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Abstract. We make a physical-mathematical analysis of the implications that the presence of a large number of tiny bubbles
may have on the thin upper layer of the sea. In our oceanographic example the bubbles are due to an intense rain on an otherwise
non-stormy surface: if stormy, other processes would take the role. For the direct effect we have analyzed, the implications are
estimated non-significant when compared to other processes of the ocean. However, we hint 1o the possibility that our analysis

5 may be useful in other areas of research or practical application.

amo't_’j Mﬂﬂ

1 Introduction cpeald oo Lo e >'/M;’(’( other processes

We describe”a methodological approach to analyze the implications of the presence of a large numbgt of gas bubbles on the
dynamics of an otherwise liquid substanee
10 uupeamia(on the OCEHI}) Air bubbles are ubiquitous in the ocean and are known 1o be generated by intense stirring, wave

ies. The residence time of small air bubbles can be

breaking, ¢
—— longer than the wave time scale because viscous elfects will be comparable 1o buoyant forces on the bubbles, Hewever—the
vave Lime scal

(see Tkalich and LImn_P()().‘)chﬂn.po et al.

-

(2015); Moghlml et al. (2018)). W\u 200m On=the-presence-of air bubbles in the thin upper Iayu
. o P . "dum‘h

15 of the ocean. S S CRUG ac stiean OCean s i -

backgretndasaspecificexample we then focus on the atenuation of the shortest (capillary) water waves. Tinyas they are in-
the-immensity-of-the-oeead, these waves are crucial for the quantification of all the exchanges between ocean and atmosphere,
in particular for the momentum and energy wind transfers to the ocean as input to wind waves, currents and turbulence. Net—

20 >, one of the main reasons for the presence of air bubbles in the

upper ocean layer is rain. Fe-he-abserver, the macroscopic effect of rain, if strong enough, is thg smoothing of the very short

(capillary) waves that characterize the surface in stormy conditions. "Fhesesipplesareeasty-seomwhemwind-s-blowing also

L§ 7Z/L€ wave Frtpe scale /s
From seconds ve ciys /I
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en-a-sattpond or puddie of water. Ret-is-erowilosmeoth-thesesipples, andthe matter became important with the launch of

the first satellite born scatterometers (see Weissmann and Bourassa (2011)). The lack of ripples on the surface strongly affects
the return signal to be measured on board, thence the interest in the matter. The associated change of sea surfuce roughness
modifies also the interaction of wind with the sea (thewmd-tends—tostde—onmthesurfaee), strongly reducing the energy and

momentum input by atmosphere to the ocean. (See Cavaleri and L.Bertotti (2018) and Cavaleri et al. (2018) in this respect).

.

c41ms the sea.” As a matter of factlong waves arc hardly-aftected-by-the-direet-mpact-of-rain—tndeed-(see-wmong others,

Le Méhauté and Khangaonkar (1990) and Peirson et al. (2013)), extremely large rain rates-are required to get-a-measurable
<attenuation also for short waves in the short distance of i suitably prepared wave Lanks

In this paper we focus on a more subtle effect of rain that happens just below the surface, in the upper thin layer of the sea.

With a strong dependence on the size, hence falling speed. of the rain drops, small air bubbles are created when each drop
reaches the surface. We analyze how the characteristics of this upper layer are modified by the presence of bubbles. One of the
parameters to be estimated is 2u,, the dissipation coelficient in the wave dump}ng term (of lhc‘li'orm exp|—2v.k-t]), where t
is time, and & the wavenumber of the wave. Consistent with classical wave dynamics theory, we will connote 21, as the wave
dissipation. We-speetfy-at-oncethat we do not consider intense oceanic conditions, particularly in the sense of strong wind and

breakers at the surface. These breakers have been amply studied (see Deike et al. (2017) and Deike et al. (2016)). However, in

hi§ of 7 usc the bubble size distribution is very wide, with many large bubbles inducing turbulence (on top of the one due to wave

orbital motion (see Babanin (2006)), decaying into a larger number of smaller ones, and producing localized white surface
patches, used to detect breakers with remote vision or sensing (refer to Buscombe and Carini (2019) and Hwang et al. (2008)).

