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Abstract. The basinwide surface transport of tracers such as heat, nutrients and plastic in the North Atlantic Ocean is organized

into large scale flow structures such as the Western Boundary Current and the Subtropical and Subpolar Gyres. Being able to

identify these features from drifter data is important for studying tracer dispersal, but also to detect changes in the large scale

surface flow due to climate change. We propose a new and conceptually simple method to detect groups of trajectories with

similar dynamical behaviour from drifter data using network theory and normalized cut spectral clustering. Our network is5

constructed from conditional bin-drifter probability distributions and naturally handles drifter trajectories with data gaps and

different lifetimes. The eigenvalue problem of the respective Laplacian can be replaced by a singular value decomposition of a

related sparse data matrix. The construction of this matrix scales withO(NM+Nτ), whereN is the number of particles,M the

number of bins and τ the number of time steps. The concept behind our network construction is rooted in a particle’s symbolic

itinerary derived from its trajectory and a state space partition, which we incorporate in its most basic form by replacing a10

particle’s itinerary by a probability distribution over symbols. We represent these distributions as the links of a bipartite graph,

connecting particles and symbols. We apply our method to the periodically driven double-gyre flow and successfully identify

well-known features. Exploiting the duality between particles and symbols defined by the bipartite graph, we demonstrate how

a direct low-dimensional coarse definition of the clustering problem can still lead to relatively accurate results for the most

dominant structures, and resolve features down to scales much below the coarse graining scale. Our method also performs well15

in detecting structures with incomplete trajectory data, which we demonstrate for the double-gyre flow by randomly removing

data points. We finally apply our method to a set of ocean drifter trajectories and present the first network-based clustering of

the North Atlantic surface transport based on surface drifters, successfully detecting well-known regions such as the Subpolar

and Subtropical Gyres, the Western Boundary Current region and the Carribean Sea.
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1 Introduction

The transport of tracers such as heat, nutrients or plastic in the ocean is an important field of research in oceanography (van

Sebille et al., 2018). Despite the inherent time dependence of oceanic transport due to turbulence and temporal variations in the

forcing, on the large scale, transport is organized into quasi-stationary regions that are characterized by distinct flow properties.

Examples include the five major ocean basins, the Subtropical and Subpolar Gyres, the Western Boundary Currents, etc.25

Clearly, understanding these features is important for studying the dispersal of tracers. At the same time, changes in external

conditions such as through climate change might lead to variations in these large scale flow features (Wu et al., 2012; Beal

and Elipot, 2016), and it is therefore important to develop methods that identify and characterize them based on oceanographic

data sets.

Many methods exist to detect fluid structures such as regions with little fluid exchange, transport boundaries and coherent30

structures based on Lagrangian trajectory data (Hadjighasem et al., 2017). While most of these methods are traditionally

applied to complete sets of uniformly distributed particle trajectories, recent methods have been successful in identifying

coherent structures from incomplete trajectory data (Froyland and Padberg-Gehle, 2015; Padberg-Gehle and Schneide, 2017;

Banisch and Koltai, 2017), making them suitable for applications to ocean drifter trajectories with data gaps and different drifter

lifetimes. These methods essentially consist of two steps: first, the definition of a measure of similarity s(n,n′) or a distance35

measure d(n,n′) that defines how similar or different two trajectories n and n′ are; and second, the choice of a clustering

algorithm to group trajectories with similar behaviour together. The computational cost and the physical interpretability of

trajectory clusters depend on these choices.

Froyland and Padberg-Gehle (2015) embed trajectories in a high-dimensional euclidean space, i.e. they define the distance

between trajectories as an abstract euclidean distance (or cosine distance for trajectories on the earth surface) using the entire40

trajectories, and directly cluster the embedded trajectories with a fuzzy c-means algorithm. Padberg-Gehle and Schneide (2017)

define a binary network that indicates if two particles come closer than a certain distance ε, together with spectral clustering,

see also Banisch et al. (2019). Other methods related to clustering make use of diffusion maps (Banisch and Koltai, 2017) or

the dynamical distance of trajectories (Hadjighasem et al., 2016). The latter three methods all use a spectral relaxation of the

normalized cut problem (NCut) for the trajectory classification, which was introduced by Shi and Malik (2000).45

Here, we propose a new and conceptually simple network-based method to identify groups of trajectories that have similar

dynamical behaviour. The network is constructed based on ideas from symbolic dynamics, which describes the coarse grained

trajectory of a particle given some partition (binning) of the state space. The itinerary of a particle, i.e. the sequence of bins it

visited, if known for long times, resolves information much below the bin resolution. Different from previous network-based

methods, we make full use of the duality between individual particles and their coarse grained itineraries, which can lead50

to significant computational advantages. Here, we simplify the itineraries to a minimum: neglecting the time dimension, we

represent the trajectory data as a bipartite network connecting particles and bins, with links defined by conditional distributions

over symbols. With an appropriate choice of similarity measure, our method allows us to formulate spectral relaxations of the

NCut (Shi and Malik, 2000) in terms of the singular value decomposition (SVD) of a related data matrix. Setting up this matrix

2

https://doi.org/10.5194/npg-2020-18
Preprint. Discussion started: 29 May 2020
c© Author(s) 2020. CC BY 4.0 License.



scales with O(NM +Nτ), N being the number of trajectories, M the number of bins and τ the number of time steps. Our55

method is naturally extendable to incomplete trajectory data and thus readily applicable to ocean drifters.

