relationship with the Fractional Autoregressive Integrated Moving Average (FARIMA) model. Section 2.3

presents the assumptions on the use of the Lévy processes in the model of the residual time series. To do so, we model the

residual geodetic time series as a sum of three stochastic processes, with the hypothesis that the third one is a Lévy process.55

It involves some justifications compared with established models in the scientific community. In Section 3, we develop an
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N -step method based on the variations of the stochastic and functional models when varying the time series’ length. This algo-

rithm should verify our statistical assumptions on the third process. Section 3.1.1 and Section 3.1.2 focus on the application to

simulated and real time series. Finally, Section 3.2 discusses the limits of modelling geodetic time series with Lévy processes.

2 The Stochastic Properties of the Residual Time Series and Statistical Inferences60

2.1 Stochastic Modelling of Residual GNSS Time Series

Let us model the GNSS observations and residual time series as an additive model:

x0(ti) = s0(ti) +n(ti)

x(ti) = sr(ti) +n(ti)

sr(ti) = x0(ti)− s0(ti) (1)65

x0 is the time series defined as the GNSS observations, x the residual time series after subtracting the functional model

(s0). At each i-th epoch, x(ti) is a sum of a residual geophysical signal sr(ti) and noise n(ti). Following Williams (2003)

and He et al. (2017), the spectrum of the (residual) GNSS time series is best characterised by a stochastic process following a

power-law with index K (i.e. P (f) = P0(f/fs)
K , f is the frequency, P0 is a constant, fs the sampling frequency). A power-

law noise model means that the frequency spectrum is not flat but is governed by long-range dependencies. An example is70

shown in Figure 3 using the ASCO station, other examples are displayed in supplementary material. Power-law noise is a type

of coloured noise. The coloured noise results from various parameters during the processing of the GNSS observations such

as the mismodelling of GNSS satellites orbits, Earth orientation parameters, large-scale atmospheric or hydrospheric effects

(Williams , 2003; Klos et al. , 2018). The stochastic noise model of the (residual) GNSS time series is then described with the

variance:75

E{nTn}= σ2
wnI +σ2

plJ(K) (2)

where the vector n = [n(t1),n(t2), ...,n(tL)] is a multivariate noise. At each epoch, we define n(ti) = nwn(ti) +npl(ti),

with nwn(ti) and npl(ti) the white Gaussian noise (zero mean) and the power-law noise sample respectively. Note that this

type of time series belongs to the family of mixed spectra, where the mixed spectrum results from the sum of the spectra

corresponding to the two kinds of noise (Li , 2013). T is the transpose operator, I the identity matrix, σ2
pl the variance of the80

power-law noise and J(K) the covariance matrix of the power-law noise (K in ]0,2]). The definition of J depends on the

assumptions on the type of coloured noise (see supplementary material).

We estimate jointly the functional and stochastic models in order to produce x, based on a maximum likelihood estimator

(MLE). To recall Montillet and Bos (2019) (Chapter 2), for linear models, the log-likelihood for a time series of length L can

be rewritten as:85

ln(Lo) =−1

2

[
L ln(2π) + ln(det(C)) + (x0−Az)TC−1(x0−Az)

]
(3)
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This function must be maximised. Assuming that the covariance matrix C is known, then it is a constant and does not

influence finding the maximum. C is here defined by Eq. (2). The term (x0−Az) represent the observations minus the fitted

model or x in Eq. (1). Note that (Az) is the matrix notation of s0. The last term can be written as xTC−1x and it is a

quadratic function, weighted by the inverse of matrixC. To select the geophysical model, and therefore estimate the associated90

parameters, one needs to consider carefully the location of the GNSS stations and the surrounding geodynamics. The model of

s0 is discussed in the supplementary material together with the software used to carry out the maximisation of ln(Lo). Note

that the value of L is here at least 9 years (3285 observations) in order to be able to model correctly the long-range dependency

associated with the coloured noise and to detect slow transient signals according to He et al. (2019).

In the modelling of GNSS time series, a strong assumption is the so-called Gauss-Markov hypothesis (e.g., Montillet and95

Bos (2019) - Chapter 2) which states that the noise is Gaussian distributed. In order to keep applying the Gauss-Markov

assumption on the noise observations of geodetic time series, we assume that the mean of the coloured noise is equal to µC(t),

slowly varying with time. We then rule out the occurrence of specific events of large amplitude such as aggregations or burst

of spikes (i.e. intermittency) which could invalidate such assumption (see Supplementary material for more information).

Moreover, if the probability density function of the noise is Gaussian or has a different density function with a finite value of100

variance, its fractal properties can be described by the Hurst parameter (H). The authors in Montillet et al. (2013) use the fBm

in order to model the statistical properties of the residual time series. The essential features of this process are its self-similar

behaviour, meaning that magnified and re-scaled versions of the process appear statistically identical to the original, together

with its non-stationary property implying a never-ending growth of variance with time (Mandelbrot et al. , 1968). Previous

studies (e.g. (Mandelbrot et al. , 1968; Eke et al. , 2002)) showed that H is directly connected with K by the relation:105

K = 2H − 1 (4)

With this definition, flicker noise corresponds to K equal to 1 or H equal to 1, random walk to K equal to 2 or H equal to 1.5,

and white noise to K equal to 0 (H equal to 0.5). Note that Eq. (4) is established for the fractional Gaussian noise according to

(Eke et al. , 2002). The random-walk and the flicker noise are then classified as long-term dependency phenomena (Montillet

et al. , 2013).110

Long-memory processes are modelled with a specific class of ARIMA models called FARIMA by allowing for non-integer

differentiating. A comprehensive literature on the application of FARIMA can be found in financial analysis (Granger and

Joyeux , 1980; Panas , 2001) and in geodesy (Li et al. , 2000; Montillet and Yu , 2015; Montillet and Bos , 2019). This model

can generate long-memory processes based on the different values of the fractional index d (Granger and Joyeux , 1980).

