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Abstract. We make a physical-mathematical analysis of the implications that the presence of a large number of tiny bubbles

may have on the thin upper layer of the sea. In our oceanographic example the bubbles are due to an intense rain on an otherwise

non-stormy surface; if stormy, other processes would take the role. For the direct effect we have analyzed, the implications are

estimated non-significant when compared to other processes of the ocean. However, we hint to the possibility that our analysis

may be useful in other areas of research or practical application.5

1 Introduction

We describe a methodological approach to analyze the implications of the presence of a large number of gas bubbles on the

dynamics of an otherwise liquid substance. Granted the general approach, driven by our oceanographic background we focus

our attention on the ocean. Air bubbles are ubiquitous in the ocean and are known to be generated by intense stirring, wave10

breaking, as well as a by-product of organic processes and human activities. The residence time of small air bubbles can be

longer than the wave time scale because viscous effects will be comparable to buoyant forces on the bubbles. However, the

residence time of larger bubbles may be long as well due to intense stirring (see Tkalich and Chan (2002); Restrepo et al.

(2015); Moghimi et al. (2018)). For a specific application we zoom on the presence of air bubbles in the thin upper layer

of the ocean. This layer is crucial for the interaction between ocean and atmosphere, and it is also extremely complicated15

because of the large number of there acting processes at a very large range of different scales. Again driven by our professional

background, as a specific example we then focus on the attenuation of the shortest (capillary) water waves. Tiny as they are in

the immensity of the ocean, these waves are crucial for the quantification of all the exchanges between ocean and atmosphere,

in particular for the momentum and energy wind transfers to the ocean as input to wind waves, currents and turbulence. Not

obvious to the casual observer, but highly effective in practice, one of the main reasons for the presence of air bubbles in the20

upper ocean layer is rain. To the observer, the macroscopic effect of rain, if strong enough, is the smoothing of the very short

(capillary) waves that characterize the surface in stormy conditions. These ripples are easily seen when wind is blowing also
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on a small pond or puddle of water. Rain is known to smooth these ripples, and the matter became important with the launch of

the first satellite born scatterometers (see Weissmann and Bourassa (2011)). The lack of ripples on the surface strongly affects

the return signal to be measured on board, thence the interest in the matter. The associated change of sea surface roughness25

modifies also the interaction of wind with the sea (the wind tends ’to slide’ on the surface), strongly reducing the energy and

momentum input by atmosphere to the ocean. (See Cavaleri and L.Bertotti (2018) and Cavaleri et al. (2018) in this respect).

This has the macroscopic effect of strongly reducing the number of breakers, so the wrong mariners’ interpretation that ’rain

calms the sea.’ As a matter of fact long waves are hardly affected by the direct impact of rain. Indeed (see, among others,

Le Méhauté and Khangaonkar (1990) and Peirson et al. (2013)), extremely large rain rates are required to get a measurable30

attenuation also for short waves in the short distance of a suitably prepared wave tank.

In this paper we focus on a more subtle effect of rain that happens just below the surface, in the upper thin layer of the sea.

With a strong dependence on the size, hence falling speed, of the rain drops, small air bubbles are created when each drop

reaches the surface. We analyze how the characteristics of this upper layer are modified by the presence of bubbles. One of the

parameters to be estimated is 2νe, the dissipation coefficient in the wave damping term (of the form exp[−2νek2t]), where t35

is time, and k the wavenumber of the wave. Consistent with classical wave dynamics theory, we will connote 2νe as the wave

dissipation. We specify at once that we do not consider intense oceanic conditions, particularly in the sense of strong wind and

breakers at the surface. These breakers have been amply studied (see Deike et al. (2017) and Deike et al. (2016)). However, in

this case the bubble size distribution is very wide, with many large bubbles inducing turbulence (on top of the one due to wave

orbital motion (see Babanin (2006)), decaying into a larger number of smaller ones, and producing localized white surface40

patches, used to detect breakers with remote vision or sensing (refer to Buscombe and Carini (2019) and Hwang et al. (2008)).

