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Abstract11

Climate change is expressed as a climate system transiting from the initial state to a12

new state in a short time. The period between the initial state and the new state is13

defined as transition process, which is the key part to connect the two states. By using14

a piece-wise function, the transition process is stated approximately (Mudelsee, 2000).15

However, the dynamic processes are not included in the piece-wise function. Thus, we16

had proposed a method (Yan et al, 2015, 2016) to study the transition process by using17

a continuous function. In this manuscript, this method is developed to predict the18

uncompleted transition process based on the dynamic characteristics of the continuous19

function. We introduce this prediction method in details and apply it to three ideal20

time sequences and the Pacific Decadal Oscillation (PDO). The PDO is a long-lived21

El Niño-like pattern of Pacific climate variability (Barnett et al, 1999). This method22

reveals a new quantitative relationship during the transition process, which explores a23

nonlinear relationship between the linear trend and the amplitude (difference) between24

the initial state and the end state. SinceAs the transition process begins, the initial25

state and the linear trend are estimated. Then, according to the relationship, the end26

state and end moment of the uncompleted transition process is predicted.27
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Decadal Oscillation1

1. Introduction2

A system transiting from one stable state to another in a short period is called3

abrupt change (Charney and DeVore, 1979; Lorenz, 1963, 1979). The abrupt change4

system has two or more states (Goldblatt et al, 2006; Alexander et al, 2012), the5

system swings between these states that are also called attractors in physics. This6

phenomena is verified in many fields including biology (Nozaki, 2001), ecology7

(Osterkamp et al, 2001), climatology (Thom, 1972; Overpeck and Cole, 2006; Yang et8

al, 2013a, 2013b), brain science (Sherman et al, 1981), etc. The latest observed9

climate change event is global warning hiatus, which has been studied deeply by10

many researchers (Amaya et al, 2018; Kosaka and Xie, 2013; Yang et al, 2017). Seven11

different kinds of abrupt changes are mentioned in Thom’s research(1972). Over the12

last several decades, many methods have been proposed to identify different kinds of13

abrupt change (Li et al, 1996), likesuch as Moving T-Test, Cramer’s (Wei, 1999),14

Mann-Kendall (MK, Goossens and Berger, 1986), Fisher (Cabezas and Fath, 2002),15

etc. It is noticed that most abrupt change detection methods suggests that the abrupt16

change is around a turning point. The significant difference between the average17

values of the two sequences on both two sides of the turning point is defined as the18

index to measure the abrupt change. This kind of detection method has a drawback. It19

is difficult to detect the abrupt change that occurs at the end of sequence.20

Mudelsee (2000) studied the abrupt change of a time sequence and illustrated21

that abrupt change has a duration, which can be quantitatively described with a22

piece-wise (ramp) function. We developed the detection method by using a23

continuous function to replace the ramp function( Yan et al, 2014, 2015). The new24

method can confine the beginning and ending points of abrupt change and25

quantitatively describes the process of abrupt climate change, and three parameters26

are introduced. A quantitative relationship among the parameters is revealed (Yan et al,27

2015). The relationship could be used to predict the end moment (state) if the system28
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had left the original state but not yet reached to the new state, which is defined as an1

uncompleted transition process.2

In this manuscript, three ideal time sequences are tested to study the prediction3

method. The prediction method is also applied to study the climate transition process4

of the PDO, which is an important signal that reveals climatic variability on the5

decadal timescale (Mantua et al, 1997; Barnett et al, 1999; Zhang et al, 1997; Yang et6

al, 2004). Previous studies (Lu et al, 2013; Trenberth and Hurrell, 1994) have7

indicated that there are many climateabrupt changes in the PDO over the past 1008

years. Most researches mentioned the climate changes happened in the 1940s and9

1970s. During the 1940s, the PDO transited from a high state to a low state, while10

during the 1970s, it did the opposite. All thisof these changes and their processes had11

been studied in our previous researches (Yan et al, 2015 2016). The climate transition12

processes were explored clearly. However, we still can not know when the transition13

processes finish itstheir increasing or decreasing to a stable state if the transition14

process has begun. We develop a new method to predict the end state and the end15

moment of a transition process based on the quantitative relationship.16

2. Methods17

It is necessary to describe the transition process quantitatively before the18

prediction of the uncompleted climate transition process. We had proposed a detection19

method by using the logistic model to obtain a transition process. In section 2.1, the20

method is introduced briefly. On the basis of the detection method, the prediction21

method for studying the uncompleted transition process is further developed in22

section 2.2.23

2.1 The detection method of transition process24

The real time sequence changes abruptly as shown in figure 1a, and the system25

jumps to a high state in point C. If the period around point C is observed on a shorter26

