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Abstract. This contribution adresses the characterization of the model-error covariance matrix from the new theoretical per-

spective provided by the parametric Kalman filter method which approximates the covariance dynamics from the parametric 

evolution of a covariance model. The classical approach to obtain the modified equation of a dynamics is revisited to formulate 

a parametric diagnosis of the model-error covariance matrix. As an illustration, the particular case of the advection equation is 

considered as a simple test bed. After the theoretical derivation of both the forecast-error and the predictability-error covariance 

matrices, a numerical simulation is proposed which demonstrates the skill of the parametric methodology in reproducing the 

model-error covariance matrix information.

1 Introduction

A significant portion of the work being carried out in state-of-the-art data assimilation concerns the treatment of the forecast-10

error covariance matrix. The ensemble method has opened up a fantastic playground where variational DA and the Kalman

filter are now merged in hybrid or ensemble formulations.

Actually, the forecast-error is composed of two parts. While one part of it is related to the uncertainty in the initial condition,

another part is due to the model-error (Daley, 1991; Dee, 1995). The model-error corresponds to the difference between the

simulation and the true behavior of a system, and several representations of the model error can be introduced in numerical15

weather prediction (Houtekamer et al., 2009). For instance, the model error can be related to the misrepresentation of the small-

scales and how this influences the large-scales. Stochastic physics such as Stochastic Kinetic Energy Backscatter (Shutts, 2005)

or the Stochastically Perturbed Parametrization Tendencies (Palmer et al., 2009) are examples of methods encountered in NWP

for this part of the model error.

Although some theoretical studies have been conducted in the past, which elucidate the generic behavior related to the model-20

error from the dynamical system perspective and in connexion with the data assimilation (e.g. Nicolis (2003); Vannitsem
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and Toth (2002); Carrassi and Vannitsem (2010)), as far as we know there has been little investigation of the effect of the

discretization of partial derivative equations on the model error. One reason why the effect of numerical schemes is rarely

considered is because it tends to be quite difficult to describe the dynamics of large covariance matrices as encountered in the

Kalman filter.25

It has been noted in Kalman filtering and EnKF that the propagation of error covariance with a discretized advection model

produces a model error (variance) in the form of a variance loss (Ménard et al., 2000, 2020). This error is related to the spatial

splitting error in covariance propagation that exists with discretized models and not in continuous propagation of covariance

functions.

Recently, Pannekoucke et al. (2016, 2018b) (P16) have proposed to solve the Kalman filter equations using approximated30

covariance matricies through a covariance model characterized by certain parameters, leading to the so-called parametric

Kalman filter (PKF). With this approximation, the dynamics of the covariances is replaced by the dynamics of the parameters.

For instance, when considering the class of covariance matrices parametrized by the variance field and the local anisotropic

tensors (VLATcov), the evolution of the matrices is deduced from the evolution of the variance and the local anisotropic tensors

(Cohn, 1993; Pannekoucke, 2020). This approach relies on the partial differential equations encountered in geosciences.35

The aims of the present work are to study how the parametric dynamics for covariance matrix evolution can help to character-

ize the model-error covariance matrix, and more precisely, to determine if is it possible to capture some part of the model-error

covariance which is due to the numerical scheme. In this methodological contribution, we will limit ourselves to diffusive

numerical-errors whose uncertainty dynamics have been explored by Pannekoucke et al. (2018a) (P18).

The paper is organized as follows, the uncertainty propagation is first reviewed in Section 2 from which the model-error40

covariance matrix can be deduced at least on a theoretical level. The model-error covariance matrix estimation based on the

PKF is detailed for the particular one-dimensional transport equation in Section 3 in the context of the Euler-upwind and semi-

Lagrangian schemes. A numerical test bed is proposed in Section 4 to assess the ability of the PKF approach to successfully

estimate the model error due to numerical schemes in a one-dimensionnal setting. Conclusions and perspectives are given in

the last section, Section 5.45

2 Theoretical considerations

2.1 Background in uncertainty propagation and the model error

Here we assume that the nature is governed by the deterministic equation

∂tX =N (t,X ), (1)

where X stands for the state. Note that X can be either discrete or continuous: the discrete case leads to matrix of algebraic50

relations while the continuous case is suitable for theoretical treatment with partial differential equations. Thereafter, for any

state X of a suitable set, there exists a single trajectory Xt =Nt←0(X ) whereNt←0 stands for the propagator of the dynamics
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Eq. (1) from 0 to t. Hence, if X tq denotes the true state of the nature at time tq , then the true state of the nature at time tq+1 is

X tq+1 =Ntq+1←tq (X tq ). (2)

In practice, the true state X tq is unknown and only an estimation can be deduced from prior informations and the available55

observations. This estimation is called the analysis state, X a and it is expanded as

X aq = X tq + εaq , (3)

where εaq stands for the so called analysis error model as a random field of zero mean and covariance matrix Pa = E
[
εaq (ε

a
q )
T
]
,

with E [·] being the expectation operator. The forecast state is the prediction made from the analysis state,

X fq+1 =Ntq+1←tq (X aq ). (4)60

Similarily to the analysis state, the forecast state expands as

X fq+1 = X tq+1 + εfq+1, (5)

where εfq+1 stands for the so-called forecast error modeled as a random field of zero mean and covariance matrix Pf =

E
[
εfq+1(ε

f
q+1)

T
]
.