Our target has a reduced scale and physical impact. We consider the case of rain on a non-stormy sea, in practice either

swell, or calm sea, or under a limited wind speed. Our analysis becomes meaningful, at least for sea waves, when the rain is

not composed mainly of large drops. Were this the case, at least for the aspect of our analysis dealing with the attenuation of

surface ripples, the kinematic, hence mechanical, effect of the falling drops would be more significant of the physical aspect45

we consider. In practice for the analysis of our example the image we have is of an intense rain with not too large, hence

many, drops impinging on a non-stormy sea surface. Just to frame the order of magnitude, under an intense rain storm, e.g.,

100 mm h−1, the rainwater flux is about 3× 10−6 m3 m−2 s−1. Assuming 4 mm diameter rain drops (volume 3× 10−8m3),

this translates into 100 drops per m2 per second (i.e., 1 per 10× 10 cm2 s−1). In Woolf (2001) it is suggested that under these

conditions air injected into the sea can be a few cm3 m−2 s−1. We make a physical-mathematical analysis of the ensuing50

processes. As expected, compared to other wave attenuation processes, the rain induced bubbles have a minor effect on the

surface waves. However, although stimulated by an oceanographic process, the general aspect of the proposed physical and

mathematical approach could be used in other areas of science or practical application. Without a specific analysis and with

just some thoughts, examples could be the physics of sea surface with buoyant organisms or droplets of oil, the free surface

dynamics of fizzy liquids and free surfaces populated by foam, or, mutatis mutandis, the injection of fuel in a combustion55

chamber.
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With this background the paper is structured as follows. In Section 2, we propose a model that suggests how the entrainment

of air leads to an increase of the effective viscosity of the upper ocean. We then use results from ocean acoustics (see Oguz and

Prosperetti (1990), Prosperetti and Oguz (1993)) to compute the distribution of air bubbles for a given rain rate (Section 3).

How changes of effective viscosity affect gravity waves is taken up in Section 4. It is found that under vigorous rains the air60

concentration due to air bubbles near the surface is capable of producing a damping effect akin to (idealized) contamination of

a free surface. Discussion of the results and conclusions and possible extensions of the present work appear in Sections 5 and

6.

2 The Dynamical Approach And The Presence Of Bubbles

To determine the impact of air bubbles on the thin upper level of the ocean, we perform homogenization on the Navier-Stokes65

equations. Homogeneization is a well-established technique in modeling transport in complex media endowed with statistical

homogeneity in the media, as viewed at large scales (see Babuska (1976); Bensousan et al. (1978); Cioranescu and Donato

(1999)). Einstein’s PhD thesis, derived expressions for enhanced diffusion based upon averaging the small scales (see Einstein

(1906)). In many circumstances there is a nuanced difference in these two approaches. The homogeneization averaging process

is performed on the dynamics, whereas in the Einstein averaging it is performed on the material itself. We assume that air70

bubbles are distributed uniformly in the transverse direction, within the upper ocean. For our specific example we explore how

the presence of bubbles affects the effective viscosity of the fluid averaged over a cell Ω, of size `3 (sub-wave scale), over

which the distributions of the density and viscosity of the combined water and air bubble mixture are statistically stationary.

The typical sub-wave speed is uΩ. The ratio of the bubble radii to the averaging `, defines for us a small parameter ε� 1.

Velocity and position are denoted by u = (u,v,w), r = (x,y,z), respectively. The free surface is denoted by η and z = 075

corresponds to the quiescent sea level. Gravity is gẑ and, irrelevant and for pure convenience, the vector ẑ points upwards,

along increasing z. Velocity is scaled by uΩ, length by `, time by `/uΩ, density by ρw, the density of water, pressure by ρwu2
Ω.

We then define a Reynolds number α= uΩ`/νw, where νw is the kinematic viscosity of water. We also define a Froude number

1/
√
γ = uΩ/

√
g`. The scaling leads to

αut +αu ·∇u =−αγ∇Π + ∇ · [D(r)Ξ], (1)80

∇ ·u = 0, (2)

where the stress tensor Ξ = ∇u + [∇u]>. D is the (linear) proportionality tensor.

