
Dear Editor, Journal of Nonlinear Processes in Geophysics

We would like to thank you for the letter dated 25/09/2020, and the opportunity to resubmit a
revised copy of this manuscript. We would also like to take this opportunity to express our
thanks to the reviewers for the positive feedback and helpful comments for correction or
modification.

We believe it  has resulted in an improved revised manuscript. The manuscript has been
revised to address the reviewer comments, which are appended alongside our responses to
this letter.

We very much hope the revised manuscript is accepted for publication in the Journal of
Nonlinear Processes in Geophysics.

Sincerely yours,
Cristian Lussana on behalf of the authors

In the interactive discussion, our answers to the reviewers comments include point-by-point
responses to the reviews. A list of the relevant changes follows: 

● Better description of the data transformation. We have revised Secs. 2.1 - 2.2 and
3.3. Adjusted the algorithm and the tables with the mathematical notations. We have
Introduced  the  scalar  variables  \alpha_D  and  \beta_D  defining  the  gamma
distribution used in the data transformation. We have Introduced the vectors \alpha^A
and \beta^A defining the gamma distributions of hourly precipitation at grid points.
The coefficient previously denoted with \alpha is now \nu. Fig 8 is new and it serves
two purposes: It shows an example of data transformation and it supports our choice
of using a Gamma cumulative distribution function in the transformation.

● The “stabilization  factor”  has  been  renamed as  “inflation  factor”  and it  has  been
introduced and described in a better way than before.

● Reviewer 2 suggested to refer to EnKF instead of EnOI, because EnOI makes use of
a time-lagged ensemble. We have modified the statement when we are referring to
EnOI  to point  out  the differences.  However,  we still  make a connection  between
EnSI-GAP and EnOI, since the EnSI-GAP equations are more similar to EnOI than
EnKF.

● We have tried to implement the suggestion of Reviewer2 on renaming the “scale
matrix” as the “static covariance matrix”. However, the term “static covariance matrix”
is rather general and it may generate confusion. For instance, the observation error
covariance matrix is also a static covariance matrix. In addition, the scale matrix may
change every hour and in this sense it is not static. To avoid confusion, we should
have replaced the “scale matrix”  with “static background error covariance matrix”,
which  is  too  long.  We  keep  the  term  “scale  matrix”  and  we  have  added  a
disambiguation on the fact that we are not referring to “spatial scales”.

● Working assumptions introduced in Sec.  2.2.2.  We have almost  entirely  rewritten



Sec. 2.2.2 and adapted Sec. 2.2.3. The working assumptions are first formulated as
general principles, then at the end of the section they are rewritten in more precise
mathematical terms with links to the corresponding equations. We have also linked
the different parts in the text where they are used.

● Section 3. Results. This section has been almost completely rewritten. It has been
also better organized in subsections. The figures referring to this section have been
modified and new figures have been added. Two figures have been removed (Figs.
13 and 14).

● We discuss other ways to determine the background error covariance matrices, in
addition to those used in the manuscript, in Sec 3.1.6. The reader could also find the
other methods in the literature we cite. 

● Section 3.1 has been completely rewritten, new results have been added, Figures
have been re-plotted. The same simulation as before has been considered, moreover
we have extended the considerations to 100 simulations similar to the one presented.
This way, our conclusions are more general, since they are not related to a single
case. The interpretation of results is more quantitative and less qualitative, thanks to
the  introduction  of  two  scores  MSESS  and  CRPS.  The  session  is  now  better
organized, because of the subdivision into subsections. Figs. 2-6 are either new or
re-done. Table 3 summarizes the statistics of results over 100 simulations.

● Figures 8 and 10 (ex-figures 6 and 8) have been modified to emphasize the region
where the observations are not available. In Fig. 8 we have also added the Sogn og
Fjordane box. Fig 10 has isolines.
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Abstract. Hourly precipitation over a region is often simultaneously simulated by numerical models and observed by multi-

ple data sources. An accurate precipitation representation based on all available information is a valuable result for numerous

applications and a critical aspect of climate
:::::::::
monitoring. Inverse problem theory offers an ideal framework for the combination

of observations with a numerical model background. In particular, we have considered a modified ensemble optimal interpo-

lation scheme, that takes into account deficiencies of the background. An additional source of uncertainty for the ensemble5

background has been included.
::::

The
:::::::::
deviations

:::::::
between

:::::::::::
background

:::
and

:::::::::::
observations

:::
are

::::
used

:::
to

:::::
adjust

:::
for

::::::::::
deficiencies

:::
of

::
the

:::::::::
ensemble. A data transformation based on Gaussian anamorphosis has been used to optimally exploit the potential of the

spatial analysis, given that precipitation is approximated with a gamma distribution and the spatial analysis requires normally

distributed variables. For each point, the spatial analysis returns the shape and rate parameters of its gamma distribution. The

Ensemble-based Statistical Interpolation scheme with Gaussian AnamorPhosis (EnSI-GAP) is implemented in a way that the10

covariance matrices are locally stationary and the background error covariance matrix undergoes a localization process. Con-

cepts and methods that are usually found in data assimilation are here applied to spatial analysis, where they have been adapted

in an original way to represent precipitation at finer spatial scales than those resolved by the background, at least where the

observational network is dense enough. The EnSI-GAP setup requires the specification of a restricted number of parameters

and specifically the explicit values of the error variances are not needed, since they are inferred from the available data. The15

examples of applications presented
:::
over

:::::::
Norway

:
provide a better understanding of the characteristics of EnSI-GAP. The data

sources considered are those typically used at national meteorological services, such as local area models, weather radars

and in-situ observations. For this last data source, measurements from both traditional and opportunistic sensors have been

considered.
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1 Introduction

Precipitation amounts are measured or estimated simultaneously by multiple observing systems, such as networks of automated

weather stations and remote sensing instruments. At the same time, sophisticated numerical models simulating the evolution

of the atmospheric state provide a realistic precipitation representation over regular grids with spacing of a few kilometers. An25

unprecedented amount of rainfall data is nowadays available at very short sampling rates of one hour or less. Nevertheless, it

is common experience within national meteorological services that the exact amount of precipitation, to some extent, eludes

our knowledge. There may be numerous reasons for this uncertainty. For example, a thunderstorm triggering a landslide may

have occurred in a region of complex topography where in-situ observations are available but not exactly on the landslide spot,

weather radars cover the region in a patchy way because of obstacles blocking the beam, and numerical weather prediction30

forecasts are likely misplacing precipitation maxima. Another typical situation is when an intense and localized summer thun-

derstorm hits a city. In this case, several observation systems are measuring the event and more than one numerical model may

provide precipitation totals. From this plurality of data, a detailed reconstruction of the event is possible, provided that the data

agrees both in terms of the event intensity and on its spatial features. This is not always the case and sometimes meteorologists

and hydrologists are left with a number of slightly different but plausible scenarios.35

The objective of our study is the precipitation reconstruction through the combination of numerical model output with ob-

servations from multiple data sources. The aim is that the combined fields will provide a more skillful prediction
::::::::::::
representation

than any of the original data sources. As remarked above, any improvement in the accuracy and precision of precipitation can

be of great help for monitoring the weather, but not only that. Snow- and hydrological- modeling will benefit from improve-

ments in the quality of precipitation, which is one of the atmospheric forcing variables (??). Climate applications that make40

use of reanalysis (e.g. ??) or observational gridded datasets (e.g. ?), as for instance the evaluation of regional climate model (?)

or the calculation of climate indices (?), may also benefit from datasets combining model output and observations, as shown

by ?. Besides, the intensity-duration-frequency curve (IDF curve) derived from precipitation datasets are widely used in civil

engineering for determining design values and the quality of the reconstruction of extremes has a strong influence on IDF

curves (?).45

The data source considered in our study are precipitation ensemble forecasts, observations from in-situ measurement stations

and estimates derived from weather radars. Numerical model fields are available everywhere and the quality of their output

is constantly increasing over the years. The weather-dependent uncertainty is often delivered in the form of an ensemble. At

presentfor data-sparse regions, such as in the mountains, the quality ,
:::::::::::
assessments

::::
using

:::::::::::
hydrological

::::::
models

:::::
have

:::::
shown

::::
that

::::
input

:::::
from

::::::::
numerical

::::::
models

:::::
"may

:::
be

:::::::::
comparable

:::
or

::::::::
preferable

:::::::::
compared

::
to

:::::
gauge

:::::::::::
observations

::
to

::::
drive

::
a
:::::::::
hydrologic

::::::
and/or50

::::
snow

::::::
model

::
in

:::::::
complex

:::::::
terrain"

::
as

:::::
stated

::
by

::::
(?)

::::
based

:::
on

::::
their

::::::
review

::
of

:::::
recent

::::::::
research.

::::
One

::
of

:::
the

:::
key

::::::::
messages

:::
by

::
?

:
is
::::
that

::::::::
numerical

::::::
models

::::::::
represent

:::::::::::
precipitation

:::::
fields

::
at

:::::::::
ungauged

::::
sites

::
in

:
a
:::::::

realistic
::::

and
:::::::::
convincing

:::::
way,

::
as

::
it

::
is

:::::::::::
demonstrated

:::
by

::
the

::::::::
accuracy

::
of

::::
their

:::::
total

:::::
annual

::::
rain

:::
and

::::::::
snowfall

::::::::
estimates,

::::::::::::::
notwithstanding

:::
that

:::::
daily

::
or

::::::::
sub-daily

:::::::::
aggregated

:::::::::::
precipitation

::::
fields

::::
may

::::::::::::
misrepresents

:::::::::
individual

::::::::::
precipitation

:::::::
events,

::::
such

::
as

:::::::
storms.

::
In

:::
the

:::::
work

::
by

::
?,

::
it
:::
has

:::::
been

:::::::::::
demonstrated

::::
that

:::
the

::::::::::
combination

:
of numerical model output in modeling rain and snow is comparable or even better than those of observational55

2



networks (?)
:::
and

::::::
in-situ

:::::::::::
observations

:::
do

:::::::
improve

:::
the

::::::::::::
representation

::
of

::::::::
monthly

:::::::::::
precipitation

:::::::::::
climatologies

::::
over

::::::::
Norway,

::
if

::::::::
compared

::
to

::::::
similar

:::::::
products

:::::
based

:::
on

::::::
in-situ

::::::::::
observations

:::::
only.