The forecast error covariance matrix is related to the analysis error covariance matrix through a deterministic relation as65

follows. From the definition of the forecast error Eq. (5) its dynamics is given by

εfq+1 = Ntq+1←tq,Xa
q
εaq ,

where Ntq+1←tq,Xa
q

stands for the tangent linear (TL) propagator along the nature TL dynamics defined by

∂tε = Nt,Xa
t
ε, (6)

where Nt,Xa
t

= dN|t,Xa
t

is the differential of N at (t,X at ), and which governs the evolution of small perturbations along the70

forecast trajectory starting from the analysis state. Note that the validity of the TL dynamics depends on the error magnitude

and on the forecast range. As a consequence, the forecast error covariance matrix becomes

Pf
q+1 = Ntq+1←tq,Xa

q
Pa
q

(
Ntq+1←tq,Xa

q

)T
. (7)

While theoretically correct, the above picture remains a crude idealized shortcut in the realm of numerical predictions. Due

to the imperfect knowledge of the nature and the limitations encountered during the computation, the nature dynamics is only75

approximated by

∂tX =M(t,X ), (8)

whereM is the numerical dynamics. Compared with the nature, the time evolution of the true state Eq. (2) is now related to

the numerical dynamics as

X tq+1 =Mtq+1←tq (X tq ) + εmq+1, (9)80
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where εmq+1 is the model error, which can be modeled as a random field εmq+1 = bmq+1 +ηmq+1 field of mean bmq+1 and covariance

matrix

Pm
q+1 = E

[
ηmq+1(η

m
q+1)

T
]
= E

[
εmq+1(ε

m
q+1)

T
]
− bmq+1(b

m
q+1)

T . (10)

The use of a numerical model in place of the nature requires us to modify the above definitions. Hence, the forecast state

Eq. (4) computed by the model is now written as85

X fq+1 =Mtq+1←tq (X aq ), (11)

while the forecast error evolves as

εfq+1 = Mtq+1←tq,Xa
q
εaq − εmq+1,

where Mtq+1←tq,Xa
q

denotes the propagator of the model TL dynamics

∂tε = Mt,Xa
t
ε, (12)90

where Mt,Xa
t

= dM|t,Xa
t

is the differential ofM at (t,X at ). Hence, the forecast error can be expanded as

εfq+1 = εpq+1− εmq+1, (13)

where

εpq+1 = Mtq+1←tq,Xa
q
εaq , (14)

is the so-called predictability error.95

In the general setting where the model error is serially correlated, the predictability error is correlated with the model error,

and the forecast-error covariance matrix has the form

Pf
q+1 = Pp

q+1 +Pm
q+1−Vpm

q+1− (Vpm
q+1)

T , (15)

where

Pp
q+1 = Mtq+1←tq,Xa

q
Pa
q

(
Mtq+1←tq,Xa

q

)T
, (16)100

is the predictability-error covariance matrix (Daley, 1992) and Vpm
q+1 = E

[
εpq+1

(
ηmq+1

)T ]
denotes the cross covariance matrix

between the predictability error and the model error.

The covariance matrices for the forecast error Eq. (7) and the predictability error Eq. (16) appear more simple than the model-

error covariance matrix, since they only rely on TL dynamics along the analysis trajectory while the model error depends on

the nature trajectory from the unknown true state. Hence, considering the approximation that the analysis error and the model105
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error are decorrelated (which is not true but it is a common assumption in estimation theory) a practical estimation of the

model-error covariance matrix is given by

Pm
q+1 ≈Ntq+1←tq,Xa

q
Pa
q

(
Ntq+1←tq,Xa

q

)T
−

Mtq+1←tq,Xa
q
Pa
q

(
Mtq+1←tq,Xa

q

)T
,110

that is

Pm
q+1 ≈Pf

q+1−Pp
q+1. (17)

Of course, Eq. (17) is still quite difficult to solve: for the forecast-error covariance matrix, the nature dynamics is either

unknown or, when the nature consists in PDEs, no exact solution exists which is easy to handle or interesting enough for

applications. For numerical studies, a high order numerical approximation N̂ of the nature dynamics can be considered, with115

the hope that the numerical errors are much smaller than those ofM. But the major limitation is due to the large size of the

numerical state encountered in geophysics: the direct computation of Eq. (7) or Eq. (16) is impossible in practice, even on

supercomputers, which are only able to handle a few numerical states at full resolution.

We now consider an alternative for calculating the temporal evolution of the covariance matrices.

2.2 Parametric dynamics for VLATcov models120

The parametric formulation of covariance evolution can be stated as follows. If P(P) denotes a covariance model characterized

by a set of parameters P = (pi)i∈I , then there exists a set Pft (Pa) featuring the forecast (the analysis) error covariance matrix

so that P(Pft )≈Pf
t (P(Pa)≈Pa). In reverse, if the dynamics of the parameters Pft is known, then P(Pft ) approximates the

dynamics of Pf
t without using the full matrix computation. This approach constitutes the so-called parametric Kalman filter

(PKF) approximation, introduced by Pannekoucke et al. (2016, 2018a) (P16, P18).125

The family of covariance models parametrized by the variance field and the local anisotropic tensors, the VLATcov models,

are of particular interest (Pannekoucke, 2020): their parameters are directly related to the grid-point statistics of the error field

ε. When the error is modeled as an unbiased random differential field, E [ε] = 0, the variance at a point x is written

V (x) = E
[
ε(x)2

]
. (18)

The anisotropy of the correlation function ρ(x,y) = 1√
VxVy

E [ε(x)ε(y)] is derived, from the second order expansion130

ρ(x,x+ δx)≈ 1− 1
2
||δx||2gx

, (19)

by the local metric tensor g(x). An interesting result is that the metric tensor can be obtained from the error as

gij(x) = E
[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)]
, (20)
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(see e.g. (Pannekoucke, 2020) for details). A VLATcov model is then a covariance model parametrized by V and g, that is

P(V,g).135

For instance, the diffusion operator of Weaver and Courtier (2001) is an example of a VLATcov model: the local anisotropic

tensors are related to the local diffusion tensors, ν, from

νx =
1
2
g−1
x , (21)

where the superscript −1 denotes the matrix inverse operator. Eq. (21) holds under the local homogeneous assumption, that is

when the spatial derivatives are negligible.140

Following Pannekoucke et al. (2018a), the parametric dynamics of a VLATcov model is deduced from the dynamics of the

errors from

∂tV = 2E [ε∂tε] , (22a)

∂tgij = ∂t

(
E
[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)])
, (22b)

where the expectation operator and the temporal derivative commute, ∂tE [·] = E [∂t·], as used in Eq. (22a). Therefore, the145

dynamics of the VLATcov model is written P(Vt,gt) or P(Vt,νt) which are equivalent.

