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Abstract. This contribution addresses the characterization of
the model-error covariance matrix from the new theoretical
perspective provided by the parametric Kalman filter method
which approximates the covariance dynamics from the para-
metric evolution of a covariance model. The classical ap-5

proach to obtain the modified equation of a dynamics is re-
visited to formulate a parametric modelling of the model-
error covariance matrix which applies when the numerical
model is dissipative compared with the true dynamics. As an
illustration, the particular case of the advection equation is10

considered as a simple test bed. After the theoretical deriva-
tion of the predictability-error covariance matrices of both
the nature and the numerical model, a numerical simulation
is proposed which illustrates the properties of the resulting
model-error covariance matrix.15

1 Introduction

A significant portion of the work being carried out in state-
of-the-art data assimilation concerns the treatment of the
forecast-error covariance matrix. Actually, the forecast er-
ror is composed of two parts. While one part of it is re-20

lated to the uncertainty in the initial condition, another part
is due to the model error (Daley, 1991; Dee, 1995). The
model error corresponds to the difference between the simu-
lation and the true behaviour of a system, and several repre-
sentations of the model error can be introduced in numer-25

ical weather prediction (NWP) (Houtekamer et al., 2009).
For instance, the model error can be related to the misrep-

resentation of the small scales and how this influences the
large scales. Stochastic physics such as stochastic kinetic
energy backscatter (Shutts, 2005) or the stochastically per- 30

turbed parametrization tendencies (Palmer et al., 2009) are
examples of methods encountered in NWP for this part of
the model error.

Although some theoretical studies have been conducted
in the past, which elucidate the generic behaviour related to 35

the model error from the dynamical system perspective and
in connection with the data assimilation (e.g. Nicolis, 2003;
Vannitsem and Toth, 2002; Carrassi and Vannitsem, 2010),
as far as we know there has been little investigation of the ef-
fect of the discretization of partial derivative equations on the 40

model error and on model-error covariance in particular (Du-
binkina, 2018; Hatfield et al., 2018; Grudzien et al., 2020).
One reason why the effect of numerical schemes is rarely
considered is because it tends to be quite difficult to describe
the dynamics of large covariance matrices as encountered in 45

the Kalman filter.
It has been noted in Kalman filtering and ensemble

Kalman filtering (EnKF) that the propagation of error covari-
ance with a discretized advection model produces a model
error (variance) in the form of a variance loss (Ménard et al., 50

2000, 2020). This error is related to the spatial splitting error
in covariance propagation that exists with discretized models
and not in continuous propagation of covariance functions,
i.e. the propagation by the true equations of the dynamics.

Recently, Pannekoucke et al. (2016, 2018b) (P16) have 55

proposed to solve the Kalman filter equations, and their
second-order extension for non-linear dynamics, using ap-
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2 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

proximated covariance matrices through a covariance model
characterized by certain parameters, leading to the so-called
“parametric Kalman filter” (PKF). With this approximation,
the dynamics of the covariances is replaced by the dynamics
of the parameters. For instance, when considering the class5

of covariance matrices parameterized by the variance field
and the local anisotropic tensors (VLATcov), the evolution
of the matrices is deduced from the evolution of the variance
and the local anisotropic tensors (Cohn, 1993; Pannekoucke,
2020). This approach relies on the partial differential equa-10

tions encountered in geosciences that are often non-linear.
The aims of the present work are to study how the para-

metric dynamics for covariance matrix evolution can help
to characterize the model-error covariance matrix, and more
precisely, to determine if is it possible to capture some part15

of the model-error covariance which is due to the numerical
scheme. In this methodological contribution, we will limit
ourselves to diffusive numerical errors whose uncertainty dy-
namics can be explored from the results of Pannekoucke et al.
(2018a) (P18).20

The paper is organized as follows: the background in data
assimilation is reviewed in Sect. 2 from which the formal-
ism of the model-error covariance matrix is detailed with the
introduction of modelling that could apply when the numer-
ical model is dissipative. The model-error covariance ma-25

trix based on the PKF is illustrated for the particular one-
dimensional transport equation in Sect. 3 in the context of
the Euler-upwind and semi-Lagrangian schemes. A numeri-
cal test bed is proposed in Sect. 4 to assess the ability of the
PKF approach to successfully model the flow-dependent part30

of the model-error covariance matrix to numerical schemes
in a one-dimensional setting. A discussion on the results is
proposed in Sect. 5. Conclusions and perspectives are given
in Sect. 6.

2 Theoretical considerations35

2.1 Background in uncertainty propagation and the
model error

Here, we assume that the nature is governed by the determin-
istic equation

∂tX =N (X ), (1)40

where X stands for the state. Note that X can be either dis-
crete or continuous: the discrete case leads to matrix of alge-
braic relations, while the continuous case is suitable for the-
oretical treatment with partial differential equations. There-
after, for any state X of a suitable set, there exists a single45

trajectory Xt =Nt←0(X ), where Nt←0 stands for the prop-
agator of the dynamics (Eq. 1) from 0 to t . Hence, if X t

q de-
notes the true state of the nature at time tq , then the true state
of the nature at time tq+1 is

X t
q+1 =Ntq+1←tq (X

t
q), (2)50

where the subscript q is used to denote the time tq .
Due to the imperfect knowledge of the nature and the lim-

itations encountered during the computation, the nature dy-
namics is only approximated by

∂tX =M(t,X ), (3) 55

where M is the numerical dynamics. Compared with the na-
ture, the time evolution of the true state (Eq. 2) is now related
to the numerical dynamics as

X t
q+1 =Mtq+1←tq (X

t
q)− ε

m
q+1(X

t
q), (4)

where εm
q+1(X

t
q) is the model error with respect to the true 60

state, and where εm
q+1 is the vector-valued function defined

by

εm
q+1 =Mtq+1←tq −Ntq+1←tq . (5)

The model error εm
q+1(X

t
q) represents collectively the nu-

merical discretization error and the effect of unresolved pro- 65

cesses. It is often modelled as a random field of zero mean,
i.e. E

[
εm
q+1(X

t
q)
]
= 0, and of covariance matrix

Pm
q+1 = E

[
εm
q+1(X

t
q)
(
εm
q+1(X

t
q)
)T ]

, (6)

where E [·] denotes the expectation operator.
In practice, the true state X t

q is unknown and only an es- 70

timation can be deduced from a priori information and the
available observations. This estimation is called the “analy-
sis state”, X a, and it is expanded as

X a
q = X t

q + εa
q , (7)

where εa
q stands for the so-called “analysis error” that is 75

modelled as a random field of zero mean and covariance ma-
trix Pa = E

[
εa
q(ε

a
q)
T
]
. The forecast state is the prediction

made from the analysis state,

X f
q+1 =Mtq+1←tq (X

a
q ). (8)

Similarly to the analysis state, the forecast state expands as 80

X f
q+1 = X t

q+1+ εf
q+1, (9)

where εf
q+1 stands for the so-called “forecast error” that is

modelled as a random field of zero mean and covariance ma-
trix Pf

= E
[
εf
q+1(ε

f
q+1)

T
]
.

The forecast-error covariance matrix is related to the 85

analysis-error covariance matrix through a deterministic re-
lation as follows. From the definition of the forecast error
(Eq. 9), its dynamics is given by (see Eq. A2 in Appendix A)

εf
q+1 =Mεa

q + ε
m
q+1(X

t
q), (10)

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Nonlin. Processes Geophys., 28, 1–22, 2021 https://doi.org/10.5194/npg-28-1-2021



O. Pannekoucke et al.: Model-error covariances due to the discretization scheme 3

where M is a simplified notation for Mtq+1←tq ,X a
q

that is for
the tangent linear (TL) propagator along the analysis trajec-
tory. The TL dynamics, with respect to the analysis state, is
defined by

∂tε =Mt,X a
t
ε, (11)5

where Mt,X a
t
= dM|t,X a

t
is the differential of M at (t,X a

t ).
This TL model governs the evolution of small perturbations
along the forecast trajectory starting from the analysis state.
Note that the validity of the TL dynamics depends on the
error magnitude and on the forecast range. Moreover, the10

decomposition of the forecast error (Eq. 10) makes the pre-
dictability error εp TS2 appear defined by

ε
p
q+1 =Mεa

q . (12)

Consequently, the forecast-error covariance matrix becomes

Pf
q+1 = Pp

q+1+Pm
q+1+Vpm

q+1+ (V
pm
q+1)

T , (13)15

where

Pp
q+1 =MPaqMT (14)

is the predictability-error covariance matrix (Daley, 1992)

and Vpm
q+1 = E

[
ε

p
q+1

(
εm
q+1

)T ]
TS3denotes the cross-

covariance matrix between the predictability error and the20

model error.
When the analysis error and the model error are decorre-

lated, the forecast-error covariance matrix is written as

Pf
q+1 = Pp

q+1+Pm
q+1. (15)

Note that, in the case where the true nature is used to fore-25

cast the uncertainty, the forecast-error covariance matrix co-
incides with the predictability-error covariance matrix. In the
latter, the predictability error with respect to the nature dy-
namics plays an important role. So in order to avoid any con-
fusion with the predictability error associated with the nu-30

merical model, the notation ·̃ is used when the dynamics is
the nature, i.e.

P̃f
q+1 = P̃p

q+1 = NPaqNT , (16)

with P̃f
= E

[̃
εf(̃εf)T ], where ε̃f

q+1 = Nεa
q denotes the fore-

cast error in the particular case where the dynamics is the35

nature, which coincide with the predictability error in this
case, i.e. ε̃f

q+1 = ε̃
p
q+1; and where N is a simplified notation

for the propagator Ntq+1←tq ,X a
q

solution of the TL dynam-
ics governed by Nt,X a

t
= dN|t,X a

t
(the differential of N at

(t,X a
t )).40

2.2 Discussion on the modelling of the model error

The modelling of the model error can be seen as a trade-
off between its real properties and the lack of knowledge to

address this error. In particular, the various assumptions en-
countered in data assimilation may be considered as subop- 45

timal ways to model this error. For instance, assuming that
the model error is unbiased leads to modelling the bias as
some variance and overestimates the effective model-error
variance. Then, assuming a decorrelation between the anal-
ysis and the model errors is certainly wrong for determin- 50

istic error, as for the model error due to the discretization
of the dynamics, but it may not apply for highly non-linear
processes as for the turbulent processes and transport by the
turbulent processes. Again, assuming the decorrelation be-
tween the analysis and the model errors leads to overesti- 55

mating the true effect of the model error with an overesti-
mation of the true forecast-error uncertainty. However, with
these assumptions, or actually this modelling, some part of
the model-error statistics can be estimated from the data. For
instance, with the assumption that the analysis and the model 60

errors are decorrelated, leading to Eq. (15), it is possible to
estimate the homogeneous correlation and the stationary part
of the climatological model-error covariance (Daley, 1992;
Boisserie et al., 2013).