Let R = (X,Y,Z) be the large-scale space variable, such that ∇ = ∇+ε∇R, and assume slow time ∂t = δ∂T . Also, assume

that Π(r,R,T ) = p−z+ε2p0 +ε4p1 + ..., u = ε(u0 +εu1 +ε2u2...) and η = α(η0 +εη1 +ε2η2...). The orders are α=O(ε2),

δ =O(ε), and γ =O(ε−1).85

In the absence of bubbles and in the smallest of continuity scales, D would be equal to νw, the kinematic viscosity of

the ocean. In what follows, we will derive a homogeneized version (see Caflisch et al. (1985)) of the dynamics equations,

appropriate at (larger) scales, relevant to wave dynamics, that shows that in the presence of bubbles the divergence of the stress
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tensor is modified. In the averaged variables, the term in the momentum associated with the stress tensor carries an effective

viscosity K. We explore if this change in the momentum balance comes with the presence of (rain induced in our example)90

gas bubbles in the near-surface ocean. The specific possibility we have explored is that the gas voids are created by the impact

of the rain drops on the ocean surface. If the rain is intense enough, the voids can cause a significant change in viscous forces,

within the momentum balance. Under the assumption that the subsurface air bubble distribution is spatially homogeneous, we

can then propose a periodic arrangement of sub-wave cells.

Collecting by orders in ε, the momentum equation is,95

– O(ε):

∇ · [D(r)Ξ0] = 0.

At this microscale, pressure gradients in the cell are negligible, as are variations in velocity within the cell. We are also

assuming stationary conditions. Upon integrating in r over and invoking periodicity it is clear that Ξ0 = Ξ0(R, t,T ) and

thus u0 = u0(R, t,T ).100

– O(ε2):

∇ · [D(r)Ξ1] + ∇ · [D(r)Ξ0] + ∇R · [D(r)Ξ0] = 0. (3)

The last term above is zero (we make use of ∇ · (∇u)T =∇(∇ ·u)). Integration by parts of (3) and using periodicity,

Ξ1(r,R, t,T ) =−Ξ0 +D−1(r)C(R, t,T ), where C is a tensor that is independent of r. Periodicity and integration in r

over Ω of every differential term in Ξ1 implies that105

0 =−ΩΞ0 +
∫

Ω

D−1(r)drC(R, t,T ). (4)

Hence, the tensor

C(R, t,T ) =


 1

Ω

∫

Ω

D−1(r)dr



−1

Ξ0.

Define the tensor

χ=


 1

Ω

∫

Ω

D−1(r)dr



−1

. (5)110

Returning to (3),

Ξ1 =−Ξ0 +D−1(r)χΞ0, (6)

thus,

∇R · (DΞ1) =−∇R · (D(r)Ξ0) + ∇R · (χΞ0). (7)
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Figure 1. (a) Full range, and (b) physical range, relative effective wave dissipation 2K/2νw, as a function of volumetric ratio of air to water

Θ, using (11) . Assumed here, the ratio Nν := νw/νa = 1/15.

– O(ε3): the momentum balance reads115

∂u0

∂T
+ u0 ·∇Ru0 + u0 ·∇u1 + ∇Rp0 =

+∇ · [D(r)Ξ1] + ∇R · [D(r)Ξ0]

+∇ · [D(r)Ξ2] + ∇R · [D(r)Ξ1]. (8)

Using (7) in the last term in (8) and averaging all quantities over Ω, leads to

∂u0

∂T
+ u0 ·∇Ru0 + ∇Rp0 = ∇R ·

{
χ
(∇Ru0 + [∇Ru0]>

)}
. (9)120

The homogenized incompressibility condition is

∇R ·u0 = 0. (10)

The tensor χ takes the value of the ocean, changing it when bubbles appear for whatever reason. In what follows we limit our-

selves to the simplest possible case: χ= νwδij , when bubbles are not present, where δij is the 3-space dimensional Kronecker

Delta. For our specific example we use (5) assuming a matrix consisting of a homogeneous concentration of air bubbles, with125

diffusion constant νa, in a background ocean fluid. In this very simple case, the enhanced value of χ becomes

χ=Kδij , K =
νw

1−Θ(1−Nν)
, (11)

whereNν := νw

νa
, and Θ connotes the volumetric ratio of air to water. For a given Θ> 0,Nν < 1 leads to an increased effective

diffusion, and, when Nν > 1, the effective dissipation is lower. For air or oil bubbles, Nν < 1.