Now, we apply the parametric covariance dynamics for model-error covariance estimation.

2.3 The model-error VLATcov approximation

With the notations of the previous paragraph, a set Ppt also exists for the predictability-error covariance matrix leading to the

approximation P(Ppt )≈Pp
t .150

If the dynamics of the parameters Ppt is known, then starting from the initial condition Pp0 = Pa it is possible to approxi-

mately determine Pp
t without solving Eq. (16) explicitly.

Hence, thanks to the parametric dynamics in the case where the nature is known from its partial derivative equation, a new

method to compute the model-error covariance matrix can be proposed as follows. By considering the TL dynamics for the

nature Eq. (6) and the model Eq. (12), Equation (22) provides a way to compute both the forecast error covariance matrix Pf ,155

Eq. (7), and the predictability error covariance matrix Pp, Eq. (16) ; from which the model-error covariance matrix Pm can be

diagnosed from Eq. (17). For the covariance model based on the diffusion equation, the model-error variance diagnosed from

Eq. (17) is the difference

V m = V f −V p, (23a)

where V f (V p) denotes the forecast-error (predictability-error) variance field. The field of the metric tensor of the model-error160

is approximately given by

gm =
1
V m

(
V fgf −V pgp

)
, (23b)

where gf (gp) denotes the forecast-error (predictability-error) metric tensor field (see Appendix A for details).

In the next section we apply the parametric model-error dynamics to a transport equation.
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3 Parametric characterization of the model error covariance for the one-dimensional advection equation165

The transport equation of a passive scalar c by the wind u(t,x) is written as

∂tc+u∂xc= 0, (24)

and takes the place of the nature dynamics Eq. (1). Note that dynamics Eq. (24) is linear, meaning that the tangent-linear

dynamics is also given by Eq. (24). The advection equation has two aspects. The first side is given by the PDE Eq. (24)

which is referred to as the Euler point of view. The other side is the analytico-geometric perspective known as the method of170

characteristics (see e.g. (Boyd, 2001, chap. 14)) where the dynamics can be solved as a local system of ordinary differential

equations, given by

dx

dt
= u, (25a)

dc

dt
= 0. (25b)

Each system Eq. (25) describes the evolution of the couple (x(t), c(t)) starting from an initial position x(0) where the scalar175

value is c(0,x(0)). At the geometric level, Eq. (25) remains to compute the trajectory of a mobile point of coordinate x(t), the

characteristic curve, solution of the dynamics Eq. (25a), and transporting the scalar c whose value c(t) coincide with the field

value c(t,x(t)). The transported value c(t) evolves following Eq. (25b). In the present situation, since the right hand side of

Eq. (25b) is null, c is conserved along the curve. This second point of view is referred to as the Lagrangian description for the

transport.180

Two discretization methods are interesting to study for the transport equation: the finite difference approach and the semi-

Lagrangian method resulting from the Lagrangian interpretation of Eq. (24).

The aim of this section is to detail the model-error covariance matrix for both schemes. This theoretical part is organized as

follows. The error covariance parametric dynamics for the nature is first described considering the covariance model based on

the diffusion equation, then both finite difference and semi-Lagrangian schemes are introduced with their particular parametric185

dynamics.

3.1 PKF dynamics for the linear advection equation

To describe the time evolution of the forecast error covariance matrix, Eq. (7), it is necessary to detail what is the TL dynamics,

Eq. (6), for the linear transport, Eq. (24). Since this transport dynamics is linear, the error evolves according to the same

dynamics, and the TL dynamics can be written as190

∂tε
f +u∂xε

f = 0. (26)

The PKF approximation of the forecast-error covariance matrix, relies on the dynamics of the variance and of the diffusion

fields deduced from Eq. (22). The equation for the variance is computed from Eq. (22a) by replacing the trend by the TL
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dynamics Eq. (26), so that

∂tV
f = 2E

[
εf
(
−u∂xεf

)]
=−2uE

[
εf∂xε

f
]
. (27)195

From ∂xε
f 2 = 2εf∂xεf and by the commutativity between the expectation operator and the spatial derivative, the variance

dynamics becomes

∂tV
f = 2E

[
εf
(
−u∂xεf

)]
=−u∂xE

[(
εf
)2]

. (28)

By using the definition of the variance Eq. (18), it results that the dynamics for the variance can be stated as

∂tV
f =−u∂xV f . (29)200

The computation of the metric dynamics Eq. (22b) is similar to the above computation made for the variance dynamics, and

is detailed in P16 and P18 where the interested reader is referred to. It results that the PKF evolution for the nature is written

∂tV
f +u∂xV

f = 0, (30a)

∂tν
f +u∂xν

f = (2∂xu)νf . (30b)

Note that a similar system has been first obtained, in data assimilation, by Cohn (1993) (see their Eq. (4.30a) and Eq.(4.34)205

when written without model error).

From Eq. (30), it results that the variance and the diffusion are independent quantities. The variance is conserved, while it is

transported by the wind. The diffusion is not only transported, it is also modified by the source term (2∂xu)νf which results

from the deformation of correlations by the gradient of the flow u: the diffusion tensor is not conserved by the flow.

