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Abstract. This contribution addresses the characterization of
the model-error covariance matrix from the new theoretical
perspective provided by the parametric Kalman filter method
which approximates the covariance dynamics from the para-
metric evolution of a covariance model. The classical ap-5

proach to obtain the modified equation of a dynamics is re-
visited to formulate a parametric modelling of the model-
error covariance matrix which applies when the numerical
model is dissipative compared with the true dynamics. As an
illustration, the particular case of the advection equation is10

considered as a simple test bed. After the theoretical deriva-
tion of both the predictability-error covariance matrices of
the nature and of the numerical model, a numerical simula-
tion is proposed which illustrates the properties of the result-
ing model-error covariance matrix.15
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1 Introduction

A significant portion of the work being carried out in state-
of-the-art data assimilation concerns the treatment of the
forecast-error covariance matrix. Actually, the forecast-error20

is composed of two parts. While one part of it is related to
the uncertainty in the initial condition, another part is due to
the model-error (Daley, 1991; Dee, 1995). The model-error
corresponds to the difference between the simulation and the
true behavior of a system, and several representations of the25

model error can be introduced in numerical weather predic-
tion (Houtekamer et al., 2009). For instance, the model error

can be related to the misrepresentation of the small-scales
and how this influences the large-scales. Stochastic physics
such as Stochastic Kinetic Energy Backscatter (Shutts, 2005) 30

or the Stochastically Perturbed Parametrization Tendencies
(Palmer et al., 2009) are examples of methods encountered
in NWP for this part of the model error.

Although some theoretical studies have been conducted
in the past, which elucidate the generic behavior related to 35

the model-error from the dynamical system perspective and
in connexion with the data assimilation (e.g. Nicolis (2003);
Vannitsem and Toth (2002); Carrassi and Vannitsem (2010)),
as far as we know there has been little investigation of the ef-
fect of the discretization of partial derivative equations on the 40

model error and on model-error covariance in particular. One
reason why the effect of numerical schemes is rarely consid-
ered is because it tends to be quite difficult to describe the
dynamics of large covariance matrices as encountered in the
Kalman filter. 45

It has been noted in Kalman filtering and EnKF that the
propagation of error covariance with a discretized advection
model produces a model error (variance) in the form of a
variance loss (Ménard et al., 2000, 2020). This error is related
to the spatial splitting error in covariance propagation that 50

exists with discretized models and not in continuous propa-
gation of covariance functions i.e. the propagation by the true
equations of the dynamics.

Recently, Pannekoucke et al. (2016, 2018b) (P16) have
proposed to solve the Kalman filter equations, and its second- 55

order extension for nonlinear dynamics, using approximated
covariance matrices through a covariance model character-
ized by certain parameters, leading to the so-called paramet-
ric Kalman filter (PKF). With this approximation, the dy-
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namics of the covariances is replaced by the dynamics of
the parameters. For instance, when considering the class of
covariance matrices parametrized by the variance field and
the local anisotropic tensors (VLATcov), the evolution of
the matrices is deduced from the evolution of the variance5

and the local anisotropic tensors (Cohn, 1993; Pannekoucke,
2020). This approach relies on the partial differential equa-
tions encountered in geosciences that are often nonlinear.

The aims of the present work are to study how the para-
metric dynamics for covariance matrix evolution can help10

to characterize the model-error covariance matrix, and more
precisely, to determine if is it possible to capture some part
of the model-error covariance which is due to the numer-
ical scheme. In this methodological contribution, we will
limit ourselves to diffusive numerical-errors whose uncer-15

tainty dynamics can be explored from the results of Pannek-
oucke et al. (2018a) (P18).

The paper is organized as follows, the background in data
assimilation is reviewed in Section 2 from which the formal-
ism of the model-error covariance matrix is detailed with20

the introduction of a modelling that could apply when the
numerical model is dissipative. The model-error covariance
matrix based on the PKF is illustrated for the particular one-
dimensional transport equation in Section 3 in the context of
the Euler-upwind and semi-Lagrangian schemes. A numeri-25

cal test bed is proposed in Section 4 to assess the ability of the
PKF approach to successfully model the flow-dependent part
of the model-error covariance matrix to numerical schemes
in a one-dimensional setting. A discussion on the results
is proposed in Section 5. Conclusions and perspectives are30

given in the last section, Section 6.

2 Theoretical considerations

2.1 Background in uncertainty propagation and the
model error

Here we assume that the nature is governed by the determin-35

istic equation

∂tX =N (X ), (1)

where X stands for the state. Note that X can be either dis-
crete or continuous: the discrete case leads to matrix of alge-
braic relations while the continuous case is suitable for the-40

oretical treatment with partial differential equations. There-
after, for any state X of a suitable set, there exists a single
trajectory Xt =Nt←0(X ), where Nt←0 stands for the prop-
agator of the dynamics Eq. (1) from 0 to t. Hence, if X tq de-
notes the true state of the nature at time tq , then the true state45

of the nature at time tq+1 is

X tq+1 =Ntq+1←tq (X tq ), (2)

where the subscript q is used to denote the time tq .

Due to the imperfect knowledge of the nature and the lim-
itations encountered during the computation, the nature dy- 50

namics is only approximated by

∂tX =M(t,X ), (3)

whereM is the numerical dynamics. Compared with the na-
ture, the time evolution of the true state Eq. (2) is now related
to the numerical dynamics as 55

X tq+1 =Mtq+1←tq (X tq )− εmq+1(X tq ), (4)

where εmq+1(X tq ) is the model error with respect to the true
state, and where εmq+1 is the function defined by

εmq+1 =Mtq+1←tq −Ntq+1←tq . (5)

The model error εmq+1(X tq ) represents collectively the nu- 60

merical discretization error and the effect of unresolved pro-
cesses. It is often modeled as a random field of zero mean i.e.
E
[
εmq+1(X tq )

]
= 0, and of covariance matrix

Pm
q+1 = E

[
εq+1(X tq )m

(
(εmq+1(X tq )

)T ]
, (6)

where E [·] denotes the expectation operator. 65

In practice, the true state X tq is unknown and only an es-
timation can be deduced from a prior information and the
available observations. This estimation is called the analysis
state, X a, and it is expanded as

X aq = X tq + εaq , (7) 70

where εaq stands for the so called analysis error, that is mod-
eled as a random field of zero mean and covariance matrix
Pa = E

[
εaq (ε

a
q )
T
]
. The forecast state is the prediction made

from the analysis state,

X fq+1 =Mtq+1←tq (X aq ). (8) 75

Similarily to the analysis state, the forecast state expands as

X fq+1 = X tq+1 + εfq+1, (9)

where εfq+1 stands for the so-called forecast error, that is
modeled as a random field of zero mean and covariance ma-
trix Pf = E

[
εfq+1(ε

f
q+1)

T
]
. 80

The forecast error covariance matrix is related to the anal-
ysis error covariance matrix through a deterministic relation
as follows. From the definition of the forecast error Eq. (9)
its dynamics is given by (see Eq. (A2) in Appendix A)

εfq+1 = Mεaq + εmq+1(X tq ), (10) 85

where M is a simplified notation for Mtq+1←tq,Xa
q

that is for
the tangent linear (TL) propagator along the analysis trajec-
tor. The TL dynamics, with respect to the analysis state, is
defined by

∂tε = Mt,Xa
t
ε, (11) 90
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where Mt,Xa
t
= dM|t,Xa

t
is the differential ofM at (t,X at ).

This TL model governs the evolution of small perturbations
along the forecast trajectory starting from the analysis state.
Note that the validity of the TL dynamics depends on the
error magnitude and on the forecast range. Moreover, the de-5

composition of the forecast-error Eq. (10), makes appear the
predictability-error εp defined by

εpq+1 = Mεaq (12)

consequently, the forecast error covariance matrix becomes

Pf
q+1 = Pp

q+1 +Pm
q+1 +Vpm

q+1 +(Vpm
q+1)

T , (13)10

where

Pp
q+1 = MPa

qM
T , (14)

is the predictability-error covariance matrix (Daley, 1992)
and Vpm

q+1 = E
[
εpq+1

(
εmq+1

)T ]
denotes the cross covariance

matrix between the predictability error and the model error.15

When the analysis error and the model error are decorre-
lated, the forecast-error covariance matrix writes

Pf
q+1 = Pp

q+1 +Pm
q+1. (15)

Note that, in the case where the true nature is used to fore-
cast the uncertainty, then the forecast-error covariance ma-20

trix coincide with the predictability-error covariance matrix.
In the latter, the predictability-error with respect to the na-
ture dynamics plays an important role. So in order to avoid
any confusion with the predictability error associated with
the numerical model, the notation ·̃ is used when the dynam-25

ics is the nature i.e.

P̃f
q+1 = P̃p

q+1 = NPa
qN

T , (16)

with P̃f = E
[
ε̃f
(
ε̃f
)T ]

where ε̃fq+1 = Nεaq denotes the
forecast error in the particular case where the dynamics is
the nature, which coincide with the predictability error in this30

case i.e. ε̃fq+1 = ε̃pq+1 ; and where N is a simplified notation
for the propagator Ntq+1←tq,Xa

q
solution of the TL dynam-

ics governed by Nt,Xa
t
= dN|t,Xa

t
(the differential of N at

(t,X at )).