By some aspects, the understanding and the specifica- 65

tion of the model-error covariance matrix look like the de-
velopment of the background-error covariance matrix some
decades ago. Indeed, in variational data assimilation, the
background-error covariance matrix was a constant ma-
trix, estimated from the climatology (Derber and Bouttier, 70

1999). Then, the ensemble methods provided an estimation
of the predictability error statistics of the day, leading to
a flow-dependent background-error covariance matrix (see,
e.g. Berre et al., 2007). Nonetheless, the situation of the
model-error covariance matrix is different since, up to now, 75

no equations have been known to characterize its properties.
It seems that the prospect of estimating the model-error co-
variance matrix of the day is out of reach.

Because the model error can mean different things, to
understand the context in which we are using model error, 80

let us consider the situation sketched in Fig. 1. This fig-
ure mimics the evolution of the analysis uncertainty with
respect to the nature and the numerical model. The initial
Gaussian analysis error is characterized by the analysis state
(the black point) and the analysis-error covariance matrix 85

(the black ellipse). Under the TL assumption, the analysis
uncertainty evolving by the nature dynamics (blue arrow)
is a Gaussian of mean and covariance given, respectively,
by the analysis forecasted by the nature (blue point) and by
the predictability-error covariance matrix represented by the 90

blue ellipse. Note that in this case, the predictability-error
covariance matrix coincides with the forecast-error covari-
ance matrix. Similarly, the analysis evolving by the numeri-
cal model (red arrow) is a Gaussian of mean and covariance
given, respectively, by the analysis forecasted by the model 95

(red point) and by the predictability-error covariance matrix
represented by the red ellipse. The evolution of the true state
(pink crosses) is also represented (pink arrow). Figure 1a and

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/npg-28-1-2021 Nonlin. Processes Geophys., 28, 1–22, 2021



4 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

Figure 1. Illustration of the evolution of the uncertainty by the nature and the numerical model: the generic situation (a) and the particular
situation where the forecast lies within the nature uncertainty and where the model is diffusive (b). The predictability-error covariance of the
nature NPaqNT (of the model MPaqMT ) is indicated by the blue (red) ellipse. The forecast-error covariance matrix is indicated by the orange
ellipse.

b illustrate what would be the forecast-error covariance ma-
trix (orange ellipse) in two situations.

Figure 1a represents the case where the forecast state
X f
q+1 is out of the predictability uncertainty of the nature:

in that case, a model-error estimate is needed to enlarge the5

predictability-error covariance of the numerical model so that
the forecast-error covariance is large enough to account for
the uncertainty of the nature. In this situation, it seems dif-
ficult to speculate about what would be the characteristic of
the model error beyond any climatological estimate. This sit-10

uation could be the typical picture for a long-term forecast.
Figure 1b represents the situation where the time inte-

gration is not too long, so the forecast state lies within the
predictability uncertainty of the nature. This situation is en-
countered when the numerical model is more dissipative than15

the nature, e.g. the resolution of an advection by a semi-
Lagrangian scheme. Then the model-error uncertainty, re-
quired to correct the predictability error of the numerical
model, should be at least large enough to provide an uncer-
tainty similar to the predictability-error covariance of the na-20

ture. So if we are able to quantify the predictability-error co-
variances of the nature and of the numerical model, then it
would be able to specify a flow-dependent part of the model-
error covariance matrix. To account for the bias, a climato-
logical residual covariance matrix would be necessary, which25

corresponds to a static matrix which depends on the duration
of the forecast. Note that this decomposition of the model-
error covariance matrix into a flow-dependent and a static
part should not be confused with the decomposition of the
model error itself. In particular, the decomposition of the30

model-error covariance matrix does not mean that the part
of the model error related to the bias is static; this not true, as
the bias depends on the situation. However, the estimation of
the bias needs the knowledge of the nature dynamics that is
never known. Because the statistical contribution of the bias35

can only be known from a climatological study, this leads to
a static matrix which is not flow dependent.

Thereafter, we consider the situation sketched in Fig. 1b,
which suggests decomposing the forecast-error covariance
matrix as 40

Pf
q+1 ≈ Pp

q+1+5m
q+1+Qq+1, (17)

where

5m
q+1 = NPaqNT −MPaqMT (18)

would account for the flow-dependent part of the model-
error covariance matrix, while the remaining Qq+1, a resid- 45

ual model-error covariance, would account for the bias and
could be estimated from the climatology, e.g. by considering
a chi-squared diagnostic (Ménard et al., 2000).

Thus, 5m
q+1 = P̃p

q+1−Pp
q+1 measures how the

predictability-error covariance of the numerical model 50

should be modified to find the one of the nature. We think
that 5m

q+1 could be a useful proxy to characterize the
flow-dependent part of model-error covariance matrix. Note
that the matrix 5m

q+1 is symmetric but not necessarily
positive. However, under the assumption depicted in Fig. 1b, 55

we will assume that 5m
q+1 is positive. Note also that 5m

q+1
is different from the model-error covariance matrix Pm

q+1: if
there is no analysis uncertainty, then 5m

q+1 is zero.
The decomposition (Eq. 17) can be justified from the de-

composition of the forecast error that can be written as (see 60

Eq. A6 in Appendix A)

εf
q+1 = ε̃

p
q+1+ ε

m
q+1(X

a
q ), (19)

which makes the forecast error appear, εf
q+1, as the pre-

dictability error of the nature, ε̃
p
q+1 = Nεa

q , plus a drift
εm
q+1(X

a
q ). Note that, with the analysis state X a

q being known, 65
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O. Pannekoucke et al.: Model-error covariances due to the discretization scheme 5

the model error εm
q+1(X

a
q ) is easier to handle than εm

q+1(X
t
q)

in Eq. (10), which is defined with respect to the true state
X t
q that is never known in practice. Now, when assuming that

the errors in Eq. (19) are decorrelated and when the model
error εm

q+1(X
a
q ) is unbiased (E

[
εm
q+1(X

a
q )
]
= 0) and of co-5

variance E
[
εm
q+1(X

a
q )
(
εm
q+1(X

a
q )
)T ]
=Qq+1, it results that

the forecast-error covariance matrix is also written as

Pf
q+1 = P̃p

q+1+Qq+1. (20)

Hence, the modelling of the model-error covariance as

Pm
q+1 ≈5m

q+1+Qq+1 (21)10

allows us to connect the two formulations (Eqs. 15 and 20)
of Pf

q+1. In fact, while Eqs. (15) and (20) result from a decor-
relation assumption of the errors in Eqs. (10) and (19), and
because 5m

q+1 is not necessarily a covariance matrix, then
expression of Pf

q+1, proposed in Eq. (17), is more like that of15

Eq. (13), where there is no decorrelation assumption.
Compared with climatological modelling of the model-

error covariance matrix, as usually encountered in data as-
similation, the model for Pm in Eq. (21) is a state-dependent
model of the model-error covariance. Note also that, in20

Fig. 1b, assuming that there is no bias, while there is one,
leads us to interpret the bias as a residual model-error whose
magnitude can be estimated from the climatology. Hence,
Pm modelled by Eq. (21) is a hybrid model that balances
the model error of the day with the climatological effects of25

the model error. In particular, if the initial state is perfectly
known, then 5m

q+1 is zero, and the model error is character-
ized by the climatological residual term Qq+1: the source of
this uncertainty corresponds to a forcing term that appears in
the dynamics of the model error (see, e.g. Eq. 4 in Nicolis,30

2003); this source term is not explored here and its contribu-
tion is incorporated in Q whose magnitude depends on the
forecast time.

Note that the modelling equation (Eq. 21) for Pm is ac-
tually supported by at least one real experiment. In the as-35

similation of a chemical tracer using a Kalman filter, Mé-
nard et al. (2000) and Ménard and Chang (2000) (M2000s)
have observed a loss of variance: the variance they forecasted
was lower than the theoretical variance that was transported
by the flow for the advection equation (Cohn, 1993). Said40

differently, in their experiment, the predicability-error vari-
ance computed from the numerical model was lower than
the predicability-error variance of the nature they consid-
ered, and M2000s related the loss of variance to the dis-
cretization of the continuous dynamics. This loss of variance45

is also encountered when considering an ensemble forecast
of the uncertainty, as later illustrated in the numerical part
(see Sect. 4.2.1) and also observed in 3-D domain simula-
tions (Ménard et al., 2020). Accompanying the loss of vari-
ance, M2000s also observed that the correlation length scale50

they predict was larger, due to the same diffusive process that
gives rise to the loss of variance. To cope with the loss of
variance, M2000s proposed to correct the predictability-error
variance (the diagonal of Pp in Eq. 14) so that its magnitude
is conserved, as it is supposed to be according to the the- 55

ory. This renormalization introduced an increase of correla-
tion length that was corrected by a Schur product of the new
covariances with a homogeneous isotropic correlation model
whose length scale has been determined so that the total co-
variance is conserved over time. 60

Indeed, M2000s introduced a modelling of the model-
error covariance matrix similar to Eq. (21) introduced here,
although they did not explicitly formalize it in this way: their
objective was not to characterize the model-error covariance
matrix but to correct the predictability-error covariance ma- 65

trix that they considered erroneous from a theoretical point
of view.