When d equal to 0 it is an Autoregressive Moving Average (ARMA) process exhibiting short memory; when−0.5≤ d < 0 the115

FARIMA process is said to exhibit intermediate memory or anti-persistence (Pipiras and Taqqu , 2017). This is very similar to

the description ofH in the fBm. In the supplementary material, we recall the relationship between FARIMA, ARMA and fBm.
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2.2 α Stable Random Variable and the Lévy α-Stable Distribution

The fBm and the fractional Lévy distribution are well-known in statistics (Samorodnitsky and Taqqu , 1994) and in financial

analysis (Panas , 2001; Wooldridge , 2010). The fractional Lévy distribution can model the Lévy processes and in particular120

the general family of α stable Lévy processes which can be self-similar and stationary (Samorodnitsky and Taqqu , 1994). Let

us recall the definition of a stable random variable.

Definition (Nolan , 2018), chap. 1, definition, 1.6 A random variableX is stable if and only ifX d
= aZ+b, where 0< α≤ 2,

−1≤ β ≤ 1, a 6= 0, b ∈ R andZ is a random variable with characteristic function φ(u) = E{exp(iuZ)}=
∫∞
−∞ exp(iuz)F (z)

dz. F (z) is the distribution function of Z. E{.} is the expectation operator. The characteristic function is:125

φ(u) =

 exp(−|u|α[1− iβ tan πα
2 (sign(u))]), if α 6= 1

exp(−|u|[1 + iβ 2
π sign(u)]), if α= 1

(5)

Where sign is the signum function, α is the characteristic exponent which measures the thickness of the tails of these distribu-

tions (the smaller the values of α, the thicker the tails of distribution are), β ∈ [−1,1] is the symmetry parameter which set the

skewness of the distribution. In general, no closed-form expression exists for these distributions, except for the Gaussian (α

equal to 2), Pearson (α equal to 0.5, β equal to −1) and Cauchy (α equal to 1, β equal to 0) distributions.130

Now, restricting to our case study, we assume that if the stochastic process exhibits a self-similar property, then it can be

modeled by the fBm. Following (Weron et al. , 2005), the most commonly used extension of the fBm to the α-stable case is the

fractional Lévy stable motion (fLsm). The fLsm is H-self-similar and has stationary increments, with H the Hurst parameter

described before. Both the fBm and the fLsm follow an integral representation, with different properties of their kernel (see

the supplementary material). The relationship between the fLsm reduces to the fBm when α= 2. If H = 1/α, we obtain the135

Lévy α-stable motion which is an extension of the Brownian motion to the α-stable case. Note that the Lévy α-stable motion

belongs to the Lévy processes.

2.3 The Residual Time Series Modelled as a Sum of Three Stochastic Processes

The residual time series is now modelled as a sum of three stochastic processes. Namely, it is the sum of a white noise, a

coloured noise and a third process. It is a similar approach used in previous works (Langbein , 2008; Davis et al. , 2012;140

Langbein and Svarc , 2019; He et al. , 2019) looking at the presence of a random-walk component in the stochastic model,

hence adding a third covariance matrix in Eq. (2). We postulate that this unknown stochastic process belongs to the Lévy

processes, classified in three types depending on the assumptions on the underlying process:

1. (Lévy Gaussian) The Lévy process is a Gaussian Lévy process if the process follows the properties of a pure Brownian

motion also called a Wiener process (identity variance matrix, zero-mean, stationary independent increment - (Haykin145

, 2002; Wooldridge , 2010)). That is the special case of the fLsm and fBm with H = 1/2. The residual time series is

assumed to contain mostly short-term correlations modelled with an ARMA process. The residual time series should be

modelled with a multivariate Gaussian distribution.
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2. (Fractional Lévy) The residual time series exhibits self-similarity with possibly long-term correlations. The Fractional

Lévy process is described by the model of the fLsm for the specific case reduced to the fBm. The long-term correlation150

process is mostly due to the presence of coloured noise (He et al. , 2017). As explained in Montillet and Yu (2015), the

ratio of the amplitude of the coloured over white noise determines which stochastic model of the residual time series

should be the most suitable between the FARIMA and ARMA processes. However, the Gauss-Markov assumption is

still valid, therefore the residual time series should be modelled with a multivariate Gaussian distribution.

3. (Stable Lévy) The Lévy process is a Lévy α-stable motion (not reduced to the fBm case). The Gauss-Markov assumption155

is not holding anymore. The distribution of the residual time series is potentially skewed, not symmetric, with possibly

heavy tails, hence modelling with a Lévy α-stable distribution. With the relationship between the Lévy α-stable motion,

the fBm and the FARIMA, we assume that the stochastic properties of the residual time series should be described with

the FARIMA, especially in the presence of large amplitude coloured noise.