time scale (as shown figure 1b), a transition period is obtained, and it is a part of the27
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original time sequence. In fact, many abrupt changes could be considered to be a1

transition period with a more detailed view. The transition period was expressed with2

an ramp function in Mudelsee’s research (2000) as shown in figure 1c, and the time3

sequence is divided into three segments, including two equilibrium states and one4

increasing state. The ramp function is as follows:5
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wWhere t represents time, and xt represent the system states, which is obtained by the7

linear regression method. It is noted that the climate system is continuous; it is even8

the sampling sequence that makes it is discontinuous. We used a continuous function9

to express this transition period approximately, and we also created a novel method to10

detect the transition period (Yan et al, 2015). Here, the detection method is introduced11

briefly. The continuous evolution of the lLogistic model is consistent with the12

transition process (May, 1976), which is shown in figure 1d. The modified logistic13

model is expressed as follows:14

))(( xvuxkx  ,. (2)15

Parameters u and v represent the two equilibrium states respectively. Parameter k16

represents the switching between different states, and it is defined as the instability17

parameter. As shown in figure 2a, parameters u and v being fixed, and setting k as 0.5,18

the system transiting to the new state costs a shorter time than that setting k as 0.4. If19

parameter k is set large enough, the system collapses and becomes chaotic ( as shown20

in figure 2b). When parameter k is set to different values, more situations have been21

discussed in detail in the previous research (Yan et al, 2016). The result shows that22

parameter k characterizes the stability of the system (the larger the absolute value, the23

more unstable the system). According to Thom’s theory (1972), the system described24

by a quardrtatic function would exhibit tipping-point abrupt change, in which the25

system jumps from one state to a new state abruptly. Thus, we did some mathematical26

derivation to Eq. (2), and the general potential energy is obtained as follows:27
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It means that Eq. (2) describes a system with tipping-point abrupt change. In2

figure 2c, the potential energy of Eq. (3) is verified to have two states with the lowest3

energy, and both of them are stable. This bistable structure is common in the climate4

system (Goldblatt et al, 2006). Therefore, Eq. (2) can be used to describe the abrupt5

change system, and the parameters represent different key factors of the transition6

period during abrupt change. Then, the parameters u, v and h are obtained by the7

regression method (Huang, 1990; Yang et al, 2013a) by using Eq. (4), where i, xi8

denote the time and the state of the system at this time, and ixi , are their averages9

respectively. Variable n2 is the length of the second segment.10
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The linear trend h represents the ratio of system state change to time, and it can12

be expressed by two points on the curve approximately as Eq. (5), where the two13

points are A (xa, ta) and B (xb, tb).14
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As shown in figure 2d, the transition period during point A (xa, ta) and point B (xb,16

tb) is approximately linear. Then, we can use the location parameters α, β to express17

system states xa and xb. By solving Eq. (2), the relationship between x and t is18

determined.19
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Then, parameter h is rewritten as Eq. (7). It is noted that the rightmost part is1

only related to the location parameters α and β, then let it be χ. Then, the relationship2

of Eq. (7) is rewritten as Eq. (8).:3
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In order to determine the value of parameter χ, the relationship among χ, α, β is7

displayed in figure 3b. The dash line in figure 3a is the profile of the diagonal in8

figure 3b, which represents that the sum of α and β is 1. Parameter χ changes little9

when the location parameter varies in a certain range as marked with warm color in10

figure 3b. It means that the closer the points ( A and B) are to the middle point, the11

more significant the linear feature is. Then, the process between point A and point B12

can represent the whole transition process as shown in figure 3c. It is noted that the13

transition process is symmetrical about the middle point approximately. Thus, we14

assume that point A and point B are symmetrical about the middle point, and the sum15

of α and β is 1. The change of parameter χ is only related to parameter α (or parameter16

β), as shown in the diagonals in figure 3b (also in figure 3a). Parameter χ changes17

little when parameter α is about 0.2 or larger. In figure 3c, three different situations18

are carried out to study the influence of parameter α on parameter χ. In each situation,19

points (A and B) are set to be different positions, and their parameters were calculated20

respectively in table 1. The parameters α are set as 0.20, 0.25, 0.15 respectively in21

three different situations marked with S1, S2 and S3. For S2 and S3, both of the22

percentages of α changing to S1 are 25%, while the percentages of χ changing are23

only 5.15% and 6.76% respectively, which means the percentage change of χ is much24

less than α. In addition, linear trends of these three ideal models are calculated25

according to the points and by regression method which are marked as h0 in table 1.26
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The linear trends are also calculated by the values of point A and point B with Eq(5)1

which are marked as h in table 1. It is noted that although the positions of points are2

different, the trend obtained according to the points is almost the same as that3