::
?

:::
have

:::::::::::
successfully

::::
used

:::::::
monthly

::::::::::
precipitation

::::::::::::
climatologies

::
to

:::::::
improve

:::
the

:::::::::::
performances

:::
of

::::::::
statistical

:::::::::::
interpolation

:::::::
methods

:::
in

:::::::
complex

::::::
terrain

::::
over

:::::::
Norway. However, because model

fields represent areal averages, the characteristics of simulated precipitation depend significantly on the model resolution, as

remarked for global and regional reanalyses over the Alps by ?. In particular, ? demonstrates that increasing resolution via60

downscaling improves precipitation representation, though they also point out that assimilating observations at high resolution

in numerical models is important for reconstructing high-threshold/small-scale events. The sources of model errors and their

treatments in data assimilation (DA) schemes have been studied extensively. For instance, in the introduction of the paper by

?, a list of model errors is reported together with several references to other studies addressing them. Regarding precipitation

forecasts, model errors often encountered in applications are (?): systematic under- or overestimation of amounts; spatial errors65

in the placement of events; underestimation of uncertainty. With reference to spatial analysis, we consider observed precipita-

tion data to be more accurate than model estimates. In fact, model outputs are evaluated in their ability to reconstruct observed

values. The most important disadvantage of observational networks is that often they do not cover the region under considera-

tion, moreover observations may be irregularly distributed in space and present missing data over time. Each observational data

source has its own characteristics that have been extensively studied in literature and that we will address here only superficially,70

since our objective is the combination of information. For example, rain gauges are possibly the most accurate precipitation

measurement available at present (?), apart from when the observations are affected by gross measurement errors, as they have

been defined by ?. There are multiple sources of uncertainty for gauge measurements (?), such as catching and counting (?).

The undercatch of solid precipitation due to wind (?) is a significant problem in cold climates. Radar-derived estimates are

affected by several issues, such as blocking and non-uniform attenuation of the radar beam due to obstacles along the path,75

especially in complex terrain. A statement in the Introduction of the book by ? is illuminating in this sense ”To put a weather

radar in a mountainous region is like pitching a tent in a snowstorm: the practical use is obvious and large — but so are the

problems”. In addition, weather radars do not directly measure precipitation, instead they measure reflectivity, which is then

transformed into precipitation rate. The transformation itself contributes to increasing the uncertainty of the final estimates.

Another important aspect of observational data that will be treated only marginally here is data quality control, in this work we80

will consider only quality controlled observations. To sum up, in-situ data are the more accurate observations of precipitation

we will consider. Then, radar estimates, which are calibrated using gauges as references, are less accurate than in-situ data.

They are spatially correlated with the actual precipitation and they are affected by less uncertainty than the simulations carried

out by numerical models. Numerical model output is the basic information available everywhere and the one we consider more

uncertain.85

Inverse problem theory (?) provides the ideal framework for the combination of observations with a numerical model back-

ground. The marginal distribution of the precipitation analysis is assumed to be a gamma distribution and we aim at estimat-

ing its shape and rate parameters for each grid point. The
:::::
gamma

::::::::::
distribution

::
is
::::::::::

appropriate
:::
for

:::::::::::
representing

:::::::::::
precipitation

::::
data,

::
as

::::::::
reported

::::
e.g.

:::
by

:
?
:
.
::::
The

::::::::::
formulation

:::
of

:::
the

:
statistical interpolation method presented is similar to the ensemble

Optimal Interpolation (?)
::::::
analysis

::::
step

::
of

:::
the

:::::::::
ensemble

:::::::
Kalman

::::
filter

::
?

::
or

:::
the

::::::::
ensemble

:::::::
optimal

:::::::::::
interpolation

::::::::
(EnOI ?)

::::
with90
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::
the

:::::::::
important

:::::::::
difference

:::
that

:::::
EnOI

:::::
uses

:
a
::::::::::
time-lagged

:::::::::
ensemble,

:::::
while

:::
the

:::::::::
ensemble

:::::::::
considered

::
in

::::
our

::::::
method

::
is
:::::

made
:::

of

:::::::
members

:::
of

:
a
::::::
single

:::::
NWP

:::::
model

::::
run. The hourly precipitation over the grid is regarded as the realization of trans-gaussian

:
a
::::::::::
transformed

::::::::
Gaussian

:
random field (?). The Gaussian anamorphosis (?) transforms data such that precipitation better com-

plies with the assumptions of normality that are required by the analysis procedure. The non-stationary covariance matrices

are approximated with locally stationary matrices, as in the paper by ?. In addition, the background error covariance matrix95

includes a
::::
static

::::
(i.e.

:::
not

:::::::::::::
flow-dependent)

:
scale matrix that accounts for deficiencies in the background ensemble as in hybrid

ensemble optimal interpolation (?). The term scale matrix has been used by ?. The
::
In

:::
the

::::::::
following,

:::
the

:
ensemble-based statis-

tical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation is referred to in the following with the

acronym of
:
as

::::::::::
EnSI-GAP.

:::::
From

::
the

:::::
point

::
of

:::::
view

::
of

::::::::::
geostatistics,

:
EnSI-GAP

:::
can

::
be

:::::::
thought

::
of

::
as

::::::::::
performing

:
a
:::::::
Kriging

:::
(?)

::
of

::
the

::::::::
Gaussian

::::::::::
transformed

:::::::::
ensemble

:::::
mean,

::::
then

::::::::
retrieving

:::
the

:::::::::
probability

::::::::::
distribution

::
of

:::::::::::
precipitation

::
at

:::::
every

::::::
location

:::::
using

::
a100

::::::::
predefined

:::::::
Gamma

::::::::::
distribution.

The innovative part of the presented approach to statistical interpolation is in the application to spatial analysis of concepts

that are usually encountered in DA. The formulation of the problem is adapted to our aim, which is improving precipitation

representation instead of providing initial conditions for a physical model, as it is for DA. In the literature, there are a number

of articles describing similar approaches applied to precipitation analysis, such as ???. However, our statistical interpolation105

is the first one, that we know of
::
to

:::
our

:::::::::
knowledge, where the background error covariance matrix is derived from numerical

model ensemble and where Gaussian anamorphosis is applied directly to precipitation data. An additional innovative part of

the method is that EnSI-GAP does not require the explicit specification of error variances for the background or observations,

as most of the other methods (?). In fact, those error variances are often difficult to estimate in a way that is general enough to

cover a wide range of cases. Our approach is to specify the reliability of the background with respect to observations, in such110

a way that error variances can vary both in time and space. An additional innovative part of our research is that we consider

opportunistic sensing networks of the type described by ? within the examples of applications proposed.
::::::
Citizen

:::::::
weather

::::::
stations

:::
are

::::::
rapidly

:::::::::
increasing

::
in

:::::::::
prevalence

::::
and

:::
are

::::::::
becoming

::
an

::::::::
emerging

::::::
source

::
of

:::::::
weather

:::::::::::
information,

::
as

::::::::
described

:::
by

:
?
:
.

Thanks to those networks, for some regions we can rely on an extremely dense spatial distribution of in-situ observations.

The remaining of the paper is organized as follows. Sec. 2 describes the EnSI-GAP method in a general way, without115

references to specific data sources. Sec. ?? presents the results of EnSI-GAP applied to three different problems: an idealized

situation
:::::::::
experiment, then two examples where the method is applied to real data, such as those mentioned above. The results

are discussed in Sec. ??.

2 Methods: EnSI-GAP, Ensemble-based statistical interpolation with Gaussian anamorphosis for precipitation

We assume that the marginal probability density function (PDF) for the hourly precipitation at a point in time follows a gamma120

distribution (?). This marginal PDF is characterized through the estimation of the gamma shape and rate for each point and

hour.
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Precipitation fields are regarded as realizations of locally-stationary, trans-Gaussian
:::::::::
transformed

::::::::
Gaussian

:
random fields,

where each hour is considered independently from the others. Trans-Gaussian
:::
The

::::
time

::::::::
sequence

:::
of

:::::::::
EnSI-GAP

:::::::::
simulated

::::::::::
precipitation

:::::
fields

::
do

:::::
show

:::::::
temporal

:::::::::
continuity

::::::
because

::::
this

:
is
:::::::
present

::
in

:::
both

:::::::::::
observations

:::
and

::::::::::
background

:::::
fields.

:::::::::::
Transformed125

:::::::
Gaussian

:
random fields are used for the production of precipitation observational gridded datasets by ?. A random field is said

to be stationary if the covariance between a pair of points depends only on how far apart they are located from each other.

Precipitation totals are nonstationary random fields because the covariance between a pair of points in space depends not

only on the distance between them but it varies also when considered in different directions
::
of

:::
the

:::::::::::::
nonstationarity

::
of

:::::::
weather

:::::::::
phenomena

::
or

::::::
simply

:::
the

::::::::
influence

::
of

::::::::::
topography. In our method, precipitation is locally modeled as a stationary random field.130

The covariance parameter estimation and spatial analysis are carried out in a moving-window fashion around each grid point.

A similar approach is described by ? and the elaboration over the grid can be carried out in parallel for several grid points

simultaneously.

A particular
:::
An implementation of EnSI-GAP is reported in Algorithm 4. The mathematical notation and the symbols used

are described in two tables: Tab. 1 for global variables and Tab. 2 for local variables, which are those variables that vary from135

point to point. As in the paper by ?, upper accents have been used to denote local variables. If X is a matrix, Xi is its ith

column (column vector) and Xi,: is its ith row (row vector). The Bayesian statistical method used in our spatial analysis is

optimal for Gaussian random fields. Then, a data transformation is applied as a pre-processing step before the spatial analysis.

