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Abstract1

In a tropical region like Nigeria, accurate estimation and chaotic signatures of global solar2

radiation (Rs) are essential to the design of solar energy utilization systems in PV technology3

companies and one conservative energy source required in developing drying devices in today’s4

mechanized Agriculture. The Rs model is a function of solar declination angle, temperature5

difference, and relative humidity. In this paper, the daily re-analyzed atmospheric data obtained6

from the archive of ERA-Interim was used to estimate the nonlinear Global Solar radiation model7

and investigated chaotic signatures across the tropical climatic regions of Nigeria. The well-known8

statistical tools were used to analyze the chosen meteorological parameters and the correlation9

was found to be perfect, close with low values of RMSE across the selected regions over Nigeria.10

For proper modeling and prediction of the underlying dynamics, the extensive chaotic measures of11

phase space reconstruction using recurrence plots and recurrence quantification analyses are also12

presented, analyzed and discussed with the appropriate choice of embedded dimension, m, and13

time delay τ .14

Keywords: Recurrence Plot (RP); Recurrence Quantification Analyses (RQA); Phase space re-15

construction (PSR); Global Solar Radiation; Chaotic Signatures;Embedded Dimension; Time Delay16

17

The radiant energy from the sun is one of the most available and renewable resources18

across the season in a tropical region like Nigeria. The information, therefore, suggests19

how vital the solar irradiance can be useful in Agriculture and Photovoltaic technology20

companies. Based on the scarcely gauged of global solar radiation (GSR) at meteorolog-21

ical stations in developing countries. This demand necessitates a better understanding22

of the underlying dynamics for better prediction mostly by the nonlinear Global Solar23

radiation model estimate and chaotic signature measurement. The optimum usage of24

meteorological parameters such as solar radiation, relative humidity and temperature25

difference needs further studies, using RPs and RQA measures. However, several data26

such as rainfall data, geomagnetic data, ionospheric data, wind speed data etc obtained27

from different parts of the world have been estimated with several models and applied28

to RQA measures for better prediction and modeling. Using RPs and RQA, features29

due to external effects such as harmattan and intertropical discontinuity (ITD) on solar30

radiation data in this tropical region were uniquely identified. Meanwhile, the inverse31

characteristic behavior of solar radiation and relative humidity were vividly maintained.32

The results show a very low value of RMSE while the value of R2 is very closed to 1,33

which depicts a good prediction for all locations. However, the highest values of both34

SSE and RMSE, as well as the lowest value of R2 were observed in kano station, which35

indicates high solar irradiance location. The RPs reviewed the observed clusters points36

around the parallel diagonal lines with short segments, which implies the presence of37

chaos. Additional complex measure, the RQA also shows that the solar radiation during38
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the dry season of the months has lower values of Lmax, determinism and entropy, and1

higher values during the wet season of the months.2

1 Introduction3

Solar energy has proven to be one of the clean and most harnessed renewable energy sources in the4

world. It has been singled out as the only source that can sustain the earth and greatly influence5

nonlinear conditions of weather and climate (Govindasamy and Chetty 2018). The earth receives6

about 174 Petawatts (i.e maximum of 75%) of sunlight insolation on the Earth’s surface which is7

almost 10,000 times the total amount of energy used by humans on Earth, as taken from sources8

such as, oil, coal, natural gas, nuclear and hydroelectric power combined (Rhodes 2010; Agbo and9

Oparaku 2006). Even though the energy source account for reflection, absorption and atmospheric10

transmittance which are mainly caused by cloudy atmospheric conditions such as complex internal11

activities of aerosols, clouds and gas molecules. The source has been capable of reducing climate and12

weather events such as the greenhouse effect, global warming impacts and natural hazards (Uckan13

and Khudhur 2018).14

15

Some references have reported the problem of insufficient solar radiation measurement due to the16

high cost, maintenance, calibration of measuring devices among other factors which have been the ma-17

jor setback in maximizing the usage of the energy source (Salisu 2017; Sarker and Sifat 2016; Almorox18

and Fernandez 2004; Almorox et al. 2011). Meanwhile, to create an alternative means for better mod-19

eling and prediction of solar energy in even areas with no or less meteorological data, the transition20

from irradiation measurement to data analysis is necessary. In 2015, Kutty et al proposed three meth-21

ods of collecting solar radiation data: (i) direct estimation through in situ measurements (2) satellite22

data and indirect estimation and (3) statistical techniques. The use of a numerical approach for solar23

radiation estimate becomes a useful alternative for adequate information with different reports. For24

instance, the numerical and empirical models have also been developed for different meteorological25

parameters such as temperature, sunshine hours, relative humidity, longitude, latitude, altitude and26

sea level pressure (Saeed et al. 2019). In the same vein, several investigations on linear and nonlinear27

global solar radiation estimations model within and outside Nigeria have been carried-out (Angstrom28