Hence, in this sub-section, the forecast-error covariance dynamics Eq. (7) has been computed for the linear transport Eq. (24)210

and corresponds to the time integration of the un-coupled system Eq. (30) starting from prescribed analysis error variance and

diffusion tensor fields.

The finite difference scheme is now considered as a first numerical integration method for Eq. (24), with the derivation of

the predictability-error covariance matrix.

3.2 Finite difference scheme and its equivalent PKF dynamics215

When the velocity field u is positive (which is assumed from now without loss of generality), a conditionally stable discretiza-

tion scheme is given by the Euler-upwind scheme,

cq+1
i − cqi
δt

=−ui
cqi − cqi−1

δx
, (31)

Stability is assured as long as the CFL condition δx/Max
x
|u|< δt is satisfied. Moreover the scheme is consistent since in the

limit of small δx and δt, the dynamics Eq. (24) is recovered from the discrete equation Eq. (31). Thanks to the consistency220

and the stability, the equivalence theorem of Lax and Richtmyer (1956) assures to the convergence of Eq. (31) toward the true

solution. Equation Eq. (31) stands as an illustration of model dynamics Eq. (8).
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While the numerical solution computed with the aid of a given numerical scheme can converge toward the true solution

as δt→ 0 and δx→ 0, when δt and δx are of finie amplitude, the numerical solution often differs from the theoretical one.

Actually, there exists another partial differential equation which offers a better fit to the numerical solution and highlithgs the225

properties of the numerical scheme (Hirt, 1968): the consistency, the stability as well as the dissipative and dispersive nature

of the numerical scheme can be deduced trom the so-called modified equation (Warming and Hyett, 1974). Hence, while it is

supposed to solve Eq. (24) the numerical solution computed from Eq. (31) is actually the solution of the modified equation.

More precisely, if c̃ denotes a smooth function solution of the iterations Eq. (31) with c̃(qδt, iδx) = c̃qi , then the modified

equation is the partial differential equation verified by c̃ and at a given order of precision in δt and δx. Here, it is straightforward230

to show that at order O(δt2, δx2), the partial differential equation best fitted by c̃ is given by (see Appendix B)

∂tc̃+U∂xc̃= κ∂2
xc̃, (32a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (32b)

and235

κ=
u

2
(δx−uδt) (32c)

are two functions of t and x.

Compared with the nature Eq. (24), the modified equation that best fits the Euler-upwind numerical scheme Eq. (31) presents

a correction of the wind which depends on the trend ∂tu and the self advection u∂xu of the wind u. The magnitude of the

correction scales as δt and is null at the limit δt→ 0. But this is not the only modification of the dynamics, as a more critical240

difference emerges from the numerical discretization: a diffusion term whose magnitude depends on the CFL number uδt/δx.

In particular, the diffusion coefficient is negative when the CFL number is larger than one. The diffusion breaks the conservation

property of the initial dynamics Eq. (24). This example shows the importance of the modified equation: this provides a way

to understand and characterize the defects due to the numerical resolution. In one dimension, for evolution equation, this can

be diffusive processes (associated with derivatives of even order) or dispersive processes (associated with derivatives of odd245

order).

From the PKF point of view, the modified equation is crucial since it converts a discrete dynamics into a partial differential

equation, which appeared from P16 and P18, much simpler to handle when considering error covariance dynamics. Thanks to

the modified equation Eq. (32), it is now possible to compute the TL evolution of the predictability error for the Euler-upwind

scheme, which can be expressed as250

∂tε
p +U∂xε

p = κ∂2
xε
p. (33)

Equations of the PKF forecast can be computed under a similar derivation as in the above Section 3.1. To simplify the

computation workflow, a splitting method has been introduced in P16 and P18. Due to the diffusion process appearing in
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Eq. (33), the PKF formulation faces a closure issue for which a closure scheme has been successfully proposed in P18, the

Gaussian closure. The interested reader is referred to P18 for the details.Note that an alternative to the Gaussian closure can255

be deduced from the data through machine-learning (Pannekoucke and Fablet, 2020). Hence, the resulting dynamics for the

parameter of the predictability-error covariance model is given by

∂tV
p +U∂xV

p =−V
pκ

νp
+κ∂2

xV
p− κ(∂xV p)

2

2V p
(34a)

260

∂tν
p +U∂xν

p = (2∂xU)νp+

κ∂2
xν

p + 2κ− 2(∂xνp)
2

νp
κ+

∂xκ∂xν
p− 2∂2

xV
p

V p
κνp+

∂xV
p

V
κ∂xν

p− 2∂xV p

V p
νp∂xκ+

2(∂xV p)
2

V p2
κνp (34b)

Compared with the PKF dynamics of the nature Eq. (30), the PKF for the Euler-upwind scheme gives rise to additional265

terms which result from the numerical diffusion of magnitude κ. Moreover, this time, the PKF for the Euler-upwind scheme

presents a coupling between the variance and the diffusion, the coupling being a consequence of the numerical diffusion only.

Note that a coupling between the variance and the correlation scale also appeared in Eq. (4.30a) and Eq. (4.34) of Cohn (1993),

but without a link to the discretization scheme.

The model-error covariance matrix associated with the Euler-upwind scheme can be deduced from the forecast and the270

predictability error covariance matrix approximations: starting from the initial analysis-error variance and diffusion field, in-

tegration of the parametric forecast-error (predictability-error) covariance equation Eq. (30) ( Eq. (34) ) provides the forecast-

error (predictability-error) variance V f and diffusion νf ( V p and νp) which are used to compute the model-error covariance

parameter Eq. (23).

As another example, the model-error parameters for the semi-Lagrangian scheme are now discussed.275

3.3 Semi-Lagrangian scheme and its equivalent PKF dynamics

The modified equation technique has been previously considered for SL schemes. For instance, McCalpin (1988) has shown for

the case of constant advecting velocity that a linear interpolation leads to an effective Laplacian dissipation while the quadratic

and cubic interpolations lead to a biharmonic dissipation.