We show with a model flow, the periodically driven double-gyre flow, that the method accurately finds almost invariant regions

and transport barriers. We also show that the method correctly classifies most of the trajectories in an incomplete data set.

Our method can also be used to formulate the clustering problem in a low-dimensional setting by choosing a coarse partition,

which can still resolve the leading order flow structures to a high accuracy. We show this for the double-gyre flow with an60

effectively 9-dimensional formulation of the clustering problem, which still resolves the three leading features of the flow up

to details much below the coarse graining scale. Our method is designed for detecting quasi-stationary features from ocean

drifter trajectories. We therefore emphasize that, owing to the strong simplifications of the particle itineraries, the method is

not suitable for the detection of coherent vortices that are transported in a background flow, such as the ‘Bickley Jet’ (discussed

e.g. in Hadjighasem et al. (2017)).65

Several trajectory based methods have been applied to the ocean drifter data set on the global scale (Froyland and Padberg-

Gehle, 2015; Banisch and Koltai, 2017). In addition, transfer operator methods based on virtual particle trajectories have been

used to detect almost invariant sets at the ocean surface (Froyland et al., 2014). While these methods successfully identified

the five major ocean basins, each of these basins has an approximate attractor in its center (Froyland et al., 2014; Wichmann

et al., 2019), such that the long-term dynamics of global drifter trajectories is exceptionally low-dimensional. Using the ocean70

drifter data set of the Global Drifter Program (Lumpkin and Centurioni, 2019), we apply our method to identify prominent flow

features in the North Atlantic Ocean only, and present here the first drifter based clustering result of the North Atlantic surface

flow using network theory. Using data from around 8,300 drifter trajectories, we successfully detect well-known features

such as the boundary between the Subtropical and Subpolar Gyres as discussed in Brambilla and Talley (2006), the Western

Boundary Current, the Carribbean Sea and the separation between the Subpolar Gyre and the Nordic Seas (Bower et al., 2019).75

2 Drifter data set

We use daily drifter data derived from the six-hourly interpolated data from the NOAA-AOML global drifter program (Lumpkin

and Centurioni, 2019), and constrain the data set to those drifters that were released (but not necessarily stay) in the North

Atlantic. The restriction to the North Atlantic leaves us with 5270 drifter trajectories, starting from 1989. A major challenge

in analysing the data set is its inhomogeneity in space and time. Figure 1a shows the distribution of drifter locations along all80

trajectories with a square binning of 2◦ in both longitude and latitude. It is visible that most of the data is located in the centre

of the basin, the subtropical gyre. The accumulation of drifters in the gyre centres is a well-known feature of the basin-scale

surface ocean, and is attributed to Ekman convergence in the centre of the gyre, also explaining the accumulation of marine

debris in these areas (Kubota, 1994; Van Sebille et al., 2020). Figure 1b shows the distribution of release locations, again with

a square binning of 2◦. Drifters are mostly released in regions with strongly repelling properties in order to probe the flow that85

is rarely sampled in the long term. Most notably, many drifters are released in the Western Boundary Current region (along

the US east coast), including the Gulf Stream with vigorous mixing and strong currents. Drifter lifetimes (fig. 1c) also vary
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widely, which poses a challenge if trajectories of different lengths need to be compared. Our algorithm is set up in a way that

it naturally handles trajectories of different lengths and lifetimes such that all drifter trajectories are available for our analysis,

cf. section 3.90

Figure 1. a: Total counts of all drifter locations (6-hourly for each trajectory), computed with a binning of 2◦ in both longitude and latitude.

b: Distribution of drifter release per 2◦-bin. c: Scatter plot of initial drifter location, the colour indicating the drifter lifetime in months.

3 A network based on symbolic itineraries

3.1 Preliminaries

Suppose we are given a set of N drifter trajectories at τ time instances xn(t),n= 1, . . . ,N,t= 0, . . . , τ − 1. We divide the

fluid domain Ω into M disjoint sets (bins) {Bm} such that ∪mBm = Ω. Given such a partition, a particle trajectory can be

described by a symbolic sequence of bin labels m= 1, . . . ,M , called itinerary, which is a representation of the trajectory in95

terms of symbolic dynamics, see fig. 2 for an example. The bin labels m= 1, . . . ,M are called the alphabet of the symbolic

dynamics. We define the coarse grained binary position vector δn(t) ∈ {0,1}M of particle n as δn,m(t) = 1 if xn(t) ∈Bm,

and δn,m(t) = 0 otherwise. If the data set is incomplete in the sense that for some particles n, xn is not defined at time t, we

simply set δn,m(t) = 0 for all m. As the sets Bm are disjoint, δn(t) has maximally one non-zero entry at any point in time.