In particular, M2000s have observed that the Kalman filter,
with the corrected predictability-error covariance, required
less residual model error Q (see Ménard et al., 2000, Sect. 5) 70

and improved the analysis-error statistics (see Ménard et al.,
2000, Fig. 11): the flow-dependent modelling (Eq. 21) of the
model error is in better agreement with the real forecast un-
certainty.

At a computational level, 5m
q+1 in Eq. (18) appears easier 75

to obtain than the model-error covariance matrix Pm
q+1, as de-

fined by Eq. (6): the predictability-error covariance matrices
of the model Pp

q+1 (Eq. 14) and of the nature P̃p
q+1 (Eq. 16)

are based only on the TL forecasts with respect to the known
analysis state X a

q , while the model error εm
q+1(X

t
q) (Eq. 4) 80

depends on the true state X t
q that is never known.

However, computing P̃p
q+1 and Pp

q+1 remains a challenge.
First of all, the nature dynamics N is generally unknown; e.g.
primitive equations are only an approximation of the geo-
physical fluid dynamics. Then, when the nature dynamics is 85

(assumed) known, e.g. when it is given by partial differential
equations (PDEs), there is often no analytical solution, which
means that the problem must be solved numerically: as M is
precisely the numerical approximation of N , the only way to
compute P̃p

q+1 is to introduce a high-order numerical approx- 90

imation of the nature dynamics, N̂ , whose numerical error is
much smaller than the one of M. And finally, it remains to
compute P̃p

q+1 and Pp
q+1. But due to the large size of the nu-

merical state encountered in practice, the direct computation
of P̃p

q+1 ≈ N̂PaqN̂T and Pp
q+1 =MPaqMT is impossible, even 95

on supercomputers, which are only able to handle a few nu-
merical states at full resolution: it is the limitation that mo-
tivated the ensemble estimation to solve the Kalman filter
equations (Evensen, 2009).

To overcome the above limitations, a high-order dis- 100

cretization N̂ of N will be introduced in the latter numerical
simulation in place of N , e.g. in the ensemble estimation of
the covariance matrix P̃p

q+1 ≈ N̂PaqN̂T only used for the val-
idation. But the computation of P̃p

q+1 = NPaqNT and Pp
q+1 is

https://doi.org/10.5194/npg-28-1-2021 Nonlin. Processes Geophys., 28, 1–22, 2021



6 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

investigated through an alternative to the ensemble estima-
tion, as now introduced in the next section.

2.3 Parametric dynamics for VLATcov models

The parametric formulation provides a framework where a
limited number of covariance parameters (based on the con-5

tinuous PDE) of the nature can be computed. The paramet-
ric formulation works as follows. If P(P) denotes a covari-
ance model characterized by a set of parameters P = (pi)i∈I ,
there exists a set P f

t featuring the forecast-error covariance
matrix so that P(P f

t )≈ Pf
t ; and there is a set Pa featuring the10

analysis-error covariance matrix so that P(Pa)≈ Pa . In re-
verse, if the dynamics of the parameters P f

t is known, then
P(P f

t ) approximates the dynamics of Pf
t without using the

full matrix computation. This approach constitutes the so-
called parametric Kalman filter (PKF) approximation, intro-15

duced by Pannekoucke et al. (2016, 2018a) (P16, P18).
The family of covariance models parameterized by the

variance field and the local anisotropic tensors, the VLATcov
models, are of particular interest (Pannekoucke, 2020): their
parameters are directly related to the grid-point statistics of20

the error field ε. When the error is modelled as an unbiased
random differential field, E [ε]= 0, the variance at a point x
is written as

V (x)= E
[
ε(x)2

]
. (22)

The anisotropy of the correlation function ρ(x,y)=25

1√
VxVy

E
[
ε(x)ε(y)

]
is defined, from the second-order expan-

sion,

ρ(x,x+ δx)≈ 1−
1
2
||δx||2g(x), (23)

by the local metric tensor g(x). An interesting result is that
the metric tensor can be obtained from the error as30

gij (x)= E
[
∂xi

(
ε
√
V

)
∂xj

(
ε
√
V

)]
(24)

(see, e.g. Pannekoucke, 2020, for details). A VLATcov
model is then a covariance model parameterized by V and
g, which is P(V ,g).

For instance, the diffusion operator of Weaver and Courtier35

(2001) is an example of a VLATcov model: the local
anisotropic tensors are related to the local diffusion tensors,
ν, from

νx =
1
2

g−1
x , (25)

where the superscript −1 denotes the matrix inverse opera-40

tor (Pannekoucke and Massart, 2008; Weaver and Mirouze,
2013). Equation (25) holds under the local homogeneous as-
sumption; that is, when the spatial derivatives are negligible.

Following Pannekoucke et al. (2018a), the parametric dy-
namics of a VLATcov model is deduced from the dynamics 45

of the errors from

∂tV = 2E [ε∂tε] , (26a)

∂tgij = ∂t
(
E
[
∂xi

(
ε
√
V

)
∂xj

(
ε
√
V

)])
, (26b)

where the expectation operator and the temporal derivative
commute, ∂tE [·]= E [∂t ·], as used in Eq. (26a). Therefore, 50

the dynamics of the VLATcov model is written P(Vt ,gt ) or
P(Vt ,νt ), which are equivalent.

Now, we apply the parametric covariance dynamics for
model-error covariance estimation.

2.4 The model-error VLATcov approximation 55

From now, we will assume that 5m is a covariance matrix
and that there is no residual model-error Q in order to focus
on 5m alone, so that

Pm
q+1 ≈5m

q+1 (27)

leads to model the forecast-error covariance matrix as 60

Pf
q+1 ≈ Pp

q+1+5m
q+1. (28)

With the notations of the previous paragraph, a set Pp
t also

exists for the predictability-error covariance matrix, leading
to the approximation P(Pp

t )≈ Ppt .
If the dynamics of the parameters Pp

t is known, then start- 65

ing from the initial condition Pp
0 = Pa it is possible to ap-

proximately determine Ppt without solving Eqs. (14) and (16)
explicitly.

Hence, thanks to the parametric dynamics in the case
where the nature is known from its partial derivative equa- 70

tions, a new method to compute the model-error covariance
matrix can be proposed as follows. By considering the TL dy-
namics for the numerical model and for the nature, Eq. (26)
provides a way to compute both the predictability-error co-
variance matrices Pp (Eq. 14) and P̃p (Eq. 16) from which 75

the model (Eq. 27) of Pm can be evaluated. For the covari-
ance model based on the diffusion equation, the model-error
variance diagnosed from Eq. (18) is the difference:

V m
= Ṽ p

−V p, (29a)

where Ṽ p and V p denote the predictability-error variance 80

fields of the nature and of the numerical model. The field of
the metric tensor of the model error is approximately given
by

gm
=

1
V m

(
Ṽ p̃gp

−V pgp) , (29b)

where g̃p and gp, respectively, denote the predictability-error 85

metric tensor fields of the nature and of the numerical model
(see Appendix B for details).

In the next section, we apply the parametric model-error
dynamics to a transport equation.
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3 Parametric characterization of the model-error
covariance for the one-dimensional advection
equation

The transport equation of a passive scalar c by the wind
u(t,x) is written as5

∂tc+ u∂xc = 0, (30)

and takes the place of the nature dynamics (Eq. 1). Note that
dynamics (Eq. 30) is linear, meaning that the tangent-linear
dynamics is also given by Eq. (30). The advection equation
has two aspects. The first side is given by the PDE (Eq. 30),10

which is referred to as the Euler point of view. The other side
is the analytico-geometric perspective known as the method
of characteristics (see, e.g. Boyd, 2001, Chap. 14) where the
dynamics can be solved as a local system of ordinary differ-
ential equations, given by15

dx
dt
= u, (31a)

dc
dt
= 0. (31b)

Each system of Eq. (31) describes the evolution of the cou-
ple (x(t),c(t)) starting from an initial position x(0) where
the scalar value is c(0,x(0)). At the geometric level, Eq. (31)20

remains to compute the trajectory of a mobile point of coor-
dinate x(t), the characteristic curve, solution of the dynamics
(Eq. 31a) and transporting the scalar c whose value c(t) co-
incides with the field value c(t,x(t)). The transported value
c(t) evolves following Eq. (31b). In the present situation,25

since the right-hand side of Eq. (31b) is null, c is conserved
along the curve. This second point of view is referred to as
the Lagrangian description for the transport.

Two discretization methods are interesting to study for
the transport equation: the finite-difference approach and the30

semi-Lagrangian method resulting from the Lagrangian in-
terpretation of Eq. (30).

The aim of this section is to detail the model-error covari-
ance matrix for both schemes. This theoretical part is orga-
nized as follows. The error covariance parametric dynam-35

ics for the nature is first described considering the covari-
ance model based on the diffusion equation; then both finite-
difference and semi-Lagrangian schemes are introduced with
their particular parametric dynamics.

3.1 PKF dynamics for the linear advection equation40

To describe the time evolution of the predictability-error co-
variance matrix, Eq. (16), it is necessary to detail what is
the TL dynamics for the linear transport, Eq. (30). Since this
transport dynamics is linear, the error evolves according to
the same dynamics, and the TL dynamics can be written as45

∂t ε̃
p
+ u∂x ε̃

p
= 0. (32)

The PKF approximation of the forecast-error covariance ma-
trix relies on the dynamics of the variance and of the diffu-
sion fields deduced from Eq. (26). The equation for the vari-
ance is computed from Eq. (26a) by replacing the trend by 50

the TL dynamics (Eq. 32), so that

∂t Ṽ
p
= 2E

[̃
εp (
−u∂x ε̃

p)]
=−2uE

[̃
εp∂x ε̃

p] . (33)

From ∂x (̃ε
p)2 = 2̃εp∂x ε̃

p and by the commutativity between
the expectation operator and the spatial derivative, the vari-
ance dynamics becomes 55

∂t Ṽ
p
= 2E

[̃
εp (
−u∂x ε̃

p)]
=−u∂xE

[(̃
εp)2] . (34)

By using the definition of the variance (Eq. 22), it results that
the dynamics for the variance can be stated as

∂t Ṽ
p
=−u∂x Ṽ

p. (35)

The computation of the metric dynamics (Eq. 26b) is simi- 60

lar to the above computation made for the variance dynamics
and is detailed in P16 and P18, where the interested reader
is referred. It results that the PKF evolution for the nature is
written as

∂t Ṽ
p
+ u∂x Ṽ

p
= 0, (36a) 65

∂t ν̃
p
+ u∂x ν̃

p
= (2∂xu)̃νp. (36b)

Note that a similar system has been first obtained, in data
assimilation, by Cohn (1993) (see their Eqs. 4.30a and 4.34
when written without stochastic model error).