Because we want to focus on the method to address the issue of the model error, and since uncertainty prediction of diffusive280

dynamics has been detailed by P18, we limit the presentation to the linear interpolation in the semi-Lagrangian. and we present

the modified equation of Eq. (24) for the study of its model error.

The Lagrangian perspective Eq. (25) of Eq. (24) suggests to build curves along which c is constant. While simple, the

drawback of this analytico-geometric method is the possible occurrence of curve trajectory collapses which prevent us from
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describing the time evolution of c throughout the geographical domain. It is possible to take advantage of the geometrical285

resolution while avoiding the collapse by considering the so-called semi-Lagrangian procedure.

In the Lagrangian way of thinking, starting from a given position xo, the question is where the mobile point lies along the

time axis, which makes evolving the computation grid forward in time. The semi-Lagrangian perspective reverses this question

by asking from which position x∗o originates the mobile point arriving at xo at a given time. Hence, the semi-Lagrangian leaves

the computation grid unchanged over the time steps of the integration, while letting the scalar field c evolve. More precisely290

for the particular dynamics of Eq. (24), by assuming the scalar field at time t known for each points of the computational grid,

for grid point xi, the scalar field evolves as

c(t+ δt,xi) = c(t,x∗i ), (35)

where x∗i is the origin of the trajectory at time t which arrives at xi at time t+ δt. Since the point of origin x∗i is unlikely to

be a point of the computational grid (except for very particular situations), the value c(t,x∗i ) is computed as an interpolation of295

the known values of c at time t.

In its present form, the semi-Lagrangian procedure is not suited to the PKF method since it does not give rise any partial

differential equation which lies at the core of the parametric approximation for covariance dynamics. To proceed further and to

obtain PDEs, additional assumptions are introduced to translate the semi-Lagrangian procedure Eq. (35) into a discrete scheme

from which the modified equation is deduced.300

In the case where the discretization satisfies the CFL condition |u(x)|δx < δt and for linear interpolation, it is straightforward

to write the semi-Lagrangian procedure Eq. (35) into a discrete scheme (see Appendix C for the details) which is stated as

follows:




cq+1
i −cq

i

δt =−ui c
q
i−c

q
i−1

δx , for ui > 0
cq+1

i −cq
i

δt =−ui c
q
i+1−c

q
i

δx , for ui < 0
(36)

which give rise to the Euler-upwind/downwind schemes. Then following the same derivation as previously presented in Sec-305

tion 3.2, the modified equation resulting from the scheme Eq. (36) is given as the PDE verified by a smooth solution c̃ of

Eq. (36). From the derivation detailed in Appendix C, the modified equations is

∂tc̃+U∂xc̃= κSL∂2
xc̃, (37a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (37b)310

and

κSL =
|u|
2

(δx− |u|δt) (37c)
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are both functions of t and x.

Hence, since this corresponds mainly to the modified equation Eq. (32) encountered for the Euler-upwind scheme Eq. (31),

the parametric predictability-error covariance is also given by Eq. (34), replacing κ by its SL counterpart value κSL315

Note that the derivation leading to the Euler-upwind and Euler-downwind schemes is due to the choice of the linear inter-

polation. The bridge between the SL and the Euler-up/down-wind procedures is not a novelty. The derivation has been carried

out since it offers an insight into how to build a modified equation for the SL scheme, and also for the self consistency of the

presentation. In the general situation, the modified equation for the SL scheme is hard to obtain, if at all possible, and it is not

the idea to claim the procedure as universal. But it provides a new insight into the model-error covariance matrix for the SL320

scheme, which is one of the main goals of the present contribution.

The next section presents the numerical experiments carried out to assess the ability of the PKF to characterize the model-

error covariance matrix.

4 Numerical validation

4.1 Setting and illustration325

Figure 1. (a) Wind field specified for the nature dynamics and the one seen in the discretized model from Eq. (32b). Panel (b) represents the

numerical diffusion coefficient due to the discretization Eq. (32c).

In this experimental test bed, the domain is assumed to be the one dimensional segment [0,D) with periodic boundary

conditions, where D = 1. The domain is discretized into a regular grid of n= 241 points xi = iδx for i ∈ [0,240] and δx=

D/n≈ 4.110−3.

The wind field u for the one-dimensional transport Eq. (24) is set as the stationary field

u(x) = 0.4 +
0.6
2

(
1 + cos

(
2π
D

(x−D/4)
))

, (38)330
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Figure 2. Nature (a) and model (b) runs for times from t= 0 to t= T and represented each 0.2T .

showed in Fig. 1-(a), which appears as a jet with the entrance (exit) at x= 0.75D (x= 0.25D): the flow accelerates (deceler-

ates) until x= 0.25D (x= 0.75D).

In order to verify the CFL condition, the time step for the numerical simulation is set to δt= 0.002 leading to a CFL value of

0.48< 1. The magnitude of the numerical diffusion κ, Eq. (32c), associated with this setting is shown in Fig. 1-(b), normalized

by the diffusion coefficient κe = δx2/δt.335

For the numerical experiment, the initial state for c is set to

c(0,x) = exp
(
− 1

2(0.15D)2
sin
(π

2
(x−D/2)

)2
)

(39)

while the initial analysis-error covariance matrix is set as the homogeneous Gaussian covariance matrix Pf
t=0(x,y) = e

− (x−y)2

2l2
h

where lh = 0.05≈ 12δx. The analysis-error standard-deviation is set to the homogeneous value 1.0.