Our target has a reduced scale and physical impact. We consider the case of rain on a non-stormy sed, in practice either
swell, or calm sea, or under a limited wind speed. Our analysis becomes meaningful, at least for sea waves, when the rain is
not composed mainly of large drops. is dealing with-the attepuation of
surface-ripples, the kinematic, hencemechanical, ef
we-consider. da-practive for the analysis of-eurextnple-the-tmage we have m-of an intense rain with not 1o large, hence
many, drops impinging on a non-stormy sea surface. Just to frame the order of magnitude, under an intense rain storm, e.g.,
100 mm h ', the-rammwarer-flux-isabout 3 7 TO~ 4 mmr—%s"". Assuming 4 mm diameter rain drops (volume 3 ~ 10 %m?),
this translates into 100 drops per m* per second (Fetpertot-em=s—L-In Woolf (2001) it is suggested that under these

conditions air injected into the sea can be a few cm® m s~ ', We make a physical-mathematical analysis of the ensuing

processes. As expected, compared to other wave atienuation processes, the rain induced bubbles have a minor effect on the
surface waves. However-altheugh stimutated by G OCeanographic process;-the general-aspectof the proposed physieal-and
mathematieal-approach-could-be-used-in-other arcas-ol-science-or practicab-apphcatron.-Without-a specific_analysis-and-with
jest-some-thoughts, exampies-cotdd-bethe physics of sea surface with buoyant organisms.or-droplets-of-otl-the-free surface

dynamics of fizzy liquids and-free surfaces-populated by-foam, or, mutafis mutandis, the mjection-of-fuel-in-a_combustion
chamber— ~oe speeu (w‘ fve
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With this background the paper is structured as follows. In Section 2, we propose a model that suggests how the entrainment
of air leads to an muregsi 3[ the e‘t/fww of the upper ocean. We then use results from ocean acoustics (see Oguz and
Prosperetti (1990), Pmspereﬁt and Oguz (1993)) to compute the distribution of air bubbles for a given rain rate (Section 3).
60 How changes of effective viscosity affect gravity waves is taken up in Section 4. It is found that under vigorous rains the air
concentration due to air bubbles near the surface is capable of producing a damping effect akin to (idealized) contamination of
a free surface. Discussion of the results and conclusions and possible extensions of the present work appear in Sections 5 and
o #omcyeuelﬁ can Gll/ be aSSc//‘/?/ o -ﬂgl"fﬂ/
[ager wer€ becobles resvele . FHD> hagpoes
wd of a T (aygT 7eco

2 The Dynamical Approach And The Presence Of Bubbles jze
65 To determine the impact of air bubbles on the thin upper level of the ocean, we perform homogenization on the Navier-Stokes
equations. Homogeneization is a well-established technigue in modeling transport in complex media endowed with statistical
homogeneity in the media, as viewed at large scales (see Babuska (1976): Bensousan et al. (1978); Cioranescu and Donato
(1999)). Einstein’s PhD thesis, derived expressions for enhanced diffusion based upon averaging the small scales (see Einstein
(1906)). In many circumstances there is a nuanced difference in these two approaches. The homogeneization averaging process
70 is performed on the dynamics, whereas in the Einstein averaging it is performed on the material itself. We assume that air

| *bubbles are distributed uniformly in the transverse direction, within the upper ocean. For our specific example we explore how

5 the presence of bubbles affects the effective viscosity of the fluid averaged over a cell (2, of size ¢ (sub-wave scale), over
which the distributions of the density and viscosity of the combined water and air bubble mixture are statistically stationary.
The typical sub-wave speed is ug,. The ratio of the bubble radii 10 the averaging ¢, defines for us a small parameter ¢ < 1.

75 Velocity and position are denoted by u = (u,v,w), r = (r,y, z), respectively. The free surface is denoted by 7 and z = 0
corresponds to the quiescent sea level. Gravity is gz and, irrelevant and for pure convenience, the vector Z points upwards,
along increasing =. Velocity is scaled by ug, length by £, ime by £ /uq,, density by p,,, the density of water, pressure by p,,ug,.
We then define a Reynolds number o« = g, ( /v, where v, is the Kinematic viscosity of water. We also define a Froude number