In the application to geodetic time series, the third case occurs mainly due to a misfit between the selected (stochastic and160

functional) model and the observations. Therefore, the residual time series withholds some remaining unmodelled geophysical

signals or unfiltered large outliers which can potentially undermine the Gauss-Markov assumption (e.g., presence of heavy

tails in the distribution of the residual time series). For example, if small jumps (or Markov jumps), outliers or other unknown

processes are present, it results in a distribution of the residual time series not symmetric and with heavy tails. The functional

model describing those jumps is a Heaviside step function (Herring et al. , 2016; He et al. , 2017) as shown in the appendices. In165

order to assume a Lévy α-stable motion as the underlying stochastic model in geodetic time series, we restrict our assumption

to small undetectable offsets, modelling them potentially as random-walk.

2.4 The N-Step Method

To recall Section 2.1, let us describe the functional model and the stochastic noise model described in Eq. (2) as a functional

interpretation called F(θ1) and G(θ2). The functional model is the modeled geophysical signals, whereas the stochastic noise170

model described using the covariance matrix in Eq. (2) is equal to G(θ2). We define θ1 = [a,b,(cj ,dj)j={1,N}] and θ2 =

[awh, bpl,K], the vector parameters for the functional and stochastic noise model respectively. For simplification, we have not

included in the functional model the estimation of possible offsets in the time series (see appendices for the discussion). Also,

awh and bpl are the amplitude of the white and power-law noise respectively.

Furthermore, our method is based on varying the length of the time series resulting in the variations of the stochastic and175

functional models, which should allow classifying the type of Lévy process. The variations of the length of the time series

should take into account that the coloured noise is a non-stationary signal (around the mean), and thus the properties (i.e. bpl,

K) vary non-linearly. However, varying the length of the time series over several years is not realistic taking into account that

real time series can record undetectable transient signals, undocumented offsets and other non-deterministic signals unlikely to

be modelled precisely (Montillet et al. , 2015). That is why we restrain the variations of the time series length to 1 year.180
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Let us call the geodetic time series s1 = [s(t1), ...,s(tL)], s2 = [s(t1), ...,s(tL+1)] and sN = [s(t1), ...,s(tL+N )] at the first,

second and N -th variation respectively. Note that the N samples are equal to 1 year in this example, and for simplification we

add only 1 sample at each step. That is not realistic, but the sole purpose is to be a pedagogical example. According to the

functional notation above, the GNSS observations s and the estimated stochastic noise and functional models ŝ are equal to:

s = F(θ1) +G(θ2)185

ŝ = F(θ̂1) +G(θ̂2) (6)

Let us describe the method for the first, second and N -th step such as:

1st step :

s1 = [s(t1), ...,s(tL)] (Time Series)

[θ̂1]1, [θ̂2]1 = argmax
θ1,θ2

{
s1− (F(θ1) +G(θ2))

}
190

ŝ1 = F([θ̂1]1) +G([θ̂2]1) ( Estimated model)

∆s1 = s1−F([θ̂1]1) (residual T.S.)

' G([θ̂2]1) + ε1

2nd step :

s2 = [s(t1), ...,s(tL+1)] (Time Series)195

[θ̂1]2, [θ̂2]2 = argmax
θ1,θ2

{
s2− (F(θ1) +G(θ2))

}
ŝ2 = F([θ̂1]2) +G([θ̂2]2) ( Estimated model)

∆s2 = s2−F([θ̂1]2) (residual T.S.)

' G([θ̂2]2) + ε2

N − th step :200

sN = [s(t1), ...,s(tL+N )] (Time Series)

[θ̂1]N , [θ̂2]N = argmax
θ1,θ2

{
sN − (F(θ1) +G(θ2))

}
ŝN = F([θ̂1]N ) +G([θ̂2]N ) ( Estimated model)

∆sN = sN −F([θ̂1]N ) (residual T.S.)

' G([θ̂2]N ) + εN205

(7)

where .̂ corresponds to the estimated vector or observations. [.]j means the j-th iteration of the estimated quantity. ∆sj is the

residual time series at the j-th step. εj (with j in [1,2, ..,N ]) is the unmodelled signals and stochastic processes at the j-th step.
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Note that the methodology requires the estimation of the parameters of the functional and stochastic noise models [θ̂1]j , [θ̂2]j

via MLE as described in Section 2.1 in the maximization of ln(Lo) in Eq. (3) (see also Hector software Bos et al. (2013) in210

the supplementary material).

To recall the assumptions in Section 2.3, the residual time series ∆sN is modelled as a sum of three stochastic processes

corresponding to the white noise, coloured noise and a Lévy process. Using N iterations/steps and our statistical inferences

on the Lévy processes (i.e., Lévy Gaussian, Fractional Lévy and Stable Lévy), we make several assumptions on the estimated

parameters and selected stochastic models in order to characterize the third process. Table 1 summarises these assumptions.215

We use specific mathematical symbols to differentiate between them. , means the equality in terms of distribution. ', ∼ and

6= are related to the variations of the estimated parameters of the stochastic model associated with the first and the N -th step.