With this definition, we define the coarse grained data matrix C(t) ∈ RN×M as100

Cnm(t) = δn,m(t). (1)
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As a function of time, the matrices C(t) describe the coarse-grained dynamics of the entire data set. Note that C(t) is very

sparse, with maximally N non-zero entries at any time t. Next, we define a matrix G as:

G=
τ∑

t=0

C(t). (2)

The matrix G has a simple interpretation: Gnm is equal to the number of times that particle n visited bin m at the time105

instances 0,1, . . . , τ . G defines a bipartite graph, i.e. a graph connecting objects of different type, here particles and bins. In

the following, we define the degree vector d[A] ∈ Rh of an arbitrary matrix A ∈ Rh×l by d[A]i :=
∑l
j=1Aij , and the degree

matrix D[A] ∈ Rh×h as D[A] := diag(d[A]).

Figure 2. Two example trajectories on a binned fluid domain, with alphabetA,. . . ,L and τ = 7. The markers along the trajectories represent

the points in time the location is stored. The itinerary for the blue particle is: AAFFGCC. The red particle has itinerary GGCD_L_. Here,

’_’ denotes a missing data point, the one at time t= 4, indicated by an ’X’ in the respective marker. The last data point of the red trajectory

is also missing, as its lifetime is shorter than τ time instances.

3.2 Definition of the network

Given a partition {Bm}, the itineraries of a group of particles can be used to slice the state space into smaller regions. For110

example, all particles having the same itinerary for a certain number of time steps could be grouped together. With increasing

trajectory length, this partitions the state space into smaller and smaller sets of initial conditions that have similar dynamic

behaviour. We refer to chapter 14 of the open source book by Cvitanović et al. (2016) for an introduction to symbolic dynamics

and the use of particle itineraries to partition the state space. In applications, requiring exactly similar itineraries is not very

practical. This is because in a chaotic flow two particles that start close may separate exponentially. As the number of all115

possible itineraries is still very large - there are Mτ of them - there would be no two similar itineraries after a short time.

We therefore define another continuous similarity measure s(n,n′) for two particles n and n′, with 0≤ s(n,n′)≤ 1, based on

the particles’ itineraries. For clarity, we will write the itineraries in terms of letters rather than numbers, and imagine that each

symbol is part of an alphabet with M letters. Missing data is represented by ‘_’. We require the following properties, using an

example itinerary AABC:120
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(Req. 1) Invariance to permutation: s(AABC,CABA) = s(AABC,AABC) = 1

(Req. 2) Sensitivity to missing data: s(AABC,_ABC)< 1, s(AABC,AA_C)< 1, s(_ABC,_ABC)< 1, s(AABC,_ABC) =

s(AABC,DABC)

(Req. 3) Zero similarity for disjoint itineraries: s(AABC,DEFF ) = 0.

Requirement 1 essentially discards the time dimension. Requirement 2 takes into account that an itinerary with data gaps125

contains less information than a full itinerary, and that a missing data point should be treated just as another symbol (’D’)

that is not part of the example itinerary. Requirement 3 states that completely different itineraries have zero similarity. The

easiest way to implement requirements 1-3 is through introducing a conditional symbol distribution p̄(m|n) ∈ RM , defined

for each particle n and symbol m, and an appropriate choice of similarity measure between these distributions. We define

the distribution by normalization of the individual symbol counts with the total trajectory length, i.e. including data gaps. For130

example, a particle n with itinerary ’AB_FCCH’ has

p̄(A|n) = p̄(B|n) = p̄(H|n) = p̄(F |n) = 1/7, p̄(C|n) = 2/7. (3)

All requirements are fulfilled with the similarity measure

s(n,n′) =
∑

m

p(m|n)p(m|n′). (4)

Identifying each letter in the symbolic alphabet with a number m= 1, . . . ,M , we can directly relate s(n,n′) to the matrix135

G defined in eq. (2) as s(n,n′) = 1
τ2

∑
mGnmGn′m = 1

τ2 (GGT )nn′ . For spectral clustering with the NCut, the constant 1
τ2 is

irrelevant. Thus, we define the following network of similarities on particle trajectories:

Q :=GGT ∈ RN×N . (5)

This is the projection of the bipartite networkG onto particle space, see e.g. section 10.4 of the book by Fouss et al. (2016). Note

that in the case of two invariant sets, for example as in the autonomous double-gyre flow discussed by Froyland and Padberg140

(2009), network Q defined in eq. (5) can be brought into block-diagonal structure. This can be achieved with a partition that

is optimal in terms of the invariant sets, i.e. if each set can be completely covered by a part of the alphabet. For non-optimal

partitions, we expect that it is still possible to detect an imprint of the two invariant sets with a clustering algorithm, which we

quickly present in the following section.