From Eq. (36), it results that the variance and the diffusion 70

are independent quantities. The variance is conserved while
it is transported by the wind. The diffusion is not only trans-
ported, but it is also modified by the source term (2∂xu)̃νp

which results from the deformation of correlations by the
gradient of the flow u: the diffusion tensor is not conserved 75

by the flow.
Hence, in this subsection, the predicability-error covari-

ance for the nature (Eq. 16) has been computed for the linear
transport (Eq. 30) and corresponds to the time integration of
the uncoupled system of Eq. (36) starting from prescribed 80

analysis-error variance and diffusion tensor fields.
The finite-difference scheme is now considered as a first

numerical integration method for Eq. (30), with the deriva-
tion of the predictability-error covariance matrix.

3.2 Finite-difference scheme and its equivalent PKF 85

dynamics

When the velocity field u is positive (which is assumed from
now without loss of generality), a conditionally stable dis-
cretization scheme is given by the Euler-upwind scheme:

c
q+1
i − c

q
i

δt
=−ui

c
q
i − c

q

i−1

δx
. (37) 90
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Stability is assured as long as the Courant–Friedrichs–Lewy
(CFL) condition δt < δx/Max

x
|u| is satisfied. Moreover, the

scheme is consistent since in the limit of small δx and δt ,
the dynamics (Eq. 30) is recovered from the discrete equa-
tion (Eq. 37). Thanks to the consistency and the stability, the5

equivalence theorem of Lax and Richtmyer (1956) assures to
the convergence of Eq. (37) toward the true solution. Equa-
tion (37) stands as an illustration of model dynamics (Eq. 3).

While the numerical solution computed with the aid of a
given numerical scheme can converge toward the true solu-10

tion as δt→ 0 and δx→ 0, when δt and δx are of finite am-
plitude, the numerical solution often differs from the theo-
retical one. Actually, there exists another partial differential
equation which offers a better fit to the numerical solution
and highlights the properties of the numerical scheme (Hirt,15

1968): the consistency, the stability as well as the dissipative
and dispersive nature of the numerical scheme can be de-
duced from the so-called “modified equation” (Warming and
Hyett, 1974). Hence, while it is supposed to solve Eq. (30),
the numerical solution computed from Eq. (37) is actually20

the solution of the modified equation.
More precisely, if C denotes a smooth function solution of

the iterations (Eq. 37) with C(qδt, iδx)= Cqi , then the mod-
ified equation is the partial differential equation verified by
C and at a given order of precision in δt and δx. Here, it is25

straightforward to show that at order O(δt2,δx2), the partial
differential equation best fitted by C is given by (see Ap-
pendix C)

∂tC+U∂xC = κ∂
2
xC, (38a)

where30

U = u−
δt

2
∂tu+

δt

2
u∂xu (38b)

and

κ =
u

2
(δx− uδt) (38c)

are two functions of t and x.
Compared with the nature (Eq. 30), the modified equation35

that best fits the Euler-upwind numerical scheme (Eq. 37)
presents a correction of the wind which depends on the trend
∂tu and the self advection u∂xu of the wind u. The mag-
nitude of the correction scales as δt and is null at the limit
δt→ 0. But this is not the only modification of the dynam-40

ics, as a more critical difference emerges from the numerical
discretization: a diffusion term whose magnitude depends on
the CFL number uδt/δx. In particular, the diffusion coef-
ficient is negative when the CFL number is larger than 1.
The diffusion breaks the conservation property of the initial45

dynamics (Eq. 30). This example shows the importance of
the modified equation: this provides a way to understand and
characterize the defects due to the numerical resolution. In
one dimension, for the evolution equation, this can be diffu-
sive processes (associated with derivatives of even order) or50

dispersive processes (associated with derivatives of odd or-
der).

From the PKF point of view, the modified equation is cru-
cial since it converts a discrete dynamics into a partial dif-
ferential equation, which appeared from P16 and P18, which 55

is much simpler to handle when considering error covariance
dynamics. Thanks to the modified equation (Eq. 38), it is now
possible to compute the TL evolution of the predictability er-
ror for the Euler-upwind scheme, which can be expressed as

∂tε
p
+U∂xε

p
= κ∂2

xε
p. (39) 60

Equations of the PKF forecast can be computed under a
similar derivation as in Sect. 3.1. To simplify the computa-
tion workflow, a splitting method has been introduced in P16
and P18. Due to the diffusion process appearing in Eq. (39),
the PKF formulation faces a closure issue for which a closure 65

scheme has been successfully proposed in P18: the Gaussian
closure. The interested reader is referred to P18 for the de-
tails. Note that an alternative to the Gaussian closure can be
deduced from the data through machine learning (Pannek-
oucke and Fablet, 2020). Hence, the resulting dynamics for 70

the parameter of the predictability-error covariance model is
given by

∂tV
p
+U∂xV

p
=−

V pκ

νp + κ∂
2
xV

p
−
κ(∂xV

p)2

2V p (40a)
75

∂tν
p
+U∂xν

p
= (2∂xU)νp

+ κ∂2
xν

p
+ 2κ

−
2(∂xνp)2

νp κ + ∂xκ∂xν
p
−

2∂2
xV

p

V p κνp
+

∂xV
p

V
κ∂xν

p
−

2∂xV p

V p νp∂xκ +
2(∂xV p)2

V p2 κνp. (40b) 80

Compared with the PKF dynamics of the nature (Eq. 36),
the PKF for the Euler-upwind scheme gives rise to additional
terms which result from the numerical diffusion of magni-
tude κ . Moreover, this time, the PKF for the Euler-upwind
scheme presents a coupling between the variance and the 85

diffusion, the coupling being a consequence of the numer-
ical diffusion only. Note that a coupling between the vari-
ance and the correlation scale also appeared in Eqs. (4.30a)
and (4.34) of Cohn (1993) but without a link to the discretiza-
tion scheme. 90

The model-error covariance matrix, Eq. (27), associated
with the Euler-upwind scheme can be deduced from the
predictability-error covariance matrix approximations: start-
ing from the initial analysis-error variance and diffusion
field, integration of the parametric-error covariance equa- 95

tions of the nature (Eq. 36) and of the numerical discretiza-
tion (Eq. 40) provides the predictability-error variances Ṽ p

and V p, and the diffusion ν̃p and νp, which are used to com-
pute the model-error covariance parameter (Eq. 29).

As another example, the model-error parameters for the 100

semi-Lagrangian scheme are now discussed.
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3.3 Semi-Lagrangian scheme and its equivalent PKF
dynamics

The modified equation technique has been previously consid-
ered for semi-Lagrangian (SL) schemes. For instance, Mc-
Calpin (1988) has shown for the case of constant advection5

velocity that a linear interpolation leads to an effective Lapla-
cian dissipation, while the quadratic and cubic interpolations
lead to a biharmonic dissipation.

Because we want to focus on the method to address
the issue of the model error, and since uncertainty predic-10

tion of diffusive dynamics has been detailed by P18, we
limit the presentation to the linear interpolation in the semi-
Lagrangian scheme, and we present the modified equation of
Eq. (30) for the study of its model error.

The Lagrangian perspective (Eqs. 31 to 30) suggests to15

build curves along which c is constant. While simple, the
drawback of this analytico-geometric method is the possi-
ble occurrence of curve trajectory collapses which prevent
us from describing the time evolution of c throughout the
geographical domain. It is possible to take advantage of the20

geometrical resolution while avoiding the collapse by con-
sidering the so-called semi-Lagrangian procedure.

In the Lagrangian way of thinking, starting from a given
position xo, the question is where the mobile point lies along
the time axis, which evolves the computation grid forward in25

time. The semi-Lagrangian perspective reverses this question
by asking from which position x∗o originates the mobile point
arriving at xo at a given time. Hence, the semi-Lagrangian
scheme leaves the computation grid unchanged over the time
steps of the integration while letting the scalar field c evolve.30

More precisely for the particular dynamics of Eq. (30), by as-
suming the scalar field at time t known for each points of the
computational grid, for grid point xi , the scalar field evolves
as

c(t + δt,xi)= c(t,x
∗

i ), (41)35

where x∗i is the origin of the trajectory at time t which arrives
at xi at time t + δt . Since the point of origin x∗i is unlikely to
be a point of the computational grid (except for very partic-
ular situations), the value c(t,x∗i ) is computed as an interpo-
lation of the known values of c at time t .40

In its present form, the semi-Lagrangian procedure is not
suited to the PKF method since it does not give rise any par-
tial differential equation which lies at the core of the para-
metric approximation for covariance dynamics. To proceed
further and to obtain PDEs, additional assumptions are intro-45

duced to translate the semi-Lagrangian procedure (Eq. 41)
into a discrete scheme from which the modified equation is
deduced.