The introduction of a data transformation compels us to inverse transform the predictions of the spatial analysis back into the

original space of precipitation values.140

:::
The

::::
data

:::::::::::::
transformation

::::::
chosen

::
is

::
a
::::::::
Gaussian

::::::::::::
anamorphosis

:::
(?),

::::
that

:::::::::
transforms

::
a
:::::::
random

:::::::
variable

::::::::
following

::
a
:::::::
gamma

:::::::::
distribution

::::
into

:
a
::::::::

standard
::::::::
Gaussian.

:::
In

:::
the

:::::::::::::
implementation

:::::::::
presented,

:::::::
constant

::::::
values

::
of

:::
the

:::::::
gamma

:::::::::
parameters

:::::
shape

::::
and

:::
rate

:::
are

::::
used

:::
in

:::
the

::::
data

::::::::::::
transformation

::::
over

:::
the

::::::
whole

:::::::
domain.

::::
The

:::::
same

:::::
values

:::
are

:::::
used

:::
for

:::
the

::::::
inverse

::::::::::::
transformation

:::
as

::::
well.

::::
The

:::::::
constant

:::
(in

::::::
space)

::::::
values

:::
are

::::::::::
re-estimated

:::::
every

:::::
hour.

::
It

::
is

:::::
worth

:::::::::
remarking

::::
that

:::
the

:::::::
gamma

:::::::::
parameters

::::
used

:::
in

::
the

::::
data

:::::::::::::
transformations

:::::
must

:::
not

:::
be

:::::::
confused

:::::
with

::::
those

:::::::
defining

:::
the

:::::::
gamma

::::::::::
distribution

::
of

:::
the

::::::
hourly

::::::::::
precipitation

::
at
:::::

each145

:::
grid

:::::
point

:::
and

::::
that

:::
are

:::
the

::::::::
objective

::
of

:::
our

::::::
spatial

:::::::
analysis.

::::
The

:::::::
analysis

:::::::::
procedure

::::::
returns

:
a
::::::::
different

:::::::
Gaussian

:::::
PDF

:::
for

::::
each

:::
grid

::::::
point,

:::::
which

::
is

::::::::::
transformed

::::
into

::
a
::::::
gamma

::::::::::
distribution

:::
by

::::::
means

::
of

:::
the

::::::::
constant

:::::
shape

:::
and

::::
rate

:::::::::
estimated

:::
for

:::
the

::::
data

::::::::::::
transformation.

:::::::::
However,

::::
since

:::
the

:::::::
inverse

::::::::::::
transformation

::
at

:::::
each

:::
grid

:::::
point

::
is
:::::::
applied

::
to

:
a
::::::::

Gaussian
:::::

PDF
:::
that

::::::
differs

:::::
from

::::
those

:::
of

:::
the

:::::::::::
surroundings

::::::
points,

::::
then

:::
the

:::::::
gamma

::::::::::
distribution

::
of

::::::
hourly

:::::::::::
precipitation

::::
will

:::
also

:::::
vary

::::
from

::::
one

::::
grid

::::
point

:::
to

::
the

:::::
other.

::::
The

:::::::
gamma

:::::
shape

:::
and

::::
rate

:::::::::
parameters

::::
used

::
in

:::
the

::::
data

::::::::::::
transformation

:::
are

:::::::
denoted

:::
as

:::
the

:::::
scalar

:::::
values

::::
αD :::

and
::::
βD,150

::::::::::
respectively,

:::::
while

:::
the

:::::::
spatially

:::::::::
dependent

::::::
gamma

:::::::
analysis

:::::::::
parameters

:::
are

:::::::
denoted

::::
with

:::
the

::
m

:::::::
column

::::::
vectors

:::
αa

::::
and

:::
βa.

Algorithm 4 can be divided into three parts, that are described in the next sections: the data transformation in Sec. 2.1, the

Bayesian spatial analysis in Sec. 2.2 and the inverse transformation in Sec. ??.

2.1 Data transformation via Gaussian anamorphosis

The data transformation chosen is a Gaussian anamorphosis (?), that transforms a random variable following
:::::::
Gaussian

:::::::::::
anamorphosis155

::::
maps

:
a gamma distribution into a standard Gaussian.

:
?
:::::::::
introduced

:::
the

:::::::
concept

::
of

::::::::
Gaussian

::::::::::::
anamorphosis

::::
from

:::::::::::
geostatistics
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::
to

::::
data

::::::::::
assimilation.

:::
A

::::::
general

::::::::
reference

:::
on

::::::::
Gaussian

::::::::::::
anamorphosis

::
in

:::::::::::
geostatistics

::
is

:::
the

::::
book

:::
by

::
?,
:::::::

Chapter
:::

6. This pre-

processing strategy has been used in several studies in the past, e.g. ??. A visual representation of the transformation process

can be found in Fig.1 .
::
1 of the paper by ?

:::
and

::
in

:::
this

::::::
article

::
in

::::
Sec.

::
??.

The hourly precipitation background and observations, X̃f and ỹo respectively, are transformed into those used in the spatial160

analysis by means of the Gaussian anamorphosis g():

Xf = g(X̃f) (1)

yo = g(ỹo) (2)

::
As

::::::::
indicated

::
in

::::
Tab.

::
1,

::
the

::::::::
Gaussian

::::::::
variables

:::
are

:::
Xf

:::
and

:::
yo,

:::::
while

:::
the

:::::::
variables

::::
with

:::
the

:::::::
original

:::::
hourly

:::::::::::
precipitation

::::::
values,

::
X̃f

::::
and

:::
ỹo,

::::::
follow

:
a
:::::::
gamma

::::::::::
distribution. The gamma shape and rate

::
αD::::

and
:::
βD,

:::::::::::
respectively,

::
of

::::
this

::::::
gamma

::::::::::
distribution are165

derived from the
:::::::::
background

:
precipitation values by a fitting procedure based on maximum likelihood. The

::
In

:::
this

:::::::::
paragraph,

::::
the

::::::::
procedure

:::::
used

::
in

::::
Sec.

:::
??

::
is

:::::::::
described.

:::
For

:::
an

:::::::
arbitrary

:::::
hour,

::::
two

:::::::
different

::::::::
solutions

:::
are

::::::::
adopted,

::::::::
depending

:::
on

:::
the

:::::::
weather

::::::::::
conditions.

:::
We

:::
are

::
in
:::

the
::::::::

presence
:::
of

:::
dry

:::::::
weather

:::::::::
conditions

:::::
when

::
at

::::
least

::::
one

::
of

:::
the

:::::::::
ensemble

:::::::
members

::::::
reports

:::::::::::
precipitation

::
in

::::
less

::::
than

::::
10%

::
of

:::
the

::::
grid

::::::
points,

::::::::
otherwise

:::
we

:::::
have

:::
wet

:::::::
weather.

:::
In

::::
case

::
of

:::
wet

::::::::::
conditions,

::::::::
ensemble

::::::::
members

:::
are

:::::::::
considered

:::::::::
separately

:::
and

:::
for

:::::
each

::
of

:::::
them

:::
we

:::::
derive

::
a
:::::
single

:::::
value

:::
of

:::::
shape

:::
and

::
a
:::::
single

:::::
value

:::
of170

:::
rate,

:::::
both

:::
are

::::
kept

::::::::
constants

::::
over

::::
the

:::::
whole

:::::::
domain.

::::
The

::::::
values

::
of

::::::
shape

:::
and

::::
rate

:::
are

:::
the

:
maximum likelihood estimators

are calculated iteratively by means of a Newton-Raphson method as described by ?, Sec. 4.6.2. In particular, the gamma

distribution parameters are fitted to each ensemble member field of precipitation separately. Then, the averaged shape
:::::
Then,

:::
αD and rate are used in g() for Eqs. -

:::
βD:::

are
:::
the

::::::::
averages

::
of

::
all

:::
the

::::::
values

::
of

::::::
shape

::::
(one

:::::
value

::
for

:::::
each

::::::::
ensemble

::::::::
member)

:::
and

:::
rate

::::
(one

:::::
value

:::
for

::::
each

::::::::
ensemble

:::::::::
member).

::
In

::::
case

::
of

:::
dry

:::::::
weather,

::::
αD :::

and
:::
βD:::

are
:::
set

::
to

::::::::
"typical"

:::::
values

::::::::
obtained

::
as

:::
the175

:::::::
averages

::
of

:::
all

:::
the

:::::::
available

:::::
cases.

In Gaussian anamorphosis, zero precipitation values must be treated as special cases, as explained by ?. The solution we

adopted is to add a very small amount to zero precipitation values, e.g. 0.0001 mm
:::::::::::::
ξ = 0.0001mm, then to apply the trans-

formation g() to all values. The same small amount is then subtracted after the inverse transformation. This is a simple but

effective solution for spatial analysis, as shown in the example of Sec. ??. In principle, the statistical interpolation is sensitive180

to the small amount
:
ξ chosen, such that using 0.01 mm instead of 0.0001 mm will return slightly different analysis values in the

transition between precipitation and no-precipitation. In practice, we have tested it and we found negligible differences when

values smaller than e.g. 0.05 mm (half of the precision of a standard rain gauge measurement) have been used.

:::
The

::::::::::::
transformation

::::::::
function

::::
g(x),

:::::::
applied

::
to

:::
the

::::::
generic

:::::
scalar

:::::
value

::
x,

::::
used

::
in
::::
Eqs.

:
(1)

:
-(2)

::
is:

g(x) =QNorm (Gamma(x+ ξ;αD,βD))
:::::::::::::::::::::::::::::::::

(3)185

:::::
where

::::::::::::::::::::
Gamma(x+ ξ;αD,βD)

::
is

:::
the

:::::::
gamma

:::::::::
cumulative

::::::::::
distribution

:::::::
function

:::::
when

:::
the

:::::
shape

::
is
:::::
equal

::
to

::::
αD :::

and
:::
the

::::
rate

::
is

::::
equal

::
to

::::
βD.

::::::
QNorm::

is
:::
the

::::::
quantile

:::::::
function

:::
(or

::::::
inverse

::::::::::
cumulative

:::::::::
distribution

::::::::
function)

:::
for

:::
the

:::::::
standard

::::::::
Gaussian

::::::::::
distribution.

::
An

::::::::
example

::
of

:::::::::
application

::
of

:::
the

:::::::::
procedure

::::::::
described

:::::
above

::
is

:::::
given

::
in

::::
Sec.