2.2 Discussion on the modelling of the model error35

The modelling of the model error can be seen as a trade-
off between its real properties and the lack of knowledge to
address this error. In particular, the various assumptions en-
countered in data assimilation may be considered as subopti-
mal ways to model this error. For instance, assuming that the40

model error is unbiased, leads to model the bias as some vari-
ance, and over-estimates the effective model-error variance.
Then, assuming a decorrelation between the analysis and the
model errors is certainly wrong for deterministic error, as for

the model error due to the discretization of the dynamics; but 45

it may not apply for highly non-linear processes as for the
turbulent processes and transport by the turbulent. Again, as-
suming the decorrelation between the analysis and the model
errors leads to over-estimate the true effect of the model-error
with an over-estimation of the true forecast-error uncertainty. 50

However, with these assumptions, or actually this modelling,
some part of the model-error statistics can be estimated from
the data. For instance, with the assumption that the analysis
and the model errors are decorrelated, leading to Eq. (15), it
is possible to estimate the homogeneous correlation and the 55

stationary part of the climatological model-error covariance
(Daley, 1992; Boisserie et al., 2013).

By some aspects, the understanding and the specification
of the model-error covariance matrix look like to the de-
velopment of the background-error covariance matrix some 60

decades ago where, in variational data assimilation, the cli-
matological background-error covariance matrix has been
progressively replaced by a covariance matrix of the day
thanks to the hybridization with ensemble methods, used to
characterize the predictability error. Nonetheless, the situa- 65

tion of the model-error covariance matrix is different since,
up to now, no equations are known to characterize its proper-
ties. It seems that the prospect of estimating the model-error
covariance matrix of the day is out of reach.

Because the model error can mean different things, to un- 70

derstand the context we are using model error, let’s con-
sider the situation sketched in Fig. 1. This figure mimics the
evolution of the analysis uncertainty with respect to the na-
ture and to the numerical model. The initial Gaussian anal-
ysis error is characterized by the analysis state (the black 75

point) and the analysis-error covariance matrix (the black el-
lipse). When this analysis uncertainty evolves by the nature
dynamics (blue arrow), it becomes a Gaussian uncertainty
(under TL assumption) of mean the analysis forecasted by
the nature (blue point) and of covariance matrix the associ- 80

ated predictability-error covariance matrix (that is also the
forecast-error covariance) (blue ellipse). When the analysis
uncertainty evolves by the numerical model (red arrow), it
becomes a Gaussian uncertainty (under TL assumption) of
mean the analysis forecasted by the model (red point) and of 85

covariance matrix the associated predictability-error covari-
ance matrix (red ellipse). The evolution of the true state (pink
crosses) is also represented (pink arrow). Panels (a) and (b)
illustrate what would be the forecast-error covariance matrix
(orange ellipse) in two situations: 90

Panel (a) represents the case where the forecast state X fq+1

is out of the predictability uncertainty of the nature: in that
case, a model-error is needed to enlarge the predictability-
error covariance of the numerical model so that the forecast-
error covariance is larger enough to account for the uncer- 95

tainty of the nature. In this situation, it seems difficult to spec-
ulate about what would be the characteristic of the model er-
ror, beyond any climatological estimate. This situation could
be the typical picture for long term forecast.
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Figure 1. Illustration of the evolution of the uncertainty by the nature and the numerical model: the generic situation (a), and the particular
situation particular situation where the forecast lies within the nature uncertainty and where the model is diffusive (b). The predicatbility-
error covariance of the nature NPa

qNT (of the model MPa
qMT ) is the blue (red) elipse. The forecast-error covariance matrix is the orange

elipse.

Panel (b) represents the situation where the time integra-
tion is not too long, so the forecast state lies within the pre-
dictability uncertainty of the nature. This situation is encoun-
tered when the numerical model is more dissipative than
the nature e.g. the resolution of an advection by a semi-5

Lagrangian scheme. Then the model-error uncertainty, re-
quired to correct the predictability error of the numerical
model, should be at least large enough to provide an uncer-
tainty similar to the predictability error covariance of the na-
ture. So if we are able to quantify the predictability-error co-10

variances of the nature and of the numerical model, then it
would be able to specify a flow-dependent part of the model-
error covariance matrix. To account for the bias, a climato-
logical residual covariance matrix would be necessary.

Thereafter, we consider the situation sketched in panel (b),15

that suggests to decompose the forecast-error covariance ma-
trix as

Pf
q+1 ≈Pp

q+1 +Πm
q+1 +Qq+1, (17)

where

Πm
q+1 = NPa

qN
T −MPa

qM
T , (18)20

would account for the flow-dependent part of the model-
error covariance matrix, while the remaining Qq+1, a resid-
ual model-error covariance, would account for the bias and
could be estimated from the climatology e.g. by considering
a chi-squared diagnostic (Ménard et al., 2000).25

Thus, Πm
q+1 = P̃p

q+1−Pp
q+1 measures how the

predictability-error covariance of the numerical model
should be modifed to find the one of the nature. We think
that Πm

q+1 could be a usefull proxy to characterize the
flow-dependent part of model-error covariance matrix. 30

Note that the matrix Πm
q+1 is symmetric but not necessary

positive. However, under the assumption depicted in panel
(b), we will assume that Πm

q+1 is positive. Note also that
Πm
q+1 is different from the model-error covariance matrix

Pm
q+1: if there is no analysis uncertainty, then Πm

q+1 is zero. 35

The decomposition Eq. (17) can be justified from the de-
composition of the forecast error that can be written as (see
Eq. (A6) in Appendix A)

εfq+1 = ε̃pq+1 + εmq+1(X aq ), (19)

which makes appear the forecast error, εfq+1, as the pre- 40

dictability error of the nature, ε̃pq+1 = Nεaq , plus a drift
εmq+1(X aq ). Note that, the analysis state X aq being known, the
model error εmq+1(X aq ) is easier to handle than εmq+1(X tq ) in
Eq. (10), which is defined with respect to the true state X tq
that is never known in practice. Now, when assuming that 45

the errors in Eq. (19) are decorrelated and when the model
error εmq+1(X aq ) is unbiased (E

[
εmq+1(X aq )

]
= 0), and of co-

variance E
[
εmq+1(X aq )

(
εmq+1(X aq )

)T ]
= Qq+1, it results that

the forecast-error covariance matrix also writes

Pf
q+1 = P̃p

q+1 +Qq+1. (20) 50
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Hence, the modelling of the model-error covariance as

Pm
q+1 ≈Πm

q+1 +Qq+1. (21)

allows to connect the two formulations Eq. (15) and Eq. (20)
of Pf

q+1. In fact, while Eq. (15) and Eq. (20) result from
a decorrelation assumption of the errors in Eq. (10) and5

Eq. (19), and because Πm
q+1 is not necessary a covariance

matrix, then expression of Pf
q+1, proposed in Eq. (17), is

more like that of Eq. (13) where there is no decorrelation
assumption.

Compared with climatological modelling of the model-10

error covariance matrix, as usually encountered in data as-
similation, the model for Pm in Eq. (21) is a state-dependent
model of the model-error covariance. Note also that, in panel
(b), assuming that there is no bias, while there is one, leads to
interpret the bias as a residual model-error whose magnitude15

can be estimated from the climatology. Hence, Pm modeled
by Eq. (21) is an hybrid model that balance the model error of
the day with the climatological effect of the model error. In
particular, if the initial state is perfectly known, then Πm

q+1

is zero, and the model-error is characterized by the clima-20

tological residual term Qq+1: the source of this uncertainty
corresponds to a forcing term that appears in the dynamics
of the model error (see e.g. Eq. (4) in Nicolis (2003)) ; this
source term is not explored here and its contribution is in-
corporated in Q whose magnitude depends on the forecast25

time.
Note that the modeling Eq. (21) for Pm is actually sup-

ported by at least one real experiment. In the assimilation of
a chemical tracer using a Kalman filter, Ménard et al. (2000)
and Ménard and Chang (2000) (M2000s) have observed a30

loss of variance: the variance they forecasted was lower than
the theoretical variance that was transported by the flow for
the advection equation (Cohn, 1993). Said differently, in their
experiment, the predicability-error variance computed from
the numerical model was lower to the predicability-error35

variance of the nature they considered, and M2000s related
the loss of variance to the discretization of the continuous dy-
namics. This loss of variance is also encountered when con-
sidering an ensemble forecasting of the uncertainty, as latter
illustrated in the numerical part (see Section 4.2.1) and also40

observed in 3D domain simulations (Ménard et al., 2020).
Accompagning the loss of variance M2000s also observed
that the correlation length-scale they predict where larger,
due to the same diffusive process that gives rise to the loss
of variance. To cope with the loss of variance, M2000s pro-45

posed to correct the predictability-error variance (the diago-
nal of Pp in Eq. (14)) so that its magnitude is conserved, as
it is supposed to be according to the theory. This renormal-
ization introduced an increase of correlation length that was
corrected by a Schur product of the new covariances with50

an homogeneous isotropic correlation model whose length-
scale has been determined so that the total covariance is con-
served over time. Indeed, M2000s introduced a modeling of

the model-error covariance matrix similar to the Eq. (21) in-
troduced here, although they did not explicitly formalize it in 55

this way: their objective was not to characterize the model-
error covariance matrix, but to correct the predictability error
covariance matrix that they considered erroneous from a the-
oretical point of view. In particular, M2000s have observed
that the Kalman filter, with the corrected predictability-error 60

covariance, required less residual model-error Q (see Mé-
nard et al. (2000), Section 5), and improved the analysis-
error statistics (see Ménard et al. (2000), Fig. 11): the flow
dependent modeling Eq. (21) of the model error is in a better
agreement with the real forecast uncertainty. 65

At a computational level, Πm
q+1 in Eq. (18) appears eas-

ier to obtain than the model-error covariance matrix Pm
q+1

as defined by Eq. (6): the predictability-error covariance ma-
trices of the model Pp

q+1 (Eq. (14)) and of the nature P̃p
q+1

(Eq. (16)) are based only on the TL forecasts with respect to 70

the known analysis stateX aq , while the model error εmq+1(X tq )
(Eq. (4)) depends on the true state X tq that is never known.
However, computing P̃p

q+1 and Pp
q+1 remains a challenge.