For numerical validation, since no simple analytical solution of the partial differential equation Eq. (24) exists, this dynamics340

is integrated considering a fourth order Runge-Kutta time scheme applied on the finite difference discretization

∂tci =−ui
ci+1− ci−1

2δx
, (40)

where the spatial derivative is approximated by a centered second order scheme. This constitutes the higher resolution version

N̂ of the modelN and introduced in Section 2.1: N̂ is assumed to better reproduce the natureN . In order to compute the true

covariance dynamics, a very large ensemble of forecast, integrated with N̂ , has been considered with Ne = 6400 forecasts.345

This large size limits the sampling noise to a relative error of 1/
√

6400≈ 1.25%.

Figure 2 shows the trajectory computed from the nature approximated by N̂ and the nature N . Since the transport equation

conserves the value of the field c, the extremal values of c do not change along the integration and the wind u > 0 causes the

initial structure to move to the right. While the field is conserved, it is also deformed by the wind. For the particular choice

of the initial condition made here, the signal is of larger (smaller) scale in the region x ∈ [0,0.5] ( x ∈ [0.5,1]) than its initial350

shape. Panel (a) shows that the nature approximation N̂ is able to reproduce the conservation of c as well as the stretching of
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the signal along the time axis. Hence, the nature approximation N̂ is good enough to capture the main features of the nature

dynamics, which justifies the use of this approximation in place of the true dynamics in the following. At the opposite, the

model N fails to maintain the magnitudes of the extrema (panel (b)), in accordance with the modified equation Eq. (32a) of

the Euler-upwind Eq. (31) which presents a non-physical diffusion process resulting from the numerical discretization. Note355

that the coefficient of the numerical diffusion is heterogeneous over the domain with a typical value of thereabout 0.1κe (see

Fig. 1-(b)). This heterogeneity is due to the scale variation of the signal, stretched by the wind shear: when the signal is of

smaller (larger) scale than its initial shape, the second order derivative is larger (smaller), which leads to an intensification

(reduction) in the numerical diffusion term in Eq. (32a).

Having validated the two numerical models, it is now possible to look at the covariance dynamics and how the model-error360

covariance error can be estimated from the PKF prediction.

4.2 Assessment of the PKF in predicting the forecast-error and the predicability-error covariance dynamics

The PKF forecast-error covariance matrix dynamics for the transport equation Eq. (24) is given by the system Eq. (30). The

PKF predictability-error covariance matrix dynamics resulting from the Euler-upwind integration Eq. (31) is given by Eq. (34).

Both systems are numerically integrated by considering respectively an explicit RK4 time scheme for the nature and an Euler365

time scheme for the Euler-upwind scheme. The time step used for the integration is δt= 0.002. The forecast-error and the

predictability-error variance field are shown in Fig. 3. The forecast-error (predictability-error) correlation length-scale field,

defined from the one-dimensional diffusion field by Lf =
√

2νf , (Lp =
√

2νp), is shown in Fig. 4. The variance and the

length-scale, are shown for the PKF and the ensemble estimation, the latter being only computed for the validation of the PKF

(the ensembles are not needed neither used for the computation of the PKF systems).370

The forecast-error covariance dynamics is first considered. Since the variance of the nature Eq. (30a) is conserved, it results

that with the choice of an initial homogeneous variance, the trend is null and the variance field is the stationary homogeneous

field 1.0. This theoretical result is well reproduced in Fig. 3-(a) from the PKF integration while the ensemble estimation, Fig. 3-

(c) also shows this stationary but to within the sampling noise. The length-scale (Fig. 4-(a)) shows a periodic evolution where,

starting from the homogeneous field of Lh, the length-scale first increases (decreases) in the entrance (exit) of the jet, then375

these evolutions are attenuated then compensated with the transport. Then ensemble estimation Fig. 4-(c) presents the same

variations (again to within the sampling noise), which validates the PKF dynamics for the nature.

The predictability-error covariance dynamics is now discussed. For the Euler-upwind scheme, the numerical diffusion result-

ing from the spatio-temporal discretization in Eq. (32a) implies a damping of the variance along the time axis (see Fig. 3-(b)).

The attenuation of the uncertainty governed by Eq. (34), leads to a heterogeneous damping over the domain and appears much380

stronger in the middle of the domain (x= 0.5) than near the boundaries (x= 0 and x= 1), while transported by the flow. The

length-scale, Fig. 4-(b) increases by the diffusion while the shear produces similar patterns as for the forecast-error statistics.

The ensemble estimation in Fig. 3-(d) and Fig. 4-(d) shows the same signal as the PKF prediction (within the sampling noise)

which validates the system Eq. (34).
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Figure 3. Forecast-error variance field, V f (t,x), for the nature Eq. (24), computed from the PKF Eq. (30) (panel a), and predicatbility-error

variance field, V p(t,x), for the numerical model resulting from the finite difference & Euler discretization Eq. (31), computed from the PKF

Eq. (34) (panel b). Panels (c) and (d) are the ensemble estimation for panels (a) and (b), where the nature dynamics is approximated by

Eq. (40) dynamics in panel (c) (6400 members are used here). Fields are represented for times from t= 0 to t= T and represented each

0.2T .

As a conclusion of this section, the PKF is able to predict the variance and the legnth-scale feature of the forecast-error385

covariance dynamics of the nature dynamics Eq. (24) and of the predictability-error covariance dynamics resulting from the

discretization of the true dynamics given by Eq. (31). These results are now considered to provide an estimation of the model-

error covariances.

4.3 Model-error covariance diagnosis from the PKF prediction

As discussed in Section 2.1, the model-error covariance matrix can be estimated from the difference between the forecast-error390

and the predictability-error covariance matrix, Eq. (17), when the analysis error and the model error are decorrelated. This latter

assumption is quite restrictive since in real applications such a correlation certainly exists, leading to the much more complex
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Figure 4. The length-scale counterpart of Fig. 3 representing the forecast-error (the predicatbility-error) length-scale field Lf (Lp) in panels

(a,c) (in panels (b-d)). The length-scale is diagnosed from the diffusion coefficient νf (νp) as Lf =
√

2νf (Lp =
√

2νp) and normalized by

the grid spacing δx. Top panels are computed from the PKF while the bottom panels are estimated from the same large ensemble of forecasts

as considered in Fig. 3. Fields are represented for times from t= 0 to t= T and represented each 0.2T

relationship Eq. (15). The question is to know if it is possible to capture some information about the model-error covariance

from the approximation Eq. (17).