1//7 = ugn//gl. The scaling leads to

80 ou +au-Vu=-oyVIl+ V- [D(r)Z], (1)
vV ou=\0, (2)

where the stress tensor = = Vu+ [Vu|". D is the (lincar) proportionality tensor.
Let R = (.X, Y, Z) be the large-scale space variable, such that ¥V = ¥V + ¢V g, and assume slow time J; = d9p. Also, assume
that II(r, R, T") = p—z+€*po+€*pr + ..., u = e(uo + euy +2uy...) and 4 = a (g +em +€%1)2...). The orders are a0 = O(e?),
85 d=0(e),andy=O(e ).
In the absence of bubbles and in the smallest of continuity scales, D would be equal to v, the Kinematic viscosity of
'Jaj(e‘i —theoeean~In what follows, we will derive a homogeneized version (see Caflisch et al. (1985)) of the dynamics equations,

appropriate at (larger) scales, relevant to wave dynamics, that shows that in the presence of bubbles the divergence of the stress
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tensor is modified. In the averaged variables, the term in the momentum associated with the stress tensor carries an effective
90 viscosity /. We explore if this change in the momentum balance comes with the presence of (rain induced in our example)

\red.umc‘mﬂ’

gas bubbles in the near-surface ocean. t
olthe-rain-diops-omthe-oeean-surfaee. If the rain is intense enough, the voids can cause a significant change in viscous forces,
withirrtie Tonentom batamee. Under the assumption that the subsurface air bubble distribution is spatially homogeneous, we
can then propose a periodic arrangement of sub-wave cells. oe Yo what d‘i"“" -

95 Collecting by orders in ¢, the momentum equation is,
- Ole):
V- [D(r)Z0] =0

At this microscale, pressure gradients in (&Q are negligible, as are variations in velocity within the cell. We are also
assuming stationary conditions. Upon integrating in ¢ over and invoking periodicity ittseleasthal =, = =)(R,(,7') and

100 thus up = wp(R, ¢, 7). ~eod alot ‘l+j ; P‘S explain ~fhe th.\«,q(

Fov ]
- O(e?): 4 1 e auvik of eadh teim

V [D(r)Z:|+ V- |D(r)Zp) + Vr - [D(r)Zg| = 0. 3)

The last term above is zero (we make use of V- (Vu) '/V(V -u)). Integration by parts of (3) and using periodicity,

2 (r,R,t,T) = —Zy + D' (r)C(R,¢t,T'), where (/,r(\ a tensor that is independent of r. Periodicity and integration in r
105 over {2 of every differential term in =Z; implies lh;p”/
/
0=—-Q=+ /D“‘(r)drC(R,t,’l"). P 4)
0 ;//

Hence, the tensor
1

OR,t,T)= é/o*umr =0.
Define the tensor
—

1
110 = G/D l(r)dr : 5)

Returning to (3),

1= -Zo+ D (r)xZ0, (6)
thus,
VR‘(DEl)z _VR‘(D(T)ELI}‘+“V|('(\Eu). (7)
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Figure 1. (a) Full range, and (b) physical range, relative effective \\';lvc\dis.slp:lll()n 21/ 21y, as a function of volumetric ratio of air to water

O, using (11) . Assumed here, the ratio N, := 1, /v, = 1/15. amet g“s 7

— O(e*): the momentum balance reads

Ju
(T)’I_:J +ug - Vrug +ug- Vu, + Vepy =
+V - [D(P)EI] + VR [D(P)Eul

+V - [D(r)Z3] + Vi - [D(r)Z,]. (8)

Using (7) in the last term in (8) and averaging all quantities over {2, leads 1o

Ju v
E)’—I:J +ug Veug+ Vepo = Ve - {x (Vrug + [Viru) )} (9)
9
The homogenized incompressibility condition is . Vu."‘"‘ :
h
it € seosi™) |
VR Uy = U. mela“"'"g ww'l q‘s" (IO)

The tensor y takes the value of the ocean, changing it when bubbles appear for whatever reason. In what follows we limit our-
B S A e

selves to the simplest possible case: x = 17,0, ;, when bubbles are not present, where 4;; is the 3-space dimensional Kronecker

Delta. For our specific example we use (5) assuming a matrix consisting ol a homogeneous concentration of air bubbles, with

diffusion constant v, in a background ogearrtiuid. In this very simple case, the enhanced value of x becomes

- - U'U
x:l((s,_,, K —m“ ()

where N, :=
diffusion, and, when &, > 1, the effective dissipation is lower. For air or oil bubbles, N, < 1.