In the case where the discretization satisfies the CFL
condition δt < δx/Max

x
|u(x)| and for linear interpolation, it50

is straightforward to write the semi-Lagrangian procedure
(Eq. 41) into a discrete scheme (see Appendix D for the de-

tails) which is stated as follows: c
q+1
i −c

q
i

δt
=−ui

c
q
i −c

q
i−1

δx
, for ui > 0

c
q+1
i −c

q
i

δt
=−ui

c
q
i+1−c

q
i

δx
, for ui < 0

(42)

which gives rise to the Euler-upwind/downwind schemes. 55

Then, following the same derivation as previously presented
in Sect. 3.2, the modified equation resulting from the scheme
(Eq. 42) is given as the PDE verified by a smooth solution C
of Eq. (42). From the derivation detailed in Appendix D, the
modified equation is 60

∂tC+U∂xC = κ
SL∂2

xC, (43a)

where

U = u−
δt

2
∂tu+

δt

2
u∂xu (43b)

and

κSL
=
|u|

2
(δx− |u|δt) (43c) 65

are both functions of t and x.
Hence, since this corresponds mainly to the modified

equation (Eq. 38) encountered for the Euler-upwind scheme
(Eq. 37), the parametric predictability-error covariance is
also given by Eq. (40), replacing κ by its SL counterpart 70

value κSL.
Note that the derivation leading to the Euler-upwind and

Euler-downwind schemes is due to the choice of the lin-
ear interpolation. The bridge between the SL and the Euler-
upwind/downwind procedures is not a novelty. The deriva- 75

tion has been carried out since it offers an insight into how to
build a modified equation for the SL scheme and also for the
self-consistency of the presentation. In the general situation,
the modified equation for the SL scheme is hard to obtain, if
at all possible, and it is not the idea to claim the procedure 80

as universal. But it provides a new insight into the model-
error covariance matrix for the SL scheme, which is one of
the main goals of the present contribution.

The next section presents the numerical experiments car-
ried out to assess the ability of the PKF to characterize the 85

model-error covariance matrix.

4 Numerical validation

4.1 Setting and illustration

In this experimental test bed, the domain is assumed to be
the one-dimensional segment [0,D) with periodic boundary 90

conditions, where D = 1. The domain is discretized into a
regular grid of n= 241 points xi = iδx for i ∈ [0,240] and
δx =D/n≈ 4.110−3.
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Figure 2. (a) Wind field specified for the nature dynamics and the one seen in the discretized model from Eq. (38b). Panel (b) represents the
numerical diffusion coefficient due to the discretization equation (Eq. 38c), normalized by κe = δx2/δt .

Figure 3. Nature (a) and numerical model (b) runs for times from t = 0 to t = T and represented each 0.1T .

The wind field u for one-dimensional transport (Eq. 30) is
set as the stationary field

u(x)= 0.4+
0.6
2

(
1+ cos

(
2π
D
(x−D/4)

))
, (44)

shown in Fig. 2a, which appears as a jet with the entrance
(exit) at x = 0.75D (x = 0.25D): the flow accelerates (de-5

celerates) until x = 0.25D (x = 0.75D). For the latter, the
lead time is T = 2.0.

In order to verify the CFL condition, the time step for the
numerical simulation is set to δt = 0.002, leading to a CFL
value of 0.48< 1. The magnitude of the numerical diffusion10

κ , Eq. (38c), associated with this setting is shown in Fig. 2b,
normalized by the diffusion coefficient κe = δx2/δt .

For the numerical experiment, the initial state for c is set
to

c(0,x)= exp
(
−

1
2(0.15D)2

sin
(π

2
(x−D/2)

)2
)
, (45)15

while the initial analysis-error covariance matrix is
set as the homogeneous Gaussian covariance matrix

Pf
t=0(x,y)= e

−
d(x,y)2

2l2h with lh = 0.05D ≈ 12δx, where
d(x,y)= D

π
|sin π

D
(x− y)| is the chordal distance between

the two geographical positions x and y (Pannekoucke et al., 20

2018a, see Eq. 3). The analysis-error standard deviation is
set to the homogeneous value of 1.0.

For numerical validation, since no simple analytical solu-
tion of the partial differential equation (Eq. 30) exists, this
dynamics is integrated considering a fourth-order Runge– 25

Kutta time scheme applied on the finite-difference discretiza-
tion:

∂tci =−ui
ci+1− ci−1

2δx
, (46)

where the spatial derivative is approximated by a centred
second-order scheme. This constitutes the high-order dis- 30

cretization N̂ of the nature N , as introduced in Sect. 2.2: N̂
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is assumed to better reproduce the nature N than the model
M.

Figure 3 shows the trajectory computed from the nature
approximated by N̂ and the numerical model M. Since the
transport equation conserves the value of the field c, the ex-5

tremal values of c do not change along the integration and the
wind u > 0 causes the initial structure to move to the right.
While the field is conserved, it is also deformed by the wind.
For the particular choice of the initial condition made here,
the signal is of larger (smaller) scale in the region x ∈ [0,0.5]10

( x ∈ [0.5,1]) than its initial shape. Figure 3a shows that the
nature approximation N̂ is able to reproduce the conserva-
tion of c as well as the stretching of the signal along the time
axis. Hence, the nature approximation N̂ is good enough to
capture the main features of the nature dynamics, which justi-15

fies the use of this approximation in place of the true dynam-
ics in the following. In contrast, the model M fails to main-
tain the magnitudes of the extrema (Fig. 3b), in accordance
with the modified equation (Eq. 38a) of the Euler-upwind
scheme (Eq. 37) which presents a non-physical diffusion pro-20

cess resulting from the numerical discretization. Note that
the coefficient of the numerical diffusion is heterogeneous
over the domain with a typical value of thereabout 0.1κe (see
Fig. 2b). This heterogeneity is due to the scale variation of
the signal, stretched by the wind shear: when the signal is25

of smaller (larger) scale to its initial shape, the second-order
derivative is larger (smaller), which leads to an intensifica-
tion (reduction) in the numerical diffusion term in Eq. (38a).

Having validated the two numerical models N̂ and M, it
is now possible to look at the covariance dynamics and how30

the model-error covariance error can be estimated from the
PKF prediction.

4.2 Assessment of the PKF in predicting the
predictability-error covariance dynamics of the
nature and of the numerical model35

The PKF predictability-error covariance matrix dynamics for
the transport equation (Eq. 30) is given by the system of
Eq. (36). The PKF predictability-error covariance matrix dy-
namics resulting from the Euler-upwind integration (Eq. 37)
is given by Eq. (40). Both systems are numerically integrated40

by considering, respectively, an explicit RK4 time scheme for
the nature and an Euler time scheme for the Euler-upwind
scheme. The time step used for the integration is δt = 0.002.
The predictability-error variance fields are shown in Fig. 4.
The predictability-error correlation length-scale fields, de-45

fined from the one-dimensional diffusion fields by L̃p
=√

2̃νp (nature) andLp
=
√

2νp (numerical model), are shown
in Fig. 5. The variance and the length scale are shown for the
PKF and an ensemble estimation, the latter being only com-
puted for the validation of the PKF (the ensembles are not50

needed nor used for the computation of the PKF systems).
To do so, an ensemble of Ne = 6400 analysis errors has

been generated, (εa
0,k)k∈[1,Ne], where each member is com-

puted as εa
0,k = (P

f
t=0)

1/2ζk with ζk a sample of the Gaussian
random vector of zero mean and covariance matrix of the 55

identity matrix I. This large size limits the sampling noise to
a relative error of 1/

√
Ne ≈ 1.25%.

Because the dynamics are linear, the TL nature and model
are independent of any analysis state, and the ensemble is
computed from the forecasts by the high-order discretization 60

of the nature N̂ and the model M of the ensemble of analysis
errors (εa

0,k).

4.2.1 Validation of the PKF for the nature

The predictability-error covariance dynamics for the nature
is first considered. Since the variance of the nature (Eq. 36a) 65

is conserved, it results that, with the choice of an initial ho-
mogeneous variance, the trend is null and the variance field
is the stationary homogeneous field (1.0). This theoretical re-
sult is well reproduced in Fig. 4a from the PKF integration,
while the ensemble estimation (Fig. 4c) also shows this as 70

stationary but within the sampling noise. The length scale
(Fig. 5a) shows a periodic evolution where, starting from the
homogeneous field of value lh, the length scale first increases
(decreases) in the entrance (exit) of the jet; then these evolu-
tions are attenuated and then compensated with the transport. 75

Then ensemble estimation (Fig. 5c) presents the same vari-
ations (again to within the sampling noise), which validates
the PKF dynamics for the nature. As a consequence, the PKF
dynamics (Eq. 36) can be used to understand the dynamics
of the uncertainty. In particular, the length-scale field at t = 80

0.1T is well explained by the source/sink term 2(∂xu)̃νp in
Eq. (36b) whose magnitude, which lies between −0.004 and
0.004, implies a rapid emergence of a heterogeneity leading
to large (small) length scales for x ∈ [0,0.25D]∪[0.75D,D]
(for x ∈ [0.25D,0.75D]), where ∂xu > 0 (∂xu < 0); and by 85

the transport term u∂x ν̃
p that shifts the fields to the right.

Note that, by introducing the spatial average operator de-
fined for any function f by 〈f 〉(t)= 1

D

∫
f (t,x)dx as rep-

resented in Fig. 6, the averaged length scale 〈L̃p
〉(t) ranges

within [12δx,17.5δx] (see Fig. 6b), while the 〈Ṽ p
〉(t) is a 90

constant 1 (see Fig. 6b).