3.3 Normalized cut and spectral relaxation145

In this section we sketch the method of solving a relaxed version of the NCut according to Shi and Malik (2000). Our methods

are similar to the simultaneous K-way NCut method described in Von Luxburg (2007) and the hierarchical clustering of Shi
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and Malik (2000). The main difference is that our network defined in eq. (5) allows to compute an SVD instead of solving the

eigenvalue problem of the Laplacian.

Assume we are given an undirected network withN vertices and edges given by the symmetric adjacency matrixQij ∈ RN×N .150

We assume that Q is connected. If it is not connected, we focus on the largest connected component separately (see section

4.2). According to Shi and Malik (2000), the normalized cut of a partition of the nodes into K sets S1, . . . ,SK is defined as

NCut(S1, . . . ,SK) :=
K∑

i

Q(Si,SCi )
Q(Si,S)

. (6)

Here, Q(Si,Sj) is the sum of all weights connecting Si and Sj . SCi denotes the complement of Si. Clustering a graph

according to the NCut refers to finding a partition {Sk} such the objective function in eq. (6) is minimized. Note that for an155

increasing number of sets {Sj}, the NCut can never decrease. As shown in Shi and Malik (2000), an approximate solution to

the problem can be constructed using the eigenvectors of the symmetric normalized Laplacian of Q, defined by

Ls[Q] = I−D[Q]−1/2QD[Q]−1/2. (7)

Such a solution is only approximate, as constraints of the optimization problem are neglected, hence the term ’spectral

relaxation’, see also Fan and Pardalos (2012) for a discussion of different relaxations of the NCut.Ls[Q] is positive-semidefinite160

and its eigenvalues {λs,i} satisfy λs,0 = 0< λs,1 ≤ . . .λs,N−1. To identify clusters with the NCut under spectral relaxation,

we need the eigenvalues and the right eigenvectors, {λr,i,vr,i} of the random walk Laplacian (Shi and Malik, 2000)

Lr[Q] =D[Q]−1Q, (8)

which are related to the spectrum of Ls[Q] in the following way:

λr,i = 1−λs,i,165

vr,i = D[Q]−1/2vs,i. (9)

To find K clusters in Q with the NCut under spectral relaxation, one can either apply a hierarchical clustering procedure as

done by Shi and Malik (2000), or a simultaneous K-way cut, see Von Luxburg (2007) for more information. From a compu-

tational perspective, in our case the K-way cut is preferable as we can compute the spectrum of the Laplacian directly from

the SVD of a related matrix. This is because for the normalized cut with spectral relaxation, we need the eigenvectors corre-170

sponding to theK largest eigenvalues ofD[Q]−1/2QD[Q]−1/2. As for any two matrices, d[AB] =Ad[B], it follows that these

eigenvectors are similar to the left singular vectors corresponding to the K largest singular values of the matrix

R := diag(Gd[GT ])−1/2G. (10)
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Equation (10) also motivates to consider the right singular vectors of R. These are indeed under certain conditions related to

the almost invariant sets based on the transfer operator according to Froyland (2005), see appendix A.175

From a computational perspective, setting up one of the sparse matrices C(t) is O(N) such that computing the matrix G is

O(Nτ). Computing d[GT ] is O(NM) as is the product Gd[GT ]). In total, computing R is therefore of computational com-

plexity O(NM +Nτ). As R is sparser than Ls[Q] or can have column dimension (= number of bins M ) significantly smaller

than row dimension (= number of particles N ), computing the SVD of R can lead to computational speed up. The algorithm

for the simultaneous K-way cut for Q in our case is:180

Algorithm 1: simultaneous K-way clustering

S1 Compute the first K left singular vectors of R= diag(Gd[GT ])−1/2G, vs,0, . . . ,vs,K−1.

S2 Compute vr,i =D[Q]−1/2vs,i for i= 0, . . . ,K − 1.

S3 Embed the N nodes of the network in RK by setting yn = (vr,0,n,vr,1,n, . . . ,vr,K−1,n),n= 1, . . . ,N .185

S4 Perform a standard euclidean-space clustering algorithm (here K-means) on the N points yn ∈ RK .

We choose this algorithm for the double-gyre flow (cf. section 4.1) for comparison with previous methods such as Padberg-

Gehle and Schneide (2017), Banisch and Koltai (2017) and Hadjighasem et al. (2016). For the ocean drifter data set (cf. section

4.2), we choose a hierarchical method instead of the simultaneous K-way cut, which is similar to Shi and Malik (2000). The

reason is that the hierarchy preserves the most important boundaries of a clustering solution. This is physically desirable, as190

several of these main boundaries are known to oceanographers. In addition, it simplifies the presentation of our results and

different choices of K when combined with a dendrogram.