:::
??.

:::
For

:::
the

::::::::
presented

:::::::::::::
implementation

::
of

:::::::::
EnSI-GAP,

:::
the

::::::::
Gaussian

::::::::::::
anamorphosis

:
is
:::::
based

:::
on

:::
the

:::::::
constant

:::::::::
parameters

:::
αD::::

and
:::
βD

:::
over

::::
the

:::::
whole

:::::::
domain.

::::
This

::::::::::
assumption

:::::
might

:::
be

:::
too

::::::::
restrictive

:::
for

::::
very

:::::
large

::::::::
domains,

::::
such

::
as

:::
for

:::
all

::::::
Europe

:::
for

::::::::
instance.190
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::
In

:::
this

:::::
case,

:::::::
different

::::::::
solutions

::::
may

::
be

:::::::
explored

:::::
such

::
as

::::::
slowly

::::::
varying

:::
the

:::::::
gamma

:::::::::
parameters

::
in

:::::
space,

:::
or

::::
time,

:::::
based

:::
on

:::
the

::::::::::
climatology.

2.2 Spatial analysis

The spatial analysis inside Algorithm 4 has been divided into three parts. In Sec. 2.2.1, global variables have been defined. Then,

as stated in the introduction of Sec. 2, the analysis procedure is performed on a gridpoint-by-gridpoint basis. In Sections 2.2.2-195

??, the procedure applied at the generic ith gridpoint is described. In Sec. 2.2.2, the specification of the local error covariance

matrices is described. In Sec. ??, the standard analysis procedure is presented together with the treatment of a special case.

2.2.1 Definitions

In Bayesian statistics, according to ?, a state is ”a description of the world, which is the object which we are concerned, leaving

no relevant aspect undescribed” and ”the true state is the state that does in fact obtain”. The
:::::::::::
mathematical

:::::::
notation

:::::
used

::
is200

:::::::
reported

::
in

::::
Tab.

::
1-

::
2

:::
and

::
it

::
is

::::::
similar

::
to

:::
that

:::::::::
suggested

::
by

::
?.
::::
The

:
object of our study is the hourly precipitation field x(), that

is the hourly total precipitation amount over a continuous surface covering a spatial domain in terrain-following coordinates r.

Our state is the discretization over a regular grid of this continuous field. The true state (our ”truth”, xt) at the ith grid point is

the areal average:

xt
i =

∫
Vi

x(r)dr (4)205

where Vi is a region surrounding the ith grid point. The size of Vi determines the effective resolution of xt at the ith grid point.

Our aim is to represent the truth with the smallest possible Vi. The effective resolution of the truth will inevitably vary across

the domain. In observation-void regions, the effective resolution will be the same as that of the numerical model used as the

background, then approximately o(10− 100km2) for high-resolution local area models (?). In observation-dense regions, the

effective resolution should be comparable to the average distance between observation locations, with the model resolution as210

the upper bound.

The analysis is the best estimate of the truth, in the sense that it is the linear, unbiased estimator with the minimum error

variance. The analysis is defined as xa = xt +ηa, where the column vector of the analysis error at grid points is a random

variable following a multivariate normal distribution ηa ∼N (0,Pa). The marginal distribution of the analysis at the ith grid

point is a normal random variable and our statistical interpolation scheme returns its mean value xa
i and its standard deviation215

σa
i =

√
Pa

ii.

As for linear filtering theory (?), the analysis is obtained as a linear combination of the background (a priori information) and

the observations. The background is written as xb = xt+ηb, where the background error is a random variable ηb ∼N
(
0,Pb

)
.

The background PDF is determined mostly, but not exclusively, by the forecast ensemble, as described in Sec. 2.2.1. The

forecast ensemble mean is xf = k−1Xf1, where 1 is them-vector with all elements equal to 1. The background expected value220

is set to the forecast ensemble mean, xb = xf . The forecast perturbations are Af , where the ith perturbation is Af
i = Xf

i −xf .
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The covariance matrix:

Pf = (k− 1)−1AfAfT (5)

plays a role in the determination of Pb, as defined in Sec. 2.2.2.

The p observations are written as yo = Hxt + εo, where the observation error is εo ∼N (0,R) and H is the observation225

operator, that we consider as a linear function mapping Rm onto Rp.

2.2.2 Specification of the observation and background error covariance matrices

Our definitions of the error covariance matrices follow from a few working assumptions, WAn indicates the nth working

assumption and the abbreviations will be used in the text. WA1
::::::
general

:::::::::
principles

:::
that

:::
we

:::::
have

::::::::::
formulated.

::
P1

::::
(i.e.

:::::::
general

:::::::
principle

::
1), background and observation uncertainties are weather- and location- dependent. WA2

::
P2, the background is more230

uncertain where either the forecast is more uncertain or observations and forecasts disagree the most. WA3
::
P3, observations are

a more accurate estimate of the true state than the background. We want to specify how much more we trust the observations

than the background in a simple way, such as e.g. ”we trust the observations twice as much as the background”. WA4
::
P4, the

local observation density must be used optimally to ensure a higher effective resolution, as it has been defined in Sec. 2.2.1,

where more observations are available. WA5
:::
P5, the spatial analysis at a particular hour does not require the explicit knowledge235

of observations and forecasts at any other hour. However, constants in the covariance matrices can be set depending on the

history of deviations between observations and forecasts. WA5
::
P5

:
makes the procedure more robust and easier to implement

in real-time operational applications.

::
P1

::::
and

::
P4

:::
led

::
to

:::
our

::::::
choice

::
of

::::::::::::
implementing

:::::::::
Algorithm

:
4
:::
by

:::::
means

::
of

::::
loop

::::
over

::::
grid

::::::
points.

:

A distinctive feature of our spatial analysis method is that the background error covariance matrix
i

Pb is specified as the sum240

of two parts: a dynamical component and a static component.
:::
This

::::::
choice

::
is

:::::::::
consistent

::::
with

:::
P1

:::
and

:::
P2.

:
The dynamical part

introduces nonstationarity, while the static part describes covariance stationary random variables. This choice follows from

WA1
::
P1 and it has been inspired by hybrid data assimilation methods (?). The dynamical component of the background error

covariance matrix is obtained from the forecast ensemble. Because the ensemble has a limited size, and often the number of

members is quite small (order of tenths of member
:::
tens

::
of

::::::::
members), a straightforward calculation of the background covariance245

matrix will include spurious correlations between distant points. Localization is a technique applied in DA to fix this issue (?).

The static component has also been introduced to remedy the shortcomings of using numerical weather prediction as the

background. There are deviations between observations and forecasts that cannot be explained by the forecast ensemble. A

typical example is when all the ensemble members predict no precipitation but rainfall is observed. In those cases, we trust

observations, as stated through WA3
::
P3. Then, the static component adds noise to the model-derived background error, as in250

the paper by ?. In ?, the static component is referred to as a scale matrix, since it is used to scale the noise component of the

model error, and we adopt the same term here.
::
In

::::
scale

:::::::
matrix,

:::
the

::::
term

::::::
”scale”

::
is

:::
not

:::::::::
associated

::::
with

:::
the

:::::::
concept

::
of

:::::::
”spatial

::::::
scales”,

::::::
instead

::
it
:::::
refers

:::
to

:
a
::::::
scaling

::::::::::::
(amplification

::
or

:::::::::
reduction)

:::
of

:::
the

::::::::::
uncertainty. We will also refer to this matrix, and its

related quantities, with the letter u to emphasize that this component of the background error is ”unexplained” by the forecast.

8



i

Pb is written as:255

i

Pb =
i

Γ ◦Pf +
i
σ2
u

i

Γu (6)

The first component on the right-hand side of Eq. (5) is the dynamical part. Pf is the forecast uncertainty of Eq. (4),
i

Γ is the

localization matrix and ◦ is the Schur product symbol. The localization technique we apply is a combination of local analysis

and covariance localization, as they have been defined by ?. In the local analysis, only the closest observations are used and we

have implemented it by considering only observations within a predefined spatial window surrounding each grid point, up to a260

pre-set maximum number of pmx. The covariance localization is implemented through the element-wise multiplication of Pf by
i

Γ, which has the form of a correlation matrix that depends on distances and that is used to suppress long-range correlations. The

second component on the right-hand side of Eq. (5) is the static part. The scale matrix is expressed through a constant variance
i
σ2
u, that modulates the noise, and the correlation matrix

i

Γu defining the spatial structure of that noise. In the examples of

applications presented in Sec. ??, both
i

Γ and
i

Γu are obtained as analytical functions of the spatial coordinates. In Algorithm 4,265
i

Γ and
i

Γu have been specified through Gaussian functions, other possibilities for correlation functions have been described for

instance by ?. We have chosen not to inflate or deflate Pf directly and to modulate the amplitude of background covariances

only through the terms of Eq. (5), this way we reduce the number of parameters that need to be specified. As a matter of

fact, for the combination of observations and background in the analysis procedure, the m by m covariance matrices are never

directly used. Instead, the matrices used are: the covariances between grid points and observation locations,
i

Gb =
i

Pb
i

HT,270

specifically only the ith row of this matrix is used; and the covariances between observation locations
i

Sb =
i

H
i

Pb
i

HT.
i

H is the

local observation operator, that is a linear function: Rm→ Rpi .

The local observation error covariance matrix
i

R is written as the constant observation error variance
i
σ2
o multiplying the

correlation matrix
i

Γo:

i

R =
i
σ2
o

i

Γo (7)275

i

Γo often is the identity but other choices are possible. For instance, if some observations are know to be more accurate than

the average of the others, then the corresponding diagonal elements of
i

Γo can be set to values smaller than 1. The observation

uncertainty can vary in time and space, accordingly to WA1
::
P1, however its spatial structure is fixed and depends on the

analytical function chosen for
i

Γo. Note that the observation error is not determined by the instrumental error only but it

includes the representativeness error (??), which is often the largest component of the observation error. The representative280

error is a consequence of the mismatch between the spatial supports of the areal averages reconstructed by the background and

the almost point-like observations.