First of all, the nature dynamicsN is generally unknown e.g.
primitive equations are only an approximation of the geo- 75

physical fluid dynamics. Then, when the nature dynamics is
(assume) known e.g. when it is given by PDEs, there is of-
ten no analytical solution which means that the problem must
be solved numerically: asM is presicely the numerical ap-
proximation of N , the only way to compute P̃p

q+1 is to in- 80

troduce a high order numerical approximation of the nature
dynamics, N̂ , whose numerical error is much smaller than
the one ofM. And finally, it remains to compute P̃p

q+1 and
Pp
q+1. But due to the large size of the numerical state encoun-

tered in practice, the direct computation of P̃p
q+1 ≈ N̂Pa

qN̂
T

85

and Pp
q+1 = MPa

qM
T is impossible, even on supercomput-

ers, which are only able to handle a few numerical states at
full resolution: it is the limitation that motivated the ensem-
ble estimation to solve the Kalman filter equations (Evensen,
2009). 90

To overcome the above limitations, a high order discretiza-
tion N̂ of N will be introduced in the latter numerical sim-
ulation in place of N , e.g. in the ensemble estimation of the
covariance matrice P̃p

q+1 ≈ N̂Pa
qN̂

T only used for the vali-
dation. But the computation of P̃p

q+1 = NPa
qN

T and Pp
q+1 95

is investigated through an alternative to the ensemble estima-
tion, as now introduced in the next section.

2.3 Parametric dynamics for VLATcov models

The parametric formulation provides a framework where a
limited number of covariance parameters (based on the con- 100

tinuous PDE) of the nature can be computed. The parametric
formulation works as follows. If P(P) denotes a covariance
model characterized by a set of parameters P = (pi)i∈I , then
there exists a set Pft featuring the forecast-error covariance
matrix so that P(Pft )≈Pf

t ; and there is a set Pa featuring 105
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the analysis-error covariance matrix so that P(Pa)≈Pa. In
reverse, if the dynamics of the parameters Pft is known, then
P(Pft ) approximates the dynamics of Pf

t without using the
full matrix computation. This approach constitutes the so-
called parametric Kalman filter (PKF) approximation, intro-5

duced by Pannekoucke et al. (2016, 2018a) (P16, P18).
The family of covariance models parametrized by the Vari-

ance field and the Local Anisotropic Tensors, the VLATcov
models, are of particular interest (Pannekoucke, 2020): their
parameters are directly related to the grid-point statistics of10

the error field ε. When the error is modeled as an unbiased
random differential field, E [ε] = 0, the variance at a point x
is written

V (x) = E
[
ε(x)2

]
. (22)

The anisotropy of the correlation function ρ(x,y) =15

1√
VxVy

E [ε(x)ε(y)] is defined, from the second order expan-

sion

ρ(x,x+ δx)≈ 1− 1

2
||δx||2g(x)

, (23)

by the local metric tensor g(x). An interesting result is that
the metric tensor can be obtained from the error as20

gij(x) = E
[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)]
, (24)

(see e.g. (Pannekoucke, 2020) for details). A VLATcov
model is then a covariance model parametrized by V and g,
that is P(V,g).

For instance, the diffusion operator of Weaver and Courtier25

(2001) is an example of a VLATcov model: the local
anisotropic tensors are related to the local diffusion tensors,
ν, from

νx =
1

2
g−1x , (25)

where the superscript −1 denotes the matrix inverse operator.30

Eq. (25) holds under the local homogeneous assumption, that
is when the spatial derivatives are negligible.

Following Pannekoucke et al. (2018a), the parametric dy-
namics of a VLATcov model is deduced from the dynamics
of the errors from35

∂tV = 2E [ε∂tε] , (26a)

∂tgij = ∂t

(
E
[
∂xi

(
ε√
V

)
∂xj

(
ε√
V

)])
, (26b)

where the expectation operator and the temporal derivative
commute, ∂tE [·] = E [∂t·], as used in Eq. (26a). Therefore,
the dynamics of the VLATcov model is written P(Vt,gt) or40

P(Vt,νt) which are equivalent.
Now, we apply the parametric covariance dynamics for

model-error covariance estimation.

2.4 The model-error VLATcov approximation

From now, we will assume that Πm is a covariance matrix, 45

and that there is no residual model-error Q so to focus on
Πm alone, so that

Pm
q+1 ≈Πm

q+1, (27)

leads to model the forecast-error covariance matrix as

Pf
q+1 ≈Pp

q+1 +Πm
q+1. (28) 50

With the notations of the previous paragraph, a set Ppt also
exists for the predictability-error covariance matrix leading
to the approximation P(Ppt )≈Pp

t .
If the dynamics of the parameters Ppt is known, then

starting from the initial condition Pp0 = Pa it is possible to 55

approximately determine Pp
t without solving Eq. (14) and

Eq. (16) explicitly.
Hence, thanks to the parametric dynamics in the case

where the nature is known from its partial derivative equa-
tions, a new method to compute the model-error covariance 60

matrix can be proposed as follows. By considering the TL
dynamics for the numerical model and for the nature, Equa-
tion (26) provides a way to compute both the predictability-
error covariance matrices Pp (Eq. (14)), and P̃p (Eq. (16))
; from which the model Eq. (27) of Pm can be evaluated. 65

For the covariance model based on the diffusion equation,
the model-error variance diagnosed from Eq. (18) is the dif-
ference

V m = Ṽ p−V p, (29a)

where Ṽ p and V p denote the predictability-error variance 70

fields of the nature and of the numerical model. The field of
the metric tensor of the model error is approximately given
by

gm =
1

V m

(
Ṽ pg̃p−V pgp

)
, (29b)

where g̃p and gp respectively denote the predictability error 75

metric tensor fields of the nature and of the numerical model
(see Appendix B for details).

In the next section we apply the parametric model-error
dynamics to a transport equation.

3 Parametric characterization of the model error 80

covariance for the one-dimensional advection
equation

The transport equation of a passive scalar c by the wind
u(t,x) is written as

∂tc+u∂xc= 0, (30) 85

and takes the place of the nature dynamics Eq. (1). Note that
dynamics Eq. (30) is linear, meaning that the tangent-linear
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dynamics is also given by Eq. (30). The advection equation
has two aspects. The first side is given by the PDE Eq. (30)
which is referred to as the Euler point of view. The other side
is the analytico-geometric perspective known as the method
of characteristics (see e.g. (Boyd, 2001, chap. 14)) where the5

dynamics can be solved as a local system of ordinary differ-
ential equations, given by

dx

dt
= u, (31a)

dc

dt
= 0. (31b)

Each system Eq. (31) describes the evolution of the couple10

(x(t), c(t)) starting from an initial position x(0) where the
scalar value is c(0,x(0)). At the geometric level, Eq. (31)
remains to compute the trajectory of a mobile point of co-
ordinate x(t), the characteristic curve, solution of the dy-
namics Eq. (31a), and transporting the scalar c whose value15

c(t) coincide with the field value c(t,x(t)). The transported
value c(t) evolves following Eq. (31b). In the present situa-
tion, since the right hand side of Eq. (31b) is null, c is con-
served along the curve. This second point of view is referred
to as the Lagrangian description for the transport.20

Two discretization methods are interesting to study for
the transport equation: the finite difference approach and the
semi-Lagrangian method resulting from the Lagrangian in-
terpretation of Eq. (30).

The aim of this section is to detail the model-error covari-25

ance matrix for both schemes. This theoretical part is orga-
nized as follows. The error covariance parametric dynamics
for the nature is first described considering the covariance
model based on the diffusion equation, then both finite dif-
ference and semi-Lagrangian schemes are introduced with30

their particular parametric dynamics.

3.1 PKF dynamics for the linear advection equation

To describe the time evolution of the predictability-error co-
variance matrix, Eq. (16), it is necessary to detail what is
the TL dynamics for the linear transport, Eq. (30). Since this35

transport dynamics is linear, the error evolves according to
the same dynamics, and the TL dynamics can be written as

∂tε̃
p+u∂xε̃

p = 0. (32)

The PKF approximation of the forecast-error covariance ma-
trix, relies on the dynamics of the variance and of the diffu-40

sion fields deduced from Eq. (26). The equation for the vari-
ance is computed from Eq. (26a) by replacing the trend by
the TL dynamics Eq. (32), so that

∂tṼ
p = 2E

[
εf (−u∂xε̃p)

]
=−2uE [ε̃p∂xε̃

p] . (33)

From ∂x(ε̃
p)2 = 2ε̃p∂xε̃

p and by the commutativity between45

the expectation operator and the spatial derivative, the vari-
ance dynamics becomes

∂tṼ
p = 2E [ε̃p (−u∂xε̃p)] =−u∂xE

[
(ε̃p)

2
]
. (34)

By using the definition of the variance Eq. (22), it results that
the dynamics for the variance can be stated as 50

∂tṼ
p =−u∂xṼ p. (35)

The computation of the metric dynamics Eq. (26b) is simi-
lar to the above computation made for the variance dynamics,
and is detailed in P16 and P18 where the interested reader is
referred to. It results that the PKF evolution for the nature is 55

written

∂tṼ
p+u∂xṼ

p = 0, (36a)
∂tν̃

p+u∂xν̃
p = (2∂xu)ν̃

p. (36b)

Note that a similar system has been first obtained, in data
assimilation, by Cohn (1993) (see their Eq. (4.30a) and 60

Eq.(4.34) when written without stochastic model error).
From Eq. (36), it results that the variance and the diffusion

are independent quantities. The variance is conserved, while
it is transported by the wind. The diffusion is not only trans-
ported, but it is also modified by the source term (2∂xu)ν̃

p
65

which results from the deformation of correlations by the
gradient of the flow u: the diffusion tensor is not conserved
by the flow.