obtained by regression method. The error percentages are 2.36%, 2.25%, 1.38%4

respectively, which means that we don't have to know the exactly positions of point A5

and Bwhen the position of the points (the values of parameters α and β). We can6

approximate the value of χ are indefinite, there is little influence on the detection of7

parameter h. Thus, in the following sections parameter α is set as 0.2, and parameter χ8

is 0.21649

2.2 The prediction method of transition process10

Eq. (8) shows the quantitative relationship among linear trend, instability11

parameter, and amplitude of change. There is a linear relationship between linear12

trend and instability parameter; and there is the quadratic function relationship13

between linear trend and amplitude of change. We did reveal this quantitative14

relationship much more than in theory but in real time series (Yan et al, 2016). Based15

on this relationship, we are going to create a new method to deal with the problem16

that the transition process has not finished. During the real time sequence, the system17

transits away from the original state, but it has not reached to a new state as shown in18

figure 4. The red line represents the period which has been experienced, while the19

gray line represents the period which has n’ot been experienced. Based on the system20

states which isare far away from the original state, a quasi linear extension of the21

transition process is established (dash line). Then the parameters v and h are obtained22

by Eq. (4). Assuming that the parameter k satisfies the statistics in the history of the23

system, the parameter u can be predicted by Eq. (8), and the end moment is also24

predicted apparently..25
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As shown in figure 5, four ideal time sequences are constructed by using the27

logistic model and random numbers as Eq. (9), where ηt represents the random28
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number. An entire time sequence with 500 moments is shown in figure 5a and three1

other lengths of time sequences are shown in figures 5b, 5c and 5d respectively. The2

parameters v, u and k of the logistic model are set as -1.0, 2.0, 0.1, for the ideal time3

sequence, and the random number is limited in 0-1. The parameters v, h are obtained4

by regression method before making prediction. It has to be noticed that in this ideal5

time sequence there is just one abrupt change, which means that we have no way to6

obtain the value of the parameter k by counting many changes. Thus parameter k is7

given directly, and the prediction of the end state ( moment) is drawn in figure 5b, 5c8

and 5d. For the entire time sequence, there are 500 moments as shown in figure 5a. In9

figure 5b, only 240 moments are given, and the other moments are unknown. Then,10

we obtain parameters v and h by regression method. The parameter u is calculated11

with Eq. (8). The blue line represents the prediction result. The transition process12

would be ended in moment 342 with the end state value 2.92. In figure 5c, the end13

moment and end state are predicted to be 356 and 2.65 respectively when the time14

sequence is given 250 moments. In figure 5d, the time sequence is given 26015

moments. The end moment and end state are predicted to be 359 and 2.58 respectively.16

The end moment and the end state of the prediction result match the presetting lines.17

The results also show that the longer the transition process experience, the more18

accurate the prediction.19

3. Results20

In order to test the validity of this prediction method in a real climate system, we21

apply this method to predict the uncompleted transition process of the PDO. The PDO22

index data used is from website of the University of Washington23

(http://research.jisao.washington.edu/pdo/). The time period from January of 1900 to24

November of 2015 is studied as the training data, and the time period from December25

of 2015 to April of 2017 is used as the test data. During the following research, a26

transition process starting from 2011 is studied. According to the prediction method,27

several parameters have to be determined in advance. We first determine parameter k28
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firstly.1

3.1 Threshold of parameter k2

Parameter k characterizes the stability of the system during climate change,3

which means that we can get the value of parameter k by counting all abrupt changes4

of the PDO index. The histogram in Figure 6a shows the PDO time sequence from5

January of 1900 to November of 2015, and it shows that the PDO went through6

several changes. The green dots in Figure 6a are parameter k when the sub-sequence7

length takes 20 years. In the early 1940s and late 1970s, there are two main transitions8

changes of the PDO mainly. The absolute value of the parameter k is large, which9

means that the system is much more unstable during this two transition10

changeprocesses. In the 1940s, the PDO transits from a positive phase to a negative11

phase, and the k < 0, whereas the situation in the 1970s is the opposite. Figure 6b12

shows more k values corresponding to the different sub-sequence lengths (as indicated13

by X-axis, the variation range of the sub-sequence is 20-60 years, with an interval of 114

year). The Y-axis is the start moment, and the locations of the dots indicate the start15

moments for the corresponding sub-sequence lengths. In particular, the blue dots16

represent that parameter k is negative, and the red dots represent that it is positive.17

The There are more dots in the left side region than in the right side region in figure 6.18