Algorithm 2: hierarchical clustering

H1 Compute the network Q defined in eq. (5).195

H2 Find the largest connected component of the network and restrict Q to it. Define Q̄ as this restriction.

H3 Compute the eigenvector vs,1 of Ls[Q̄].

H4 Compute vr,1 =D[Q̄]−1/2vs,1

H5 Find a cutoff c such that the sets of nodes defined by S1 = {n ∈ {1, . . . ,N} | vr,1,n < c} and S2 = {n ∈ {1, . . . ,N} | vr,1,N ≥
c} minimize the NCut for the two sets S1 and S2.200

H6 Split the original network into two networks, with respective adjacency matrices QS1 ,QS2 defined by the projection of

Q̄ onto these sets.

H7 For each sub-network, repeat steps H3-H5.
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H8 Choose to split the sub-network that minimizes the generalized normalized cut in eq. (6).

H9 Repeat the steps H3-H8 up to a certain number of sets K.205

At each iteration, only one of the clusters is split into two, and the global NCut is minimized at each step. This is different

from other hierarchical procedures such as in Ma and Bollt (2013), where a local coherence ratio is maximized and the number

of clusters can in principle double at each iteration. Algorithm 2 is, apart from H2, similar to the one in Shi and Malik (2000)

and is preferable if we do not have a specific bound for the coherence of a cluster in mind, ensuring to have, at each step,

the most important clusters in terms of eq. (6). Note that we do not check for each sub-network if it is connected, as the sub-210

networks derived from the North Atlantic drifters were connected (only one eigenvalue equal to zero). However, this might be

necessary for other data sets.

4 Results

4.1 Periodically driven double-gyre flow

To test our method, we choose a model flow that has been used for the detection of coherent structures before (Froyland and215

Padberg, 2009; Froyland and Padberg-Gehle, 2015; Banisch and Koltai, 2017). The periodically driven double-gyre flow is

defined on a domain Ω = [0,2]× [0,1], with equations of motion:

ẋ = −πAsin(πf(x,t))cos(πy),

ẏ = πAcos(πf(x,t))sin(πy)
df

dx
(x,t), (11)

where f(x,t) = εsin(ωt)x2 +(1−2εsin(ωt))x, andA= 0.25, ε= 0.25 and ω = 2π. Similar to Banisch and Koltai (2017), we220

initially place 20,000 particles on the vertices of a uniform grid on the domain (0,2)× (0,1) and compute trajectory outputs

for twenty gyre periods with time steps of 0.1, i.e. i.e we have τ = 201. The eigenvectors are computed with the SVD of the

matrix R in eq. (10). These eigenvectors are then used for the K-way clustering algorithm with K-means, cf. algorithm 1 in

section 3.3.

Figure 3 shows the result for the clustering of Q, plotted at t= 0 and a binning of ∆x= ∆y = 0.04, i.e. the column dimension225

of R is M = 1250. In the figure, we include higher order (larger K) splits as well to show the full range of results obtained by

our algorithm. For K = 2 (fig. 3b, and all even values of K), we see a clear separation between the left and right gyres, which

is a common feature found by other studies (Froyland and Padberg, 2009; Froyland and Padberg-Gehle, 2015; Banisch and

Koltai, 2017). The figure also resolves to a certain accuracy the expected dominant transport barriers for the blue and brown

particles (the filaments extending into the respective other set). ForK = 3, we separate the gyre centres from their surrounding.230

Subsequent uneven values of K further split up the gyre centres in slices. Corresponding results for the autonomous double

gyre (A= 1, ε= 0) illustrating the idea of optimal partitions (cf. section 3.2) are shown in figs. B1 and B2 in the appendix.
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Figure 3. Clustering of Q with ∆x= ∆y = 0.04 of the full data set, i.e. N = 20,000 and T = 201.

We emphasize that the clustering of Q in fig. 3 does not show any binning structure. Intuitively, a long itinerary can resolve

small-scale structures, i.e. distinguish particles that are initially much closer than the typical bin size, see chapter 14 of Cvi-

tanović et al. (2016). The computational cost can be reduced even more if we make the bins larger. Figure 4 shows the result235

of the clustering for ∆x= 2/3, ∆y = 1/3, i.e. M = 9, up to K = 4. Note that the choice of ∆x prevents a preferable binning

along the x= 1 line. For this choice, the matrixQ has column dimension equal to nine, i.e. the clustering problem is effectively

9-dimensional. The corresponding clustering result does still resolve the most dominant structure up to very high resolution:

the split between the left and right side is preserved, and even the structure of the transport barrier is resolved very similar

to fig. 3. The results for K = 3 and K = 4 are very similar to the respective plots in fig. 3, although the gyre centres appear240

smaller. Note that the singular values (fig. 4a) are strongly suppressed compared to the M=1250 case in fig. 3.