Hence, in this sub-section, the predicability-error covari-
ance for the nature Eq. (16) has been computed for the lin- 70

ear transport Eq. (30) and corresponds to the time integration
of the un-coupled system Eq. (36) starting from prescribed
analysis-error variance and diffusion tensor fields.

The finite difference scheme is now considered as a first
numerical integration method for Eq. (30), with the deriva- 75

tion of the predictability-error covariance matrix.

3.2 Finite difference scheme and its equivalent PKF
dynamics

When the velocity field u is positive (which is assumed from
now without loss of generality), a conditionally stable dis- 80

cretization scheme is given by the Euler-upwind scheme,

cq+1
i − cqi
δt

=−ui
cqi − c

q
i−1

δx
, (37)

Stability is assured as long as the CFL condition δt <
δx/Max

x
|u| is satisfied. Moreover the scheme is consistent

since in the limit of small δx and δt, the dynamics Eq. (30) is 85

recovered from the discrete equation Eq. (37). Thanks to the
consistency and the stability, the equivalence theorem of Lax
and Richtmyer (1956) assures to the convergence of Eq. (37)
toward the true solution. Equation Eq. (37) stands as an illus-
tration of model dynamics Eq. (3). 90

While the numerical solution computed with the aid of a
given numerical scheme can converge toward the true solu-
tion as δt→ 0 and δx→ 0, when δt and δx are of finite am-
plitude, the numerical solution often differs from the theo-
retical one. Actually, there exists another partial differential 95
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equation which offers a better fit to the numerical solution
and highlights the properties of the numerical scheme (Hirt,
1968): the consistency, the stability as well as the dissipa-
tive and dispersive nature of the numerical scheme can be
deduced from the so-called modified equation (Warming and5

Hyett, 1974). Hence, while it is supposed to solve Eq. (30)
the numerical solution computed from Eq. (37) is actually
the solution of the modified equation.

More precisely, if C denotes a smooth function solution
of the iterations Eq. (37) with C(qδt, iδx) = Cqi , then the10

modified equation is the partial differential equation veri-
fied by C and at a given order of precision in δt and δx.
Here, it is straightforward to show that at order O(δt2, δx2),
the partial differential equation best fitted by C is given by
(see Appendix C)15

∂tC +U∂xC = κ∂2xC, (38a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (38b)

and

κ=
u

2
(δx−uδt) (38c)20

are two functions of t and x.
Compared with the nature Eq. (30), the modified equation

that best fits the Euler-upwind numerical scheme Eq. (37)
presents a correction of the wind which depends on the trend
∂tu and the self advection u∂xu of the wind u. The mag-25

nitude of the correction scales as δt and is null at the limit
δt→ 0. But this is not the only modification of the dynam-
ics, as a more critical difference emerges from the numerical
discretization: a diffusion term whose magnitude depends on
the CFL number uδt/δx. In particular, the diffusion coeffi-30

cient is negative when the CFL number is larger than one.
The diffusion breaks the conservation property of the initial
dynamics Eq. (30). This example shows the importance of
the modified equation: this provides a way to understand and
characterize the defects due to the numerical resolution. In35

one dimension, for evolution equation, this can be diffusive
processes (associated with derivatives of even order) or dis-
persive processes (associated with derivatives of odd order).

From the PKF point of view, the modified equation is cru-
cial since it converts a discrete dynamics into a partial dif-40

ferential equation, which appeared from P16 and P18, much
simpler to handle when considering error covariance dynam-
ics. Thanks to the modified equation Eq. (38), it is now pos-
sible to compute the TL evolution of the predictability error
for the Euler-upwind scheme, which can be expressed as45

∂tε
p+U∂xε

p = κ∂2xε
p. (39)

Equations of the PKF forecast can be computed under a
similar derivation as in the above Section 3.1. To simplify

the computation workflow, a splitting method has been intro-
duced in P16 and P18. Due to the diffusion process appear- 50

ing in Eq. (39), the PKF formulation faces a closure issue for
which a closure scheme has been successfully proposed in
P18, the Gaussian closure. The interested reader is referred
to P18 for the details. Note that an alternative to the Gaus-
sian closure can be deduced from the data through machine- 55

learning (Pannekoucke and Fablet, 2020). Hence, the result-
ing dynamics for the parameter of the predictability-error co-
variance model is given by

∂tV
p+U∂xV

p =−V
pκ

νp
+κ∂2xV

p− κ(∂xV
p)

2

2V p
(40a) 60

∂tν
p+U∂xν

p = (2∂xU)νp+

κ∂2xν
p+2κ− 2(∂xν

p)
2

νp
κ+

∂xκ∂xν
p− 2∂2xV

p

V p
κνp+

∂xV
p

V
κ∂xν

p− 2∂xV
p

V p
νp∂xκ+

2(∂xV
p)

2

V p2
κνp (40b) 65

Compared with the PKF dynamics of the nature Eq. (36),
the PKF for the Euler-upwind scheme gives rise to additional
terms which result from the numerical diffusion of magni-
tude κ. Moreover, this time, the PKF for the Euler-upwind
scheme presents a coupling between the variance and the 70

diffusion, the coupling being a consequence of the numer-
ical diffusion only. Note that a coupling between the vari-
ance and the correlation scale also appeared in Eq. (4.30a)
and Eq. (4.34) of Cohn (1993), but without a link to the dis-
cretization scheme. 75

The model-error covariance matrix, Eq. (27), associated
with the Euler-upwind scheme can be deduced from the
predictability-error covariance matrix approximations: start-
ing from the initial analysis-error variance and diffusion
field, integration of the parametric-error covariance equa- 80

tions of the nature, Eq. (36), and of the numerical discretiza-
tion, Eq. (40), provides the predictability-error variances Ṽ p

and V p, and the diffusion ν̃p and νp, which are used to com-
pute the model-error covariance parameter Eq. (29).

As another example, the model-error parameters for the 85

semi-Lagrangian scheme are now discussed.

3.3 Semi-Lagrangian scheme and its equivalent PKF
dynamics

The modified equation technique has been previously con-
sidered for SL schemes. For instance, McCalpin (1988) has 90

shown for the case of constant advection velocity that a lin-
ear interpolation leads to an effective Laplacian dissipation
while the quadratic and cubic interpolations lead to a bihar-
monic dissipation.
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Because we want to focus on the method to address
the issue of the model error, and since uncertainty predic-
tion of diffusive dynamics has been detailed by P18, we
limit the presentation to the linear interpolation in the semi-
Lagrangian, and we present the modified equation of Eq. (30)5

for the study of its model error.
The Lagrangian perspective Eq. (31) of Eq. (30) suggests

to build curves along which c is constant. While simple, the
drawback of this analytico-geometric method is the possi-
ble occurrence of curve trajectory collapses which prevent10

us from describing the time evolution of c throughout the
geographical domain. It is possible to take advantage of the
geometrical resolution while avoiding the collapse by con-
sidering the so-called semi-Lagrangian procedure.

In the Lagrangian way of thinking, starting from a given15

position xo, the question is where the mobile point lies
along the time axis, which makes evolving the computation
grid forward in time. The semi-Lagrangian perspective re-
verses this question by asking from which position x∗o origi-
nates the mobile point arriving at xo at a given time. Hence,20

the semi-Lagrangian leaves the computation grid unchanged
over the time steps of the integration, while letting the scalar
field c evolve. More precisely for the particular dynamics of
Eq. (30), by assuming the scalar field at time t known for
each points of the computational grid, for grid point xi, the25

scalar field evolves as

c(t+ δt,xi) = c(t,x∗i ), (41)

where x∗i is the origin of the trajectory at time twhich arrives
at xi at time t+δt. Since the point of origin x∗i is unlikely to
be a point of the computational grid (except for very partic-30

ular situations), the value c(t,x∗i ) is computed as an interpo-
lation of the known values of c at time t.

In its present form, the semi-Lagrangian procedure is not
suited to the PKF method since it does not give rise any par-
tial differential equation which lies at the core of the para-35

metric approximation for covariance dynamics. To proceed
further and to obtain PDEs, additional assumptions are intro-
duced to translate the semi-Lagrangian procedure Eq. (41)
into a discrete scheme from which the modified equation is
deduced.40

In the case where the discretization satisfies the CFL con-
dition δt < δx/Max

x
|u(x)| and for linear interpolation, it

is straightforward to write the semi-Lagrangian procedure
Eq. (41) into a discrete scheme (see Appendix D for the de-
tails) which is stated as follows:45 {

cq+1
i −cqi
δt =−ui

cqi−c
q
i−1

δx , for ui > 0
cq+1
i −cqi
δt =−ui

cqi+1−c
q
i

δx , for ui < 0
(42)

which give rise to the Euler-upwind/downwind schemes.
Then following the same derivation as previously presented
in Section 3.2, the modified equation resulting from the
scheme Eq. (42) is given as the PDE verified by a smooth50

solution C of Eq. (42). From the derivation detailed in Ap-
pendix D, the modified equations is

∂tC +U∂xC = κSL∂2xC, (43a)

where

U = u− δt

2
∂tu+

δt

2
u∂xu (43b) 55

and

κSL =
|u|
2

(δx− |u|δt) (43c)

are both functions of t and x.
Hence, since this corresponds mainly to the modified

equation Eq. (38) encountered for the Euler-upwind scheme 60

Eq. (37), the parametric predictability-error covariance is
also given by Eq. (40), replacing κ by its SL counterpart
value κSL.

Note that the derivation leading to the Euler-upwind and
Euler-downwind schemes is due to the choice of the lin- 65

ear interpolation. The bridge between the SL and the Euler-
up/down-wind procedures is not a novelty. The derivation has
been carried out since it offers an insight into how to build a
modified equation for the SL scheme, and also for the self
consistency of the presentation. In the general situation, the 70

modified equation for the SL scheme is hard to obtain, if at
all possible, and it is not the idea to claim the procedure as
universal. But it provides a new insight into the model-error
covariance matrix for the SL scheme, which is one of the
main goals of the present contribution. 75

The next section presents the numerical experiments car-
ried out to assess the ability of the PKF to characterize the
model-error covariance matrix.