%'“' and © connotes the volumetric ratio of air to water. For a given © > 0, N,, < 1 leads to an increased effective

With a fixed ratio N, = 1/15, which is roughly the ratio of viscosities of water and air, Figure | shows how the effective
dissipation coefficient K changes, as a function of the volumetric ratio ©. The relationship is nearly linear for the small volume

fractions of the oceanic case. Equation (11) suggests that the effective viscosity of water with air bubbles will be different from
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(actually larger than) v,,. If we adopt the specific form of y as in (11), the dissipation term in (9) becomes KV#u, when
bubbles are present and 1',,.V'f‘ ug, when there are no air bubbles.
135 At this point we have developed a model for mass and momentum conservation at large spatio-temporal scales with a

homogeneous microdiffusivity diffusivity tensor D(r). One can imagine that this model is relevant to phenomena that involve
ehinaclleldi MO B L0

a high density of trapped air, such as ocean foams. In the foam case the primary challenge is to apply homogengization ideas
to derive stress conditions for a bubbly interface. For our example we are focusing on air entrainment due to rain and in the
l0 Cerve SLress ¢
> ‘ : : : . ) N /
following section we show how we couple the air entrainment to the rain. W svih a case awse Z/ wil)
certaily a TWo - fayers nec )
> — >
be necoled . T ol nol 03‘;‘
140 3 Air Entrainment due to Rain the preses ocl/ 2rec el il be

AN vaked
3.1 Rain Distribution

The density of rain drops is assumed to follow the Marshall-Palmer distribution (see Marshall (1948)). The density N,. of rain

drops of radius » [m] per unit volume [number m P s

N,(r,R) = 2Ngexp(—A(R)r), (12)

145 where Ny =8x10m 4 m 1, A(R) =82k "2" « 10° [m '], and i [mm h '] is the rain rate. Using N, we can then define
the drop rate density (DRD), which describes the rate of falling rain drops of radius » per surface area [number m ? s~ m~!'].

Namely,
DRD(T,R)=HJ,—(1')N,»('I',R). (13)

where w,. is the terminal velocity of drops in the air (see Snyder (1990)). The terminal velocity is computed following the third

150 order polynomial estimates of Dingle and Lee (1972).
3.2 Bubble Production

To complete our quantitative example we need to relate the number of bubbles in the upper layer of the ocean to rain. Falling
rain drops generate subsurface air bubbles in the neighborhood of the sea surface (see Prosperetti and Oguz (1993) for a
review). Small rain drops produce small air bubbles with a very narrow distribution of radii. Intermediate rain drops, with a

155  radius between 0.55 - 1.1 mm, were shown not o produce air bubbles (see Medwin et al. (1992)). For these the impinging
rain drops do not have the Kinetic energy necessary (o produce the requisite conical crater and jetting of the sea surface that
engulfs air. Large rain drops, with radii larger than 1.1 mm, create a crater and a canopy on the sea surface, which by collapsing
produces a downward liquid jet at the bottom of the crater, followed by the generation of an air bubble. At high rain rates the
larger rain drops are responsible for the bulk of the gas injection, creating bubbles with a varied distribution of radii.

160 The production of air bubbles by rain can be measured by acoustic means (see Prosperetti and Oguz (1993)). Oguz and

Prosperetti (1990) classify air bubble production by falling rain drops in two regimes. Small rain drops, of radii between 0.41

0



165

170

175

180

185

190

i)

https://doi.org/10.5194/npg-2020-22 i | . ¢ “
Preprint. Discussion started: 24 June 2020 ,
(© Author(s) 2020. CC BY 4.0 License.

and O.SMMr bubbles. These have a radius of (.22 mm and are created at the bottom of a conical crater created
on the ocean surface by the impinging rain drop. These air bubbles have a narrow acoustic spectrum with a spectral peak at
14 Hz. The acoustic spectrum for these type I air bubbles was found to be insensitive to the rain rate. Medwin et al. (1990)
observed that when rain hits the ocean surface at an angle, owing 1o strong winds or very steep wave conditions, the acoustic
spectrum peak shifts downward and there is a broadening of the spectrum at higher frequencies). The type | air bubbles do not
contribute significantly to total submerged gas volume and their contribution will be ignored in what follows.