In order to tackle this issue, the computation of Pm
t is first made from Eq. (17), considering the PKF estimation of the395

forecast-error covariance Pf
t and of the predictability-error covariance Pp

t , following Eq. (23). Then this estimation of Pm
t, is

compared to the direct ensemble estimation of the model-error covariance computed from the model error computation εmk =

X fk −X
p
k , which is made possible here since the nature is known (to within the approximation of N by N̂ ). The comparison

of both estimates of the model-error covariance is made by looking at the model-error variance and length-scale fields.

Figure 5 shows the model-error variance field V mt approximated by the computation along the simulation as the difference400

V ft −V pt (panel a), and estimated from the ensemble of model error εmk = X fk −X
p
k (panel b) – this estimation being the

approximation of the true model-error statistics. Both estimates of the model-error variance predict a variance bump that

increases and translates over time. The location of the bump predicted from the PKF estimation (panel a) is in accordance
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Figure 5. Model-error variance: (a) computed under decorrelation assumption as the difference between the variance computed from the

PKF and shown in Fig. 3(a) and (b); (b) diagnosed from ensemble of differences εm
k = X f

k −X p
k . Fields are represented for times from

t= 0.2T to t= T and represented each 0.2T (for t= 0 the model error is null).

Figure 6. Model-error length-scale: (a) under decorrelation of errors as computed from the PKF for the nature and the Euler-upwind scheme,

(b) diagnosed from the ensemble of differences εm
k = X f

k −X p
k . Fields are represented for times from t= 0.2T to t= T , each 0.2T (for

t= 0 the model error is null)

with the true statistics (panel b). But the magnitude of the variance differs: under the analysis-error/model-error decorrelation

assumption, the variance averaged over the domain (panel a) increases much faster than for the true model-error variance (panel405

b).

The length-scale diagnosis, shown in Figure 6, illustrates a similar behaviour. At t= 0, the length-scale is not determined

since the model-error covariance matrix is null for both simulations, so t= 0.2T is represented in replacement. The length-scale

translates with the flow and increases or decreases due to the velocity shear along the domain. Despite their similarities, the

decorrelation assumption (panel a) produces larger length-scales than for the real model-error length-scale statistics, estimated410

from the ensemble of simulations (panel b).
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In this simulation, the parametric Kalman filter appears as a theoretical tool able to investigate the model-error statistics by

providing some estimation of the variance field and the length-scale field.

5 Conclusions

In this contribution, the part of the model-error covariance due to the spatio-temporal discretization scheme is explored by415

considering the parametric approximation for the Kalman filter. In the PKF formulation, covariances are approximated by

covariance models which are characterized by a set of parameters. We focused on the class of covariance model distinguished

by the variance field and the local anisotropic tensors (VLATcov). Therefore, for VLATcov matrices, the covariance dynamics

is given by the dynamics of the variance and the local anisotropic tensors, whose dynamics are deduced from the partial

differential equations of the system.420

Under the decorrelation assumption of the analysis error and the model error, the model-error covariance is approximated

as the difference between the parametric approximation of the forecast-error and the predictability-error covariance matrices.

For a dynamics given by a partial differential equation, the parametric forecast-error covariance matrix is deduced from the

evolution equation while the predictability error covariance matrix is computed from the modified evolution, i.e. the partial

differential equation that best fits the numerical solution.425

The ability of the parametric approach to characterize part of the model-error covariance dynamics has been illustrated in

a numerical test bed in 1D. We have considered the transport of a scalar by a heterogeneous velocity field. In this case, the

parametric dynamics of the foreacast error shows that the variance is conserved along the flow, while the local anisotropic

tensor is transported by the flow and deformed by the gradient of the velocity.

For this transport dynamics, two numerical schemes have been considered: an Euler-upwind scheme and a semi-Lagrangian430

scheme in the case of a linear interpolation. The modified equations of both schemes make appear an additional heterogeneous

dissipation and a perturbation of the velocity, whose characteristics depend on the spatio-temporal discretisation (dt,dx), the

trend and the shear of the flow. Because of the numerical diffusion, the variance of the predictability error is not conserved and

a coupling with the anisotropy appears. This effect has been noted as well in 3D global transport models (Ménard et al., 2020)

where the loss of error variance is stronger for short correlation length-scales.435

An ensemble of forecasts has been introduced, taken as the reference, to compare the true covariance evolution with the

parametric approximation. The numerical experiment shows the ability of the parametric dynamics to reproduce the forecast-

error and the predictability-error covariance dynamics. For the model-error covariance, the difference between the forecast-

error and the predictability-error covariances was not able to perfectly recover the true model-error covariance dynamics: this

is due to the cross-correlation between the predictability error and model error that is not taken into account here. Nonetheless,440

the model-error variance and local anisotropy obtained from the PKF shared some similarities with the ensemble estimation,

which indicates that the PKF approximation can provide an estimation of some model-error covariance characteristics.

The methodology introduced here has shown the potential of exploring the model-error covariance from the parametric

dynamics. While the characterization of the model-error covariance is a challenge, as in air quality forecasts (Emili et al.,
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2016), the parametric approach appears as a new theoretical tool to tackle this issue. In order to represent the uncertainty of445

the small scales, it would be interesting to combine the parametric approach with other new methods e.g. the modelling under

location uncertainty (Resseguier et al., 2017).