This is because when the length of sub-sequence is short, the amplitude is also often19

small. Therefore, for the entire sub-sequence, there are many More transition20

changeprocesses are detected. When the length of the sub-sequence reaches or21

exceeds 50 years, the transition change mainly begins in the 1940s and 1970s, which22

are also investigated in other research (Shi et al, 2014). The transition23

changeprocesses in these two periods correspond to large k values, which means that24

these two transition changprocesses are more unstable than others. More statistical25

results indicate that the threshold distribution of parameter k values in historical26

abrupt changetransition processes exhibit multiple peaks (Figure 7). Specifically, the27

highest peak with the largest probability is located near to 0. The k value of the largest28

peak in the distribution is small, which indicates that the abrupt changes that29
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correspond to these k values are stable. The k values also havere are some peaks on1

the left side and right side of the originzero. When k<0, the PDO time sequence2

transits from the positive phase to the negative phase, whenich the threshold of the k3

peak is wide and the probability is small; when k>0, the PDO time sequence transits4

from the negative phase to the positive phase, whenich the threshold of the k value is5

narrow and the probability is large. This indicates that there are two kind of transitions,6

which one of them is that the system changes from the positive phase to the negative7

phase, and the other is that the system changes from the negative phase to the positive8

phase, are not symmetric, and the latter is more stable. Because there is a difference in9

parameter k when the selected sub-sequence length is different, the gray region in the10

upper right corner of Figure 7 also shows the statistical properties of parameter k11

when the sub-sequence length is 20, 30, 40, 50, or 60 years. When the length of the12

sub-sequence is 20 years and 30 years, there is only one main peak in the distribution13

of k values, and the parameter k value of the peak is about 0, which means that the14

transition change is more stable than the other situations. When the length of the15

sub-sequence is 40, 50, or 60 years, there are two main peaks. , tThe peak value on the16

side of k>0 is not considerably different, which indicates that the stability degree of17

the transition change from negative to positive is consistent; the location of the peak18

value on the side of k<0 moves to the left as the sub-sequence length increases, which19

means that the sub-sequence is longer, the amplitude of detected transition change is20

larger, and it is more unstable. From the perspective of the value, a k value in the21

range of (-10, 10) accounts for 80.2% of all k values, a k value in the range of (-5, 5)22

accounts for 74.2%, and a k value in the range of (-2, 2) accounts for 58.6%. In the23

following studies, the k value is mainly set in the range of (-2, 2).24

3.2 Values of the initial state v and linear trend h25

We use the method proposed in section 2.2 to analyze the transition changes of26

the PDO. With different lengths of sub-sequences, three climate changes are detected27

to start from 1976, 2007 and 2011 respectively. In figure 8, the transition changes28
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starting from 2007 and 2011 are statedshown, while the transition changeprocess1

starting from 1976 has not been shown. In table 2, parameters v and h are obtained by2

regression method whenfor the transition changeprocesses starting from 2007 and3

2011. When the length of sub-sequence is 210 years or 320 years, only the transition4

changeprocess starting from 2011 is detected as shown in figure 8a and figure 8b. The5

parameter v is calculated with the sequence before 2011 of the entire sub-sequence.6

Then, the linear trend parameter h is calculated with the segment after 2011 of the7

entire sub-sequence. For the transition changeprocess starting from 2011, the values8

of initial state were detected to be -0.45 and -0.03 when the length of sub-sequence is9

10 years or 20 years, respectively, and both the linear trends are 1.054/month. When10

the lengths of sub-sequences are set as 30 and 40 years, the transition changprocesse11

began in 2007 as shown in figure 8c and figure 8d, and the values of initial state are12

0.36 and 0.41, respectively, with an linear trend of 0.227/month. Why does the length13

of the sub-sequence change and the start moment of the transition process change?14

When we detect the transition changeprocess in a sub-sequence, the percentile15

threshold method (Huang, 1990) is used. Then, a transition changeprocess in the16

sub-sequence is detected anyway (Yan et al, 2015, 2016). The change with the largest17

amplitude will be detected. When the sub-sequence is set to be 10 years, tThe start18

moment of the transition change is identified to be 2011 as shown in table 2.19

In figure 8, it is noted that the PDO time sequence is leaving the stable state from20

the start moment. The transition change occurs over a period of timeexperiences a21

period, which is called asthe transition process. When the transition process has not22

finished, it looks likeappears to be the increasing part. In order to detect whether there23

are other transition changeprocesses, we change the length of the sub-sequences to24

yearly intervals one year by one year. That is, the sub-sequence length is set as 10, 11,25

12, ···, andup to 60 years. Then, the initial state v and the linear trend h of these26

transition changeprocesses are obtained. I as shown in figure 9,. When the27

sub-sequence length is set less than aboutapproximately 40 years, the transition28

changprocesses are detected only twice. One began in 2007, and the other began in29