1924; Korachagaon et al. 2015; Ajayi et al. 2014; Akpootu and Sanusi 2013; Ogunjo et al. 2015;29

Hassan et al. 2011; Ahmad and Tiwari 2011). Also, the application of Local global solar radiation30

data which is largely required for architectural design, evapotranspiration estimates, irrigation, has31

been reported (Sarker and Sifat 2016).32

33

Since the nonlinear approach to atmospheric convection using Lorenz’s model (Lorenz 1963), vari-34

ous atmospheric situations have been applied to the field of science and engineering. These numerous35

scientific disciplines help in providing the information that is needed in forecasting the weather con-36

dition. That is, the complexity of the global solar radiation and the inherent irregularities occurrence37

in space can be identified to be chaotic or hyperchaotic based on the availability of climatological data38

which has been enriched with the theory of nonlinear dynamics. It is worth noting that large time-39

series data is very vital in providing more insight into the internal activities of the atmosphere (Kantz40

and Schreiber 2003). For example, a complex situation in the ionosphere (Rabiu et al. 2015), global41

radio link fading (Adelakun et al. 2019; Ojo et al. 2019) and wind speed data for the optimization of42

power generation (Adeniji et al. 2018) have been recently reported. Gan et al. (2012) further tested43

for nonlinearity in solar radiation data using the method of fast surrogate test and revealed. Other44

tests based on Neuro-fuzzy approach (Omid et al. 2012), hidden Markov models (Hocaoglu 2011),45

artificial neural network (Sozen et al. 2004), swarm-optimized neural network (Lazzus 2011), autore-46

gressive integrated moving average (ARIMA) (Wu and Chee 2011), and parametric models (Katiyar47

and Pandey 2013) on solar irradiance has been extensively discussed. Recently, Ogunjo et al. (2015)48
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measured the chaotic features in Akure, a tropical station in South-western Nigeria based on half-1

hourly and daily data. So far, various nonlinear global radiation models based on clearness index and2

temperature difference air temperature have been proposed (Sarker and Sifat 2016). However, the3

estimated model in this paper expressed the relationship between clearness index, relative humidity,4

and temperature difference. We also employed the chaotic quantifiers, RP and RQA, to investigate5

the daily and seasoning variations in the meteorological parameters for the four basic climatic regions6

in Nigeria, namely; the Coastal region, Guinea savannah region, Midland region and Sahel savannah7

region. This paper presents a nonlinear global solar radiation model estimate and chaotic signatures8

from available meteorological data. Section 2 comprises of the study area, data analysis, and statisti-9

cal performance evaluation. The mathematical analyses of the used chaotic quantifiers are discussed10

in section 3, while section 4 concludes the paper.11

2 Methodology12

2.1 Study area and Data Analysis13

The re-analyzed atmospheric data from four climatic regions of Nigeria were obtained from the archive14

of the ERA-Interim database. Ten years of daily data covering the period of 2006 to 2015, for so-15

lar radiation, relative humidity, and temperature differences were collected and analyzed for this16

research. Table 1 shows the selected geographical locations includes Kano (Sahel savannah region),17

South-Western station, Akure (Coastal region), Ilorin (Midland region) and Yola (Guinea Savannah).18

19

Table 1: Regions and their Geographical location
Geographical Location

Region Station Latitude (oN) Logitude (oE)
Sahel savannah Kano 12.00 8.59
Guinea savannah Yola 9.20 12.50
Midland Ilorin 8.50 4.55
Coastal Akure 7.25 5.20

The collected data were used in global solar nonlinear model estimation, given as:20

Rs = a(1 + bH)(1− exp(−c∆Tn)) (1)

which can be expressed as,21

R = a(1 + bH)(1− exp(−c∆Tn))×Ra (2)

where clearness index, Rs = R/Ra, is the solar ratio which depicts the ratio of the global solar ra-22

diation (R) to the extraterrestrial radiation, Ra, H is the Relative Humidity and ∆T is the differences23

between maximum and minimum temperatures. The estimated constant parameters a, b, c and n are24

dimensionless parameter estimates to be determined by least square method. Rs is the dependent25

variable and the other two non-dependent variables are given as ∆T (K) and H (%), respectively. The26

extraterrestrial radiation (Ra) was calculated from the expression (Duffie and Beckman 2006):27