Rain drops with a radius greater than |.1 mm produce rype /1 air resonant bubbles of varying radius. The relationship between
the rain drop radius r [m] and the peak acoustic emission frequency f; [kHz| due to trapped air bubbles was empirically
determined (see Medwin et al. (1992)) as
fo= % + 0.6. (14)
The relation between the near surface air bubble radius « [m| and the peak acoustic emission follows from the Rayleigh-Plesset
equation (Leighton, 1994, p. 306). For large bubbles considered here, it can be simplified to Minnaert’s formula (see Minnaert
(1933); Plesset and Prosperetti (1977)),

1 3P

“ 2ma~ 108\ po S

]

fo

where v = 1.4 is the ratio of specific heats of the bubble gas, /7 is the ambient pressure (surrounding the bubble), and pg = 1030
kg m~* the density of water. Close to the surface, the ambient pressure is approximately the surface pressure P = 1.01 x 10°
Pa and Equation (15) further simplified as f = 3.25 » 10~ /a (see (Medwin and Clay, 1997)).

The relation between the entrained air bubble radius a(r) [m] and the incident rain drop radius r, for large rain drops, thus
reads, forr > 1.1 x 10~% m,

" -1

a(r)=3.256x107% (8,%()1(,9 r‘u.u) . (16)
As an example, rain drops of radius 1.1-2.3 mm produce rype I1 air bubbles of radius 0.2-1.3 mm, respectively.

Small rain drops (r < 0.55 mm ) almost always produce type I air bubbles. However, this is not the case for the larger rain
drops. The distribution of the number of air bubbles produced. as a tunction of the rain drop radius ., was found by Medwin

etal. (1992), and is depicted in Figure 2 as a probability distribution.
3.3 Bubble Distribution in the Wave Boundary Layer

Connecting us with what presented in Section 11, by finding the bubble distribution in the wave boundary layer, we can estimate
the dimensionless volume fraction ©. More precisely, the volume fraction reads © = [V (a)N (a)da, for bubbles of radius a
with density N (a) [number m—* m~"'] that occupy a volume V(a) = (4/3)ma®. The aim of the final part of this section is to
link © to the rain precipitation rate.

The bubble distribution N (a) can be described by an advection-diffusion equation (see Woolf and Thorpe (1991) and refer-

ences therein, and a similar case for oil drops, see Moghimi et al. (2018)). This equation describes a balance between advection
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Figure 2. Probability of air bubble creation by large rain drops as a function of rain drop radius » (from Medwin et al. (1992)).

of bubbles by the vertical fluid velocity, attenuation of bubble density (i.e. diffusion, which includes the shrinking of bubble

radius during their lifetime, see Merlivat and Memerly (1983)), the production of bubbles by rain and a sink term that captures

195  the loss of air bubbles bursting at the surface or dispersed by oceanic turbulence. Solutions of the advection-diffusion equa-

tion necessitate specification of the velocity and the dispersion, generating non-stationary descriptions that might also include
mixing due to wave turbulence (see Restrepo et al. (2015): Moghimi et al. (2018)).

In the following, the advection-diffusion equation is simplified o estimate the air bubble concentration in a thin layer close

to the surface, similarly to those in Keeling (1993). First, we assume that the air bubble concentration can be linearly related

200 to a bulk bubble distribution (i.e. averaged over the thin layer), which we thus define as ¢.N(a). Second, a steady state is

considered, in which the bulk bubble distribution follows from a balance between the incoming bubble flux due 1o rain and the

outgoing bubble flux due to upward bubble advection and bursting at the surface:
wy (1) Pr(r) N, (1) = c.Wla(r)|N[a(r)], (17)

where P, (r) is the probability of production of an air bubble by a rain drop of radius r (see Figure 2), and W (a) is the upward
205 vertical ascent speed of bubbles of radius a. From this equation, the bubble distribution reads N (a) = w,. N, (r, R) P, /[c.W (a)].

We assume as an estimate for the bubble upward speed W (a) the form

Wi(a) = \ /;ﬁ + ga (18)

where 7= 72.8 x 10 % N m~ ! is the air-sea surface tension (see Clift et al. (1978), p. 172). This form, predicted in Mendelson
(1967), is valid for ellipsoidal bubbles with radius greater than 0.65 mm, whose upward path is not rectilinear.
210 We have introduced a free positive parameter ¢, < 1 which accounts for an increase in bubble density with respect o the fow/ p
bulk estimate of (17), due to two factors. Firstly, bubbles are injected at a finite depth by rain drops, and this depth may vary o
with bubble size (see Ho et al. (2000)). Secondly, a homogeneous air bubble distribution in the layer between the depth of
injection and the surface is a coarse approximation, as accumulation of bubbles near the surface can be highly complex due to
buoyant forces, damping, and the background turbulence (see e.g. Merlivat and Memerly (1983)). Hence the factor ¢, can first
215 be interpreted as a depth scaling parameter accounting from differences between the bulk estimate and the non-homogeneous

bubble distribution N. Second. the effective vertical velocity of bubbles can be significantly lower than (18), up to 60% due to