2011. The value of parameter h is unchangeable nearly for each transition30
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changeprocess, while the value of parameter v is changing when the length of1

sub-sequence is different. In particular, the abrupt changetransition process starting2

from 2007 is detected for the sub-sequences of about 30-40 years, and the value of3

parameter v is in the range of (0.28, 0.45). The transition changeprocess starting from4

2011 is detected for the sub-sequences of about 10-30 years, and the value of5

parameter v increases as the length of the sub-sequence increases, whereas the6

variation range of parameter vthreshold is (-0.48, 0.12), which is significantly7

different from the situation of the transition changeprocess starting from 2007.8

3.3 Prediction of the uncompleted transition process beginning in9

201110

After the threshold ranges for parameters k, v, and h are determined, according to11

the quantitative relationship, we can calculate the end state and the end moment of the12

transition process. Using the transition processchange in 2011 as an example, we13

study the ending state and end moment for the PDO index transition processchange.14

According to the research results that are presented in Sections 3.1 and 3.2, the15

parameter is h=1.054/month in this transition processchange, and the threshold range16

of parameter k is determined to be (0, 2). The range of parameter v is determined to be17

(-0.48, 0.12), and the variation situation of parameter u and end moment with18

parameters k and v are shown in Figure 10. The results indicate that the threshold19

range of parameter u for the ending state is (1, 7), and the time range of the ending20

moment is (2013, 2017). According to the probability of parameter k, the end moment21

of this transition process is about 2015, and after that time, the sequence stops to22

increase, approaching to a stable state with value of 1.6.23

In figure 11, a sketch map is displayed to briefly explain how the prediction24

method works briefly. The PDO time sequence is displayed as a black line. The period25

during 2006~2011 is detected as the initial state, and a transition process is increasing26

from this initial state. It is not able to be known whether the increasing process has27

been completed or not. Based on the linear regression method, the initial state and the28
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linear trend are obtained and shown as purple dash lines. Then by the method1

proposed in section 2.2, all possible end states of this transition process are obtained2

with Eq. (8) as shown in figure 10, and the most likely end state is marked as a green3

dash line.. Unlike the uncompleted transition process of ideal experiment, the4

transition process has completed in about 2015 since we detected the PDO change in5

2016. This transition process started from 2011, and ends in 2015. The initial moment6

and the end moment are marked as black dash lines. However, we are still not sure7

whether the PDO finish this transition process completely or not for it it appears at the8

end of the sequence. As we all know, mMany statistical methods are not accurate for9

the detecting both ends of the sequence. Thus, the real PDO sequence during10

2016~2017 is added to the end of the PDO time sequence. The PDO value from 201511

to 2017 is almost unchanged, which is consistent with the predicted result.12

4. Conclusion and discussion13

A novel method had been proposed to identify the transition process of climate14

change in our previous research. By defining initial state parameter v, linear trend15

parameter h, end state parameter u, and instability parameter k, a quantitative16

relationship among thisese parameters was revealed. Based on the relationship, we17

develop a method to study uncompleted transition processes. The method is applied to18

predict ideal time sequences and the PDO time sequence. In the ideal experiments,19

three different time sequences with different length are constructed. Based on the20

initial state and the linear trend which the system had experienced, and the given21

parameter, the end state and end moment of the transition process are predicted. The22

prediction result does match the ideal time sequence well. For the PDO time sequence,23

a transition change beganinning in 2011 was taken to test the prediction method. The24

end moment of this transition process is predicted to be 2015. which is consistent with25

the real time sequence.26

In this prediction method, the quantitative relationship among the parameters27

characterizing the transition process is vital. According to the segment of the28
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transition process which has been happenoccurred, we determine the parameters.1

Then, we and predict the end moment and the end state. In fact, this is also a2

extrapolation method. However, if the transition process has not begun, we can not3

predict this climate change. There is no other statistical method that can predict the4

climate change which has not occurred only by time sequence. It is noted that the5

uncompleted climate change we studied is closed to the end of the sequence. Due to6

the lakcke of enough data, it is difficult to study the end of time sequence by using7

other statistical methods.8
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Table1. The parameters of ideal models1

Situations α χ h0 h |h0-h|/h

S1 0.20 21.64E-2 12.99E-4 12.69E-4 2.36%

S2 0.25 22.76E-2 9.10E-4 8.90E-4 2.25%

S3 0.15 20.18E-2 32.27E-4 32.72E-4 1.38%

Table2. Parameters v and h obtained with different sub-sequences2

Length of

sub-sequence

Start moment

(year.month)

v h (month-1)