4 Numerical validation

4.1 Setting and illustration 80

In this experimental test bed, the domain is assumed to be
the one dimensional segment [0,D) with periodic boundary
conditions, where D = 1. The domain is discretized into a
regular grid of n= 241 points xi = iδx for i ∈ [0,240] and
δx=D/n≈ 4.110−3. 85

The wind field u for the one-dimensional transport
Eq. (30) is set as the stationary field

u(x) = 0.4+
0.6

2

(
1+ cos

(
2π

D
(x−D/4)

))
, (44)

showed in Fig. 2-(a), which appears as a jet with the entrance
(exit) at x= 0.75D (x= 0.25D): the flow accelerates (decel- 90

erates) until x= 0.25D (x= 0.75D). Latter, the lead time is
T = 2.0.
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Figure 2. (a) Wind field specified for the nature dynamics and the one seen in the discretized model from Eq. (38b). Panel (b) represents the
numerical diffusion coefficient due to the discretization Eq. (38c), normalized by κe = δx2/δt.

Figure 3. Nature (a) and numerical model (b) runs for times from t= 0 to t= T and represented each 0.1T .

In order to verify the CFL condition, the time step for the
numerical simulation is set to δt= 0.002 leading to a CFL
value of 0.48< 1. The magnitude of the numerical diffusion
κ, Eq. (38c), associated with this setting is shown in Fig. 2-
(b), normalized by the diffusion coefficient κe = δx2/δt.5

For the numerical experiment, the initial state for c is set
to

c(0,x) = exp

(
− 1

2(0.15D)2
sin
(π
2
(x−D/2)

)2)
(45)

while the initial analysis-error covariance matrix is
set as the homogeneous Gaussian covariance matrix10

Pf
t=0(x,y) = e

− d(x,y)2

2l2
h with lh = 0.05D ≈ 12δx, where

d(x,y) = D
π |sin

π
D (x− y)| is the chordal distance between

the two geographical positions x and y (Pannekoucke et al.,
2018a, see Eq.(30)). The analysis-error standard-deviation is
set to the homogeneous value 1.0.15

For numerical validation, since no simple analytical solu-
tion of the partial differential equation Eq. (30) exists, this
dynamics is integrated considering a fourth order Runge-
Kutta time scheme applied on the finite difference discretiza-

tion 20

∂tci =−ui
ci+1− ci−1

2δx
, (46)

where the spatial derivative is approximated by a centered
second order scheme. This constitutes the high order dis-
cretization N̂ of the nature N , as introduced in Section 2.2:
N̂ is assumed to better reproduce the nature N than the 25

modelM.
Figure 3 shows the trajectory computed from the nature

approximated by N̂ and the numerical modelM. Since the
transport equation conserves the value of the field c, the ex-
tremal values of c do not change along the integration and 30

the wind u > 0 causes the initial structure to move to the
right. While the field is conserved, it is also deformed by
the wind. For the particular choice of the initial condition
made here, the signal is of larger (smaller) scale in the re-
gion x ∈ [0,0.5] ( x ∈ [0.5,1]) than its initial shape. Panel 35

(a) shows that the nature approximation N̂ is able to repro-
duce the conservation of c as well as the stretching of the
signal along the time axis. Hence, the nature approximation
N̂ is good enough to capture the main features of the na-
ture dynamics, which justifies the use of this approximation 40
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in place of the true dynamics in the following. At the oppo-
site, the model M fails to maintain the magnitudes of the
extrema (panel (b)), in accordance with the modified equa-
tion Eq. (38a) of the Euler-upwind Eq. (37) which presents a
non-physical diffusion process resulting from the numerical5

discretization. Note that the coefficient of the numerical dif-
fusion is heterogeneous over the domain with a typical value
of thereabout 0.1κe (see Fig. 2-(b)). This heterogeneity is
due to the scale variation of the signal, stretched by the wind
shear: when the signal is of smaller (larger) scale than its10

initial shape, the second order derivative is larger (smaller),
which leads to an intensification (reduction) in the numerical
diffusion term in Eq. (38a).

Having validated the two numerical models N̂ andM, it
is now possible to look at the covariance dynamics and how15

the model-error covariance error can be estimated from the
PKF prediction.

4.2 Assessment of the PKF in predicting the
predictability-error covariance dynamics of the
nature and of the numerical model20

The PKF predictability-error covariance matrix dynamics
for the transport equation Eq. (30) is given by the system
Eq. (36). The PKF predictability-error covariance matrix dy-
namics resulting from the Euler-upwind integration Eq. (37)
is given by Eq. (40). Both systems are numerically integrated25

by considering respectively an explicit RK4 time scheme for
the nature and an Euler time scheme for the Euler-upwind
scheme. The time step used for the integration is δt= 0.002.
The predictability-error variance fields are shown in Fig. 4.
The predictability-error correlation length-scale fields, de-30

fined from the one-dimensional diffusion fields by L̃p =√
2ν̃p (nature) and , Lp =

√
2νp (numerical model), are

shown in Fig. 5. The variance and the length-scale, are shown
for the PKF and an ensemble estimation, the latter being only
computed for the validation of the PKF (the ensembles are35

not needed neither used for the computation of the PKF sys-
tems).

To do so, an ensemble of Ne = 6400 analysis errors has
been generated, (εa0,k)k∈[1,Ne], where each member is com-
puted as εa0,k = (Pf

t=0)
1/2ζk with ζk a sample of the Gaus-40

sian random vector of zero mean and of covariance matrix the
identity matrix I. This large size limits the sampling noise to
a relative error of 1/

√
Ne ≈ 1.25%.

Because the dynamics are linear, the TL nature and model
are independent of any analysis state, and the ensemble is45

computed from the forecasts, by the high order discretiza-
tion of the nature N̂ and the model M, of the ensemble of
analysis errors (εa0,k).

4.2.1 Validation of the PKF for the nature

The predictability-error covariance dynamics for the nature is50

first considered. Since the variance of the nature Eq. (36a) is

conserved, it results that with the choice of an initial homoge-
neous variance, the trend is null and the variance field is the
stationary homogeneous field 1.0. This theoretical result is
well reproduced in Fig. 4-(a) from the PKF integration while 55

the ensemble estimation, Fig. 4-(c) also shows this stationary
but to within the sampling noise. The length-scale (Fig. 5-
(a)) shows a periodic evolution where, starting from the ho-
mogeneous field of value lh, the length-scale first increases
(decreases) in the entrance (exit) of the jet, then these evo- 60

lutions are attenuated then compensated with the transport.
Then ensemble estimation Fig. 5-(c) presents the same vari-
ations (again to within the sampling noise), which validates
the PKF dynamics for the nature. As a consequence, the PKF
dynamics Eq. (36) can be used to understand the dynam- 65

ics of the uncertainty. In particular, the length-scale field at
t= 0.1T is well explained by the source/sink term 2(∂xu)ν̃

p

in Eq. (36b) whose magnitude, that lies from −0.004 to
0.004, implies a rapid emergence of a heterogeneity leading
to large (small) length-scales for x ∈ [0,0.25D]∪ [0.75D,D] 70

(for x ∈ [0.25D,0.75D]) where ∂xu > 0 (∂xu < 0); and by
the transport term u∂xν̃

p that shifts the fields to the right.
Note that, by introducing the spatial average operator de-
fined for any function f by 〈f〉(t) = 1

D

∫
f(t,x)dx as rep-

resented in Fig. 6, the averaged length-scale 〈L̃p〉(t) ranges 75

in [12δx,17.5δx] (see Fig. 6-(b)) while the 〈Ṽ p〉(t) is the
constant 1. (see Fig. 6-(b)).

4.2.2 Validation of the PKF for the numerical model

The predictability-error covariance dynamics for the numeri-
cal model is now discussed. For the Euler-upwind scheme, 80

the numerical diffusion resulting from the spatio-temporal
discretization in Eq. (38a) implies a damping of the variance
along the time axis (see Fig. 4-(b)). The attenuation of the
uncertainty governed by Eq. (40), leads to a heterogeneous
damping over the domain and appears much stronger in the 85

middle of the domain (x= 0.5) than near the boundaries
(x= 0 and x= 1), while transported by the flow. The length-
scale, Fig. 5-(b) increases by the diffusion while the shear
produces similar patterns as for the forecast-error statistics.
The ensemble estimation in Fig. 4-(d) and Fig. 5-(d) shows 90

the same signal as the PKF prediction (within the sampling
noise) which validates the system Eq. (40). As for the nature,
it appears that the PKF dynamics for the numerical model,
Eq. (40), explains the dynamics of the uncertainty. In particu-
lar, again, the length-scale field at t= 0.1T is well explained 95

by the source/sink strain term 2(∂xu)ν̃
p in Eq. (40b) and

by the transport term u∂xν̃
p, but this time, compared with

Eq. (36b), the source term 2κ in Eq. (40b) implies an increase
of the length-scale Lp. Note that the influence of the remain-
ing terms in Eq. (40b) can be neglected at the prime instants 100

of the dynamics: this is because at t= 0, V p and νp are
constant fields (V p(t= 0) = 1 and νp(t= 0) = l2h/2). Com-
pared with the nature, the behavior of the predictability-error
variance of the numerical model presents some source/sink
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Figure 4. Predictability-error variance field, Ṽ p(t,x), for the nature Eq. (30), computed from the PKF Eq. (36) (panel a), and predictability-
error variance field, V p(t,x), for the numerical model resulting from the finite difference & Euler discretization Eq. (37), computed from
the PKF Eq. (40) (panel b). Panels (c) and (d) are the ensemble estimation for panels (a) and (b), where the nature dynamics is approximated
by Eq. (46) dynamics in panel (c) (6400 members are used here). Fields are represented for times from t= 0 to t= T and represented each
0.1T .

terms (rhs of Eq. (40a)) that explain the emergence of a
heterogeneity of the variance field. In particular, the term
− κ
νpV

p being strictly negative, it is responsible of the damp-
ing of the variance ; it is also responsible of the hetero-
geneity at the prime instants: the length-scale Lp being het-5

erogeneous, the damping will be more (less) intense in the
areas of small (large) length-scales (see Fig. 4-(b) versus
Fig. 5-(b) for t= 0.1T ). In terms of spatial average, with
the assumption that the variations around each averaged field
are smalls so that for any fields f and g the approximation10

〈fg〉 ≈ 〈f〉〈g〉 applies, then the spatial averaged of the dy-
namics Eq. (40) writes

∂t〈V p〉 = − 〈κ〉
〈νp〉
〈V 〉, (47a)

∂t〈νp〉 = 2〈κ〉, (47b)

where the property that for any function f and integer k >15

0, 〈∂kxf〉= 0 has been used to eliminate all the other terms.