The spatial structures of the error covariance matrices are determined through
:::
the

:::::::
matrices

::
in

:
Eqs. (5)- (6). At this point, we

need to scale the covariances to satisfy our WA2 and the first step is to define the background error variance in a way that is in

line with WA3. We prefer to specify the ratio between variances instead of the variances themselves. Then, we introduce the285

global variable
::
set

:::

i
σ2
u :::

and
:::

i
σ2
o::

to
:::::
scale

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::::::
covariances.

::
In

:::
the

:::::::
process

::::::::
described

:::::
below

:::
we

::::
will

:::
see

::::
that

:::
the

9



:::
two

::::::::
variances

:::
are

:::::::::
completely

::::::::::
determined

::
by

::::
two

::::::
scalars ε2 as:

ε2 =
i
σ2
o/

i
σ2
b

where
:::
and

::
ν,

::::
also

::::::
defined

::::::
below,

:::
that

:::
we

:::::::
assume

::
to

::
be

::::::
known

:::::
before

:::::::
running

:::
the

::::::
spatial

:::::::
analysis.

::::
This

::::
prior

::::::::::
knowledge

::::::
defines

::
the

::::::::::
constraints

:::
that

:::
the

:::::::
solution

:::
has

::
to

::::::
satisfy

:::
and

:::::
allows

:::
us

::
to

::::::
choose

:::
one

::::::::
particular

:::::::
solution

::::::
among

::
all

:::
the

:::::::::::
possibilities.

::

i
σ2
u::::

and290

::

i
σ2
o::::::::::

characterize
:::
the

::::::
region

::::::
around

:::
the

::
ith

::::
grid

::::
point

:::
as

:
a
::::::
whole,

::::::
without

::::::::::::
distinguishing

:::::::
between

:::
the

:::::::::
individual

:::::::::::
observations.

:::
We

::::::::
introduce

:::
two

:::::::::::
relationships

::::::
linking

:::

i
σ2
u :::

and
:::

i
σ2
o ::::::

through
::::
two

::::::::
additional

:::::::::
variances,

::::
both

:::::::::
expressing

:::::::::
uncertainty

::
of

::
a
:::::::
quantity

::::
over

::
the

:::::
same

::::::
region

::::::
around

:::
the

::
ith

::::
grid

:::::
point:

:

i
σ2
b is the average background error variancein the surroundings of the ith grid point.

:
;
::

i
σ2
f::

is
:::
the

:::::::
average

:::::::
forecast

::::
error

::::::::
variance.

:::
The

::::
two

::::::::::
relationships

::::
are:

ε2
:

=
:

i
σ2
o/

i
σ2
b

:::::
(8)295

i
σ2
b

::
=
:

i
σ2
f +

i
σ2
u

::::::

(9)

ε2 is used to express the level of confidence we have in
:
a
:::::
global

:::::::
variable

::::
and

:
it
::
is

:::
the

::::::
relative

::::::::
precision

::
of

:
the observations with

respect to the backgroundand it .
:::
Eq.

:
(7)

:::::::::
implements

:::
P3

:::
and

::
ε2

:
should be set to a value smaller than 1 (WA3).

::
1. For example,

ε2 = 0.1 means that we believe the observations to be ten times more precise an estimate of the true value than the background.

The definition of
i
σ2
b ::

Eq.
:
(8) is an adaptation from Eq. (5):300

i
σ2
b =

i
σ2
f +

i
σ2
u

where the average forecast error variance at the ith grid point
i
σ2
f is defined as:

i
σ2
f = α 〈diag

(
i

Sf

)
〉= α

1

pi

pi∑
j=1

i

Sf
jj

The mean over an ensemble of similar realizations 〈. . .〉 is interpreted as the mean over the diagonal elements of
i

Sf . diag(. . .)

stands for the vector composed by the diagonal elements of the matrix in parentheses. α is a stabilization factor introduced305

to make the estimation of
:
.
:::
The

::::
next

::::
two

:::::::::::
relationships

:::
we

::::::::
introduce

::::
have

:::
the

::::::::
objective

::
to

:::::::
estimate

:

i
σ2
f more robust. A proper

estimation
:::
and

:::
the

::::::::
empirical

:::
(i.e.

:::::
based

:::
on

::::
data,

:::
not

:::
on

:::::::
theories)

:::::::
estimate

::
of

::::

i
σ2
ob.

::::::
which

:
is
:::
the

::::
sum

::
of

:::

i
σ2
o::::

plus
:::

i
σ2
b ,

::::::
directly

:::::
from

::
the

::::::::
forecasts

::::
and

:::
the

::::::::
observed

::::::
values.

:::

i
σ2
ob::

is
:::::
used

::
to

:::
get

:
a
:::::::::

reference
::::
value

:::
to

:::::
judge

::
if

:::
the

::::::::
ensemble

::::::
spread

::
is

::::::::
adequate.

::::
The

::::::::
equations

:::
are

:::
(the

:::::::::
averaging

:::::::
operator

::::
〈. . .〉

::
is

::::::
defined

::
as

::
in

:::::::::
Algorithm

:::
4):

i
σ2
f

::

=
:

ν 〈diag
(

i

Sf

)
〉

::::::::::::

(10)310

i
σ2
ob

::
=
:

ν 〈
(

i
yo− i

yb
)2
〉

::::::::::::

(11)

:
ν
::
is

::
an

:::::::
inflation

:::::
factor

::::
that

:::
can

:::
be

::::
used

::
to

:::
get

:::::
better

:::::
results

::::
(e.g.

:::
via

:::::::::::
optimization

::
of

:::::::::::::
cross-validation

:::::
scores

:::
or

::::
other

::::::::::
verification

:::::::
metrics).

::
In

:::::::
addition

::
to
::::
that,

::
ν
::
is

:::::::::
introduced

:::::::
because

:::
Eq.

:
(10)

:
is

:::::::
sensitive

::
to
::::::::::::
misbehaviour

::
in

:::
the

::::
data

:::::
when

::::::
applied

:::::
using

::::
data

10



::::
from

:::
one

::::::
single

::::::::
timestep.

::::::
Proper

::::::::
estimates

:
of

i
σ2
f :::

and
:::

i
σ2
ob:

would require more than just one case, the ideal situation would

be to include in the average of Eq.
:::::::
consider

:
numerous situations characterized by similar weather conditions. For the reasons315

discussed in WA5
::::::
Instead, we prefer to introduce α, which can be optimized as described in Sec. ??.

Considering the definition of
i
σ2
b given by

::::
stick

::
to
::::

P5.
:::
The

:::::::::
estimation

:::
of

:::

i
σ2
ob::

is
:::
not

::::::::
resistant,

::
in

:::
the

:::::
sense

:::::::
defined

:::
by

:
?
:
.
::
A

:::
few

:::::::
outliers

::
in

:
Eq. , we can proceed with the implementation of WA2. The background values at observation locations are

i
yb =

i

Hxb. WA2 is realized by imposing that the sum of observation and background error variances in the surroundings of a

point is proportional to the local mean squared innovation (i. e.observations minus background), that is:320

i
σ2
ob =

i
σ2
o +

i
σ2
b = α 〈

(
i
yo− i

yb
)2
〉

a similar equation (10)
::::
may

::::
have

::
a
:::::::::
significant

::::::
impact

:::
on

::::

i
σ2
ob.

::::
The

::::::::::
introduction

::
of

::
ν
::::::
makes

:::
the

:::::::::
estimation

:::::::::
procedure

:::::
more

::::::
resilient

:::
in

:::
the

::::::::
presence

::
of

:::::::
outliers

:::
and

:::::
other

:::::::::::
non-standard

::::::::::
behaviour.

:::
Eq.

:
(10) is used for diagnostics in DA (?) . In

::::
data

::::::::::
assimilation

:::
(?)

:::
and

::
it

::
is

::::::::
consistent

::::
with

::::
P2.

:::
The

:::::::::::
combination

::
of

:
Eq. , the same stabilization factor α introduced for (7)

:::
and

Eq. has been used, since the reasons that lead to the use of a stabilization factor are the same in both equations and we want to325

have as few parameters as possible to optimize. By substituting Eqs. -(10)
:::::
returns

:
a
::::::
rough

::::::::
empirical

:::::::
estimate

::
of

:::

i
σ2
b :::

that
:::
is:

i
σ2
b′ = ν

〈
(

i
yo− i

yb
)2
〉

1+ ε2
::::::::::::::::::

(12)

::
As

::
a

::::
final

::::
step,

::
to

:::
set

:::

i
σ2
u :::

and
:::

i
σ2
o :::

we
:::::::::
distinguish

:::::::
between

:::::
three

::::::::
situations.

::::
The

::::
first

:::::::
situation

::
is

:::::
when

:::
the

::::::::
ensemble

::::::
spread

::
is

:::::
likely

::
to

:::::::::::
underestimate

:::
the

::::::
actual

:::::::::
uncertainty

:::::::
because

:::
the

::::::::::
background

::
is

::::::
missing

:::
an

:::::
event

::
or

:::
the

:::::
spread

::
is
:::
too

:::::::
narrow.

:::
The

::::
test

::::::::
condition

:
is
:::::::::

i
σ2
f <

i
σ2
b′. :::

We
::::
will

::::
refer

::
to

:::
this

::::::::
situation

::
as

:::
the

::::::::
ensemble

:::::
being

::::::::::::
overconfident

::
or

::::::::::::::
underdispersive.

::::
This

::
is

:::
the

::::
case330

::::
when

::
a
::::::
positive

:::

i
σ2
u::

is
::::::
needed

::
in

:::
Eq.

:
(5)

:::
and

::
we

:::
set

::
its

:::::
value

::::
such

::::
that

::

i
σ2
b:::

in
:::
Eq. (8) - into

:
is

:::::
equal

::
to

:::

i
σ2
b′::

in Eq. , the value of
i
σ2
u

that satisfies Eq. is obtained as (??):

i
σ2
u

::
=
:

i
σ2
b′−

i
σ2
f = ν

[
〈( iyo− i

yb)2〉/(1+ ε2)− diag(
i

Sf)

]
::::::::::::::::::::::::::::::::::::::::

(13)

i
σ2
b

::
=
:

ν 〈( iyo− i
yb)2〉/(1+ ε2)

::::::::::::::::::::
(14)

i
σ2
o

::
=
:

ε2 ν 〈( iyo− i
yb)2〉/(1+ ε2)

::::::::::::::::::::::
(15)335

:::
The

::::::
second

::::::::
situation

::
is

:::::
when

:::
the

:::::::::
ensemble

:::::
spread

:::
is

::::::::
consistent

:::::
with

:::
the

::::::::
empirical

:::::::
estimate

:::
of

:::

i
σ2
b .