10a 2011.06 -0.45 1.054

20a 2011.06 -0.03 1.054

30a 2007.11 0.36 0.227

40a 2007.11 0.41 0.227

3
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1

Figure 1. Transition process of abrupt change in real time sequence and ideal time2
sequence. (a) The PDO time sequence during 1920 to 1970; (b) The PDO time3
sequence during 1940 to 1945; (c) The transition process presented by piece-wise4
function; (d) The transition process presented by continuous function5
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1

Figure 2. The system presented by Eq. (2). (a)The transition processes of system2
swinging between different stable states since the parameters are different; (b)The3
system stays in unstable states; (c)The generalized potential energy function of system4
performs differently since the parameters are different; (d)Different segments of the5
transition process in the ideal time sequence and the system states x expressed with6
location parameters.7

8



20

Figure 3. The influence of different value of parameters α and β on parameter χ and1
parameter h. (a) Diagonal section of parameter χ in figure b (gray line); (b) Parameter2
χ with location parameters α and β; (c)Points A and B stay in different positions in3
three situations marked as S1, S2, S3.4

5

Figure 4. The schematic diagram of prediction method.6

7

Figure5. The ideal time sequence constructed by the logistic model and random8
numbers. (a) Completed transition process with 500 moments, Uncompleted transition9
processes (the gray lines) and their prediction result (the blue lines) with (b) 24010
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moments, (c) 250 moments, and (d) 260 moments, the light gray lines are the original1
entire ideal time sequences.2

3

Figure 6. Identification of the PDO time sequence and instability parameter k with4
different sub-sequence lengths. (a) The X-axis is the year, the histogram in the figure5
shows the PDO time sequence (left panelY-axis), and the green dots indicate the value6
of parameter k when the sub-sequence is 20 years (right Y-axispanel); (b) the start7
moments of transition changprocesses with different sub-sequence lengths (the red8
color dots represent increasing changprocesses, and blue color dots represent9
decreasing changes, with deeper colors representing higher values). The X-axis is the10
sub-sequence length (month), and the Y-axis is the start moment of abrupt change11
(year).12
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1

Figure 7. Statistical results of instability parameters for different sub-sequences2
lengths. The X-axis is the value of the parameter, and the Y-axis is the statistical3
frequency with a sub-sequence length of 10 years. The gray region in the upper-right4
corner is for the sub-sequence of 20-60 years.5

6

Figure 8. The PDO time sequences and the detection of parameters v and h when the7
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sub-sequence was set as (a)10 years, (b)20 years, (c)30 years, (d)40 years. The gray1
lines isrepresent the PDO time sequences. The horizontal dash lines represent initial2
states, the slope dash lines represent linear trend lines of the transition changeprocess,3
and vertical dotted lines represent the start moment.4

5

Figure 9. The values of the parameters v and k of two transition changprocesses with6
different lengths of sub-sequence. The black stars represent the values of parameter h,7
and the colourful short bar represent the values of parameter v. The colour bar8
represents years of the sub-sequence length from 10 to 60 in intervals of 1..9

10
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Figure 10. Variation end state and end moment with the initial state parameter v1
(horizontal ordinate) and instability parameter k (vertical coordinate). The red line on2
the right side shows the probability distribution of instability parameter k.3

4

Figure 11. Prediction of the PDO index. The gray line isrepresents the PDO index5
before 2015; the blue line with starts irepresents the PDO index after 2015; the gray6
dash line represent the start moment and end moment; the purple dash lines represent7
the initial state and the linear trend line, the green line represent the prediction end8
state.9

10
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Dear reviewers,1

2

We do thank you very much. we revise this manuscript based on your comments and3

reply them one by one as follows.4

5

REPLYTO RC16

7

Original comments not addressed8

1. General comments #2 There is not enough introduction to the methods section9

before discussing the details of time series analysis.10

• The authors responded to this by rewriting some parts of the Subsections11

2.1 and 2.2. I still feel as though a few sentences of introduction to this general12

Section 2 are necessary before there is a jump to Sub-section 2.1.13

REPLY: It seems that we misunderstood the original comment. Before Section 2.1,14

we added some explanations as follows:15

It is necessary to describe the transition process quantitatively before the16

prediction of the uncompleted climate transition process. We had proposed a detection17

method by using the logistic model to obtain a transition process. In section 2.1, the18

method is introduced briefly. On the basis of the detection method, the prediction19

method for studying the uncompleted transition process is further developed in section20