However, the parametric dynamics faces closure issues that have to be adressed depending on applications. Here, the inves-

tigation of diffusive model errors has been made possible thanks to the Gaussian closure of P18. For other kind of numerical

errors, an appropriate closure will have to be specified, either from theoretical closures or from the data as suggested by the450

data-driven and physics-informed identification of uncertainty dynamics of Pannekoucke and Fablet (2020).

Appendix A: Approximation of the model-error metric tensor field

Here, we consider the particular case where the model-error covariance model is approximated under the white noise assump-

tion as Eq. (17) i.e.

Pm = Pf − Pp.

The local metric tensor can be diagnosed from the Taylor expansion of the model-error correlation function

ρm(x,x+ δx) =
1√

Pm(x,x)Pm(x+ δx,x+ δx)
460

(
Pf (x,x+ δx)−Pp(x,x+ δx)

)
. (A1)
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Under an assumption of local homogeneity of the variance, Pm(x,x)≈Pm(x+δx,x+δx), Pf (x,x)≈Pf (x+δx,x+δx),

and Pp(x,x)≈Pp(x+ δx,x+ δx), which leads to the expansion

ρm(x,x+ δx)≈ Pf (x,x)
Pm(x,x)

(
1− 1

2
||δx||2

gf
x

)
−465

Pp(x,x)
Pm(x,x)

(
1− 1

2
||δx||2gp

x

)
. (A2)

Since, ||δx||2gx
= δxTgxδx, the correlation is expanded as

ρm(x,x+ δx)≈ 1−
1
2
δxT

[
1

Pm(x,x)
(
Pf (x,x)gfx−Pp(x,x)gpx

)]
δx. (A3)470

After identification with the expected form of the expansion

ρm(x,x+ δx)≈ 1− 1
2
||δx||2gm

x
, (A4)

it follows that

gmx =
1

V f (x)−V p(x)
(
V f (x)gfx−V p(x)gpx

)
, (A5)

where the variance are denoted by Pf (x,x) = V f (x) and Pp(x,x) = V p(x).475

Appendix B: Computation of the modified equation for Euler scheme

The modified partial differential equation associated with the numerical scheme Eq. (31) is the partial differential equation of

a smooth function c̃, solution of the scheme, so that c̃(qδt, iδx) = c̃qi i.e.

c̃q+1
i − c̃qi
δt

=−ui
c̃qi − c̃qi−1

δx
, (B1)

for which the Taylor formula in time and space at order O(δt2, δx2) is480

∂tc̃+
δt

2
∂2
t c̃+ O(δt2) =

−u
(
∂xc̃−

δx

2
∂2
xc̃+O(δx2)

)
(B2)

The second order time derivation can be replaced from the equation Eq. (B2) itself, at an appropriate order. Due to the δt, an

expansion at order O(δt) only requires to express the second order derivative at the lead order, that is from485

∂tc̃=−u∂xc̃+O(δt,δx). (B3)
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Then, from the time derivation, the second order derivative can be replaced by

∂2
t c̃ = ∂t (−u∂xc̃) +O(δt,δx),

= −∂tu∂xc̃−u∂2
xtc̃+O(δt,δx),

then, the second order derivative ∂2
xtc̃ can be deduced from spatial derivation of Eq. (B3), and writes490

∂2
xtc̃ = −∂x(u∂xc̃) +O(δt,δx),

= −∂xu∂xc̃+u∂2
xc̃+O(δt,δx).

It results that Eq. (B2) writes

∂tc̃+
δt

2
[
−∂tu∂xc̃−u

(
−∂xu∂xc̃+u∂2

xc̃
)]

=495

−u
(
∂xc̃−

δx

2
∂2
xc̃

)
+O(δt2, δx2)

then

∂tc̃+U∂xc̃= κ∂2
xc̃+O(δt2, δx2), (B4)

where U = u− δt
2 ∂tu+ δt

2 u∂xu and κ= u
2 (δx−uδt) are two functions of t and x.

Appendix C: Computation of the modified equation for Semi-Lagrangian scheme500

The aims of this section is twofold, the first goal is to obtain a discrete scheme from the semi-Lagrangian procedure, then to

deduce the modified equation of the discrete scheme.

For the sake of simplicity, the linear advection dynamics ∂tc+u∂xc= 0 is first considered with a velocity u > 0.

From the characteristic curve resolution it follows that c(tq+1,xi) = c(tq,x∗i ), where the originate point x∗i is assumed in

between points xi−1 and xi, which means that the CFL constraint uδt < δx is verified. This originate point can be approximated505

as x∗i = xi−uiδt, and if a linear interpolation is considered for the computation of c(t,x∗i ), it follows that

c(tq,x∗i ) =
(

1− x∗i −xi−1

xi−xki−1

)
cqi−1 +

(
x∗i −xi−1

xi−xi−1

)
cqi

=
uiδt

δx
cqi−1 +

(
1− uiδt

δx

)
cqi , (C1)510

Hence, the numerical scheme writes

cq+1,i =
uiδt

δx
cq,i−1 +

(
1− uiδt

δx

)
cq,i. (C2)
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The modified differential equation is obtained by replacing c by a smooth function c̃, solution of the numerical scheme Eq. (C2).

The computation of the modified equation is similar to the Euler case detailed in Appendix B, leading to
515

∂tc̃+
(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xc̃=

(
1
2
uδx− 1

2
u2δt

)
∂2
xc̃. (C3)

When u < 0, the differential equation writes

∂tc̃+
(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xc̃=520

(
1
2
(−u)δx− 1

2
u2δt

)
∂2
xc̃ (C4)

Hence, in the general situation,

∂tc̃+
(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xc̃=

(
1
2
|u|δx− 1

2
u2δt

)
∂2
xc̃, (C5)525

whatever the sign of the velocity u.
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