The symbol ' means that there are little differences (less than 3%) between the estimated parameters of the stochastic noise

model associated with the first and the N -th iteration. The symbol ∼ means that we allow bigger differences up to 20% . With

much larger values, we use the symbol 6=. Note that the variation of the estimated stochastic noise parameters [θ̂2]j between220

the first and the j-th step is calculated using the sum of the difference in absolute value between the estimates (e.g., between

the first and j+ 1 step, ||[θ̂2]1− [θ̂2]j+1||). We deduce a percentage of the variations based on the sum in absolute value of the

estimates [θ̂2]1.

Table 1. Assumptions on the functional model and the stochastic parameters estimated via N iterations (see,N -Step method) to characterize

the type of Lévy processes within the geodetic time series. The symbols and notations are explained in Section 2.4

Type of Process Lévy Gaussian Fractional Lévy Stable Lévy

Mathematical G([θ̂2]1)' G([θ̂2]N ) G([θ̂2]1)∼ G([θ̂2]N ) G([θ̂2]1) 6= G([θ̂2]N )

Assumptions F([θ̂1]1)'F([θ̂1]N ) F([θ̂1]1)∼F([θ̂1]N ) F([θ̂1]1) 6= F([θ̂1]N )

(Distribution) ∆1s, Gaussian Gaussian Lévy α-stable

Model To Characterize ARMA(p,q) ARMA(p,q) or FARIMA(p,d,q)

Processes FARIMA(p,d,q)

Furthermore, the fitting of the ARMA(p,q) and FARIMA(p,d,q) model to the residual time series is carried out by maximum-

likelihood following Sowell (1991). The lags p and q vary within the interval [0,5]. Also, the selection of the model which225

best fits the residual time series, is performed by minimizing the Bayesian Information Criterion (BIC) following Montillet

and Yu (2015). Finally, one can wonder if the anxiety in the model selection ARMA, FARIMA) in presence of heavy-tails can

modify the performance of the BIC. This topic is currently debated in the statistical community (e.g., (Panahi , 2016)). Large

tails should be detected in the fitting of the Lévy α-stable distribution. Various methods exist to estimate the parameters of this

distribution (Koutrouvelis , 1980), however we use the maximum-likelihood method of Nikias and Shao (1995). Due to the230

direct relationship between the index α and H recalled in Section 2.1, we assume that the amplitude of the coloured noise is

higher than the white noise, therefore the FARIMA should be chosen de facto over the ARMA model.
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3 Lévy Processes Applied to Geodetic Time Series Analysis

This section deals with the application of the N-step algorithm to simulated and real time series. This approach should verify

our statistical inferences formulated in Section 2.3. Note that the simulations of the GNSS time series are comprehensively235

explained in the supplementary material (supplement D).

3.1 Application to Simulated and Real Time Series

We have restrained our simulations to the stochastic model corresponding to the flicker noise (with white noise - FN +WN )

and power-law (with white noise - PL+WN ). In addition to simplify our study, we have preliminary applied the method

based on the Akaike information criterion developed in He et al. (2019) on the real time series to select the optimal stochastic240

noise model. Therefore we have selected real time series with stochastic models FN+WN and PL+WN . We are not going

to develop further this topic in this study, but readers can refer to He et al. (2019).

3.1.1 Simulated Time Series

We simulate 10 years long time series fixing awh to 1.6 mm; the tectonic parameters a varying between [1− 3] mm/yr and b

equal 0; and the seasonal signal with only the first harmonic (c1,e1) equal to (0.4,0.2) mm/yr. Details on the noise simulations245

are given in the supplementary material. According to Table 1, we vary the amplitude of coloured noise bcl following three

scenarios:

A. low value (i.e. bcl < 0.1 mm/yrK/4)

B. intermediate value (i.e. 1mm/yrK/4 > bcl > 0.1 mm/yrK/4)

C. high value (i.e. 1mm/yrK/4 < bcl < 4mm/yrK/4)250

Note that in the scenario C, the process is unlikely zero-mean stationary. Also, it is mentioned when K is equal to 1 (flicker

noise) or 1.5 (power-law noise) in the simulations of the coloured noise.

Figure 1a, 1b and 1c display the results when averaging over 50 time series. The variations are in steps of [0,0.3,0.5,0.7,0.8,1]

year (see X-axis). We show both the variations of the stochastic and functional models. The Y-axis displays the variations of

the models in terms of percentage as discussed in the previous section.255

The first result which is common to all three figures, is that the variations in terms of variance of the functional model

increases faster than for the results associated with the stochastic model. Previous studies have shown that there is a part of the

noise amplitude absorbed in the functional model (Williams , 2003; Montillet et al. , 2015). In our scenario, the estimation of

the linear trend may fit partially into the power-law noise, hence reducing the variations of the stochastic noise model. This

effect can be amplified with higher spectral indexes (Montillet and Bos , 2019). Now, Figure 1 shows that over 1 year the260

variations of the stochastic and functional models are less than 4% (on average) for small amplitude coloured noise, whereas

when increasing the coloured noise amplitude the variations increase quickly (e.g., more than 20% for the large coloured noise
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Figure 1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the time series. The letters (A), (B) and (C) refer to the various scenarios with different coloured noise amplitudes.

amplitude corresponding to the scenario (C)) . We assume that part of the large variations of the coloured noise is wrongly

absorbed in the estimation of the functional model.