2.2.21

22

2. General comments #3 Variable k appears to be often interchanged with κ23

• Figure 7 still uses κ on the x-axis.24

REPLY: Figure 7 is replaced with a new edition, and “κ” is changed to be “k”.25

26

3. General comments #6 In Section 3.1 it is stated “When the length of the27

sub-sequence is 20 years and 30 years, there is only one peak in the distribution of k28

values . . . ” This seems strange, as there are said to be multiple peaks for a smaller29

sub-sequence (10 years), a single peak for 2030
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and 30, and then multiple peaks for larger sub-sequences. I would assume there1

would be a more continuous relationship. This is not discussed why this is not the2

case. Also, a quantitative measure is not specified of what defines a peak.3

• The reply from the authors does not address my comments at all. The4

authors discuss the stability behaviour of k rather than the behaviour of the5

distribution for different sub-sequence lengths. They mention that the text around6

this discussion in the manuscript is changed when it has not been. Additionally7

they still do not specify how they define a peak.8

REPLY: In section 3.1, figure 7 is replaced to be a new edition as follows. We9

consider the extremely high frequency marked by blue circle in the following figure10

as peaks. It is true that there is a continuous relationship. There is only one main peak11

for sub-sequence of 10a, 20a, and 30a. There are two main peaks for sub-sequence of12

40a, 50a, and 60a. We modify the description in the manuscript as follows:13

14

When the length of the sub-sequence is 20 years and 30 years, there is only one main15

peak in the distribution of k values, and the parameter k value of the peak is about 0,16
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which means that the transition change is more stable than the other situations. When1

the length of the sub-sequence is 40, 50, or 60 years, there are two main peaks.2

3

4. General comments #8 “Abrupt change” appears to be used synonymously with4

“transition process” in Section 3.2 and this does not seem consistent with the rest of5

the paper. Please maintain the same terminology for clarity.6

• The phrase was changed in many places to read “transition change”. This7

is redundant. I have noted all the instances below (in specific comments) where it8

needs to be fixed to “transition process”, along with a few instances of “abrupt9

change” that were missed.10

REPLY: Thank you very much for these very detailed comments. We have corrected11

all the mistakes according to the “Specific comments/technical corrections”.12

13

5. General comments #10 The lengths of the sub-sequences mentioned in Section 3.214

do not match the numbers on the colour bar in Fig 9. It is therefore not clear what Fig15

9 is showing.16

• The authors’ response does not address the colour bar mismatch at all. The17

labels on the colour bar still do not clearly represent years from 10 to 60 in18

intervals of 1.19

REPLY: It seems that we misunderstood the mismatch about the color bar. We20

replace figure 9 with a new edition as follows.21
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1

2

Additional general comments on revised manuscript3

1. The statements “According to Thom’s theory . . . the general potential energy is4

obtained as follows” (pg 4, lines 21-24) are not clear. What is meant by “the system5

described be a quadratic function” and how is it related to the general potential energy?6

Do you mean that the potential7

energy should be described by a quadratic function?8

REPLY: It should be “quartic function”. In part C, section 5.3 of Thom’s book9

“ Stability Structural and Morphogenesis”, he introduced a general potential energy,10

vxxxV  24

2
1

4
1

. The quartic function describes a system with tipping point, which is an11

abrupt change type. Thus, we study the general potential energy of Eq.2 in the manuscript12

as:13

      
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, which is similar to Thom’s14

equation. It also means that the equation, ))(( xvuxkx  , describes a system with tipping15

point abrupt change. We change “quadratic function” to be “quartic function” in section 2.1.16
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1

2. Equations 5 and 6 need to be incorporated into sentences and full punctuation is2

needed for all equations. Additionally, h is defined twice. If I understand the rest of3

the section correctly I believe one should be h0.4

REPLY: The full punctuations are added after equations 5 and 6. In equation 5,5

we define h with two points (A and B). In equation 7, we calculate h value by using6

the solution of function (2), and we have the quantitative relationship. For the7

relationship (Eq. 8), 2)( vukh  ， vuh ，， are obtained by equation 4. Then, we8

have k value.9

10

3. The introduction of location parameters α, β (pg 5, line 14) seems out of place.11

They are not used in any equations up to that point. Please explain more formally how12

these are related to the system states xa and xb in Eq. 5?13

REPLY: The parameters α and β are introduced to describe the positions of points A14

and B. Figure 2d is shown as follows, and the transition process is extracted and15

placed on the right. The parameters α and β are defined with u, v and x. In figure 3, a16

numerical test is stated to study the impact of the positions of points A and B (also17

parameters α and β) on parameter χ. Finally, it is noted that parameter χ change sightly18

and it is given as an invariant constant.19

20

21

4. Equations 7 and 8 should be incorporated into the sentences where they are22

introduced for improved clarity and understanding for the reader.23
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REPLY: Punctuation after equation 8 has been modified.1