Figure 4. Clustering of Q with ∆x= 2/3, ∆y = 1/3 of the full data set, i.e. N = 20,000 and T = 201. The most dominant structure is still

visible to high accuracy, although the problem is effectively 9-dimensional.
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To test the robustness of our method to missing data, we randomly choose 500 out of the 20,000 particles and for the

remaining data set randomly delete 80 % of the data points. This is similar to the approach of Banisch and Koltai (2017)

and Froyland and Padberg-Gehle (2015). When the data becomes sparser, different nodes become almost disconnected, which

leads to small, noisy clusters that can be identified by multiple singular values equal to 1. We can remedy that by increasing the245

bin size such that the network becomes connected again. Therefore, we choose ∆x= ∆y = 0.4 for this case. Figure 5 shows

the result for the clustering of Q for the incomplete data set, plotted on top of the corresponding clustering result of the full

trajectories (i.e. ∆x= ∆y = 0.04). The result of the incomplete data set roughly agrees with the expected result of the full

clustering. For the results shown in fig. 5b, 10 out of the 500 labels were assigned incorrectly compared to the full data case

computed with ∆x= ∆y = 0.04 (fig. 4), see fig. B3 in the appendix for the number of wrongly assigned labels for different250

bin sizes. Note again the strong suppression of the singular values for the incomplete data case (fig. 5a).

Figure 5. Clustering of Q for the incomplete data set, where 500 particles are retained and subsequent deletion of 80 % of the data points. a:

singular values of R for the incomplete data set, with ∆x= ∆y = 0.4. b-d: points representing the initial position of those particles that are

available at initial time. Background: result for the full trajectory with ∆x= ∆y = 0.04 (cf. fig. 3).

The results for the double-gyre flow illustrate the robustness of our method in identifying the most dominant structures with

incomplete trajectory data. Having control over the bin size enables to tune the network such that it stays connected and the

major structures can be resolved. At the same time, small-scale features of the flow seem to be resolved, at least to some extent,

independent of the bin size.255

4.2 Surface drifters in the North Atlantic

We compute the matrix G for the drifter data set with a square binning of 1◦ and a time step of one day and maximum time

of 365 days, i.e. τ = 365. The binning is similar to the one chosen by Van Sebille et al. (2012) for the computation of drifter-

derived transition matrices. As we aim to identify rigid, stationary features, we discard the time dimension for the trajectories

and place every trajectory at t= 0 at the location of drifter release. All trajectories exceeding one year are cut into smaller260

pieces, each of length smaller or equal to one year, which expands our data set from 5,270 to 8,334 trajectories. The network

defined by the drifters is not connected, such that we identify the largest connected component prior to the clustering (with the

python networkx package). We cluster the data with the hierarchical NCut algorithm for Q, cf. section 3.3.

Figure 6a shows the particle labels at t= 0. The dendrogram in fig. 6c shows which groups of particles are split, the y-axis
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corresponding to the value of the global NCut before the split. See the caption of fig. 6 for the oceanographic names of the265

different regions. Nine out of the 20 clusters consisted of one or two particles only. These are coloured in grey in the figure, and

have a label ’.’ in the dendrogram. Figure 7 shows the spectrum of the corresponding symmetric normalized Laplacian Ls[Q],

together with vertical lines indicating the position of the individual splits in terms of known oceanographic regions.

The first major split separates the Subpolar Gyre and Nordic Seas from the subtropical and tropical North Atlantic. This splits

essentially the Subpolar Gyre from the Subtropical Gyre, which compose together a double-gyre system, having some similarity270

to the one in section 4.1. The scarce transport of drifters between these two regions has been studied before (Brambilla and

Talley, 2006; Rypina et al., 2011; McAdam and van Sebille, 2018), and it is promising that we identify this separation first.

Compared to Rypina et al. (2011), the separation is slightly shifted northwards at the western side of the basin, the Western

Boundary Current region particles, labelled ‘E’, extending slightly into the Labrador Sea. This changes if we plot the drifters

at their final time, see fig. 6b, showing that some particles of group ‘E’ from the western Labrador Sea are transported into the275

northern Western Boundary Current region.

Next, our algorithm separates the Subpolar Gyre from the Nordic Seas. A relatively clear cut is seen along the Iceland-Scotland

ridge. The strength of the transport over the ridge is in fact an old topic in oceanography (Bower et al., 2019). Compared to

fig. 6a, this separation is slightly less prominent in figure 6b, indicating some slow but non-zero flow across the ridge. The

next separation that our algorithm detects is between the southern and northern parts of the Subtropical Gyre, which can be280

explained by the slow clockwise rotation of the gyre. The next split separates out the Caribbean Sea (label ‘F’), a region well

known to be rich of eddies and able to trap water masses, after which the Western Boundary Current region (label ‘E’) extends

northwards along the east coast of the US into the northern part of the subtropics. We eventually also identify the northern part

of the Subpolar Gyre (Greenland Current), and separate the Barents Sea from the Norwegian Sea, as well as the Bay of Biscay

as last separation of the hierarchical clustering algorithm.285

We also tested our clustering algorithm without constraining the trajectory length of the data set, see fig. C1 up to comparable

values of the NCut. We still resolve many of the major features of the flow in the North Atlantic such as the Western Boundary

Current region and the Caribbean Sea, the Subpolar Gyre and the Norwegian Sea. Others disappear, e.g. the Bay of Biscay and

the Greenland Current. This is likely an effect of longer trajectories receiving more weight in the definition of our network, cf.

section 3.2. It could, however, also be an effect of the fewer trajectories compared to the case when we set a cutoff on trajectory290

length. For example, there is almost no drifter starting in the Barents sea in the full data set, see fig. C1.