Table 2. Statistics on the error when fitting the ARMA and FARIMA model to the residual time series following the three scenarios

Error (mm) case A case B case C

K bcl < 0.1 mm/yrK/4 1mm/yrK/4 > bcl > 0.1 mm/yrK/4 1mm/yrK/4 < bcl < 3mm/yrK/4

ARMA 1.0 1.44 ± 0.01 1.74 ± 0.01 1.89 ± 0.04

1.5 1.46 ± 0.01 1.76 ± 0.04 1.95 ± 0.05

FARIMA 1.0 1.91 ± 0.02 1.85 ± 0.02 1.46 ± 0.02

1.5 1.89 ± 0.01 1.75 ± 0.03 1.59 ± 0.05

Now, Table 2 shows the standard deviation of the difference (Mean Square Error) between the ARMA /FARIMA model265

and the residuals (i.e. resi in Eq. (7)). We do not display any mean, because the fit of the models are done on the zero-

mean residuals. Note that the value is averaged over the 50 simulations, together with the variations of the length of the

time series described above. The table also displays the averaged correlation between the distribution of the residuals and

the Normal or Lévy α-stable distribution. In agreement with the theory, we can see that the ARMA model fits well residuals
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Table 3. Correlation between the distribution of the residuals and the Normal (Corr. Normal ) distribution or the Lévy α-stable distribution

(Corr. Lévy ) and the Anderson-Darling test (AD) following scenario A, B and C. The results of the AD test is the probability over the 50

trials of accepted null hypothesis. [Lévy ] or [Normal ] means the type of distribution uses as the null hypothesis

Corr. [0− 1] case A case B case C

K bcl < 0.1 mm/yrK/4 1mm/yrK/4 > bcl > 0.1 mm/yrK/4 1mm/yrK/4 < bcl < 3mm/yrK/4

Corr. Normal 1.0 0.93 ± 0.04 0.92 ± 0.06 0.92 ± 0.04

1.5 0.92 ± 0.04 0.91 ± 0.04 0.91 ± 0.05

Corr. Lévy 1.0 0.92 ± 0.05 0.94 ± 0.04 0.96 ± 0.03

1.5 0.93 ± 0.03 0.94 ± 0.03 0.95 ± 0.03

AD test [Normal] 1.0 0.98 ± 0.01 0.96 ± 0.01 0.94 ± 0.03

1.5 0.97 ± 0.01 0.96 ± 0.02 0.93 ± 0.04

AD test [Lévy] 1.0 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.03

1.5 0.98 ± 0.01 0.97 ± 0.02 0.97 ± 0.02

with small amplitude coloured noise (bcl), whereas with the increase of bcl the FARIMA model fits better than the ARMA270

model. Looking at Table 3 in terms of correlation, the Lévy α-stable distribution fits as good as the Normal distribution as

long as the distribution of the residuals is Gaussian without large tails or asymmetry. That is why the Anderson-Darling test

accepts the two distributions when the residual time series is Gaussian distributed without tails. In Section 2, we emphasized

that the family of Lévy α-stable distributions includes the Normal distribution with specific values for the parameters of

the characteristic function (see Eq. (5)). Thus, the results show that for the amplitude of coloured noise corresponding to275

scenario B (i.e. Intermediate - in Table 2 and 3), the two distributions show similar results. However, the scenario C can

potentially generate some aggregation processes in the simulated time series and introducing an asymmetry or large tails in the

distribution of the residuals, therefore it emphasizes that the family of Lévy α-stable distributions perform the best in modelling

the residuals’ distribution. To further support this result, we have added the Anderson-Darling test (Anderson and Darling ,

1952) in order to test for the large tails in the distribution of the residuals in Table 3. Following our previous development, we280

have used the Normal and the Lévy α-stable distributions as null hypothesis. The results show that this test detects mostly large

tails for the scenario C which corresponds to when the family of Lévy α-stable distributions perform better than the Normal

distribution.

Finally, those three scenarios support the theory where in the case of small amplitude coloured noise, the stochastic noise

properties are dominated by the Gaussian noise, hence defining a third process as a Gaussian Lévy . However, the increase of285

the coloured noise amplitude shows that it is much more difficult to discriminate between the fractional Lévy and the stable

Lévy . The results indicate that the third process can be modelled as a stable Lévy process when mostly the FARIMA fits the

residuals due to large amplitude long-memory processes, hence creating a heavy-tail distribution. This result is restrictive for

the application to geodetic time series.
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Figure 2. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the daily position GNSS time series corresponding to the stations DRAO, ASCO and ALBH . The statistics are estimated over the East

and North Coordinates

3.1.2 Real Time Series290

We process the daily position time series of three GNSS stations namely DRAO, ASCO and ALBH retrieved from the

UNAVCO website (UNAVCO , 2009). The functional model includes the tectonic rate, the first and second harmonic of the

seasonal signal, and the occurrence time of the offsets. This occurrence time is obtained from the log file of each station.

However, ALBH is known to record slow-slip events from the Cascadia subduction zone (Melbourne et al. , 2005). Thus,

we include the offsets provided by the Pacific Northwest Geodetic Array (Miller et al. , 1998). In this scenario we do not295

know which stochastic model could fit the best the observations. Thus, we use two models: the PL+WN together with the

FN +WN . Note that in appendices, we display the time series of some of the coordinates, together with the processing and

the fitting of the distributions.