With a fixed ratio Nν = 1/15, which is roughly the ratio of viscosities of water and air, Figure 1 shows how the effective130

dissipation coefficientK changes, as a function of the volumetric ratio Θ. The relationship is nearly linear for the small volume

fractions of the oceanic case. Equation (11) suggests that the effective viscosity of water with air bubbles will be different from
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(actually larger than) νw. If we adopt the specific form of χ as in (11), the dissipation term in (9) becomes K∇2
Ru0 when

bubbles are present and νw∇2
Ru0, when there are no air bubbles.

At this point we have developed a model for mass and momentum conservation at large spatio-temporal scales with a135

homogeneous microdiffusivity diffusivity tensor D(r). One can imagine that this model is relevant to phenomena that involve

a high density of trapped air, such as ocean foams. In the foam case the primary challenge is to apply homogeneization ideas

to derive stress conditions for a bubbly interface. For our example we are focusing on air entrainment due to rain and in the

following section we show how we couple the air entrainment to the rain.

3 Air Entrainment due to Rain140

3.1 Rain Distribution

The density of rain drops is assumed to follow the Marshall-Palmer distribution (see Marshall (1948)). The density Nr of rain

drops of radius r [m] per unit volume [number m−3 m−1] is

Nr(r,R) = 2N0 exp(−Λ(R)r), (12)

whereN0 = 8×106 m−3 m−1, Λ(R) = 8.2R−0.21×103 [m−1], andR [mm h−1] is the rain rate. UsingNr we can then define145

the drop rate density (DRD), which describes the rate of falling rain drops of radius r per surface area [number m−2 s−1 m−1].

Namely,

DRD(r,R) = wr(r)Nr(r,R), (13)

where wr is the terminal velocity of drops in the air (see Snyder (1990)). The terminal velocity is computed following the third

order polynomial estimates of Dingle and Lee (1972).150

3.2 Bubble Production

To complete our quantitative example we need to relate the number of bubbles in the upper layer of the ocean to rain. Falling

rain drops generate subsurface air bubbles in the neighborhood of the sea surface (see Prosperetti and Oguz (1993) for a

review). Small rain drops produce small air bubbles with a very narrow distribution of radii. Intermediate rain drops, with a

radius between 0.55 - 1.1 mm, were shown not to produce air bubbles (see Medwin et al. (1992)). For these the impinging155

rain drops do not have the kinetic energy necessary to produce the requisite conical crater and jetting of the sea surface that

engulfs air. Large rain drops, with radii larger than 1.1 mm, create a crater and a canopy on the sea surface, which by collapsing

produces a downward liquid jet at the bottom of the crater, followed by the generation of an air bubble. At high rain rates the

larger rain drops are responsible for the bulk of the gas injection, creating bubbles with a varied distribution of radii.

The production of air bubbles by rain can be measured by acoustic means (see Prosperetti and Oguz (1993)). Oguz and160

Prosperetti (1990) classify air bubble production by falling rain drops in two regimes. Small rain drops, of radii between 0.41
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and 0.55 mm, create type I air bubbles. These have a radius of 0.22 mm and are created at the bottom of a conical crater created

on the ocean surface by the impinging rain drop. These air bubbles have a narrow acoustic spectrum with a spectral peak at

14 Hz. The acoustic spectrum for these type I air bubbles was found to be insensitive to the rain rate. Medwin et al. (1990)

observed that when rain hits the ocean surface at an angle, owing to strong winds or very steep wave conditions, the acoustic165

spectrum peak shifts downward and there is a broadening of the spectrum at higher frequencies). The type I air bubbles do not

contribute significantly to total submerged gas volume and their contribution will be ignored in what follows.