Eq. (47) can be solved analytically, ad its solutions writes

〈V p〉(t) = 〈V p〉(0)
(

〈νp〉(0)
〈νp〉(0)+ 2〈κ〉t

)1/2

, (48a)

〈νp〉(t) = 〈νp〉(0)+ 2〈κ〉t. (48b)

The analytical solution Eq. (48) successfully reproduces the 20

time evolution of the statistics in the present experiment.
For the length-scale, Eq. (48b) reproduces the increase (see
Fig. 6-(b)), with an underestimation because this solution
doesn’t account for the oscillation due to the strain term that
has been neglected in the dynamics Eq. (47b). For the vari- 25

ance, Eq. (48a) explains a linear decrease at the prime instant,
followed by an attenuation in t−1/2 (see Fig. 6-(a)).

4.2.3 Intermediate result

As a conclusion of this section, the PKF appears able
to predict the variance and the length-scale features of 30

the predicability-error covariance dynamics of the nature
Eq. (30) and of the numerical model, that corresponds to the
discretization of the true dynamics given by Eq. (37). These
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Figure 5. The length-scale counterpart of Fig. 4 representing the predictability-error length-scale fields L̃p (nature) andLp (numerical model)
in panels (a,c) (in panels (b-d)). The length-scales are diagnosed from the diffusion coefficients from the formula L=

√
2ν and normalized

by the grid spacing δx. Top panels are computed from the PKF while the bottom panels are estimated from the same large ensemble of
forecasts as considered in Fig. 4. Fields are represented for times from t= 0 to t= T and represented each 0.1T

Figure 6. Time evolution of the spatial average over the domain of the predictability-error variance (a) and length-scale (b), computed from
the PKF for the nature (blue) and the numerical model (orange). The analytical PKF approximation Eq. (48) for the numerical model is in
green. The model error variance (Eq. (29a)) and length-scale (Eq. (49)) are also represented (in dashed lines) for the spatial averaged of the
PKF results shown in Fig. 7 (a) and (b) (red), and the analytical approximation (purple).

results are now considered to provide an estimation of the
model-error covariances.

4.3 Model-error covariance from the PKF prediction

From the previous section, the Euler-upwind discretization of
the advection Eq. (30) leads to an heterogeneous dissipative 5

term, which affects the dynamics of the numerical model un-
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Figure 7. Flow-dependent Model-error covariance, modelled from Eq. (21) as Pm = Πm +Q, and computed from the PKF for the nature
and the Euler-upwind scheme. The variance (a) and the length-scale (normalized by dx) (b) are represented for times from t= 0.1T to t= T
at each 0.1T (for t= 0 the model error is null). Comparison with the ensemble estimation of the variance (c) and the length-scale (d) of
Pma, Eq. (53).

certainty by damping the variance while increasing the cor-
relation length-scale. When the bias due to the model-error
is lower than the predictability-error variance of the nature
and that the numerical model is dissipative, then the mod-
elling Eq. (21) of the model-error covariance matrix can be5

introduced, that is a flow dependent modelling of the model-
error covariance plus a climatological residual. This is the
situation encountered in the present numerical setting: the
predictability-error variance of the nature is 1 which is larger
than the bias (that is at most 0.2 when comparing the na-10

ture and the numerical model evolution in Fig. 3), while the
predictability-error variance of the numerical model rapidly
fails with at its worst a reduction of 60% of the predictability-
error variance of the nature (see the reduction at x= 0.6D
when comparing panels (a) and (b) in Fig. 4). It results that15

the flow-dependent modelling Eq. (21) may apply here.
In order to focus on the flow dependent part of Eq. (21),

the approximation Eq. (27) is considered. Here, Pm is com-
puted from the parametric approach discussed in Section 2.4,
with the parameters Eq. (29), where the predictability-error20

covariance statistics are computed from Eq. (36) for the na-
ture and Eq. (40) for the numerical model. Note that in this
1D domain situation, Eq. (29b) is equivalent to the computa-

tion of the local correlation length-scales by

Lm(t,x) =

√
V m

Ṽ p/(L̃p)2−V p/(Lp)2
. (49) 25

The flow-dependent model-error covariance parameters are
shown in Fig. 7, with the variance in panel (a) and the length-
scale in panel (b).

At the initial time, as there is no model-error, the model-
error variance is zero. But then, the model-error variance 30

should increase linearly because, the sink term κ
νpV

p that
is the only non-zero right hand side term in Eq. (36a)
and Eq. (40a) (see also the spatially averaged dynamics
Eq. (47a)) is a source of model-error variance at the initial
time, so that for small t, the order of magnitude of V m is 35

given by

〈V m〉(t)∼ t 〈κ〉
〈νp〉(0)

〈V p〉(0), (50)

which relates the increase of the model error variance to
the numerical diffusion. Note that the numerical diffusion
is not the only process that induces a model error e.g. the 40
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phase shift due to the correction of the numerical veloc-
ity δt

2 u∂xu in Eq. (38b) is also a source term while it has
been removed from by the averaging here. Hence, Eq. (50)
provides the order of magnitude of the model-error vari-
ance at time t= 0.1T : when considering the initial condi-5

tions νp(t= 0) = l2h/2 and V p(t= 0) = 1, and the order of
magnitude of the diffusion coefficient 〈κ〉 ∼ 0.1δx2/δt (see
Fig. 2-(b)), then the typical values of the model-error vari-
ance computed from Eq. (50) is 〈V m〉(0.1T )∼ 0.12. This is
in accordance with the typical values observed in Fig. 7-(a),10

for that time. Note that the heterogeneity of the model-error
variance field is due to the heterogeneity of the diffusion field
νp as discussed in the previous section 4.2.2.

Then, the model-error variance continues to grow, with a
peak of uncertainty that evolves with the flow. In this nu-15

merical experiment, the magnitude of the Ṽ p being constant
and equals to 1., the magnitude of the model-error variance
V m = Ṽ p−V p, shown in Fig. 6-(a), evolves from Eq. (48a)
as

〈V m〉(t)∼ 1−
(

l2h
l2h+4〈κ〉t

)1/2

, (51)20

when using the initial values 〈νp〉(0) = 1
2 l

2
h and 〈V p〉(0) =

1.0. Note that Eq. (51) asymptotically behaves as 1−
1
2

(
t
τ

)−1/2
where τ =

l2h
〈κ〉 ≈ 1.3T is the half-magnitude

time, that is in accordance with the simulation since
〈V m〉(T )∼ 0.5 at the end of the simulation.25

The model-error length-scale, given by Eq. (49), is more
difficult to interpret (Fig. 7-(b)) because of the oscillation due
to the periodic domain. However, the evolution of the spatial
average of the length-scale fields (red dashed line in Fig. 6-
(b)) shows an increase of the averaged length-scale with the30

time, that is in accordance the order of magnitude for the
model-error length-scale Eq. (49) computed from the analyt-
ical approximations Eq. (48) and Eq. (51), with 〈Ṽ p〉(t) = 1

and 〈L̃p〉(t)∼ lh (purple dashed line in Fig. 6-(b))
Note that the model-error length-scale is much smaller,35

but not null, that will balance the large length-scale of
the predictability-error covariance matrix Pp. Hence, as ex-
pected, the model-error modeled by Eq. (21) is a heteroge-
neous covariance that depends on the state and the time: it is
flow dependent.40

It is interesting to compare Πm
q+1 with the covariance of

the unbiased error εmaq+1 = (N−M)εaq that appears in the
decomposition of the forecast error (see Eq. (A3) in Ap-
pendix A)

εfq+1 = εpq+1 + εmaq+1 + εmq+1(X aq ). (52)45

Indeed, if the errors in the right hand side of Eq. (52)
were decorrelated (that is not) then, Πm

q+1 in Eq. (17)
would have been replaced by the covariance matrix Pma =
E
[
εmaq+1(ε

ma
q+1)

T
]

given by (see Eq. (A5) in Appendix A):
50

Pma
q+1 = Πm

q+1 +
[(

MPa
qD

T
)
+
(
MPa

qD
T
)T ]

. (53)

with D = M−N. In practice, Pma can be estimated from the
ensemble of 6400 errors εmaq,k = N̂εa0,k−Mεa0,k where εa0,k is
one of the analysis errors detailed in Section 4.2, and where
N̂ is the TL dynamics associated with the high order numer- 55

ical approximation N̂ of N . Because in the present experi-
ment the dynamics of the nature and of the model are linear,
εmaq,k is computed here as εmaq,k = N̂ (εa0,k)−M(εa0,k). The es-
timated variance and length-scale fields of Pma are shown in
Fig. 7 (c) and (d). Compared with the PKF modelling (panel 60

a and b), the time evolution shows a similar behavior, but
the variance of Pma is smaller, as well as its length-scale. In
this simulation, the contribution of the terms in D, Eq. (53),
is to reduce the variance with a maximum of 0.4 at the end
of the simulation. However, the minimum of variance of the 65

predictability error is also nearly 0.4. Thus if Pma were con-
sidered in place of Πm, then a residual variance of order 0.2
would be needed (e.g. in Q) so to obtain a magnitude of fore-
cast error similar to the predictability of the nature.