Ra =
24× 60

π
IscEo(ωssinϕsinδ + cosϕcosδsinωs) (3)

Ra = extraterrestrial radiation [MJm−2day−1], Isc = solar constant =1353 W∆m2, Eo = inverse28

relative distance Earth-Sun, ωs = sunset hour angle[rad], ϕ = latitude of the site [rad], δ = solar29

declination [rad], J is the Julian calendar day of the year (January 1st corresponds to J = 1, December30

31st corresponds to J = 365).31
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The inverse relative distance Earth-Sun, Eo, and the solar declination, δ, are given by (Hassan et1

al. 2006; Chang 2010):2

Eo = 1 + 0.033cos(
2π
365

J) (4)

δ = 0.409sin(
2π
365

J − 1.39) (5)

The sunset hour angle, ωs, is given by:3

ωs =
π

2
− arctan(

−tanϕtanδ
X0.5

) (6)

where4

X = 1− (tanj)2(tanδ)2 (7)

2.2 Statistical Performance Evaluation5

Fit measured is very important in comparing and assessing models with the aid of statistical tools.6

The statistical tools have been used in recent years extensively to evaluate different models ranging7

from linear, quadratic, third-degree, logarithmic and exponential models after comparing and assess-8

ing (Uckan and Khudhur 2018). In this work, R2, SSE, and RMSE are the performance indicators9

used for regression analysis to evaluate the proposed nonlinear model. Besides, the RMSE test also10

provides information on the short-term evaluation by allowing a term by term comparison of actual11

deviation between the calculated value and the measured value i.e. estimates the concentration of12

the data around the fitted equation. Low RMSE values indicate that the model accurately represents13

the observed global solar irradiance. Meanwhile, the SSE measures how far the data are from the14

model’s predicted values, while R2 is used to determine the performance of a model in terms of its15

suitability. This value is one of the most significant indicators for comparing models because it is16

dimensionless and easily calculated. Ideally, a model is considered to be perfect if R2 = 1. This value17

indicates that the estimated values match perfectly with the observed values. The R2 is the square of18

the correlation between the predictor and response which signifies good fit if close to 1 which depicts19

good prediction and weak if close to zero. That is, R2=1 is an indication of a perfect match between20

the predicted and the observed values. The expression for R2 is:21

22

R2 = 1−
∑N

i=1 [
∑

(Ii,obs − Ii,pre)2]
∑N

i=1 [
∑

(Ii,obs − ¯Ii,obs)2]
(8)

The RMSE is however defined as:23

24

RMSE =
100
Gm

√∑
(Ii,pre − Ii,obs)2

N
× 100% (9)

while SSE can also be expressed as:25

SSE =
N∑

i=1

[
∑

(Ii,pre − Ii,obs)2]× 100% (10)

It is worth noting that the RMSE is always positive while a zero value is ideal. In the Eqs. (8-10),26

N indicate the total number of observations, Gm is the mean of N measured values, Ii,pre is the ith27

predicted value, Ii,obs is the ith observed value. The mean of the observed value is given as ¯Ii,obs.28
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3 Chaotic Quantifiers1

In nonlinear science, a PSR can be used in estimating the characteristic properties of a natural system2

such as global solar radiation. It requires decision making regarding the size of the space, the value of3

the time shifts between the coordinates, and another important—although often overlooked—aspect,4

that is, which one or which combination of observable(s), if several of them are available will be used5

for the reconstruction (Fraser and Swinney 1986; Kennel et al. 1992). The multidirectional aspect of6

the data can be revealed based on the reconstruction of average phase portraits (Rabiu et al. 2015;7

Takens 1981) in which the embedding parameters, the dimension m, and the delay τ must be carefully8

chosen. Meanwhile, the choice of embedding is very important in other to determine the phase space9

trajectory of solar irradiance. However, the minimum embedding dimension can be determined using10

false nearest neighbor method (Unnikrishnan 2010; Unnikrishnan and Ravindran 2010). That is, the11

smallest sufficient or minimum embedding dimension is required in PSR from the observed data for12

which the time delay must be obtained (Kantz and Schreiber 2003; Fraser and Swinney 1986; Kennel13

et al. 1992). The approach includes:14

15

(i) Computation of some invariant measure on the reconstructed attractor, which will change if16

the current embedding dimension is too small, but persist for large value. This method is subjective17

and required a lengthy data set.18

(ii) Investigation of the changes in the neighborhood of phase space points may be applied if there19

are changes to the value of embedding dimensions. Although, inappropriate embedding dimensions20

can affect or cause an increase in the amount of FNN.21

(iii) The single value decomposition of an initial set of PSR vectors also reveals the smallest number22

of uncorrelated directions in phase space, which can be used as an embedded dimension.23