2

5. What does the term “indefinite” mean here (pg 7, line 4)? It seems to be used3

synonymously with “unknown”.4

REPLY:When point A and point B change around their original positions (α=0.25

and β=0.8), the χ value changes very little. This means that we don't have to know the6

exactly positions of point A and B. we can approximate the value of χ. We rewrite this7

part in the manuscript.8

9

6. In Eq. 9 the random terms are just labeled as “randomt”. It would be more10

appropriate to label with a variable name (e.g. σ, η, etc.) and state from which11

distribution the random variable is chosen.12

REPLY: We modify Eq. 9 and replace randomt with ηt. More description is13

added as follows:14

As shown in figure 5, four ideal time sequences are constructed by using the15

logistic model and random numbers as Eq. (9), where ηt represents the random16

number.17

18

7. The sentence “Therefore, for the entire sub-sequence, there are many transition19

changes” (pg 9, line 19) is unclear what the message. In particular the phrase “the20

entire sub-sequence” is used multiple times throughout the paper and I am not sure21

what is meant by it.22

REPLY: Three “entire sub-sequence” were included. They are not necessary, and all23

of them are removed. In section 3.1, the sentence “ Therefore, for the entire24

sub-sequence, there are many transition changes” has been changed to be:25

More transition processes are detected.26

27

Specific comments/technical corrections28

All technical mistakes are corrected based on the comments. They are too many to be29

listed. We sincerely thank these detailed comments.30
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REPLYTO RC21

2

General comments3

The paper has been improved but some issues remain.4

The method of obtaining the value of k remains unclear. Page 8, line 27 “… we5

can get the value of parameter k by counting all changes …”. If it is obtained by6

counting changes, how can be negative?7

REPLY: The “changes” should be “abrupt changes”. According the logistic8

model, there is no abrupt change if k =0. If k≠0, the abrupt change occurs. We can9

calculate the k value based on the abrupt change. If k>0, the time sequence transits10

from the negative phase to the positive phase and vice versa.11

12

The use of functions with jumps (see fig. 8) remains unjustified. All the13

developments and definitions are done with the logistic model or piecewise14

continuous functions, but the application to the real system has jumps between the15

initial state and the transition process and between the transition process and the final16

state.17

REPLY: In order to get optimums fitting effect, we did not use continuous18

piece-wise function to fit the real system. In most cases, due to the continuity of the19

real time series itself, the fitting results have a slight jump, which has little impact on20

the final prediction results. If there is a significant jump in the time series, the21

prediction results will be significantly affected. In the future, we will carry out more22

ideal experiments to study the influence of the abnormal jump of the sequence on the23

prediction results.24

25

Specific comments26

Page 7, line 26. It is stated “The parameters v, u and k of the logistic model are set as27

-1.0, 2.0, 0.1, ...” but in figure 5, the v and u values seem to be -0.5 and 2.528

respectively.29

REPLY: The parameters v, u and k of the logistic model are set as -1.0, 2.0, 0.1,30
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for the ideal time sequence, and the random number is limited in 0-1. We built the1

ideal time sequence by using the sum of the logistic model and the random number.2

Thus, the v and u values seem to be -0.5 and 2.5 respectively in figure 5.3

4

In page 8, the recovered values are 2.92, 2.65 and 2.58, converging to 2.5 as deduced5

from the graphic instead to the value stated in the text (2.0). The recovered values6

show big differences (2.92 – 46% error, 2.65 – 32.5% error and 2.58 – 29% error)7

with respect to to the original value (2.0). This lack of agreement contrasts with the8

good results in the real case showed in fig. 11. May be, this disagreement due to the9

introduction of random variations (uniformly distributed?) which are always positive10

(range 0-1).11

REPLY: Due to the introduction of random variations (white noise), the value of12

end state is 2.5 according to the ideal time sequence which is built by using the sum of13

the logistic model (the value of u is 2.0) and the random number (the average value is14

0.5). The recovered values are 2.92, 2.65 and 2.58 when lengths of time sequence are15

set to be 240, 250 and 260 respectively. Then, the deviation rate are16

( (2.92-2.50)/2.50= ) 16.8%, ( (2.65-2.50)/2.50= ) 6% and ( (2.58-2.50)/2.50= ) 3.2%.17

The prediction value of u is approaching to be 2.5 when the length of time sequence is18

given enough to cover the entire transition process.19

20

Technical corrections21

Page 2, line 19-20 “It is difficult to detect the abrupt change occurs at the end of22

sequence.” Is there something missing? For example “… abrupt change [that]23

occurs …”.24

REPLY: This mistake is corrected.25

26

Page 4, line 6 “detect the transition period (Yan et al, 2015). Here, the detection27

method is28

troduced” Should be “introduced”? Misspelling?29

REPLY: This mistake is corrected.30
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Page 13, line 26 “Due to the lake of enough data…” Misspelling? Lack?1

REPLY: This mistake is corrected.2

3

4
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