4.2.2 Validation of the PKF for the numerical model

The predictability-error covariance dynamics for the numeri-
cal model is now discussed. For the Euler-upwind scheme,
the numerical diffusion resulting from the spatiotemporal 95

discretization in Eq. (38a) implies a damping of the vari-
ance along the time axis (see Fig. 4b). The attenuation of the
uncertainty governed by Eq. (40) leads to a heterogeneous
damping over the domain and appears much stronger in the
middle of the domain (x = 0.5) than near the boundaries 100

(x = 0 and x = 1) while transported by the flow. The length
scale (Fig. 5b) increases by the diffusion, while the shear pro-
duces similar patterns as for the forecast-error statistics. The
ensemble estimation in Fig. 4d and Fig. 5d shows the same
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12 O. Pannekoucke et al.: Model-error covariances due to the discretization scheme

Figure 4. Predictability-error variance field, Ṽ p(t,x), for the nature (Eq. 30), computed from the PKF (Eq. 36) (a) and predictability-error
variance field, V p(t,x), for the numerical model resulting from the finite-difference and Euler discretization equation (Eq. 37), computed
from the PKF (Eq. 40) (b). Panels (c) and (d) are the ensemble estimation for panels (a) and (b), where the nature dynamics is approximated
by Eq. (46) dynamics in panel (c) (6400 members are used here). Fields are represented for times from t = 0 to t = T and represented each
0.1T .

signal as the PKF prediction (within the sampling noise)
which validates the system of Eq. (40). As for the nature,
it appears that the PKF dynamics for the numerical model,
Eq. (40), explains the dynamics of the uncertainty. In par-
ticular, again, the length-scale field at t = 0.1T is well ex-5

plained by the source/sink strain term 2(∂xu)̃νp in Eq. (40b)
and by the transport term u∂x ν̃

p, but this time, compared with
Eq. (36b), the source term 2κ in Eq. (40b) implies an increase
of the length scale Lp. Note that the influence of the remain-
ing terms in Eq. (40b) can be neglected at the prime instants10

of the dynamics: this is because at t = 0, V p and νp are con-
stant fields (V p(t = 0)= 1 and νp(t = 0)= l2h/2). Compared
with the nature, the behaviour of the predictability-error vari-
ance of the numerical model presents some source/sink terms
(right-hand side of Eq. 40a) that explain the emergence of15

a heterogeneity of the variance field. In particular, with the
term − κ

νpV
p being strictly negative, it is responsible of the

damping of the variance; it is also responsible of the hetero-
geneity at the prime instants: with the length scale Lp be-
ing heterogeneous, the damping will be more (less) intense 20

in the areas of small (large) length scales (compare Fig. 4b
with Fig. 5b for t = 0.1T ). In terms of spatial average, with
the assumption that the variations around each averaged field
are small so that for any fields f and g the approximation
〈fg〉 ≈ 〈f 〉〈g〉 applies, the spatial average of the dynamics 25

(Eq. 40) is written as

∂t 〈V
p
〉 = −

〈κ〉

〈νp〉
〈V p
〉, (47a)

∂t 〈ν
p
〉 = 2〈κ〉, (47b)

where the property that for any function f and integer k > 0,
〈∂kxf 〉 = 0, has been used to eliminate all the other terms. 30

Equation (47) can be solved analytically, and its solutions
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Figure 5. The length-scale counterpart of Fig. 4 representing the predictability-error length-scale fields L̃p (nature) andLp (numerical model)
in panels (a, c) (in panels b–d). The length scales are diagnosed from the diffusion coefficients from the formula L=

√
2ν and normalized

by the grid spacing δx. Panels (a) and (b) are computed from the PKF, while (c) and (d) are estimated from the same large ensemble of
forecasts as considered in Fig. 4. Fields are represented for times from t = 0 to t = T and represented each 0.1T .

are written as

〈V p
〉(t)= 〈V p

〉(0)
(

〈νp
〉(0)

〈νp〉(0)+ 2〈κ〉t

)1/2

, (48a)

〈νp
〉(t)= 〈νp

〉(0)+ 2〈κ〉t. (48b)

The analytical solution (Eq. 48) successfully reproduces the
time evolution of the statistics in the present experiment.5

For the length scale, Eq. () reproduces the increase (see
Fig. 6b), with an underestimation because this solution does
not account for the oscillation due to the strain term that has
been neglected in the dynamics (Eq. 47). For the variance,
Eq. (48a) explains a linear decrease at the prime instant, fol-10

lowed by an attenuation in t−1/2 (see Fig. 6a).

4.2.3 Intermediate result

As a conclusion of this section, the PKF appears able
to predict the variance and the length-scale features of

the predicability-error covariance dynamics of the nature 15

(Eq. 30) and of the numerical model, which corresponds to
the discretization of the true dynamics given by Eq. (37).
These results are now considered to provide an estimation
of the model-error covariances.

4.3 Model-error covariance from the PKF prediction 20

From the previous section, the Euler-upwind discretization
of the advection (Eq. 30) leads to a heterogeneous dissi-
pative term, which affects the dynamics of the numerical
model uncertainty by damping the variance while increas-
ing the correlation length scale. When the bias due to the 25

model error is lower than the predictability-error variance
of the nature and the numerical model is dissipative, then
the modelling (Eq. 21) of the model-error covariance ma-
trix can be introduced, which is a flow-dependent modelling
of the model-error covariance plus a climatological resid- 30
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Figure 6. Time evolution of the spatial average over the domain of the predictability-error variance (a) and length scale (b), computed from
the PKF for the nature (blue) and the numerical model (orange). The analytical PKF approximation (Eq. 48) for the numerical model is in
green. The model-error variance (Eq. 29a) and length scale (Eq. 49) are also represented (in dashed lines) for the spatial averaged of the PKF
results shown in Fig. 7a and b (red), and the analytical approximation (purple).

ual. This is the situation encountered in the present numer-
ical setting: the predictability-error variance of the nature is
1, which is larger than the bias (that is at most 0.2 when
comparing the nature and the numerical model evolution in
Fig. 3), while the predictability-error variance of the numeri-5

cal model rapidly fails with, at its worst, a reduction of 60%
of the predictability-error variance of the nature (see the re-
duction at x = 0.6D when comparing Fig. 4a and b). It re-
sults that the flow-dependent modelling (Eq. 21) may apply
here.10

In order to focus on the flow-dependent part of Eq. (21),
the approximation (Eq. 27) is considered. Here, Pm is com-
puted from the parametric approach discussed in Sect. 2.4,
with the parameters of Eq. (29), where the predictability-
error covariance statistics are computed from Eq. (36) for15

the nature and Eq. (40) for the numerical model. Note that
in this 1-D domain situation, Eq. (29b) is equivalent to the
computation of the local correlation length scales by

Lm(t,x)=

√
V m

Ṽ p/(L̃p)2−V p/(Lp)2
. (49)

The flow-dependent model-error covariance parameters are20

shown in Fig. 7, with the variance in panel (a) and the length
scale in panel (b).

At the initial time, as there is no model error, the model-
error variance is zero. But then, the model-error variance
should increase linearly because the sink term κ

νpV
p that25

is the only non-zero right-hand-side term in Eqs. (36a) and
(40a) (see also the spatially averaged dynamics; Eq. 47a) is a
source of model-error variance at the initial time, so that for
small t , the order of magnitude of V m is given by

〈V m
〉(t)∼ t

〈κ〉

〈νp〉(0)
〈V p
〉(0), (50)30

which relates the increase of the model-error variance to
the numerical diffusion. Note that the numerical diffusion
is not the only process that induces a model error; e.g. the
phase shift due to the correction of the numerical veloc-
ity δt

2 u∂xu in Eq. (38b) is also a source term, while it has 35

been removed from by the averaging here. Hence, Eq. (50)
provides the order of magnitude of the model-error vari-
ance at time t = 0.1T : when considering the initial condi-
tions νp(t = 0)= l2h/2 and V p(t = 0)= 1, and the order of
magnitude of the diffusion coefficient 〈κ〉 ∼ 0.1δx2/δt (see 40

Fig. 2b), the typical value of the model-error variance com-
puted from Eq. (50) is 〈V m

〉(0.1T )∼ 0.12. This is in accor-
dance with the typical values observed in Fig. 7a for that
time. Note that the heterogeneity of the model-error variance
field is due to the heterogeneity of the diffusion field νp as 45

discussed previously in Sect. 4.2.2.
Then, the model-error variance continues to grow, with a

peak of uncertainty that evolves with the flow. In this numeri-
cal experiment, with the magnitude of the Ṽ p being constant
and equal to 1, the magnitude of the model-error variance 50

V m
= Ṽ p

−V p, shown in Fig. 6a, evolves from Eq. (48a) as

〈V m
〉(t)∼ 1−

(
l2h

l2h + 4〈κ〉t

)1/2

, (51)

when using the initial values 〈νp
〉(0)= 1

2 l
2
h and 〈V p

〉(0)=
1.0. Note that Eq. (51) asymptotically behaves as 1−
1
2

(
t
τ

)−1/2, where τ = l2h
〈κ〉
≈ 1.3T is the half-magnitude time, 55

which is in accordance with the simulation since 〈V m
〉(T )∼

0.5 at the end of the simulation.
The model-error length scale, given by Eq. (49), is more

difficult to interpret (Fig. 7b) because of the oscillation due
to the periodic domain. However, the evolution of the spatial 60

average of the length-scale fields (dashed red line in Fig. 6b)
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Figure 7. Flow-dependent model-error covariance, modelled from Eq. (21) as Pm
=5m

+Q, and computed from the PKF for the nature and
the Euler-upwind scheme. The variance (a) and the length scale (normalized by dx) (b) are represented for times from t = 0.1T to t = T at
each 0.1T (for t = 0, the model error is null). Comparison with the ensemble estimation of the variance (c) and the length scale (d) of Pma

(Eq. 53).

shows an increase of the averaged length scale with the time,
which is in accordance with the order of magnitude for the
model-error length scale (Eq. 49) computed from the analyt-
ical approximations (Eqs. 48 and 51), with 〈Ṽ p

〉(t)= 1 and
〈L̃p
〉(t)∼ lh (dashed purple line in Fig. 6b).5

Note that the model-error length scale is much smaller,
but not null, which will balance the large length scale of
the predictability-error covariance matrix Pp. Hence, as ex-
pected, the model error modelled by Eq. (21) is a heteroge-
neous covariance that depends on the state and the time: it is10

flow dependent.
It is interesting to compare 5m

q+1 with the covariance of
the unbiased error εma

q+1 = (N−M)εa
q that appears in the de-

composition of the forecast error (see Eq. A3 in Appendix A)

εf
q+1 = ε

p
q+1+ εma

q+1+ ε
m
q+1(X

a
q ). (52)15

Indeed, if the errors on the right-hand side of Eq. (52) were
decorrelated (which they are not), then 5m

q+1 in Eq. (17)

would have been replaced by the covariance matrix Pma
=

E
[
εma
q+1(ε

ma
q+1)

T
]

given by (see Eq. A5 in Appendix A)

Pma
q+1 =5m

q+1+

[(
MPa

qDT
)
+

(
MPa

qDT
)T ]

, (53) 20

with D=M−N. In practice, Pma can be estimated from the
ensemble of 6400 errors, εma

q,k = N̂εa
0,k −Mεa

0,k , where εa
0,k

is one of the analysis errors detailed in Sect. 4.2 and where N̂
is the TL dynamics associated with the high-order numerical
approximation N̂ of N . Because in the present experiment 25

the dynamics of the nature and of the model are linear, εma
q,k is

computed here as εma
q,k = N̂ (εa

0,k)−M(εa
0,k). The estimated

variance and length-scale fields of Pma are shown in Fig. 7c
and d. Compared with the PKF modelling (Fig. 7a and b), the
time evolution shows a similar behaviour, but the variance of 30

Pma is smaller, as well as its length scale. In this simulation,
the contribution of the terms in D, Eq. (53), is to reduce the
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variance with a maximum of 0.4 at the end of the simulation.
However, the minimum of variance of the predictability error
is also nearly 0.4. Thus, if Pma was considered in place of
5m, then a residual variance of order 0.2 would be needed
(e.g. in Q) so to obtain a magnitude of forecast error similar5

to the predictability of the nature.
Hence, the present numerical experiment illustrated and

characterized the flow-dependent part of the model-error co-
variance Pm, modelled by Eq. (21), in the situation where the
model error is related to the discretization of the advection10

by a heterogeneous wind, leading to a numerical model that
is more diffusive than the nature. In this experiment, a linear
increase in time, followed by a saturation in t−1/2 has been
found for the order of magnitude of the model-error variance.
The residual climatological covariance, Q in Eq. (21), has yet15

to be estimated (not considered here).