24

In accordance to Takens theorem (Takens 1981), the PSR is defined as25

Y (i) = [x(i), x(i+ τ), x(i+ 2τ), ...., x(i+ (m− 1)τ)], i = 1, 2, ..., N ; (N = n− (m− 1)τ) (11)

where, x1, x2, x3....., xn−1, xn denotes the chaotic time series, embedding dimension, m, time26

delay, τ and N is the number of samples after reconstruction.27

In the same vein, Fraser and Swinney (1986) also proposed a method of AMI to determine the28

delay, and the best choice for the delay is where the AMI has its smallest local minimum. However,29

the delay,τ has to be carefully chosen due to linear dependence between the subsequent vectors which30

impregnated from random errors and low measurement precision. The AMI is expressed as:31

32

I(τ) = −
∑

ψ,φ

Pψ, φ(τ)log
Pψ,φ(τ)
PψPφ

=

〈
log

Pui , ui+τ
PuiPui+τ

〉
(12)

where Pψ,φ(τ) is the joint probability that ui = ψ and ui+τ = φ. Pψ and Pφ are the probability33

that ui has the value ψ andφ, respectively. Also, the generalized mutual information for higher di-34

mensional joint distributions35

Pui , ui+τ , ..., ui+(m−1)τ can be defined inform of redundancy, Rm(τ) as (Kennel et al. 1992):36

37

Rm(τ) =

〈
log

Pui,ui+τ , ..., ui+(m−1)τ

Pui , Pui+τ , ..., Pui+(m−1)τ

〉
(13)

Likewise the marginal redundancy is given as (Fraser and Swinney 1986):38

39
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Rm(τ) = Rm+1(τ)−Rm(τ) (14)

On the other hand, one of the chaotic quantifiers necessary in the study of the nonlinear behavior1

or complex signature of any dynamical system is Lyapunov exponent. This quantifier determines the2

level of chaos in natural systems using time series data point (Unnikrishnan 2010; Unnikrishnan and3

Ravindran 2010). A positive Lyapunov exponent indicates divergence of trajectory in one dimension,4

or an expansion of volume, which can also be said to indicate repulsion or attraction from a fixed5

point. A positive Lyapunov exponent is an indication or evidence of chaos in a dissipative determin-6

istic system i.e. the positive Lyapunov exponent indicates divergence of trajectory in one direction7

or expansion of value, and a negative value shows convergence at trajectory or contraction of volume8

along another direction. According to Wolf et al. (1985), the rate of divergence of any trajectory of9

any dynamic systems rests lonely on LLE. The Lyapunov exponent from the different location was10

computed in this work, by scanning the state space of the solar radiation basically for the entire11

four regions with τ = 10 and m=7, respectively (Rosenstein et al. 1993; Hegger et al. 1994). The12

Lyapunov exponent λ can be expressed as13

14

λ =
1
t

ln
4x(t)
x(0)

=
1
t

∑

i=1

ln(
4x(t)

4x(ti − 1)
) (15)

It is worth noting that entropy is reciprocal to Lyapunov exponent and it is mostly used in both15

physics and information theory to describe the amount of uncertainty or information inherent in an16

object or system (Kantz and Schreiber 2003). Tsallis entropy has been used extensively for various17

systems with complex signatures such as magnetospheric dynamics (Balasis et al. 2008; 2010), iono-18

spheric dynamics (Ogunsua et al. 2014), tropospheric dynamics (Tsallis 1988; Boon and Tsallis 2003)19

among others. But the characterization of entropy by an index q, leads to nonextensive statistics.20

The parameter q itself is not a measure of the complexity of the system, but measures the degree21

of non-extensivity of the system: q → 1 corresponds to the standard extensive Boltzmann–Gibbs22

statistics which generalizes the Boltzmann–Gibbs theory. Also, it is the time variations of the Tsallis23

entropy for a given q(Sq) that quantify the dynamic changes in the complexity of the system, that is,24

lower values of Sq characterize the portions of the signal with lower complexity (Fraser 1989). The25