Hence, the present numerical experiment illustrated and 70

characterized the flow-dependent part of the model-error co-
variance Pm, modeled by Eq. (21), in the situation where the
model error is related to the discretization of the advection by
an heterogeneous wind, leading to a numerical model that is
more diffusive than the nature. In this experiment, a linear 75

increase in time, followed by a saturation in t−1/2 has been
found for the order of magnitude of the model-error variance.
The residual climatological covariance, Q in Eq. (21), has yet
to be estimated (not considered here).

5 Discussion 80

Before to conclude, we end this work by addressing some
general points about the flow-dependent model which has
been introduced here.

The originality of the present contribution is twofold. First,
we have formulated a theoretical background corresponding 85

to the model-error covariance matrix and introduced a mod-
elling for its flow-dependent part, Eq. (21). This provides a
theoretical framework to the correction of the predictability-
error introduced in M2000s. Then, we have provided theo-
retical and quantitative results about the diffusive effect due 90

to the discretization that can leads to a loss of variance as ob-
served in M2000s: this has been done by combining the for-
malism of the PKF and the modified equation. The interest
for this modelling of the model-error covariance is supported
by the results of M2000s who have observed an improvement 95

of the quality of the analysis in their data assimilation system
of stratospheric observations.

The flow-dependent component of the model-error covari-
ance introduced here can be computed in practice, because it
relies on: (1) the analysis uncertainty as characterized by the 100

analysis state and its error covariance that can be estimated in
data assimilation; and (2) the time evolution of the analysis-
error covariance by the nature and by the numerical model
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that can be computed from an ensemble method or from the
PKF approach.

Note that, if the difference between a low and a high reso-
lution forecast is often used to compute the model-error at a
given time, this does not tell anything about the model-error5

covariances at that time. At most, the model errors collected
for a large number of dates, and for the same forecast time,
can be used to compute the climatological bias and the clima-
tological model-error covariance. To capture the error of the
day following Eq. (21), the computation of the predictability-10

error covariance matrices is needed.
Hence, the employ of the PKF is important because

Eq. (21) needs to estimate not only the predictability-error
covariance matrix of the numerical model, but also the one
of the nature. If an ensemble estimation of the latter matrix15

is possible in the research e.g. by computing an ensemble of
high-resolution forecast with N̂ in place of the nature N , it
is too costly for real time applications. It results that it is dif-
ficult to use Eq. (21) in an ensemble method. Compared with
an ensemble method, the PKF remains to compute the evolu-20

tion of a reduced set of covariance parameters, by computing
equations similar to the one encountered in geosciences. For
the passive tracer in 1D, the PKF dynamics consists in three
equations: for the transport of the concentration, the dynam-
ics of the variance and the dynamics of the local anisotropy25

(here a diffusion coefficient, related to the correlation length-
scale). So, the numerical cost of the PKF (three equations) for
the tracer (one equation) is amount three times the computa-
tion of a single forecast, compared to the dozen of members
often used in ensemble methods (from which the statistics30

are corrupted by the sampling noise).
For the dynamics of a tracer, the PKF applies in 1D as well

as in 2D and 3D domains, where the number of equations are
this time of five in 2D, and eight in 3D (the additional equa-
tion are for the components of the local anisotropic tensor).35

However, in general, the use of the PKF is limited by the
knowledge of the parameters dynamics. The formalism of
the PKF is adapted for dynamics given by partial differential
equations, as for the advection of a tracer, but the design of a
multivariate PKF formulation is needed so to address multi-40

variate dynamics. Note that for the model error as presented
here, the knowledge of the modified equation is a prerequi-
site that can be difficult to determine in general.

While the PKF is designed from the TL approximation, it
is a second order Gaussian filter that is a particular imple-45

mentation of nonlinear Kalman-like filters (Cohn, 1993): for
non-linear dynamics, the PKF equation of the mean state de-
pends on the second order moments. However, for long-term
predictions, or when the magnitude of the error is too large,
the PKF would fails to provide an accurate estimation of the50

covariance matrices.

6 Conclusions

In this contribution, the part of the model-error covariance
due to the spatio-temporal discretization scheme is explored
by considering the parametric approximation for the Kalman 55

filter (PKF). The PKF approach applies for a system whose
dynamics is given by a set of partial differential equations
(PDEs). In the PKF formulation, covariances are approxi-
mated by covariance models characterized by a set of co-
variance parameters, whose dynamics is deduced from the 60

PDEs of the system, supplemented by an appropriate closure
if necessary. We focused on the class of covariance model
distinguished by the Variance field and the Local Anisotropic
Tensors (VLATcov). Therefore, for VLATcov matrices, the
covariance dynamics is given by the dynamics of the vari- 65

ance and the local anisotropic tensors, whose dynamics are
deduced from the partial differential equations of the system.

In the case where the numerical model presents a dis-
sipation due to the discretization, or where the numerical
model is more dissipative than the nature, we introduced 70

a modelling of the model-error covariance, where its flow-
dependent part is approximated as the difference between the
parametric approximation of the predictability-error covari-
ance matrix of the nature and of the numerical model, plus
a residual climatological covariance matrix. This modelling 75

of the flow-dependent part can be computed in real appli-
cation because it relies on quantities that can be estimated:
the analysis state and its analysis-error covariance matrix (or
some of its characteristics). For a dynamics given by a par-
tial differential equation, the parametric predictability-error 80

covariance matrix of the nature is deduced from the evolu-
tion equation while the predictability-error covariance matrix
of the numerical model is computed from the modified evo-
lution, i.e. the partial differential equations that best fits the
numerical solution. 85

The ability of the parametric approach to characterize part
of the model-error covariance dynamics has been illustrated
in a numerical test bed in 1D. We have considered the trans-
port of a scalar by a heterogeneous velocity field. In this
case, the parametric dynamics of the forecast error shows 90

that the variance is conserved along the flow, while the local
anisotropic tensor is transported by the flow and deformed by
the gradient of the velocity.

For this transport dynamics, two numerical schemes have
been considered: an Euler-upwind scheme and a semi- 95

Lagrangian scheme in the case of a linear interpolation. The
modified equations of both schemes make appear an addi-
tional heterogeneous dissipation and a perturbation of the ve-
locity, whose characteristics depend on the spatio-temporal
discretization (dt,dx), the trend and the shear of the flow. 100

Because of the numerical diffusion, the variance of the pre-
dictability error is not conserved and a coupling with the
anisotropy appears. This effect has been noted as well in
3D global transport models (Ménard et al., 2020) where the
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loss of error variance is stronger for short correlation length-
scales.

An ensemble of forecasts has been introduced, taken as
the reference, to compare the true covariance evolution with
the parametric approximation. The numerical experiment5

shows the ability of the parametric dynamics to reproduce
the predictability-error covariance dynamics. Then, the mod-
elling of the flow dependent part of the model-error covari-
ance matrix has been computed and discussed. In particular,
we discussed the growth of the model-error variance from10

the understanding of the PKF dynamics, showing a linear in-
crease in time followed by a saturation in t−1/2.

The flow-dependent formulation being introduced for
modelling the situation where the numerical model is more
dissipative than the nature, the model-error variance provided15

by the PKF should be a lower bound of the true model-error
variance, that need a residual climatological covariance to
account for the bias.

While there is no data assimilation experiment here, this
contribution provides a theoretical background on the model-20

error covariance that sheds light on a study previously done
by Ménard et al. (2000) and Ménard and Chang (2000)
(M2000s), who have observed a loss of variance in the assim-
ilation of a stratospheric tracer by using a Kalman filter: the
variance forecasted was lower than the theoretical variance25

that is supposed to be conserved for the advection (Cohn,
1993). Actually, interpreted as an account of the model er-
ror due to the discretization scheme, the correction made by
M2000s is similar to the modelling of the flow-dependent
part of the model-error covariance matrix we proposed here.30

In particular, M2000s have observed that the Kalman filter,
with the corrected predictability-error covariance, required
less residual climatological model-error (see Ménard et al.
(2000), Section 5), and an improvement of the analysis-error
statistics (see Ménard et al. (2000), Fig. 11), and thus indicat-35

ing that the modeling of the model error, as proposed here,
is in a better agreement with optimality of the nature. Hence,
the benefit of the flow-dependent modelling introduced here
appears as supported by the improvement of the analysis ob-
served by M2000s in their experiment.40

The methodology introduced here has shown the potential
of exploring the model-error covariance from the parametric
dynamics of error covariance. While the characterization of
the model-error covariance is a challenge, as in air quality
forecasts (Emili et al., 2016), the parametric approach ap-45

pears as a new theoretical tool to tackle this issue. In order
to represent the uncertainty of the small scales, it would be
interesting to combine the parametric approach with other
new methods e.g. the modelling under location uncertainty
(Resseguier et al., 2017).50

However, the parametric dynamics faces closure issues
that have to be addressed depending on applications. Here,
the investigation of diffusive model errors has been made
possible thanks to the Gaussian closure of P18. For other
kind of numerical errors, an appropriate closure will have to55

be specified, either from theoretical closures or from the data
as suggested by the data-driven and physics-informed identi-
fication of uncertainty dynamics of Pannekoucke and Fablet
(2020).
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Appendix A: Expressions for the forecast error 65

The aim of this section is to provide the demonstrations of
some decompositions of the forecast error: the usual expres-
sion as encountered in data assimilation, an expression where
the model error is considered with respect to the analysis
state, and an expression that makes appear the predictability 70

error with respect to the nature.