Similar to the previous section, Figure 2 displays the percentage of variations of the stochastic and functional models av-

eraged over the East and North coordinates of each station. Note that the average over the three coordinates is displayed in300

the appendices (see Figure A1). Because the Up coordinate contains much more noise than the East and North coordinates

(Williams et al. , 2004; Montillet et al. , 2013), it amplifies the variation of both stochastic and functional models.

Looking at Figure 2, the first result is that for all the stations, there is a strong dependence with the selected noise model.

When selecting the power-law noise over the flicker noise model, there is an additional variable to estimate (i.e. the power-law
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noise exponent, K, in Eq. (4) ) within the stochastic noise model. This dependence is already discussed in previous studies (He305

et al. , 2017, 2019).

The second result is the large variations of the functional model compared with the stochastic model. To recall the simulation

results, the functional model partially absorbs the variations of the noise, i.e. the tectonic rate partially fits into the power-law

noise. In addition, to some extend atASCO, the sudden increase in the functional model variations at 0.5 year may be explained

due to the absorption of some of the noise with the second harmonic of the seasonal signal.310

When comparing the variations of the stochastic and functional models with amplitude below 20% for DRAO and ASCO,

the results agree with the definition of the fractional Lévy process defined in Table 1 as third process modelling the residuals of

the East and North components. The variations of the functional model associated with ALBH are much larger than the other

two stations, especially for the PL+WN model with variations up to 50%. Those large variations can be explained due to the

slow-slip events and the difficulty to model the post-seismic relaxations between two consecutive events He et al. (2019).315

Table 4. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations

ALBH , DRAO and ASCO based on the PL+WN stochastic noise model. Correlation between the distribution of the residuals and the

Normal (Corr. Normal ) and the Lévy α-stable distributions (Corr. Lévy ). The last column is the Anderson-Darling test. [Lévy ] or [Normal

] means the type of distribution uses as the null hypothesis (1 accepted, 0 rejected)

DRAO (err. in mm) ARMA (err. in mm) FARIMA Corr. Normal Corr. Lévy AD test [Lévy ] AD test [Normal ]

East 1.07 ± 0.01 1.10 ± 0.07 0.94 0.97 1 1

North 1.02 ± 0.02 1.01 ± 0.01 0.96 0.96 1 1

Up 2.32 ± 0.21 2.15 ± 0.30 0.97 0.98 1 1

ASCO

East 0.77 ± 0.01 0.77 ± 0.06 0.98 0.97 1 1

North 0.84 ± 0.03 0.73 ± 0.03 0.97 0.96 1 1

Up 2.71 ± 0.12 2.34 ± 0.17 0.92 0.96 1 0

ALBH

East 0.97 ± 0.06 0.87 ± 0.06 0.98 0.98 1 1

North 1.54 ± 0.03 1.06 ± 0.14 0.97 0.98 1 1

Up 4.36 ± 0.17 4.08 ± 0.25 0.92 0.95 1 0

Furthermore, Table 4 displays the statistics on the error when fitting the ARMA and FARIMA models to the residuals

estimated with the PL+WN stochastic noise model. Figure 3 shows the time series ASCO for the East coordinate using the

full time series. Note that Table A1 displays in the appendices the results when using the FN +WN stochastic noise model.

The FARIMA and ARMA models perform closely for all three stations. The large value for the Up coordinate is due to the

amplitude of the noise much larger for this coordinate than for the East and North components. In terms of correlating the320

distribution of the residuals with the Normal and the Lévy α-stable distribution, the correlation value is relatively the same for

all stations which indicates that the distribution of the residuals are Gaussian with the absence of large tails. The Anderson-

13



Darling test also confirms this result when the acceptance of the null hypothesis is the same for the two distributions. Those

results further support the selection of the fractional Lévy process as the third stochastic process. However, the study of real time

series also underlines the difficulty to characterize statistically this third stochastic process. Note that the Anderson-Darling325

test shows also that there are some variations for the up coordinate where the Lévy α-stable distribution is only selected. As

discussed above, the noise on the up coordinate is much larger than in the other coordinates, therefore it may create small tails.

3.2 Discussion on the Limits of Modelling with Lévy Processes

In Montillet and Yu (2015), it was assumed that the infinite variance of the residual time series comes from large tails of

the distribution (i.e heavy tails), generated by a large amplitude of coloured noise, outliers and other remaining geophysical330

signals. The same study implied that the values of the noise variance should be bounded, excluding extreme values. This is

an important assumption to decide whether or not (symmetric) Lévy α-stable distributions can be used to model any geodetic

time series. This section investigates how the variance due to residual tectonic rate or seasonal signal evolves with the length

of the residual time series (i.e. L epochs).