Tsallis entropy Sq is calculated using26

Sq = k
1

q − 1
(1−

W∑

i=1

P qi ). (16)

and the entropic index q for systems A and B, respectivley, characterizes the degree of nonaddi-27

tivity reflected in the following pseudo-additivity rule:28

Sq(A+B) = S(qA) + S(qB) + (1− q)Sq(A)Sq(B). (17)

where pi is the probabilities associated with the microscopic configurations, W is their total29

number, q is a real number, and k is Boltzmann’s constant.30

A comparison in this work shows the complex link between the Lyapunov exponent of the solar31

radiation and that of its Tsallis entropy. This is based on the fact that Tsallis entropy has been linked32

to a significant degree of response to the edge of chaos and chaotic regime dynamical systems due to33

its non-extensive nature (Baranger et al. 2002; Anastasiadis et al. 2005), and it has been linked to34

weak chaos and the vanishing LLE (Kalogeropoulos 2012; 2013]. The basis for comparison has been35

reported that the Lyapunov exponent varies directly as the Tsallis entropy (complexity) of a system,36

based on the variation of the entropy index q introduced by Tsallis and the nature of the system’s37

dynamics. Similarly, the direct and indirect relationship of the temperature difference and relative38

humidity to solar radiation can also be confirmed.39
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In other to measure further the complexity in deterministic systems, Eckmann et al. (1987)1

introduced an RPs to show more insight into the optimal embedded dimension by visualizing the2

higher dimensional phase space through a 2D-representation. The close inspection of the recurrence3

structures has been developed and reported in Marwan et al. (2007) with several applications in4

physics, engineering, biology, and others. RPs exhibit a large scale pattern called typology, while5

the small scale pattern is texture. The typology pattern gives a global impression that is based on6

homogeneous, periodic, drift and disrupted. However, the texture pattern depends on closer inspec-7

tion of single dots, diagonal lines, rectangular clusters of RPs. In other words, a single recurrence8

point contains no information about the state itself. However, an increase in the embedding dimen-9

sion always cleans up single RPs by emphasizing the diagonal structures as diagonal lines. In RPs,10

when the amount of redundancy increases, the embedding dimension also increases which leads to11

distinct diagonal oriented structures. Therefore, RPs can be expressed in terms of trajectory ~xi ε12

<n(i = 1, ..., N) in the n-dimensional phase space, which is the fundamental property of determin-13

istic dynamical systems and is typical for nonlinear or chaotic systems (Argyris et al. 1994; Ott 1993).14

15

In term of N ×N matrix, the RPs can be defined as:16

RPsi,j = Θ(εi − ‖~xi − ~xj‖). (18)

The εi is a predefined cut-off distance, ‖.‖ is a norm (i.e Euclidean norm) and Θ(x) is the Heaviside17

function. It is worth noting that the matrix takes the form of zero (or black color) and one (or white18

color), respectively. The advantage of RPs suggested by Marwan over other recurrences in literature19

is the shorter and even non-stationary data which gives precise information on the dynamic state of20

the systems (Kac 1947; Balakrishnan et al. 2000). Based on the method suggested by Schinkel et al.21

(2008), the choice of 0.04dA ≤ ε ≤ 0.7dA was used in this work. That is, the recurrence threshold22

was chosen to range from 4% - 7% of the maximum attractor diameter (i.e., 8% - 14% of the corre-23

sponding attractor radius), where ε is the recurrence threshold, and dA is the maximum attractor24

diameter. The method of finding the neighbors of the phase space trajectory is the euclidean norm25

between normalized vectors and was used throughout this study. The data used was also normalized26

to zero mean and standard deviation of one. However, the RQA is based largely on the distribution27

of the length of the diagonal structures of RP. In other to quantify RPs, Webber and Zbilut (1994)28

proposed an RQA extension which reveals several measures based on diagonally oriented lines such29

as recurrence point density and diagonal structures such as determinism, divergence (i.e the inverse30

of the maximal length of diagonal structures), entropy, trend (or drift) and the recurrence rate. The31

RQP based on determinism (DET), Linemax (Lmax) and entropy (ENT) measures were used for this32

research.33

34

(i)Determinism (DET is the ratio of recurrence points forming diagonal structures to all recurrence35

points.36

DET =

N∑

l=lmin

lP ε(l)

N∑

ij

Rij

(19)

where ε is the threshold, P ε(l) is the histogram of the length l of the diagonal structures. For37

lmin = 1, then the determinism (DET) is equal to recurrence rate (RR). Periodic signals (e.g., sine38

waves) will give very long diagonal lines. Chaotic signals (e.g. Henon attractor) will give very short39

diagonal lines, and stochastic signals (e.g., random numbers) will give no diagonal lines (Shannon40