Rain drops with a radius greater than 1.1 mm produce type II air resonant bubbles of varying radius. The relationship between

the rain drop radius r [m] and the peak acoustic emission frequency f0 [kHz] due to trapped air bubbles was empirically

determined (see Medwin et al. (1992)) as170

f0 =
160

8r3× 109
+ 0.6. (14)

The relation between the near surface air bubble radius a [m] and the peak acoustic emission follows from the Rayleigh-Plesset

equation (Leighton, 1994, p. 306). For large bubbles considered here, it can be simplified to Minnaert’s formula (see Minnaert

(1933); Plesset and Prosperetti (1977)),

f0 =
1

2πa× 103

√
3γP
ρ0

, (15)175

where γ = 1.4 is the ratio of specific heats of the bubble gas, P is the ambient pressure (surrounding the bubble), and ρ0 = 1030

kg m−3 the density of water. Close to the surface, the ambient pressure is approximately the surface pressure P = 1.01× 105

Pa and Equation (15) further simplified as f0 = 3.25× 10−3/a (see (Medwin and Clay, 1997)).

The relation between the entrained air bubble radius a(r) [m] and the incident rain drop radius r, for large rain drops, thus

reads, for r > 1.1× 10−3 m,180

a(r) = 3.25× 10−3

(
160

8r3× 109
+ 0.6

)−1

. (16)

As an example, rain drops of radius 1.1-2.3 mm produce type II air bubbles of radius 0.2-1.3 mm, respectively.

Small rain drops (r < 0.55 mm ) almost always produce type I air bubbles. However, this is not the case for the larger rain

drops. The distribution of the number of air bubbles produced, as a function of the rain drop radius r, was found by Medwin

et al. (1992), and is depicted in Figure 2 as a probability distribution.185

3.3 Bubble Distribution in the Wave Boundary Layer

Connecting us with what presented in Section II, by finding the bubble distribution in the wave boundary layer, we can estimate

the dimensionless volume fraction Θ. More precisely, the volume fraction reads Θ =
∫
V (a)N(a)da, for bubbles of radius a

with density N(a) [number m−3 m−1] that occupy a volume V (a) = (4/3)πa3. The aim of the final part of this section is to

link Θ to the rain precipitation rate.190

The bubble distribution N(a) can be described by an advection-diffusion equation (see Woolf and Thorpe (1991) and refer-

ences therein, and a similar case for oil drops, see Moghimi et al. (2018)). This equation describes a balance between advection
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Figure 2. Probability of air bubble creation by large rain drops as a function of rain drop radius r (from Medwin et al. (1992)).

of bubbles by the vertical fluid velocity, attenuation of bubble density (i.e. diffusion, which includes the shrinking of bubble

radius during their lifetime, see Merlivat and Memerly (1983)), the production of bubbles by rain and a sink term that captures

the loss of air bubbles bursting at the surface or dispersed by oceanic turbulence. Solutions of the advection-diffusion equa-195

tion necessitate specification of the velocity and the dispersion, generating non-stationary descriptions that might also include

mixing due to wave turbulence (see Restrepo et al. (2015); Moghimi et al. (2018)).

In the following, the advection-diffusion equation is simplified to estimate the air bubble concentration in a thin layer close

to the surface, similarly to those in Keeling (1993). First, we assume that the air bubble concentration can be linearly related

to a bulk bubble distribution (i.e. averaged over the thin layer), which we thus define as ceN(a). Second, a steady state is200

considered, in which the bulk bubble distribution follows from a balance between the incoming bubble flux due to rain and the

outgoing bubble flux due to upward bubble advection and bursting at the surface:

wr(r)Pr(r)Nr(r) = ceW [a(r)]N [a(r)], (17)

where Pr(r) is the probability of production of an air bubble by a rain drop of radius r (see Figure 2), and W (a) is the upward

vertical ascent speed of bubbles of radius a. From this equation, the bubble distribution readsN(a) = wrNr(r,R)Pr/[ceW (a)].205

We assume as an estimate for the bubble upward speed W (a) the form

W (a) =
√

τ

aρ0
+ ga (18)

where τ = 72.8×10−3 N m−1 is the air-sea surface tension (see Clift et al. (1978), p. 172). This form, predicted in Mendelson

(1967), is valid for ellipsoidal bubbles with radius greater than 0.65 mm, whose upward path is not rectilinear.