> S-c»\t‘\. /qru«'{‘vco\ (_U(u'd be gn.,c.‘“\j
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Figure 3. Relative effective wave dissipation 2/ 2w, as a tunction of rain rate /7 for two values of the unconstrained parameter c,.: | (solid)
and 0.1 (dashed). Grey shadings correspond 1o a variation of air diffusivity between 1077 m s~ (dashed line) and 10~ m s~ 2, for a fixed

¢. = 0.1. The figure highlights that the model outcomes are more sensitive (o the parameter ¢, than to the value of the diffusivity v,.

the presence of contaminants at the bubble surface (see Clift et al. (1978), Fig. 7.3). Hence the factor ¢, is also to be interpreted
as a decrease in the bubble vertical velocity, which then reads ¢, W (a).
Making use of (13), N(a) = (DRD » P,.)(r)/c. W (a). The volumetric ratio © = [V (a)N(a)da, for bubbles of radius a

with density N (a) that occupy volume V(a) = (4/3)ma® then reads

2.3x1073

4 Wy An  (DRDx P,)(r) ,

L _/ 3 ) W (19)
1.1x10-3

where the limits of integration encompass the volumetric contributions of type 11 bubbles.

Figure 3 shows that the sensitivity of the model to changes in v, /v, is much lower than to changes in the bubbles volume
fraction, i.e. the tuning parameter c.. The grey shadings are the intervals obtained by varying the air viscosity inside air bubbles
(v,) from 1079 to 10~ (the lower and upper part of the shadings respectively), for a fixed ¢, of 0.1, The resulting sensitivity
of the relative wave dissipation is much lower, by one order of magnitude, than the one obtained varying ¢, (the full line
corresponds to ¢, = 1 and v, = 1079). (Obvrowsty: for this estimate we consider the actual Kinematic viscosities of water and
air). The obtained values of volume fraction are consistent with data from laboratory experiments of Ho et al. (2000) (see their

" the volume fraction near the air/water interface is between 109

Figure 7), which suggests that for rain rates of 114 mm h
and 107°, corresponding 1o ¢, of the order of 0.1. The increase in effective wave damping due to the injection of air, at least
as estimated by simple considerations, is small compared to the values reported in the experiments in Peirson et al. (2013)
(and in Tsimplis (1992)) a further proof of what stated in the Introduction, i.e. that, for large rain rates and, as in the wave
tank experiments, large rain drops, the mechanical effect i1s dominant for the immediate, albeit limited, attenuation of water
waves. In these, using very high rain rates, the effective dissipation was found to increase by 3-10 times when rain is present,

as compared to without rain.
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4  The Effect of Rain on Gravity and Capillary Waves

The derivation of infinitesimal amplitude gravity waves dynamics, starting from Navier Stokes, appears in Lamb (1916),
Article 349, hence we will be brief. We revert back to dimensional quantities in what follows. The solution uy satisfies the

linear version of (9) and (10) and the two stress conditions at the surface. Namely,

K[Oxvg+ dyugl =0, atz=0, (20)

—Ord+ (g — ,)ia,\-,\ o +2Kdyvy =0, atz=0, (21)

where ¢ is the velocity potential and p,, is the density of water, and time (at wave scales) is 7' The solution of the system,

assuming a vanishing velocity at depth, is
¢ = AeFZHi kX —=oT) oy 2K KT,

2KK2A ., e "
=By 2 ek Z+ilkX—aT) oy p[—2K k2T],
o

n= ﬂ(_"(k‘\. —~aT) ex[)[—QI\'AfZ'I'I. ‘22)
g

where 1 is the streamfunction and o the angular frequency. The solution (22) represents infinitesimal progressive waves
traveling in the X' direction. The dispersion relation for the waves is
2= gk+—k>.
P
The effective wave dissipation 2/ appears in the exponential factor exp[—2Kk*T'|. When the rainstorm is sufficiently intense
(but the rain drops not too large), the wave dissipation 2K will change from 2u,, to a higher value, depending on how much air
is injected by the impinging rain drops (see Figure 1). As it can be surmised from (22), increases in the wave dissipation 2K
lead to higher wave attenuation. The effect is prominent in the high frequency components. The dependence of the effective

wave dissipation on the rain rate, via (11), is depicted in Figure 3.
5 Discussion and conclusions
Stimulated by an oceanographic problem, we have developed a physical-mathematical approach to analyze how the presence

of a Iarge number of small bubbles affects the characteristics ol the containing liquid. Granted-the-generat-method-and-having