1948). This has been used to quantify how deterministic a system is (Webber and Zbilut 1994).41

42
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(ii) Entropy (ENT), that is, the Shannon information entropy (Trulla et al. 1986), is a measure1

of signal complexity. It shows the richness of deterministic structuring. However, entropy depends2

sensitively on the bin number and therefore different for realization of the same process and data3

preparation (Marwan et al. 2007)4

5

ENT = −
N∑

l=lmin

P (l)lnP (l), P (l) =
P ε(l)
N∑

l=lmin

P ε(l)

(20)

(iii)Linemax (LMAX) is defined as the length of the longest diagonal line segment in the plot,6

excluding the main diagonal line of identity. This particular variable is important as it is related to7

the Largest possible Lyapunov Exponent (Thiel et al. 2002). The shorter the longest line is, the more8

divergent the trajectories will be. A periodic signal will give long line segments, while short lines9

indicate chaos.10

11

Lmax = max({li; i = 1, ...Nl}), DIV =
1

Lmax
(21)

4 Results and Discussion12

The global solar radiation has been estimated using the least square regression. The combined me-13

teorological parameters used in this work may add to the accuracy of the global solar irradiance14

prediction model (1). The properties of estimates a, b, c and n shown in table 2 confirm the signif-15

icance of the estimates at 0.05 i.e. α = 0.05 which is equivalent to a 95 percent significant level. It16

can be observed from the that the values of estimates a, b, c, and n were uniquely different from one17

station to another showing the relationship between the solar ratio (Rs) with relative humidity (RH)18

and exponent of air temperature difference. The values of an estimate, a, which is the intercept of the19

nonlinear combination of solar ratio, relative humidity and temperature difference (TD) were all pos-20

itive with the highest value at Akure (Coastal zone) and Yola (Guinea savannah zone), respectively.21

The least values were observed in Ilorin (Midland zone) and Kano (Sahel savannah zone). Meanwhile,22

the values of estimates b and c were all negative and positive respectively in all the study locations.23

These indicate that relative humidity which has negative estimate b shows decreasing trends with24

increasing intensity of global solar radiation i.e. they have an inverse relationship with each other. On25

the other hand, the exponent temperature difference which has positive estimate c shows increasing26

trends with increasing intensity of global solar radiation i.e. they have a direct relationship with each27

other.28

29

Figure 1: Typical block diagram for Chaotic signature Analyses

8

https://doi.org/10.5194/npg-2020-12
Preprint. Discussion started: 14 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 2: Parameter estimates and their properties
Model Parameter Estimates Properties of Estimates

Station a b c n SSE R2 RMSE
Kano 1.422 -0.008282 2.815 0.9285 3.500 0.9184 0.01787
Yola 9.155 -0.006934 0.08652 0.3400 14.22 0.6683 0.03603
Ilorin 1.37 -0.007249 0.9677 0.5100 14.57 0.6602 0.03647
Akure 74.26 -0.006797 0.009842 0.3270 14.22 0.6684 0.03603
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Figure 2: The 3D-Phase portrait Global Solar radiation model relating solar radiation, relative hu-
midity and temperature difference for (a) Akure, (b) Kano, (c) Ilorin and (d) Yola
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Figure 4: Daily Variation of Solar Radiation with Relative Humidity and Temperature Difference in
(a) Akure, (b) Kano, (c) Ilorin and (d) Yola
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The block diagram revealing the breakdown analyses of the chaotic measures is presented in1

Fig.(1). We also consider the 3D-Phase portrait, which reveals the relationship between the three2

meteorological parameters as plotted in Fig. (2). The phase space construction which represents the3

state of any real-world systems taking into consideration the dynamics emanating from the set of its4

state variable is plotted in Fig.(3). The PSR for the four regions between 2005-2016 were plotted5

using equation (14). The phase plots motions exhibit random-like and concentrated points at the6

center which indicates evidence of chaos. The average daily variations of solar ratio with the relative7

humidity in Akure and Yola has similar patterns, and also that of Kano and Ilorin (see Figs.4(a) and8

d). It can be observed that solar radiation has higher values in the first 50 days of the year and in the9

last 60 days of the year corresponding to the month of January, February, November, and December.10