We have introduced a free positive parameter ce ≤ 1 which accounts for an increase in bubble density with respect to the210

bulk estimate of (17), due to two factors. Firstly, bubbles are injected at a finite depth by rain drops, and this depth may vary

with bubble size (see Ho et al. (2000)). Secondly, a homogeneous air bubble distribution in the layer between the depth of

injection and the surface is a coarse approximation, as accumulation of bubbles near the surface can be highly complex due to

buoyant forces, damping, and the background turbulence (see e.g. Merlivat and Memerly (1983)). Hence the factor ce can first

be interpreted as a depth scaling parameter accounting from differences between the bulk estimate and the non-homogeneous215

bubble distribution N . Second, the effective vertical velocity of bubbles can be significantly lower than (18), up to 60% due to
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Figure 3. Relative effective wave dissipation 2K/2νw, as a function of rain rateR for two values of the unconstrained parameter ce: 1 (solid)

and 0.1 (dashed). Grey shadings correspond to a variation of air diffusivity between 10−5 m s−2 (dashed line) and 10−4 m s−2, for a fixed

ce = 0.1. The figure highlights that the model outcomes are more sensitive to the parameter ce than to the value of the diffusivity νa.

the presence of contaminants at the bubble surface (see Clift et al. (1978), Fig. 7.3). Hence the factor ce is also to be interpreted

as a decrease in the bubble vertical velocity, which then reads ceW (a).

Making use of (13), N(a) = (DRD×Pr)(r)/ceW (a). The volumetric ratio Θ =
∫
V (a)N(a)da, for bubbles of radius a

with density N(a) that occupy volume V (a) = (4/3)πa3 then reads220

Θ(R) =

2.3×10−3∫

1.1×10−3

4π
3
a(r)3 (DRD×Pr)(r)

ceW (a)
dr, (19)

where the limits of integration encompass the volumetric contributions of type II bubbles.

Figure 3 shows that the sensitivity of the model to changes in νw/νa is much lower than to changes in the bubbles volume

fraction, i.e. the tuning parameter ce. The grey shadings are the intervals obtained by varying the air viscosity inside air bubbles

(νa) from 10−5 to 10−4 (the lower and upper part of the shadings respectively), for a fixed ce of 0.1. The resulting sensitivity225

of the relative wave dissipation is much lower, by one order of magnitude, than the one obtained varying ce (the full line

corresponds to ce = 1 and νa = 10−5). (Obviously, for this estimate we consider the actual kinematic viscosities of water and

air). The obtained values of volume fraction are consistent with data from laboratory experiments of Ho et al. (2000) (see their

Figure 7), which suggests that for rain rates of 114 mm h−1 the volume fraction near the air/water interface is between 10−6

and 10−5, corresponding to ce of the order of 0.1. The increase in effective wave damping due to the injection of air, at least230

as estimated by simple considerations, is small compared to the values reported in the experiments in Peirson et al. (2013)

(and in Tsimplis (1992)) a further proof of what stated in the Introduction, i.e. that, for large rain rates and, as in the wave

tank experiments, large rain drops, the mechanical effect is dominant for the immediate, albeit limited, attenuation of water

waves. In these, using very high rain rates, the effective dissipation was found to increase by 3-10 times when rain is present,

as compared to without rain.235
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4 The Effect of Rain on Gravity and Capillary Waves

The derivation of infinitesimal amplitude gravity waves dynamics, starting from Navier Stokes, appears in Lamb (1916),

Article 349, hence we will be brief. We revert back to dimensional quantities in what follows. The solution u0 satisfies the

linear version of (9) and (10) and the two stress conditions at the surface. Namely,

K[∂Xv0 + ∂Y u0] = 0, at z = 0, (20)240

−∂Tφ+ (g− τ

ρw
∂XX)η0 + 2K∂Y v0 = 0, at z = 0, (21)

where φ is the velocity potential and ρw is the density of water, and time (at wave scales) is T . The solution of the system,

assuming a vanishing velocity at depth, is

φ=AekZ+i(kX−σT ) exp[−2Kk2T ],

ψ =
2Kk2A

σ
ekZ+i(kX−σT ) exp[−2Kk2T ],245

η =
kA

σ
ei(kX−σT ) exp[−2Kk2T ], (22)

where ψ is the streamfunction and σ the angular frequency. The solution (22) represents infinitesimal progressive waves

traveling in the X direction. The dispersion relation for the waves is

σ2 = gk+
τ

ρw
k3.