::::
The

:::
test

:::::::::
condition

::
is

:::::::

i
σ2
f ≥

i
σ2
b′::::

and
:::::::

i
σ2
f > 0.

:::
We

::::
will

:::::
refer

::
to

::::
this

:::::::
situation

:::
as

:::
the

::::::::
ensemble

::::::
spread

::::::
being

::::::::
adequate.

::
In

::::
this

::::
case

::::
the

::::::::::
background

11
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Figure 1. One-dimensional simulation. Panel a, precipitation (mm): truth (black line), observations (blue dots) and background (gray lines).

Panel b, transformed values. Panel c, reference length scale for the scale matrix Di (units u, as defined in Sec. ??), Di is bounded within 3 u

and 20 u. Panel d, Integral Data Influence (IDI) based on Di from panel c.
:::
The

:::
two

::::::
regions

::
R1

:::
and

:::
R2

::::
have

::::
been

::::::::
highlighted

::::
with

:
a
::::::
shaded

::::
color

::
in

::
the

:::::::::
background

::
of

::::
each

:::::
panel.

Panel a shows the background. Panels b-d show the analysis with the different configurations.
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Table 1. Overview of variables and notation for global variables. All the vectors are column vectors if not otherwise specified. If X is a

matrix, Xi is its ith column (column vector) and Xi,: is its ith row (row vector).

symbol description space dimension

m number of grid points - -
::::
scalar

p number of observations - -
::::
scalar

k number of forecast ensemble members - -
::::
scalar

X̃f forecast ensemble original mxk matrix

Xf forecast ensemble transformed mxk matrix

xf forecast ensemble mean transformed p vector

Af forecast perturbations transformed mxk matrix

Pf forecast covariance matrix transformed mxm matrix

ỹo observations original p vector

yo observations transformed p vector

::̃
xt

::::
truth

::::::
original

::
m

:::::
vector

xt truth transformed m vector

x̃a analysis original m vector

xa analysis transformed m vector

ηa analysis error transformed m vector

Pa analysis error covariance matrix transformed mxm matrix

σa analysis error standard deviation,
√

diag(Pa) transformed m vector

xb background transformed m vector

ηb background error transformed m vector

Pb background error covariance matrix transformed mxm matrix

εo observation error transformed p vector

H observation operator transformed pxm matrix

L reference length scales for localization transformed m vector

D reference length scales of the scale matrix transformed m vector

ε2 relative quality of the background wrt observations transformed -
::::
scalar

α
:
ν stabilization coefficient

::::::
inflation

:::::
factor

:
transformed -

::::
scalar

:
ξ
: ::::

small
:::::::
constant

::::::
original

::::
scalar

:

:::
αD ::::

shape
::
of

:::
the

::::::
gamma

:::
PDF

::::
used

::
in

:::
the

:::
data

:::::::::::
transformation

: ::::::
original

::::
scalar

:::
βD :::

rate
::
of

::
the

::::::
gamma

::::
PDF

::::
used

::
in

::
the

::::
data

:::::::::::
transformation

::::::
original

::::
scalar

::
αa

: ::::
shape

::
of

:::
the

::::::
analysis

::::::
gamma

::::
PDF

::::::
original

::
m

:::::
vector

::
βa

: :::
rate

::
of

::
the

:::::::
analysis

:::::
gamma

::::
PDF

: ::::::
original

::
m

:::::
vector

14



Table 2. Overview of variables and notation for local variables. All variables are specified in the transformed space. All the vectors are

column vectors if not otherwise specified. If X is a matrix, Xi is its ith column (column vector) and Xi,: is its ith row (row vector).

symbol description dimension

pi number of observations in the surroundings of the ith grid point -
::::
scalar

i

H observation operator pixm matrix
i

R observation error covariance matrix pixpi matrix
i

Γo observation error correlation matrix pixpi matrix
i
yb background at observation locations pi vector
i

Pb background error covariance matrix mxm matrix
i

Γ localization matrix mxm matrix
i

V localization between grid points and observation locations mxpi matrix
i

Z localization between observation locations pixpi matrix
i

Γu scale correlation matrix mxm matrix
i

Gb background error covariances between grid points and observation locations mxpi matrix
i

Sb background error covariances between observation locations pixpi matrix
i

Gf forecast error covariances between grid points and observation locations mxpi matrix
i

Sf forecast error covariances between observation locations pixpi matrix
i
σ2
o observation error variance -

::::
scalar

i
σ2
b average background error variance -

::::
scalar

:::

i
σ2
b′ :::::::

empirical
::::::
estimate

::
of
:::

i
σ2
b ::::

scalar
i
σ2
f average forecast error variance -

::::
scalar

i
σ2
u error variance for the scale matrix -

::::
scalar

i
σ2
ob sum of error variances (Eq. (10)) -

::::
scalar

15



Figure 2. One-dimensional simulationin the transformed precipitation space. Analyses at grid points with
::::
Error

:::::::
variances

::::::::::::
(dimensionless

::::::::
quantities)

::
for

:
different configurations

::
of

:::
the

::::::
scaling

:::::::::
parameters.

:::
The

::::::::
variances

:::::
shown

::::
are:

:::

i
σ2
u::::

thick
::::

gray
::::

line;
:::

i
σ2
b::::::

dashed
::::
gray

::::
line;

:::::::::

i
σ2
o(= ε2

i
σ2
b)::::

blue
:::
line.

:::

i
σ2
f::

is
:::
the

::::::::
difference

::::::
between

:::

i
σ2
b :::

and
:::

i
σ2
u. For all panels : ε2 = 0.1, L= 25u

::
in

::

i

Γ
:::
and

:::
the

::::
error

:::::::
variances

:::
do

:::
not

:::::
depend

:::
on

:::::
choices

:::
on

::

i

Γ
::
or

::

i

Γu. Panel a :
i

Γu with Gaussian function, α= 0.1
::::::
ε2 = 0.5

:::
and

:::::::
ν = 0.5. Panel b :

i

Γu with Gaussian function,

α= 1.0
::::::
ε2 = 0.1

:::
and

::::::
ν = 0.5. Panel c :

i

Γu with exponential function, α= 0.1. Panel d:
i

Γu with exponential function, α= 1.0. For each

panel, the red line is the analysis (expected value), the pink area shows the interval between the 90th
:::::::
ε2 = 0.5 and the 10th percentiles, the

gray dots
::::::
ν = 0.1.

::::
The

:::
two

::::::
regions

:::
R1 and lines are

::
R2

::::
have

::::
been

:::::::::
highlighted

::::
with

:
a
::::::
shaded

::::
color

::
in the observations and backgrounds,

respectively (see
:::::::::
background

::
of

::::
each panelb in Fig. 1).
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Figure 3.
::::::::::::
One-dimensional

:::::::::
simulation

::
in

:::
the

::::::::::
transformed

::::::::::
precipitation

::::::
space.

::::::::
Analyses

::
at

::::
grid

:::::
points

:::::
with

:::::::
different

:::::::::
EnSI-GAP

:::::::::::
configurations.

:::
For

::
all

:::::
panels

::::::::
L= 25u.

:::
The

:::::
values

::
of

::
ν

:::
and

::
ε2

:::
are

::::::
reported

::
in
:::
the

::::::
panels.

::::::::::
Specification

::
of

::
the

::::
scale

::::::
matrix

:::

i

Γu:
:::
the

:::::
panels

::
on

::
the

:::
left

::::::
column

::::
have

::::
been

::::::
obtained

::::
with

:
a
:::::::
Gaussian

:::::::
function,

::::
while

:::
the

:::::
panels

::
on

:::
the

::::
right

::::::
column

:::
with

::
an

:::::::::
exponential

:::::::
function.

:::
For

::::
each

::::
panel,

:::
the

:::
red

:::
line

::
is

::
the

:::::::
analysis

:::::::
(expected

::::::
value),

::
the

::::
pink

:::
area

:::::
shows

:::
the

::::::
interval

::::::
between

:::
the

::::
90th

:::
and

:::
the

:::
10th

:::::::::
percentiles,

:::
the

:::
blue

::::
dots

::
are

:::
the

:::::::::
observations

::
as
::
in

:::
Fig.

::
1
:
b.
:::
The

::::
two

:::::
regions

:::
R1

:::
and

::
R2

::::
have

::::
been

:::::::::
highlighted

:::
with

::
a

:::::
shaded

::::
color

::
in

:::
the

:::::::::
background

::
of

:::
each

:::::
panel.

:
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Figure 4. One-dimensional simulation in the original precipitation space (mm). Analyses at grid points with different
::::::::
EnSI-GAP configura-

tions. For all panels: ε2 = 0.1, L= 25u. The red line is the analysis (expected value), the pink area shows the 90th-10th percentile, the black

line
:::::
layout is the truth. Panels a-d

::::
same as in Fig. 2. Panel e: no data transformation,

i

Γu with Gaussian function, α= 0.1. Panel f: no data

transformation,
i

Γu with Gaussian function, α= 1.0. Note the different scale for precipitation between panels e-f and the others
::
??.
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Figure 5.
:::::::::::::
One-dimensional

::::::::
simulation

:::
in

:::
the

::::::
original

::::::::::
precipitation

:::::
space

::::::
(mm).

:::::::
Analyses

:::
at

:::
grid

::::::
points

::::
with

:::::::
different

:::::::::
EnSI-GAP

::::::::::
configurations

::::::
without

:::::::
applying

:::
the

:::
data

::::::::::::
transformation..

:::
The

:::::
layout

::
is

:::
the

::::
same

::
as

:
in
::::

Fig.
::
??.