> . tons-for ation, we need TO TOTUS O speetie-example—As-expec Ve also our
baekground. this has been found in the presence of air bubbles in the thin upper layer of the .KMAMWW

ef_arguments, we first derived the (upscaled) equations for mass and momentum conservation, along with the equations for
wave motions for averaged material and dynamic quantities. The upscaled velocity and pressure are averages over subwave
scales over which the material with heterogeneities assume a stationary distribution.

The effective diffusivity calculation requires that we know the Kinematic Mtcnsur, D(r) and, although we feature

the role pliyed by air bubbles in water, this diffusivity tensor should account for all sources of small scale helcm%cnelly. Under
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265 homogeneization canditions, the model yields a dynamic equation that has a higher effective diffusion constant. In particular
—_— - ————

we looked at the inckeased Kinematic viscosity of the air-water mixture and how this can affect the damping of surface waves,
_}Iain as expected fro obvious general considerations, the matter can be of any significance only for the very shortest waves,
in practice in the capillary regime. Od-eousse-weTeTs o source for shetiny (mettareey uniformly distributed bubbles. Fhis.is
rain, fereurpurpese-relevant when abundant. but as many relatively-smath-drops (large drops lead to splashing and turbulence

270 in the upper layer, a different process). Pls - axp lein betley - C Seepe)

wove Many simplifications were made in the formulation of the rain/wave model. The model has three critical parameters: the
,w/wj 7@ Pl rain rate R, the air-to-water volume fraction © (and the flux strength parameter associated with the fluxes of air bubbles in the
VP layer which in turn affects the volume fraction) and the ratio of diffusivities of water and air, N,,. Given the approximations,
the basic result is that the volume fraction of air to water would have to be exceptionally large for the effect to be significant,
275\ when compared to other damping mechanisms, such as turbulence induced dissipation due to the impact of large rain drops. ” |
ve

ondea

However, granted the limited effect in the analyzed case, larger amounts of bubbles or, mutatis mutandis, of buoyant organic o
hydrocarbons, are certainly possible. In these cases, that we have not explored, the damping effect can indeed be relevant and,
within the specified approximations, quantifiable following the procedure we have outlined.
There are several processes where the mixture of a liquid containing a large number of bubbles or droplets has different
280 characteristics. Examples are a frothy ocean, whatever the content, cavitating fows as it happens in ship propellers or in
pressurized flows. One example we came across while preparing this article describes how foams are used to ameliorate
unwanted ship motion due to sloshing of their holding tank contents (see Denkov et al. (2005); Kim et al. (2007)), as well
as the stabilizing effect of free surface sloshing of bubbly drinks (see Cappello et al. (2015)). These foamy cases are not \\J\
trivial extensions of the homogeneisation procedure we present in this paper. Consideration of chemistry, compressible effects, \é}o) ,\b
285 topology, is required and the intricate formulation of stress conditions at the interfaces would need to be derived. Nevertheless \o
the procedure may play a constructive role in formulating a mean field description of the dissipation and consequent aucnuation/ yL

of the foam on sloshing motions. cousider " Lﬂ
fe oV ( uﬁ .
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We itemize here below our main conclusions: uJDLJJ be - qf)PV'e Cecle
290 — 1. The presence of tiny air bubbles, that we assume uniformly distributed, changes the physical characteristics of the

containing liquid, affecting momentum balances.

2. A general methodology has been developed 1o approach this, or similar, kind of problems.

— 3. We have applied the method to estimate the increased effective kinematic viscosity of the upper tiny layer of the sea

in presence of rain, hence derived the changes 1o the effective wave damping due to tiny air bubbles in the upper sea.

4. The increased wave damping affects mainly capillary waves. This specific aspect turns out negligible compared to

other processes affecting wave damping. \.«.&{ Sheown cTM-\d fativel y
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