The effective wave dissipation 2K appears in the exponential factor exp[−2Kk2T ]. When the rainstorm is sufficiently intense250

(but the rain drops not too large), the wave dissipation 2K will change from 2νw to a higher value, depending on how much air

is injected by the impinging rain drops (see Figure 1). As it can be surmised from (22), increases in the wave dissipation 2K

lead to higher wave attenuation. The effect is prominent in the high frequency components. The dependence of the effective

wave dissipation on the rain rate, via (11), is depicted in Figure 3.

5 Discussion and conclusions255

Stimulated by an oceanographic problem, we have developed a physical-mathematical approach to analyze how the presence

of a large number of small bubbles affects the characteristics of the containing liquid. Granted the general method and having

specified the necessary conditions for its application, we need to focus on a specific example. As expected, given also our

background, this has been found in the presence of air bubbles in the thin upper layer of the ocean. Following a logical sequence

of arguments, we first derived the (upscaled) equations for mass and momentum conservation, along with the equations for260

wave motions for averaged material and dynamic quantities. The upscaled velocity and pressure are averages over subwave

scales over which the material with heterogeneities assume a stationary distribution.

The effective diffusivity calculation requires that we know the kinematic diffusivity tensor, D(r) and, although we feature

the role played by air bubbles in water, this diffusivity tensor should account for all sources of small scale heterogeneity. Under
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homogeneization conditions, the model yields a dynamic equation that has a higher effective diffusion constant. In particular265

we looked at the increased kinematic viscosity of the air-water mixture and how this can affect the damping of surface waves.

Again as expected from obvious general considerations, the matter can be of any significance only for the very shortest waves,

in practice in the capillary regime. Of course we need a source for the tiny (not large) uniformly distributed bubbles. This is

rain, for our purpose relevant when abundant, but as many relatively small drops (large drops lead to splashing and turbulence

in the upper layer, a different process).270

Many simplifications were made in the formulation of the rain/wave model. The model has three critical parameters: the

rain rate R, the air-to-water volume fraction Θ (and the flux strength parameter associated with the fluxes of air bubbles in the

layer which in turn affects the volume fraction) and the ratio of diffusivities of water and air, Nν . Given the approximations,

the basic result is that the volume fraction of air to water would have to be exceptionally large for the effect to be significant,

when compared to other damping mechanisms, such as turbulence induced dissipation due to the impact of large rain drops.275

However, granted the limited effect in the analyzed case, larger amounts of bubbles or, mutatis mutandis, of buoyant organic or

hydrocarbons, are certainly possible. In these cases, that we have not explored, the damping effect can indeed be relevant and,

within the specified approximations, quantifiable following the procedure we have outlined.

There are several processes where the mixture of a liquid containing a large number of bubbles or droplets has different

characteristics. Examples are a frothy ocean, whatever the content, cavitating flows as it happens in ship propellers or in280

pressurized flows. One example we came across while preparing this article describes how foams are used to ameliorate

unwanted ship motion due to sloshing of their holding tank contents (see Denkov et al. (2005); Kim et al. (2007)), as well

as the stabilizing effect of free surface sloshing of bubbly drinks (see Cappello et al. (2015)). These foamy cases are not

trivial extensions of the homogeneisation procedure we present in this paper. Consideration of chemistry, compressible effects,

topology, is required and the intricate formulation of stress conditions at the interfaces would need to be derived. Nevertheless285

the procedure may play a constructive role in formulating a mean field description of the dissipation and consequent attenuation

of the foam on sloshing motions.

6 Summary

We itemize here below our main conclusions:

– 1. The presence of tiny air bubbles, that we assume uniformly distributed, changes the physical characteristics of the290

containing liquid, affecting momentum balances.

– 2. A general methodology has been developed to approach this, or similar, kind of problems.

– 3. We have applied the method to estimate the increased effective kinematic viscosity of the upper tiny layer of the sea

in presence of rain, hence derived the changes to the effective wave damping due to tiny air bubbles in the upper sea.

– 4. The increased wave damping affects mainly capillary waves. This specific aspect turns out negligible compared to295

other processes affecting wave damping.
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– 5. We have cited a number of situations where, granted certain conditions, our approach can be applied for a general

estimate of the overall increased dissipation.
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