:
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Figure 6. One-dimensional simulation
:
in

:::
the

::::::
original

::::::::::
precipitation

::::
space

:::::
(mm). Error variances obtained

:::::::
Analyses

:
at
::::

grid
:::::
points with dif-

ferent
::::::::
EnSI-GAP configurations . The variances shown are:

i
σ2
o(= ε2

i
σ2
b), blue line;

i
σ2
b , black thick line;

i
σ2
u, black dashed line;

i
σ2
f as

::::::
without

:::::::::
considering the difference between

i
σ2
b and

i
σ2
u::::

whole
::::::::

ensemble. For all panels: α= 1, L= 25u and
:::::::::
Specification

::
of
:::

the
:::::

scale

:::::
matrix

i

Γu with Gaussian
::::::
through

::
an

:::::::::
exponential function. Panel a (dimensionless quantities): Gaussian anamorphosis, ε2 = 0.1. Panel b

(dimensionless quantities): Gaussian anamorphosis, ε2 = 1.0
::

i

Γf
::
is

:::
not

::::
used. Panel c (mm2): no data transformation, ε2 = 0.1

:::
The

:::::
layout

::
is

:::::
similar

::
to

:::
Fig.Panel d (mm2): no data transformation

:::
??

:::::
except

:::
that

:::
here

:::
the

:::::
panels

::
in

:::
the

::
left

::::::
column

::::
show

:::
the

:::::
results

:::::::
obtained

:::::::::
considering

:
as
:::

the
:::::::::
background

:::
the

:::
best

::::::
member

::
of
:::
the

:::::::
ensemble, ε2 = 1.0

::::
while

:
in
:::
the

::::
right

::::::
column

::
the

:::::::::
background

::
is

:::
the

:::::::
ensemble

::::
mean.
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Figure 7. ”South Norway” domain used in the simulations of Secs. ??- ??. The red triangles mark station locations used for cross-validation

in Sec. ??. The gray shades indicate the altitude (from the lighter gray at 0 m to the darker gray at approximately 2400 m a.m.s.l.). The blue

shade indicates the sea. The black box delimits the ”Sogn og Fjordane” domain shown in Fig
::::
Figs.

:::
10- 8, the crosses mark the two points A

and B used in the following.
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Figure 8.
::::
Data

:::::::::::
transformation

::::::::
procedure,

::::::
example

:::
for

:::::::::
2019-07-30

::::
15:00

::::
UTC

:::::
hourly

::::::::::
precipitation

::::
totals

::::
over

::::
Sogn

::
og

:::::::
Fjordane

:::
(see

:::
Fig.

:::
5).

::::
Panel

:
a

::::
shows

:::
the

:::::::::
histograms

:::
with

:::
the

:::::::::
frequencies

::
of

:::::::::
occurrence

:::
for:

:::
one

::::::
member

::
of
:::

the
::::::::
ensemble

::::::
forecast

:::
and

:::
the

:::::::
observed

:::::
values.

::::
The

::::::
numbers

::
in
:::::
round

:::::::
brackets

::::::
indicate

:::
the

:::::
values

::
of

:::
the

:::::::
truncated

::::
bins.

:::::
Panel

:
b

:::::
shows

::
the

:::::::::
cumulative

:::::::::
distribution

:::::::
functions

::::::
(CDFs)

:::
for

:::
the

::
10

::::::
forecast

:::::::
ensemble

::::::::
members:

:::
the

:::::::
empirical

:::::
CDFs

:::
are

:::::
shown

::::
with

:::
gray

::::
dots,

:::
the

::::::::
best-fitting

:::::::
Gamma

::::
CDFs

:::
are

:::::
shown

::
as

::::
pink

::::
lines.

::::
The

:::
final

::::::
Gamma

::::
CDF

::::
used

::
in

:::
the

:::::::
Gaussian

:::::::::::
anamorphosis

:
is
:::::
shown

::::
with

:::
the

:::
red

:::
line

:::
and

:::
the

::::::::
parameters

:::
are

:::::::
reported.

:::
The

::::
inset

::
on

:::
the

::::::
bottom

:::
right

:::::
shows

:::
an

:::::::::
enlargement

::
of

::
a

:::::
section

::
of
:::
the

::::
main

:::::
graph.

:::::
Panel

:
c

::::
shows

:::
the

:::::::
standard

:::::::
Gaussian

::::
CDF.

:::::
Panel

:
d

::::
shows

:::
the

::::::::::
distributions

::
of

:::::::::
transformed

:::::
values

::
for

:::
the

:::::::::
background

:::::::
ensemble

::::
mean

:::
and

:::
the

::::::::::
observations.

:::
The

::
4

::::::
different

::::
steps

::
of

:::
the

:::
data

:::::::::::
transformation

:::
for

::
an

:::::::
arbitrary

::::
value

::
of

:::::::::
precipitation

::::::::::::
(approximately

:
2
:::::
mm/h)

:::
are

:::::::
indicated

::
by

:::::
circles

::::
and

:::::
arrows.
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Figure 9. 2019-07-30 15:00 UTC, hourly precipitation totals
::::::
(mm/h) over South Norway (see Fig. 5). Observations are shown in panel a

over the same grid as the analysis. For each grid cell, the average of the observed values within the cell is shown.
:::
Grid

:::::
points

:::
that

:::
are

:::
not

::::::
covered

::
by

::::::::::
observations

::
are

::::::
marked

::
in

::::
gray

::
in

::::
panel

::
a

:::
and

::
the

::::::
dashed

::::
gray

::::
lines

::
in

:::::
panels

:
b

::
and

::
c
:::::::
delineate

::
the

::::::::
boundary

::
of

::
the

::::
gray

::::
area

:::::
shown

::
in

::::
panel

:
a
:
. The background ensemble mean is shown in panel b. The analysis expected value is shown in panel c. The color scale is

the same for all panels.
:::
The

:::::
”Sogn

::
og

::::::::
Fjordane”

::::::
domain

::
of

:::
Fig.

:
5
::
is

:::::
shown

::
as

:::
the

:::::
dashed

::::
box.

Figure 10. 2019-07-30 15:00 UTC, hourly precipitation totals
:::::
(mm/h) over South Norway (see Fig. 5) for six of the ten background ensemble

members. The color scale is the same as in Fig. 6.
:::
The

:::::
”Sogn

::
og

::::::::
Fjordane”

::::::
domain

::
of

:::
Fig.

:
5
::
is
:::::
shown

::
as

:::
the

:::::
dashed

::::
box.
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Figure 11.
:::::::::
2019-07-30

::::
15:00

:::::
UTC,

:::::::::
background

::::
error

:::::::::
correlations

:::::

i

Γb
i,: ::

of
:::
Eq. (??)

:::
used

:::
for

:::::
spatial

::::::
analysis

::
of
::::::

hourly
:::::::::
precipitation

:::::
totals

:::
over

::::
Sogn

:::
og

:::::::
Fjordane

:::
(see

::::
Fig.

::
5).

::::
The

::::::
blue-red

:::::
color

:::::
shades

::::
show

:::
the

:::::::::
background

::::
error

::::::::::
correlations.

::::
With

:::::::
reference

::
to
::::

Fig.
::
5,

:::
the

:::
left

::::
panel

:::::
shows

:::
the

:::::::::
background

::::
error

:::::::::
correlations

:::::::
between

::::
point

::
A

:::
and

:::
the

::::
grid

:::::
points.

:::
For

:::::
point

::
B,

:::
the

:::::::::
correlations

:::
are

:::::
shown

::
in

:::
the

::::
right

::::
panel.

::::
The

::::::
symbols

::::
show

:::
the

::::::
closest

:::
200

::::::::::
observations,

::
the

:::::::
triangles

:::
are

:::::::::
observations

::
of
:::::::::::

precipitation,
::::
while

:::
the

:::::
crosses

:::
are

::::::::::
observations

::
of

::::::::::::
no-precipitation.

:::
The

::::::::
concentric

:::::
circles

::::
have

::::
their

:::::::
common

:::::
center

:
at
:::::
either

::::
point

::
A

::
or

::
B

:::
and

:::
they

:::
are

::::::
distance

::::::
isolines

::
at:

:::
10

:::
km,

::
20

:::
km,

:::
30

:::
km,

::
40

:::
km

:::
and

::
50

:::
km.

:::
The

::::
thick

::::
dark

::::
gray

::::
lines

:::::
delimit

:::
the

:::::
fjords.

:::
The

:::::
dashed

::::
lines

:::
are

:::
the

:::::
contour

::::
lines

:::
for

:::::::
elevation:

:::
the

::::::
thickest

::::
mark

:::
the

:::
500

::
m

:::::
isoline,

:::
the

:::::
others

::::
have

:
a
:::::::
gradually

::::::
smaller

:::::::
thickness

::
for

::::
600

::
m,

:::
700

::
m,

::::
900

::
m,

::::
1000

::
m,

::::
1100

:::
m,

::::
1200

::
m,

::::
1300

::
m,

::::
1400

:::
m,

::::
1500

::
m.
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Figure 12. 2019-07-30 14:00 UTC (top row), 15:00 UTC (middle row), 17:00 UTC (bottom row) hourly precipitation totals
:::::
(mm/h)

:
over

Sogn og Fjordane (see Fig. 5). The panels labeled with Ob (left column) show the aggregated observed values, as in Fig. 6. The panels with

Ba (middle column) show the background ensemble mean. The panels with An (right column) show the analysis expected value. The crosses

mark the A and B points of Fig. 5
:
,
:::::
which

:::
are

:::
also

:::::
shown

::
in
:::
the

::::::
middle

::::
panel

::
of

:::
the

:::
top

::::
row.

:::
The

::::
dark

:::::
orange

::::
lines

::
in

:::::
panels

:::
Ba

::
and

:::
An

::::::
delineate

:::
the

::::::::
boundary

::
of

::
the

::::
gray

::::
area

:::::
shown

::
in

::::
panel

:::
Ob. The color scale is the same for all panels.

::
The

:::::
thick

:::
lines

::::
and

::
the

::::::
dashed

::::
lines

:::
have

:::
the

::::
same

:::::::
meaning

::
as

::
in

:::
Fig.