To recall Section 2.1 and the assumption on the noise properties, let us develop the close-form formula of the mean and335

variance of the residual time series. The residual time series is ∆s1 = [∆s1(t1), ...,∆s1(tL)] as defined in Eq. (7). The mean

<∆s1(L)> and variance σ2(L) are computed over L epochs (i.e. considering the L-th epoch defined as tL = Ldt, with the

sampling time dt equal 1 for simplification and without taking into account any data gaps in order to have a continuous time

series). Based on Papoulis and Unnikrishna Pillai (2002), one can estimate <∆s1(L)> in the cases of a remaining linear trend

such as:340

∆s1(ti) = arti + br +n(ti)

<∆s1(L)> =
1

L

L∑
i=1

(arti + br +n(ti))

= br + ar
(L+ 1)

2
+µC

' ar
L

2
+µC (8)

where ar and br are the amplitude and the intersect of the remaining tectonic rate. Note that the subscript r designates residual345

of a geophysical signal in the remaining. ' is the approximation for L� 1. The variance σ2(L) is equal to:

σ2(L) =
1

L

L∑
i=1

(∆s1(ti)− <∆s1(L)>)2

= a2r
(L+ 1)(2L+ 1)

6
− a2r

(L+ 1)2

4
+ b2r +

2ar
L
Cross(ar,n) +σ2

n(L)−µC(µC + ar(L+ 1))

' a2rL
2

12
+σ2

n(L) + b2r −µCarL (9)

Note that Cross(ar,n) is the cross term between arti and the noise term n(ti). Now, if we assume that the remaining350

seasonal signal Sr(t) is a pseudo periodic function at frequencies similar to the seasonal signal, hence taking the form
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Figure 3. GNSS time series for theASCO station (East coordinate) with thePL+WN model. A/ the time series together with the functional

model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual time series

and Lévy α-stable distribution (Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density function residual

time series and Normal distribution (corr. Norm. = 0.97 ).
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Sr(t) =
∑N
j=1 cr,j cos(djt) + er,j sin(djt). Thus, we can do the same estimation as above in the case of a remaining pseudo

periodic component in the residual time series, such as:

∆s1(ti) = Sr(ti) +n(ti)

<∆s1(L)> =
1

L

L∑
i=1

(Sr(ti) +n(ti))355

' δ+µC (10)

where δ is the average of the remaining seasonal signal. It is assumed to be independent of L and bounded such as a periodic

function. The variance is equal to:

σ2(L) =
1

L

L∑
i=1

N∑
j=1

c2r,j cos(djt)
2

+ e2r,j sin(djt)
2

+σ2
n(L)

+
2

L
Cross(Sr,n)− <∆s1(L)>2360

' σ2
n(L) +

N∑
j=1

c2r,j + e2r,j − (δ+µC)2 (11)

with Cross(Sr,n) is the cross term between Sr(t) and n(t). For all the cross terms, we assume that the deterministic signals

and the noise are completely uncorrelated, which is valid with white Gaussian noise (e.g., signal processing - Papoulis and

Unnikrishna Pillai (2002)). As previously discussed in Section 2.1, coloured noise is characterised by long-memory processes,

hence producing non-zero covariance with residual signals. Due to the varying amplitude of the coloured noise in geodetic365

time series with mixed spectra, the uncorrelated assumption is currently debated within the community (Herring et al. , 2016;

He et al. , 2017). Therefore, recent works have introduced a random component together with a deterministic signal: nonlinear

rate (Wang et al. , 2016; Dmitrieva et al. , 2017), non-deterministic seasonal signal (Davis et al. , 2012; Chen et al. , 2015; Klos

et al. , 2018). Thus, strictly speaking, the estimate σ2 should be seen as an upper bound.

The closed-form solution of the variance σ2(L) shows that the variance is unbounded in the case of a residual linear trend.370

If this residual trend originates from various sources not well-described in the functional and stochastic model (i.e. undetected

jumps, small amplitude random-walk component) of the geodetic time series, the amplitude of this trend should be rather small

(a < 1 mm/yr) considering the length of GNSS time series available until now (L < 30 years). Unless this nonlinear residual

trend has a large amplitude, a correction of the functional model must be done a posteriori due to possible anxiety between

the models and the observations. The same remarks can be applied to the variance of the remaining seasonal signal where a375

large amplitude would imply a misfit with the functional model. Thus, we expect rather small amplitude of the coefficients cr,j

and er,j (e.g., cr,j ∼ 0.1 mm to er,j ∼ 0.001 mm). Also, in the appendices, we have developed a similar formula to take into

account undetected offsets, where we show that the variance is also bounded. In this case, a large value would mean that one

or several large offsets have not been included in the functional model.
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4 Conclusions380

We have investigated the statistical assumptions behind using the fBm and the family of Lévy α-stable distributions in order

to model the stochastic processes within the residual GNSS time series. We model the residual time series as a sum of three

stochastic processes. The first two processes are defined from the stochastic model and assumptions on the noise properties of

the geodetic time series. The third process is assumed to belong to the Lévy processes. We then distinguish three cases. In the

case of a residual time series containing only short-term processes, the process is a Gaussian Lévy process. In the presence of385

long-term correlations and exhibiting self-similarity property, fractional Lévy processes can be seen as an alternative model

of using the fBm. Due to the linear relationship between the Hurst parameter and the fractional parameter of the FARIMA,

it is likely that the FARIMA can fit the residual time series under specific conditions (i.e. amplitude of the coloured noise).