Conversely, the values of the relative humidity were very low during these periods. Meanwhile, the av-11

erage daily variations solar ratio with the differences between minimum and maximum temperatures12

in Akure, Kano, Ilorin, and Yola were also captured in Figs. 4(a-d). The patterns of the variability13

were similar in all the locations. These two climate variables vary directly with each other indicating14

that the degree of temperature in a particular area is a function of the intensity of solar irradiance of15

such area. They have peak values during the dry season days and minimum values during the core16

raining days as it had been established in the literature. It can also be observed from the figures that17

the temperature difference was all positive across the four locations. This indicates that the surface18

temperature of these locations is increasing and it is a signal to the possibility of global warming19

due to climate change. The positive differences may be attributed to the high population density20

and other anthropogenic activities on the land use cover associated with these locations. The RMSE21

values were very low and the value of R2 is very closed to 1, which depicts a good prediction for all22

locations. However, highest values of both SSE and RMSE, as well as the lowest value of R2 were23

observed in kano station, which indicates high solar irradiance location. Meanwhile, close values of24

SSE and RMSE, but a high percentage of R2 were observed in Yola, Ilorin and Akure stations.25

Also, the typical plots for the false nearest neighbors against embedded dimension(m) and the AMI26

against delay, τ were then plotted as shown in Fig.5(a). The choice of embedded dimension, m=7,27

and delay time, τ = 10, is essential for phase PSR in this work to avoid over embedded (Fraser and28

Swinney 1986; Kennel et al. 1992). However, the choice of τ ≥ 7 and m ≥ 5 values of delay and29

embedding dimension, respectively, are suitable for the analysis of the given data for all stations.30

The number of FNN plotted against the embedded dimension depicts the variation of solar ratio and31

the temperature difference in each station which is very high and similar compared to the low values32

of the relative humidity in each station (see Fig.5(b)). The PSR preserves relevant geometrical and33

dynamical invariants, such as the fractal dimensions of the attractor, the entropies, or the Lyapunov34

exponents (Fraser and Swinney 1986; Kennel et al. 1992).35

36

The positive maximum Lyapunov exponent can be observed for solar radiation in Midland, Coastal37

and Guinnea Savannah regions (see Fig.6(a)), while Fig.6(b) shows higher positive values of Lyapunov38

exponent through-out the Sahel Savannah region. The direct relationship between Lyapunov expo-39

nent and Tsallis entropy has been perfectly displayed in Fig. 7(a) for Coastal region and Fig.7(b) for40

Sahel savannah zone, respectively. Also, the direct relationship and indirect relationship among the41

complex meteorological parameters have been revealed, which indicates their availability through-out42

the whole year. The monthly and seasonal underlying time series dynamics can also be investigated43

further using RQs. To avoid over embedding, the choice of m=7, τ = 10 were used to characterize44

the abrupt behavior for the dry months of the year when solar irradiation has been confirmed to be45

higher at the Coastal, Midland and Guinea Savanna zones. However, behaviors but more intensive46

solar irradiation for a long period of months can also be noticed for the Sahel Savannah zone. The47

prediction at low threshold frequency (ε) of 0.7σ (σ is the normalized distance euclidean norm) leads48

to more clusters of recurrence points around the diagonal lines when observed during the dry and wet49

seasons of the year. The transition from black to white bands marks the transition in the process i.e50

more chaotic or more complex in either solar radiation and relative humidity during those periods51
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(see Fig. 8). Coastal regions reveal the presence of checkerboard structures around the diagonal lines.1

For instance, high insolation has been noticed at days < 100, 300 ≤days≤ 500 and 700 ≤days≤ 9002

for the dry seasons (see Fig.8(a)). Conversely, in Fig. 8(b), relative humidity shows inverse trend3

during these insolation periods of the year, but high during the wet season of the year. Similar events4

can also be observed in Kano station (see Fig.9(a-b)), however, more solar radiation is observed dur-5

ing this period of the year which can be a result of harmattan and the evidence of chaos from the6

oscillatory nature of the system. Fig.9(b)shows little rain throughout the year.7

8

Besides, RQA for seasonal influence on the dry season, the wet season and transition periods were9

also considered in this work. To commensurate the aforementioned behaviors, the occurrences such10

as August break i.e. temporary cessation of rain within a few days, on-set and off-set of both the dry11

season and rainy season months normally referred to as transition periods (i.e. March, April, Octo-12

ber, and November), rainy season months (i.e. May and September) and dry season (i.e. November,13