:::
10.
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Figure 13. Time series of hourly precipitation totals for the period 2019-07-30 10:00 UTC to 23:00 UTC at points A (top row) and B

(bottom row) of Fig. 5. The left panels show the background (blue). The right panels show the analysis (red). The blue (red) line shows the

background (analysis) mean, the region with denser shading lines is the difference between the 90th and the 10th percentiles, the region with

sparser shading lines is the difference between the 99th and the 1st percentiles. For point A, the closest observation, which is a radar-derived

estimate, is shown (black line). Point B is in a region where observations are not available.
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2019-07-30 15:00 UTC, background error correlations
i

Γb
i,: of Eq. used for spatial analysis of hourly precipitation totals over Sogn og

Fjordane (see Fig. 5). The blue-red color shades show the background error correlations. With reference to Fig. 5, the left panel shows the

background error correlations between point A and the grid points. For point B, the same quantity is shown in the right panel. The symbols

show the closest 200 observations, the triangles are observations of precipitation, while the crosses are observations of no-precipitation. The

concentric circles have their common center at either point A or B and they are distance isolines at: 10 km, 20 km, 30 km, 40 km and 50 km.

Figure 14. Summer 2019 hourly precipitation statistics for the cross-validation experiments. Panels: a background versus observations; b

analysis ε2 = 1 α= 1
::::
ν = 1

:
versus observations; c analysis ε2 = 0.1 α= 0.1

::::::
ν = 0.1

:
versus observations; d analysis ε2 = 1.0 α= 0.1

::::::
ν = 0.1 versus observations. The independent observations have been divided into classes, the number of samples within each class is shown

in the inset of panel a. Within each class and for each probabilistic prediction, several percentiles have been computed. The regions between

the average of the 90th and the 10th percentiles are shown by light gray shades. The regions between the average of the 75th and the 25th

percentiles are shown by dark gray shades. The thick black line indicates the average of the medians. The dashed black line is the diagonal

(1:1) line.
::
The

::::::
angular

:::::::::
coefficients

::
of

:::
the

::::::::
best-fitting

::::
lines

::::::
passing

::::::
through

::
the

::::::
origins

:::
and

::::
better

:::::::::::
approximating

:::
the

:::::::
averages

::
of

::
the

:::::::
medians

::
are

::::::
shown,

::
for

:::
the

:::::::::
background

::
in

::::
panel

:
a

:
it
::
is

:::
0.26

:::
(not

::::::
shown

:
in
:::

the
::::::
panel).
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Figure 15. Equitable Threat Score (ETS) for summer 2019 hourly precipitation, as obtained through the cross-validation experiments. The

black lines are the ETS curves for the analysis mean values, as indicated in the legend. The ETS curve for the background is the gray line.

The precipitation thresholds defining the ”yes” events are reported on the x-axis.

Table 3.
:::::::
Summary

::::::
statistics

:::
on

:::
the

:::::::
evaluation

::
of
:::

the
:::
100

:::::::::::::
one-dimensional

:::::::::
simulations.

::::::
Results

:::
are

:::::::
presented

:::
for

::::
three

::::::
modes:

:::::::::
EnSI-GAP;

:::
"no

::::::::::::
transformation",

:::::
which

::
is
:::::::::
EnSI-GAP

::::::
without

:::::::
applying

:::
the

:::::::
Gaussian

:::::::::::
anamorphosis;

:::
"no

:::::::::
ensemble",

:::::
which

::
is
:::::::::

EnSI-GAP
:::::
where

:::
the

::::::::
background

::
is
:::
the

:::::::
ensemble

:::::
mean

:::
and

::
the

:::::::::
background

::::
error

:::::::::
covariance

:::::
matrix

:
is
:::::::::

determined
:::::
solely

::
by

:::
the

::::
scale

::::::
matrix.

:::
The

:::::::::::
configurations

::::
listed

:::
are

::
the

::::
same

::::
that

:::
have

::::
been

::::
used

::
in

::::
Figs.

:::
??-

:
4
:::
and

:::
the

::::::::::
abbreviations

::::
have

::
the

:::::
same

:::::::
meanings

::::
(e.g.,

::::
with

:::::::
reference

::
to

:::
Fig.

:::
??,

::
the

::::
first

:::
row

:::::::::
corresponds

::
to

::::
panel

::
a,
:::
the

:::::
second

::
to
:::::
panel

:
b

::
and

::
so
::::

on).
:::
The

:::::::::::
mean-squared

::::
error

:::
skill

:::::
score

:::::::
(MSESS,

:::
Eq. (??)

:
)
::
is

:::::::
positively

:::::::
oriented

:::
with

:
a
::::::

perfect
::::
score

:::::
being

::
1.

:::
The

::::::::
continuous

::::::
ranked

::::::::
probability

::::
score

:::::::
(CRPS,

:::
Eq. (??)

:
)
:
is
::::::::

negatively
:::::::
oriented

:::
with

::
a
:::::
perfect

::::
score

:::::
being

::
0.

::
For

::::
each

::::::::::
configuration

:::
and

:::::
score,

:::
the

:::
best

:::::
values

:::
are

:::::
marked

::::
with

::::
bold

::::
fonts.

:

::::
Mode

:
EnSI-GAP no transformation no ensemble

::::::::::
Configuration

: ::::::
MSESS

:::::
CRPS

: ::::::
MSESS

:::::
CRPS

: ::::::
MSESS

:::::
CRPS

:

:::::::
ε2 = 0.5,

:::::::
ν = 0.5,

::::
Gauss

::::
0.66

::::
0.80

::::
0.66

:::
0.91

: :::
0.63

:::
0.95

:

:::::::
ε2 = 0.5,

:::::::
ν = 0.5,

:::
Exp

:::
0.65

::::
0.78

::::
0.68

:::
0.85

: :::
0.65

:::
0.81

:

:::::::
ε2 = 0.1,

:::::::
ν = 0.5,

::::
Gauss

: ::::
0.70

::::
0.79

:::
0.68

:::
0.95

: :::
0.65

:::
1.01

:

:::::::
ε2 = 0.1,

:::::::
ν = 0.5,

:::
Exp

:::
0.71

:::
0.72

: :::
0.71

:::
0.80

: ::::
0.73

::::
0.71

:::::::
ε2 = 0.5,

:::::::
ν = 0.1,

::::
Gauss

: :::
0.66

::::
0.92

::::
0.67

:::
1.04

: :::
0.61

:::
1.33

:

:::::::
ε2 = 0.5,

:::::::
ν = 0.1,

:::
Exp

:::
0.63

::::
0.92

::::
0.68

:::
0.98

: :::
0.61

:::
1.14

:
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forecast ensemble X̃f
:::
and

::::::::
ensemble

:::::
mean

::
xf ; observations ỹo; parameters ε2, α

:
ν, L, D

Gaussian anamorphosis: estimation of αD and βD, then Xf = g(X̃f); yo = g(ỹo)

Define additional global variables: xb = xf ; Af : Af
i = Xf

i −xf480

grid points i= 1, . . . ,m

select the closest pi observations
i
yo and obtain

i
yb =

i

Hxb

Dynamical background error covariance matrices,
i

Sf ≈ (k− 1)−1(
i

H
i

Γ
i

HT) ◦ [(
i

HAf)(
i

HAf)T]
i

Z :
i

Zjl = exp
{
−0.5[d(rj ,rl)/Li]

2
}
, j = 1, . . . ,pi and l = 1, . . . ,pi; d() horizontal distance

i

Sf
jl ≈ (k− 1)−1

i

Zjl[(
i

HAf)j,:(
i

HAf)l,:], j = 1, . . . ,pi and l = 1, . . . ,pi485
i

Gf
i,: ≈ (k− 1)−1(

i

Γ
i

HT)i,: ◦ [Af
i,:(

i

HAf)T]
i

Vi,: :
i

Vil = exp
{
−0.5[d(ri,rl)/Li]

2
}
, l = 1, . . . ,pi

i

Gf
i,l ≈ (k− 1)−1

i

Vil[A
f
i,:(

i

HAf)l,:], l = 1, . . . ,pi

Background error covariance matrices

definition of 〈. . .〉: 〈c〉=
∑pi

l=1(
i

Vilcl)/
∑pi

l=1(
i

Vil), where c is a generic pi vector490
i
σ2
f = ν〈diag(

i

Sf)〉; i
σ2
ob = ν 〈( iyo− i

yb)2〉
(
i
σ2
ob = 0)and(

i
σ2
f = 0)

xa
i = xb

i , then apply the inverse data transformation x̃a
i = g−1 (xa

i ) and STOP

[
i
σ2
ob/
(
1+ ε2

)
]≤ i

σ2
f

i
σ2
u = 0;

i

Sb =
i

Sf ;
i

Gb
i,: =

i

Gf
i,:495

i
σ2
u =

i
σ2
ob/
(
1+ ε2

)
− i
σ2
f

add the scale matrix
i
σ2
u

i

Γu to the background error covariance matrices
i

Sb :
i

Sb
jl =

i

Sf
jl +

i
σ2
u exp

{
−0.5[d(rj ,rl)/Di]

2
}
, j = 1, . . . ,pi and l = 1, . . . ,pi

i

Gb
i,: :

i

Gb
il =

i

Gf
il +

i
σ2
u exp

{
−0.5[d(ri,rl)/Di]

2
}
, l = 1, . . . ,pi

Observation error covariance matrix: first
i
σ2
b =

i
σ2
f +

i
σ2
u, then diag(

i

R) = ε2
i
σ2
b500

Analysis

xa
i = xb

i +
i

Gb
i,:(

i

Sb +
i

R)−1
(

i
yo− i

yb
)

(σ2)ai = Pf
ii +

i
σ2
u−

i

Gb
i,:(

i

Sb +
i

R)−1(
i

Gb
i,:)

T

Data back transformation

inverse transformation g−1 of 400 quantiles of the distribution N
(
xa
i ,(σ

2)ai
)
αa

i and βa
i are obtained by optimizing the505

fitting of a gamma distribution to the 400 quantiles through a least squares fitting method
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