5 Conclusions

We introduce a new and conceptually simple method that enables the fast construction and clustering of particle based networks

to detect quasi-stationary regions with similar flow properties. Our method is based on ideas from symbolic dynamics, where

a coarse but long particle itinerary can still resolve very detailed structures below the bin size. We implement a conceptually295

simple form of this idea and construct a bipartite graph that connects particles and bins, with links corresponding to the time-

averaged conditional symbol distribution of each particle’s trajectory. We use this bipartite graph to define a similarity graph on

12

https://doi.org/10.5194/npg-2020-18
Preprint. Discussion started: 29 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 6. a: clustering of Q for the drifter data set with ∆x= ∆y = 1◦. Clusters corresponding to one or two particles are coloured in grey.

Oceanographic regions of the individual clusters (if existing): D: Norwegian Sea, E: Western Boundary Current region, F: Caribbean Sea,

I: Greenland Current, J: Barents Sea, K: Bay of Biscay. Names of groups of clusters: Subtropical Gyre (A,F,G,E,H,K), Subpolar Gyre (B,

I), Nordic Seas (D, J). b: hierarchy of the different splits. For each split, the (inverted) y-axis shows the respective NCut before the split.

Clusters corresponding to one or two particles are labelled by ’.’. The initial conditions are randomly shuffled prior to plotting such that no

colour dominates another one at the region boundaries.

particle trajectories, to which we apply normalized cut spectral clustering. The bipartite fundament of our method enables us to

use singular vectors of a related data matrix to construct a clustering solution under the normalized cut with spectral relaxation

instead of computing eigenvectors of the normalized Laplacian.300

Our results show that although we reduced the amount of processed data to a minimum by considering distributions over

particle itineraries only, our method is powerful in handling incomplete trajectory data and is computationally efficient to im-

plement. The basic idea of our algorithm is rooted in dynamical systems theory and symbolic dynamics, where long and coarse

particle itineraries slice the state space up to scales much below the partition size. The construction of the sparse data matrix

used for the singular value decomposition (SVD) has computational complexity O(NM +Nτ), where N is the number of305
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Figure 7. Spectrum (first 30 eigenvalues) of the symmetric normalized Laplacian, with main oceanographic splits indicated by vertical lines.

In the legend, ’|’ denotes a separation between the two regions. Otherwise an identification of a new region. Physical separations are indicated

by red points, while single or double particle splits by grey points.

particles, M the number of bins and τ the number of time steps. The linear scaling with the particle number is promising for

applications to large trajectory data set, although the complexity of the corresponding SVD depends on the sparsity structure

of the resulting matrix, which under some parameter choices (such as very long time scales with fine binning) could become

problematic.

Despite the performance and the low computational complexity of our method, the construction of the networks defined with310

itinerary distributions is to a certain extent ad-hoc. The construction is mostly motivated by practical requirements, i.e. the need

to define a reasonable similarity measure between particles that is not too exclusive, satisfies some reasonable behaviour re-

garding missing data and decomposes into block-diagonal structure for invariant flow regions in ideal cases. Due to completely

discarding the time dimension, our method cannot detect moving Lagrangian vortices that trace out similar time-averaged

paths, such as those in the ‘Bickley Jet’ (discussed e.g. in Hadjighasem et al. (2017)). The method presented here is the most315

basic way itineraries can be dealt with. When refining the definition of similarities, it is likely that graphs constructed from

symbolic itineraries have a large potential for fast and reliable coherent structure detection.

For the double-gyre flow, our method successfully identifies known flow features to relatively high detail in the known transport

boundaries. We demonstrate that our algorithm performs relatively well under deleting a large part of the trajectory data, mak-

ing it suitable for real-world applications. We also show that an a priori low-dimensional definition of the clustering problem320

through a coarse binning can still detect the major flow features with an accuracy down to scales well below the bin resolution.

We finally apply the method to drifter data in the North Atlantic, and successfully detect major flow regions such as the Western
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Boundary Current region, the Subpolar-Subtropical Gyres and the Caribbean Sea, providing the first drifter based clustering of

the North Atlantic surface transport using network theory.

Code and data availability. All code, including the script to constrain the data to the North Atlantic, is available at github: https://github.325

com/OceanParcels/drifter_trajectories_network. The drifter data is publicly accessible at https://www.aoml.noaa.gov/phod/gdp/interpolated/

data/all.php.