December, January, and February) open ground for more information on the underlying dynamics of14

the climatological parameters. It is obvious in our result that the complex signature can be observed15

throughout the year for all the available parameters, especially during the peak periods of the year.16

For coastal region (see Figs.10(a)), only one long dry season, i.e. November to June, and short dry17

periods of the month (i.e. August break) can be observed in one year. However, the value of linemax18

(Lmax), determinism (DET), and entropy (ENT) for solar radiation can be seen to be very high at the19

beginning of each year (i.e January and February) with a gradual decrease towards the middle of the20

year before rising again at the return of the dry season (i.e. November and December). In contrast,21

the Sahel Savannah region experience very long but one dry season months for the year, usually from22

November of one year to May of the following year (see Fig. 10(b)). The chaotic signatures that23

were discovered through the aforementioned oscillatory nature of both solar radiation and relative24

humidity clearly show evidence of chaos, that is, higher (dry/wet) and lower (wet/dry) chaoticity,25

respectively during the season months of the year. The complex signatures across the regions also26

confirm the direct relationship of a temperature difference to solar radiation for the period under27

study. However, daily or monthly variation in solar irradiance which is a function of the aforemen-28

tioned meteorological parameters may be attributed to the effect of the intertropical discontinuity,29

which affects the atmospheric stability during these periods. The results also indicate the availability30

of solar radiation throughout the whole year, which is an associated factor for the tropical regions.31

32

Figure 7: Typical (a) Tsallis Entropy for Coastal region, and (b) Tsallis Entropy for Sahel Savannah
region
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Figure 10: Lmax, Entropy and Determinism for (a)Akure and (b)Kano stations
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The results herein, confirmed that the values of solar radiation were very low throughout June,1

July and August. This may be attributed to the presence of cloud cover as a result of rainfall which2

is normally prevalence during those periods. Although the patterns of variations between the solar3

radiation and relative humidity in Kano and Ilorin were oscillatory, yet the inverse relation and be-4

havior between them were vividly maintained. The inverse and complex signature attributes can also5

be noticed in Akure and Yola stations. Therefore, it can asserted that the intensity of solar radiation6

can be greatly attenuated by the increase and decrease of the relative humidity. Meanwhile, the7

temperature difference across the four regions also ascertained the complexity which is direct to solar8

radiation strength. In summary, the global solar insolation measures have been based on the diago-9

nal lines of RP. The choice of embedding is paramount in estimating the aforementioned measures.10

In general, when the meteorological parameters of a natural system are chaotic, it implies that the11

Lmax, determinism and entropy are all low which depicts that the system is far from equilibrium.12

Therefore, the similarities are based on the fact that their measurements are based on the diagonal13

lines of RP which are clearly stated in equations (22), (23) and (24).14

15

5 Conclusion16

Predicting and regular studying of underlying dynamics of global solar irradiance data is very im-17

portant for solar inverter designers in Nigeria, a tropic region. Thus, in this work, we propose a new18

nonlinear Solar radiation model and have been evaluated using statistical tools R2, RMSE, and SSE.19

Relative humidity and temperature difference have been identified as a perfect climatological parame-20

ters to predict global solar irradiance. The observed estimates vary across each region which indicates21

the appropriate relationship between the meteorological parameters. The complexity or degree of so-22

lar irradiance in relations to relative humidity and temperature difference across the selected regions23

were reported. The choice of m=10 and τ = 7 to avoid over-embedded has been chosen, which form24

the bases for other studies. The observed clusters points around the parallel diagonal lines with short25

segments, which implies the presence of chaos. Additional complex measure, the RQA also shows26

that the solar radiation during the dry season of the months has lower values of Lmax, determinism27

and entropy and higher values during the wet season of the months. The negative estimate of rela-28

tive humidity commensurates the decreasing trends with increasing global solar radiation, unlike the29

direct relationship that was observed between global solar radiation and the temperature difference30

for each region. However, the availability of solar irradiance in all selected zones has been discovered31

with the highest irradiance observed in Sahel savanna zone, which shows that the zone exhibit more32

complex solar irradiance than the other selected regions. Other regions such as Coastal, Midland33

and Guinea savannah regions were suitable for Agricultural purposes during the wet season as well34

as solar energy capture through-out the year. Therefore, with the implementation of accurate and35

efficient prediction, we will be able to identify which regions is/are suitable for optimal capture of36

solar radiation for human use and energy source designing.37

38

6 Availability of data39

The data that support the findings of this study are available from the corresponding author upon40

reasonable request and can also be obtained from the archive of ERA-Interim.41
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