5 Discussion

Before concluding, we end this work by addressing some
general points about the flow-dependent model which has
been introduced here.20

The originality of the present contribution is two-fold.
First, we have formulated a theoretical background corre-
sponding to the model-error covariance matrix and intro-
duced a modelling for its flow-dependent part, Eq. (21). This
provides a theoretical framework to the correction of the pre-25

dictability error introduced in M2000s. Then, we have pro-
vided theoretical and quantitative results about the diffusive
effect due to the discretization that can lead to a loss of vari-
ance as observed in M2000s: this has been done by combin-
ing the formalism of the PKF and the modified equation. The30

interest for this modelling of the model-error covariance is
supported by the results of M2000s, who have observed an
improvement of the quality of the analysis in their data as-
similation system of stratospheric observations.

The flow-dependent component of the model-error covari-35

ance introduced here can be computed in practice, because it
relies on (1) the analysis uncertainty as characterized by the
analysis state and its error covariance that can be estimated in
data assimilation; and (2) the time evolution of the analysis-
error covariance by the nature and by the numerical model40

that can be computed from an ensemble method or from the
PKF approach.

Note that, if the difference between a low- and a high-
resolution forecast is often used to compute the model-error
at a given time, this does not tell anything about the model-45

error covariances at that time. At most, the model errors col-
lected for a large number of dates, and for the same fore-
cast time, can be used to compute the climatological bias
and the climatological model-error covariance. To capture
the error of the day following Eq. (21), the computation of50

the predictability-error covariance matrices is needed.

Hence, the use of the PKF is important because Eq. (21)
needs to estimate not only the predictability-error covariance
matrix of the numerical model but also the one of the na-
ture. If an ensemble estimation of the latter matrix is possi- 55

ble in the research, e.g. by computing an ensemble of high-
resolution forecast with N̂ in place of the nature N , it is too
costly for real-time applications. It results that it is difficult
to use Eq. (21) in an ensemble method. Compared with an
ensemble method, the PKF remains to compute the evolu- 60

tion of a reduced set of covariance parameters by computing
equations similar to the one encountered in geosciences. For
the passive tracer in 1-D, the PKF dynamics consists in three
equations: for the transport of the concentration, the dynam-
ics of the variance and the dynamics of the local anisotropy 65

(here a diffusion coefficient related to the correlation length
scale). So, the numerical cost of the PKF (three equations)
for the tracer (one equation) is about 3 times the computa-
tion of a single forecast compared to the dozens of members
often used in ensemble methods (from which the statistics 70

are corrupted by the sampling noise).
For the dynamics of a tracer, the PKF applies in 1-D

as well as in 2-D and 3-D domains, where the number of
equations are this time of five in 2-D and eight in 3-D (the
additional equations are for the components of the local 75

anisotropic tensor). However, in general, the use of the PKF
is limited by the knowledge of the parameter dynamics. The
formalism of the PKF is adapted for dynamics given by par-
tial differential equations, as for the advection of a tracer, but
the design of a multivariate PKF formulation is needed to ad- 80

dress multivariate dynamics. Note that for the model error as
presented here, the knowledge of the modified equation is a
prerequisite that can be difficult to determine in general.

While the PKF is designed from the TL approximation,
it is a second-order Gaussian filter that is a particular imple- 85

mentation of non-linear Kalman-like filters (Cohn, 1993): for
non-linear dynamics, the PKF equation of the mean state de-
pends on the second-order moments. However, for long-term
predictions, or when the magnitude of the error is too large,
the PKF would fail to provide an accurate estimation of the 90

covariance matrices.

6 Conclusions

In this contribution, the part of the model-error covariance
due to the spatiotemporal discretization scheme is explored
by considering the parametric approximation for the Kalman 95

filter (PKF). The PKF approach applies for a system whose
dynamics is given by a set of PDEs. In the PKF formulation,
covariances are approximated by covariance models char-
acterized by a set of covariance parameters, whose dynam-
ics is deduced from the PDEs of the system, supplemented 100

by an appropriate closure if necessary. We focused on the
class of covariance model distinguished by the variance field
and the local anisotropic tensors (VLATcov). Therefore, for
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VLATcov matrices, the covariance dynamics is given by the
dynamics of the variance and the local anisotropic tensors,
whose dynamics are deduced from the partial differential
equations of the system.

In the case where the numerical model presents a dis-5

sipation due to the discretization, or where the numerical
model is more dissipative than the nature, we introduced
a modelling of the model-error covariance, where its flow-
dependent part is approximated as the difference between the
parametric approximation of the predictability-error covari-10

ance matrix of the nature and of the numerical model, plus
a residual climatological covariance matrix. This modelling
of the flow-dependent part can be computed in real appli-
cations because it relies on quantities that can be estimated:
the analysis state and its analysis-error covariance matrix (or15

some of its characteristics). For a dynamics given by a par-
tial differential equation, the parametric predictability-error
covariance matrix of the nature is deduced from the evolu-
tion equation, while the predictability-error covariance ma-
trix of the numerical model is computed from the modified20

evolution, i.e. the partial differential equations that best fits
the numerical solution.

The ability of the parametric approach to characterize part
of the model-error covariance dynamics has been illustrated
in a numerical test bed in 1-D. We have considered the trans-25

port of a scalar by a heterogeneous velocity field. In this
case, the parametric dynamics of the forecast error shows
that the variance is conserved along the flow, while the local
anisotropic tensor is transported by the flow and deformed by
the gradient of the velocity.30

For this transport dynamics, two numerical schemes have
been considered: an Euler-upwind scheme and a semi-
Lagrangian scheme in the case of a linear interpolation. The
modified equations of both schemes make an additional het-
erogeneous dissipation and a perturbation of the velocity ap-35

pear, whose characteristics depend on the spatiotemporal dis-
cretization (dt , dx), the trend and the shear of the flow. Be-
cause of the numerical diffusion, the variance of the pre-
dictability error is not conserved and a coupling with the
anisotropy appears. This effect has been noted as well in 3-40

D global transport models (Ménard et al., 2020) where the
loss of error variance is stronger for short correlation length
scales.

An ensemble of forecasts has been introduced, taken as
the reference, to compare the true covariance evolution with45

the parametric approximation. The numerical experiment
shows the ability of the parametric dynamics to reproduce
the predictability-error covariance dynamics. Then, the mod-
elling of the flow-dependent part of the model-error covari-
ance matrix has been computed and discussed. In particular,50

we discussed the growth of the model-error variance from
the understanding of the PKF dynamics, showing a linear in-
crease in time followed by a saturation in t−1/2.

With the flow-dependent formulation being introduced for
modelling the situation where the numerical model is more55

dissipative than the nature, the model-error variance provided
by the PKF should be a lower bound of the true model-error
variance, which needs a residual climatological covariance to
account for the bias.

While there is no data assimilation experiment here, this 60

contribution provides a theoretical background on the model-
error covariance that sheds light on a study previously done
by Ménard et al. (2000) and Ménard and Chang (2000)
(M2000s), who have observed a loss of variance in the assim-
ilation of a stratospheric tracer by using a Kalman filter: the 65

variance forecasted was lower than the theoretical variance
that is supposed to be conserved for the advection (Cohn,
1993). Actually, interpreted as an account of the model er-
ror due to the discretization scheme, the correction made by
M2000s is similar to the modelling of the flow-dependent 70

part of the model-error covariance matrix we proposed here.
In particular, M2000s have observed that the Kalman filter,
with the corrected predictability-error covariance, required
less residual climatological model error (see Ménard et al.,
2000, Sect. 5) and an improvement of the analysis-error 75

statistics (see Ménard et al., 2000, Fig. 11), and thus indi-
cated that the modelling of the model error, as proposed here,
is in better agreement with optimality of the nature. Hence,
the benefit of the flow-dependent modelling introduced here
appears to be supported by the improvement of the analysis 80

observed by M2000s in their experiment.
The methodology introduced here has shown the potential

of exploring the model-error covariance from the parametric
dynamics of error covariance. While the characterization of
the model-error covariance is a challenge, as in air quality 85

forecasts (Emili et al., 2016), the parametric approach ap-
pears as a new theoretical tool to tackle this issue. In order
to represent the uncertainty of the small scales, it would be
interesting to combine the parametric approach with other
new methods, e.g. the modelling under location uncertainty 90

(Resseguier et al., 2017).
However, the parametric dynamics faces closure issues

that have to be addressed depending on applications. Here,
the investigation of diffusive model errors has been made
possible thanks to the Gaussian closure of P18. For other 95

kind of numerical errors, an appropriate closure will have to
be specified, either from theoretical closures or from the data
as suggested by the data-driven and physics-informed identi-
fication of uncertainty dynamics of Pannekoucke and Fablet
(2020). 100
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Appendix A: Expressions for the forecast error

The aim of this section is to provide the demonstrations of
some decompositions of the forecast error: the usual expres-
sion as encountered in data assimilation, an expression where
the model error is considered with respect to the analysis5

state and an expression that makes the predictability error
appear with respect to the nature.