Appendix A: Relation of Q to almost invariant sets with the transfer operator

For an introduction to finding almost invariant sets with the transfer operator, see Dellnitz and Junge (1999), Froyland (2005)

and Froyland and Padberg (2009). Assume τ = 2 and denote by C0 = C(0) and C1 = C(1) the two required data matrices330

defined in eq. (1). The transition matrix P that approximates the transfer operator from time t= 0 to t= 1 is by definition

related to these matrices by: P =D[CT0 ]−1CT0 C1. As described by Froyland (2005), one can find almost invariant sets with

the eigenvectors of the matrix P̂ = 1
2

(
P + Π−1PTΠ

)
, where Π = diag(π1, . . . ,πN ) and π corresponding to the invariant

measure of the flow, i.e. πP = π. P̂ can be seen as a reversible Markov chain with stationary density π, and is the normalized

Laplacian Ls[AP ] of the adjacency matrix335

AP =
1
2
(
ΠP + (ΠP )T

)
. (A1)

Froyland (2005) then proposes to find sets {S1, . . . ,SK}, defined by index sets {I1, . . . , IK} referring to the contained bin

labels in each set, such that a generalized coherence ratio ρ(S1, . . . ,SK) (see eq. (A2) for a definition) is maximized. We first

show that this is equivalent to the NCut problem applied to AP .

340

Proposition 1: Minimizing the generalized normalized cut of AP defined in eq. (6) with spectral relaxation is similar to

maximizing the generalized coherence ratio ρ defined by Froyland (2005).

Proof: By definition,

ρ(S1, . . . ,SK) =
K∑

k=1

∑
i,j∈Ik

πiPij∑
i∈Ik

πi
345

=
K∑

k=1

∑
i,j∈Ik

Ap,ij∑
i∈Ik,j

Ap,ij

=
K∑

k=1

∑
i∈Ik,j

Ap,ij −
∑
i∈Ik,j /∈Ik

Ap,ij∑
i∈Ik,j

Ap,ij

= K −NCut(S1, . . . ,SK).� (A2)
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Note that this relies on the fact that π is invariant under right multiplication by P , otherwise the denominator of lines 2-3

in eq. (A2) would be different. We now show that the right singular vectors of R defined in eq. (10) are similar to the right350

eigenvectors of P̂ if the particle measure is invariant and uniform.

Proposition 2: If the particle measure is invariant and uniform, the right eigenvectors of the matrix P̂ = 1
2

(
P + Π−1PTΠ

)

used by Froyland (2005) are the same as the right singular vectors of R defined in eq. (10) with G= C0 +C1 as defined in eq.

(2).355

Proof: First, note that if the particle measure is invariant and uniform in an incomplete data set, R= βG for a constant

β > 0. We therefore have to show that the eigenvectors of GTG are under the specified conditions the same as the right

eigenvectors of P̂ . As the transition matrix is defined by ΠP = CT0 C1, the symmetric adjacency matrix is AP := ΠP̂ =
1
2

(
GTG−CT0 C0−CT1 C1

)
= 1

2G
TG−Π. The last equality follows from the fact CT0 C0 = CT1 C1 = Π, as the particle mea-360

sure is invariant. As Π is assumed to be uniform, this proves the result. �

Appendix B: Supplementary figures double-gyre flow

Figure B1. Clustering of Q for the autonomous double gyre and with ∆x= ∆y = 0.1, i.e. an optimal partition. The singular values are

doubly degenerate as the network Q consists of two disconnected sets.

Appendix C: Supplementary figures ocean drifters

Author contributions. DW performed the analysis, with support from CK, EvS and HD. DW wrote the manuscript and all authors jointly365

edited and revised it
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Figure B2. Clustering of Q for the autonomous double gyre with ∆x= ∆y = 0.15, i.e. a non-optimal partition. The main separation at

x= 1 is still resolved, but only at every even clustering step.

Figure B3. Share of incorrectly assigned particle labels for varying ∆x= ∆y, K = 2 and the incomplete (N=500) data set, compared to the

baseline of the complete data set with ∆x= ∆y = 0.04, cf. fig 3. The values were obtained with 100 random incomplete data sets for each

value of ∆x (= ∆y). The filled areas show the minimum and maximum ranges, one standard deviation, and the points the corresponding

means. It is visible that for too small bin spacing, the number of wrongly assigned labels is very high. This is most likely because the network

becomes less connected, such that it is more difficult to find structure in the eigenvector corresponding to the second smallest eigenvalue of

Ls[Q].
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Figure C1. Clustering of Q for the drifter data set with ∆x= ∆y = 1◦ and no restriction on trajectory length, plotted at the drifter release

location. Some main features as seen in figure 6 are still visible, but some details disappear. The hierarchical clustering was stopped at a

NCut value similar to the maximum NCut in fig. 6, i.e. about 3.8.
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