The third case is the stable Lévy process, with the presence of long-term correlations, high amplitude aggregation processes or

random-walk.390

In order to check our model, we have simulated mixed spectra time series with various levels of coloured noise. We have

then developed a N -step methodology based on varying the length of the time series to study the variations of the stochastic

and functional models and also to model the distribution of the residuals. The results emphasize the difficulty to separate the

fractional Lévy process and the stable Lévy process mainly due to the absorption of the variations of stochastic processes by

the functional model, unless the distribution of the residuals exhibits heavy-tails.395

The discussion on the limits of modelling the stochastic properties of the residuals with the stable Lévy process underlines

that the infinite variance property can only be satisfied in the case of heavy-tailed distributions, resulting from 1/ the presence

of a large amplitude random-walk (e.g., temporal aggregation in financial time series), 2/ an important misfit between the

models (i.e. functional and stochastic) and the observations, which means that there is anxiety in the choice of the functional

model (e.g., unmodelled large jumps, large outliers). With longer and longer time series, one may be able to statistically400

characterize more precisely the third stochastic process. Finally, future work should investigate the autoregressive conditional

heteroscedasticity (ARCH) model applied to GNSS time series in order to model differently the stochastic properties (e.g.

non-stationarity beyond the mean).
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Appendix A: Estimation of the Variance in the Presence of Offsets

Here, we model the offsets in the time series as Heaviside step functions according to He et al. (2017). Following Section 3.2,410

the residual time series in presence of remaining offsets can be written such as:

∆s1(ti) =

ng∑
k=1

gkH(ti−Tk) +n(ti) (A.1)

Where H is the Heaviside step function; gk is the amplitude of the offset; Tk is the time of occurrence of the offset; ng is the

number of offsets; n is the noise. One can estimate the average over L epochs:

<∆s1(L)> =
1

L

L∑
i=1

(

ng∑
k=1

gkH(ti−Tk)) +µC(t)415

=
1

L

ng∑
k=1

gkH(tL−Tk) +µC(t) (A.2)

Note that µC(t) is the mean of the coloured noise, slowly varying in time (see Section 2.1). The variance is equal to:

σ2(L) =
1

L

L∑
i=1

(

ng∑
k=1

gkH(ti−Tk) +n(ti)− <∆s1(L)>)2

' σ2
n(L) +

1

L
(

ng∑
k=1

gkH(tL−Tk))2− (<∆s1(L)>)2 (A.3)

In the presence of small (undetectable) offsets ( gk < 1 mm), we can further assume that <∆s1(L)>∼ µC(t) and σ2(L)∼420

σ2
n(L)−µ2

C(t). For multiple large uncorrected offsets (i.e. noticeable above the noise floor), the variance can be large, but the

distribution of the residual time series should look like multiple Gaussian distributions overlapping each other corresponding

to the segments of the time series defined by those noticeable offsets. This case is not taken into account in our assumptions

summarized in Table 1, because it supposes that there is a large anxiety about the chosen functional model (i.e. obviously miss-

ing some large noticeable offsets well above the noise floor). Note that for a comprehensive discussion about offset detection,425

we invite readers to refer to Gazeaux et al. (2013) and He et al. (2017).

18



Appendix B: Additional Tables and Figures

Table A1. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations

ALBH , DRAO and ASCO based on the FN +WN stochastic noise model. Correlation between the distribution of the residuals and the

Normal (Corr. Normal ) and the Lévy α-stable distributions (Corr. Lévy ). The last column is the Anderson-Darling test. [Lévy ] or [Normal

] means the type of distribution uses as the null hypothesis (1 accepted, 0 rejected)

DRAO (err. in mm) ARMA (err. in mm) FARIMA Corr. Normal Corr. Lévy AD test [Lévy ] AD test [Normal ]

East 1.07 ± 0.01 1.00 ± 0.02 0.95 0.95 1 1

North 1.02 ± 0.02 1.32 ± 0.07 0.96 0.98 1 1

Up 2.33 ± 0.18 2.20 ± 0.32 0.94 0.96 1 1

ASCO

East 0.77 ± 0.01 0.75 ± 0.07 0.95 0.96 1 1

North 0.85 ± 0.03 0.74 ± 0.05 0.94 0.96 1 1

Up 2.18 ± 0.14 2.51 ± 0.21 0.93 0.94 1 1

ALBH

East 0.97 ± 0.04 0.86 ± 0.06 0.95 0.95 1 1

North 1.52 ± 0.08 1.08 ± 0.10 0.96 0.95 1 1

Up 3.83 ± 0.21 3.32 ± 0.15 0.93 0.95 1 0
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Figure A1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the daily position GNSS time series corresponding to the stations DRAO, ASCO and ALBH . The statistics are estimated over the East,

North and Up Coordinates
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Figure A2. GNSS time series for the DRAO station (North coordinate) with the FN +WN model. A/ the time series together with the

functional model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual

time series and Lévy α-stable distribution (Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density

function residual time series and Normal distribution (Corr. Norm. = 0.96).
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Figure A3. GNSS time series for the ALBH station (East coordinate) with the PL+WN model. A/ the time series together with the

functional model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual

time series and Lévy α-stable distribution (Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density

function residual time series and Normal distribution (Corr. Norm. = 0.98).
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Figure A4. GNSS time series for DRAO (Up coordinate) with the PL+WN model. A/ the time series together with the functional model,

B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual time series and Lévy

α-stable distribution(Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density function residual time

series and Normal distribution(Corr. Norm. = 0.97).
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