A1 Expression of the forecast error as usually
encountered in data assimilation

The forecast error is defined in Eq. (9) as the difference10

εf
q+1 =Mtq+1←tq (X a

q )−X t
q+1. Thanks to Eq. (4), the true

state at time tq+1 can be replaced so that

εf
q+1 =Mtq+1←tq (X

a
q )−Mtq+1←tq (X

t
q)+ ε

m
q+1(X

t
q), (A1)

which makes the model error appear, defined by
Eq. (5) as εm

q+1 =Mtq+1←tq −Ntq+1←tq . However, with15

Mtq+1←tq (X t
q)=Mtq+1←tq (X a

q − εa
q) which expands for

small analysis error as

Mtq+1←tq (X
t
q)=Mtq+1←tq (X

a
q )−Mεa

q ,

(M denotes the propagator of the TL model along the analy-
sis state trajectory; see Sect. 2.1 for details), the forecast error20

(Eq. A1) becomes

εf
q+1 =Mεa

q + ε
m
q+1(X

t
q),

which is written as

εf
q+1 = ε

p
q+1+ ε

m
q+1(X

t
q), (A2)

where ε
p
q+1 =Mεa

q is the predictability error (Eq. 12) with25

respect to the model. Equation (A2) is the expression of the
forecast error usually introduced in data assimilation (Daley,
1992, see Eq. 2.8). Note that in this expression, the model
error is evaluated at the true state X t

q , while it is never known
in practice. It would be interesting to consider an expression30

with known quantities, e.g. with the analysis state; this is now
detailed in the next subsection.

A2 Expression of the forecast error considering the
model error with respect to the analysis state

The forecast error (Eq. A2) can be obtained by rewriting the35

model-error term as εm
q+1(X

t
q)= ε

m
q+1(X

a
q − εa

q). Hence, the
Taylor expansion of εm

q+1, with respect to X a
q for small error

and lead time, leads to

εm
q+1(X

t
q)= ε

m
q+1(X

a
q )− dε

m
q+1,X a

q
εa
q ,

where dεm denotes the differential of the model error εm
=40

M−N (Eq. 5) which exists when M and N are both differ-
entiable, so that dεm

= dM− dN . It results that

εm
q+1(X

t
q)= ε

m
q+1(X

a
q )− (M−N)εa

q ,

where N is the propagator of the TL nature along the analysis
state trajectory (see Sect. 2.1 for details). Then, the forecast 45

error (Eq. A2) expands as

εf
q+1 = ε

p
q+1+ εma

q+1+ ε
m
q+1(X

a
q ), (A3)

where εma
q+1 is defined by

εma
q+1 = (N−M)εa

q . (A4)

Note that εma
q+1 is unbiased (at least when the analysis error 50

is unbiased), i.e. E
[
εma
q+1

]
= 0, so that the covariance matrix

is Pma
q+1 = E

[
εma
q+1(ε

ma
q+1)

T
]
, which expands as

Pma
q+1 = NPa

qNT +MPa
qMT
−

[(
NPa

qMT
)
+

(
NPa

qMT
)T ]

.

Replacing the TL model M with N=M−D leads to

Pma
q+1 =5m

q+1+

[(
MPa

qDT
)
+

(
MPa

qDT
)T ]

, (A5) 55

where 5m
q+1 = NPa

qNT −MPa
qMT (see Eq. 18).

As εma
q+1 contains the predictability error, a final expression

of the forecast error can be obtained as shown now.

A3 Expression of the forecast error formulated in
terms of nature predictability 60

Considering the definition of the predictability error (Eq. 12),
the forecast error (Eq. A3) is rewritten as

εf
q+1 = Nεa

q + ε
m
q+1(X

a
q ), (A6)

which makes the predictability error appear with respect to
the nature, ε̃

p
q+1 = Nεa

q . 65

Note that Eq. (A6) can be obtained directly from the
definition of the forecast error (Eq. 9) as follows. By re-
placing the forecast with Mtq+1←tq (X a

q )=Ntq+1←tq (X a
q )+

εm
q+1(X

a
q ), the forecast error is first written as εf

q+1 =

Ntq+1←tq (X a
q )−Ntq+1←tq (X t

q)+ ε
m
q+1(X

a
q ), where the def- 70

inition of the nature X t
q+1 =Ntq+1←tq (X t

q) has been used.
Then, rewriting Ntq+1←tq (X t

q)=Ntq+1←tq (X a
q − εa

q), whose
Taylor expansion is Ntq+1←tq (X t

q)=Ntq+1←tq (X a
q )−Nεa

q ,
leads to the forecast error (Eq. A6).

Appendix B: Approximation of the model-error metric 75

tensor field

Here, we consider the particular case where the model-error
covariance model is approximated as Eq. (27), i.e.

Pm
≈5m

= P̃p
−Pp,
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assuming this matrix is a covariance matrix. The local metric
tensor can be diagnosed from the Taylor expansion of the
model-error correlation function:

ρm(x,x+ δx)=
1

√
Pm(x,x)Pm(x+ δx,x+ δx)(̃

Pp(x,x+ δx)−Pp(x,x+ δx)
)
. (B1)

Under an assumption of local homogeneity of the variance,5

Pm(x,x)≈ Pm(x+δx,x+δx), P̃p(x,x)≈ P̃p(x+δx,x+δx)
and Pp(x,x)≈ Pp(x+ δx,x+ δx), which leads to the expan-
sion

ρm(x,x+ δx)≈
P̃p(x,x)
Pm(x,x)

(
1−

1
2
||δx||2g̃p

x

)
−

Pp(x,x)
Pm(x,x)

(
1−

1
2
||δx||2gp

x

)
. (B2)

Since ||δx||2gx = δx
T gxδx, the correlation is expanded as10

ρm(x,x+ δx)≈ 1−

1
2
δxT

[
1

Pm(x,x)
(̃
Pp(x,x)̃gp

x−Pp(x,x)gp
x
)]
δx. (B3)

After identification with the expected form of the expansion

ρm(x,x+ δx)≈ 1−
1
2
||δx||2gm

x
, (B4)

it follows that

gm
x =

1
Ṽ p(x)−V p(x)

(
Ṽ p(x)̃gp

x−V
p(x)gp

x
)
, (B5)15

where the variance is denoted by P̃p(x,x)= Ṽ p(x) and
Pp(x,x)= V p(x).

Appendix C: Computation of the modified equation for
the Euler scheme

The modified partial differential equation associated with the20

numerical scheme (Eq. 37) is the partial differential equa-
tion of a smooth function C, solution of the scheme, so that
C(qδt, iδx)= C

q
i , i.e.

C
q+1
i −C

q
i

δt
=−ui

C
q
i −C

q

i−1

δx
, (C1)

for which the Taylor formula in time and space on the order25

of O(δt2,δx2) is

∂tC+
δt

2
∂2
t C+O(δt2)=

− u

(
∂xC−

δx

2
∂2
xC+O(δx2)

)
. (C2)

The second-order time derivative can be replaced from the
equation (Eq. C2) itself, at an appropriate order. Due to the

δt , an expansion at order O(δt) only requires to express the 30

second-order derivative at the lead order, which is from

∂tC =−u∂xC+O(δt,δx). (C3)

Then, from the time derivative, the second-order derivative
can be replaced by

∂2
t C = ∂t (−u∂xC)+O(δt,δx),

= −∂tu∂xC− u∂
2
xtC+O(δt,δx). 35

Consequently, the second-order derivative ∂2
xtC can be de-

duced from spatial derivative of Eq. (C3) and is written as

∂2
xtC =−∂x(u∂xC)+O(δt,δx),

=−∂xu∂xC− u∂
2
xC+O(δt,δx).

It results that Eq. (C2) is written as

∂tC+
δt

2

[
−∂tu∂xC− u

(
−∂xu∂xC− u∂

2
xC
)]
= 40

− u

(
∂xC−

δx

2
∂2
xC

)
+O(δt2,δx2),

so that

∂tC+U∂xC = κ∂
2
xC+O(δt2,δx2), (C4)

where U = u− δt
2 ∂tu+

δt
2 u∂xu and κ = u

2 (δx− uδt) are two
functions of t and x. 45

Appendix D: Computation of the modified equation for
a semi-Lagrangian scheme

The aims of this section are two-fold: the first goal is to ob-
tain a discrete scheme from the semi-Lagrangian procedure,
and the second goal is to deduce the modified equation of the 50

discrete scheme.
For the sake of simplicity, the linear advection dynamics

∂tc+ u∂xc = 0 is first considered with a velocity u > 0.
From the characteristic curve resolution, it follows that

c(tq+1,xi)= c(tq ,x
∗

i ), where the originating point x∗i is as- 55

sumed in between points xi−1 and xi , which means that the
CFL constraint uδt < δx is verified. This originating point
can be approximated as x∗i = xi − uiδt , and if a linear in-
terpolation is considered for the computation of c(t,x∗i ), it
follows that 60

c(tq ,x
∗

i )=

(
1−

x∗i − xi−1

xi − xi−1

)
c
q

i−1+

(
x∗i − xi−1

xi − xi−1

)
c
q
i (D1)

=
uiδt

δx
c
q

i−1+

(
1−

uiδt

δx

)
c
q
i . (D2)

Hence, the numerical scheme is written as

cq+1,i =
uiδt

δx
cq,i−1+

(
1−

uiδt

δx

)
cq,i . (D3)
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The modified differential equation is obtained by replac-
ing c by a smooth function c̃, the solution of the numerical
scheme (Eq. D3). The computation of the modified equation
is similar to the Euler case detailed in Appendix C, leading
to5

∂tC+

(
u−

δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1
2
uδx−

1
2
u2δt

)
∂2
xC. (D4)

When u < 0, the differential equation is written as

∂tC+

(
u−

δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1
2
(−u)δx−

1
2
u2δt

)
∂2
xC. (D5)

Hence, in the general situation,

∂tC+

(
u−

δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1
2
|u|δx−

1
2
u2δt

)
∂2
xC, (D6)10

whatever the sign of the velocity u.
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