A1 Expression of the forecast error as usually
encountered in data assimilation

The forecast error is defined in Eq. (9), as the difference
εfq+1 =Mtq+1←tq (X aq )−X tq+1. Thanks to Eq. (4), the true 75

state at time tq+1 can be replaced so that

εfq+1 =Mtq+1←tq (X aq )−Mtq+1←tq (X tq )+εmq+1(X tq ), (A1)

that makes appear the model error defined by Eq. (5)
as εmq+1 =Mtq+1←tq −Ntq+1←tq . However, with
Mtq+1←tq (X tq ) =Mtq+1←tq (X aq − εaq ) which expands
for small analysis error as

Mtq+1←tq (X tq ) =Mtq+1←tq (X aq )−Mεaq ,

(M denotes the propagator of the TL model along the anal-
ysis state trajectory, see Section 2.1 for details) the forecast
error Eq. (A1) becomes

εfq+1 = Mεaq + εmq+1(X tq ),

that is written as

εfq+1 = εpq+1 + εmq+1(X tq ), (A2)

where εpq+1 = Mεaq is the predictability error, Eq. (12), with 80

respect to the model. The expression Eq. (A2) is the expres-
sion of the forecast error usually introduced in data assimila-
tion (Daley, 1992, see Eq. (2.8)). Note that in this expression,
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the model error is evaluated at the true state X tq while it is
never known in practice. It would be interesting to consider
an expression with known quantities e.g. with the analysis
state ; this is now detailed in the next subsection.

A2 Expression of the forecast error considering the5

model error with respect to the analysis state

The forecast error Eq. (A2) can be obtained by rewriting the
model error term as εmq+1(X tq ) = εmq+1(X aq − εaq ). Hence, the
taylor expansion of εmq+1 with respect to X aq for small error
and lead time, leads to

εmq+1(X tq ) = εmq+1(X aq )− dεmq+1,Xa
q
εaq ,

where dεm denotes the differential of the model error εm =
M−N (Eq. (5)) which exists whenM and N are both dif-
ferentiable, so that dεm = dM− dN . It results that

εmq+1(X tq ) = εmq+1(X aq )− (M−N)εaq ,

where N is the propagator of the TL nature along the anal-
ysis state trajectory (see Section 2.1 for details). Then, the
forecast error Eq. (A2) expands as

εfq+1 = εpq+1 + εmaq+1 + εmq+1(X aq ), (A3)10

where εmaq+1 is defined by

εmaq+1 = (N−M)εaq . (A4)

Note that εmaq+1 is unbiased (at least when the analysis error
is unbiased) i.e. E

[
εmaq+1

]
= 0, so that is covariance matrix is

Pma
q+1 = E

[
εmaq+1(ε

ma
q+1)

T
]

which expands as15

Pma
q+1 = NPa

qN
T +MPa

qM
T

−
[(

MPa
qN

T
)
+
(
NPa

qM
T
)T ]

.

Replacing the TL model M by N = M−D, leads to
20

Pma
q+1 = Πm

q+1 +
[(

MPa
qD

T
)
+
(
MPa

qD
T
)T ]

. (A5)

where Πm
q+1 = NPa

qN
T −MPa

qM
T (see Eq. (18)).

As εmaq+1 contains the predictability error, a final expression
of the forecast error can be obtained as shown now.

A3 Expression of the forecast error formulated in term25

of nature predictability

Considering the definition of the predictability error Eq. (12),
the forecast error Eq. (A3) rewrites as

εfq+1 = Nεaq + εmq+1(X aq ), (A6)

which makes appear the predictability error with respect to30

the nature, ε̃pq+1 = Nεaq .

Note that Eq. (A6) can be obtained directly from
the definition of the forecast error Eq. (9) as fol-
lows. By replacing the forecast by Mtq+1←tq (X aq ) =
Ntq+1←tq (X aq )+ εmq+1(X aq ), the forecast error first writes 35

εfq+1 =Ntq+1←tq (X aq )−Ntq+1←tq (X tq )+ εmq+1(X aq ),
where the definition of the nature X tq+1 =Ntq+1←tq (X tq )
has been used. Then, rewriting Ntq+1←tq (X tq ) =
Ntq+1←tq (X aq − εaq ), whose Taylor expansion is
Ntq+1←tq (X tq ) =Ntq+1←tq (X aq )−Nεaq leads to the 40

forecast error Eq. (A6).

Appendix B: Approximation of the model-error metric
tensor field

Here, we consider the particular case where the model-error
covariance model is approximated as Eq. (27) i.e.

Pm ≈Πm = P̃p−Pp,

assuming this matrix is a covariance matrix. The local metric
tensor can be diagnosed from the Taylor expansion of the 45

model-error correlation function

ρm(x,x+ δx) =
1√

Pm(x,x)Pm(x+ δx,x+ δx)(
P̃p(x,x+ δx)−Pp(x,x+ δx)

)
. (B1)

Under an assumption of local homogeneity of the variance, 50

Pm(x,x)≈Pm(x+δx,x+δx), P̃p(x,x)≈ P̃p(x+δx,x+
δx), and Pp(x,x)≈Pp(x+ δx,x+ δx), which leads to the
expansion

ρm(x,x+ δx)≈ P̃p(x,x)

Pm(x,x)

(
1− 1

2
||δx||2g̃p

x

)
− 55

Pp(x,x)

Pm(x,x)

(
1− 1

2
||δx||2gp

x

)
. (B2)

Since, ||δx||2gx
= δxTgxδx, the correlation is expanded as

ρm(x,x+ δx)≈ 1−
1

2
δxT

[
1

Pm(x,x)

(
P̃p(x,x)g̃px−Pp(x,x)gpx

)]
δx. (B3) 60

After identification with the expected form of the expansion

ρm(x,x+ δx)≈ 1− 1

2
||δx||2gm

x
, (B4)

it follows that

gmx =
1

Ṽ p(x)−V p(x)

(
Ṽ p(x)g̃px−V p(x)gpx

)
, (B5)

where the variance are denoted by P̃p(x,x) = Ṽ p(x) and 65

Pp(x,x) = V p(x).
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Appendix C: Computation of the modified equation for
Euler scheme

The modified partial differential equation associated with the
numerical scheme Eq. (37) is the partial differential equa-
tion of a smooth function C, solution of the scheme, so that5

C(qδt, iδx) = Cqi i.e.

Cq+1
i −Cqi
δt

=−ui
Cqi −C

q
i−1

δx
, (C1)

for which the Taylor formula in time and space at order
O(δt2, δx2) is

10

∂tC +
δt

2
∂2tC + O(δt2) =

−u
(
∂xC −

δx

2
∂2xC +O(δx2)

)
(C2)

The second order time derivative can be replaced from the
equation Eq. (C2) itself, at an appropriate order. Due to the
δt, an expansion at order O(δt) only requires to express the15

second order derivative at the lead order, that is from

∂tC =−u∂xC +O(δt,δx). (C3)

Then, from the time derivative, the second order derivative
can be replaced by

∂2tC = ∂t (−u∂xC)+O(δt,δx),20

= −∂tu∂xC −u∂2xtC +O(δt,δx),

consequently, the second order derivative ∂2xtC can be de-
duced from spatial derivative of Eq. (C3), and writes

∂2xtC = −∂x(u∂xC)+O(δt,δx),
= −∂xu∂xC −u∂2xC +O(δt,δx).25

It results that Eq. (C2) writes

∂tC +
δt

2

[
−∂tu∂xC −u

(
−∂xu∂xC −u∂2xC

)]
=

−u
(
∂xC −

δx

2
∂2xC

)
+O(δt2, δx2)

so that30

∂tC +U∂xC = κ∂2xC +O(δt2, δx2), (C4)

whereU = u− δt2 ∂tu+
δt
2 u∂xu and κ= u

2 (δx−uδt) are two
functions of t and x.

Appendix D: Computation of the modified equation for
Semi-Lagrangian scheme35

The aims of this section is twofold, the first goal is to obtain
a discrete scheme from the semi-Lagrangian procedure, then
to deduce the modified equation of the discrete scheme.

For the sake of simplicity, the linear advection dynamics
∂tc+u∂xc= 0 is first considered with a velocity u > 0. 40

From the characteristic curve resolution it follows that
c(tq+1,xi) = c(tq,x

∗
i ), where the originate point x∗i is as-

sumed in between points xi−1 and xi, which means that the
CFL constraint uδt < δx is verified. This originate point can
be approximated as x∗i = xi−uiδt, and if a linear interpola- 45

tion is considered for the computation of c(t,x∗i ), it follows
that

c(tq,x
∗
i ) =(

1− x∗i −xi−1
xi−xi−1

)
cqi−1 +

(
x∗i −xi−1
xi−xi−1

)
cqi 50

=
uiδt

δx
cqi−1 +

(
1− uiδt

δx

)
cqi , (D1)

Hence, the numerical scheme writes

cq+1,i =
uiδt

δx
cq,i−1 +

(
1− uiδt

δx

)
cq,i. (D2)

The modified differential equation is obtained by replacing
c by a smooth function c̃, solution of the numerical scheme 55

Eq. (D2). The computation of the modified equation is simi-
lar to the Euler case detailed in Appendix C, leading to

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1

2
uδx− 1

2
u2δt

)
∂2xC. (D3) 60

When u < 0, the differential equation writes

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1

2
(−u)δx− 1

2
u2δt

)
∂2xC (D4)

Hence, in the general situation, 65

∂tC +

(
u− δt

2
∂tu+

δt

2
u∂xu

)
∂xC =(

1

2
|u|δx− 1

2
u2δt

)
∂2xC, (D5)

whatever the sign of the velocity u.
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