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10 Abstract:There are many methods for calculating unit hydrograph, such as analysis method, trial algorithmand 

11 least squares method. But these methods have certain requirements for flood datas and the unit hydrograph may 

12 not be optimal. Based on the theory of composition, a hydrological system was viewed as a generalizedcollection 

13 in this study and Gamma functions were used to simulate the basin convergence process. At the same time,the 

14 Gamma function is parameterized and the parameters of Gamma function are optimized by geneticalgorithm, 

15 which is based on the minimum error between the calculation of confluence process and the measurement process, 

16 before deriving the unit hydrograph. The Collins iteration method was used to compute the unit hydrograph. The 

17 results of actual calculated examples showe that this method is more precise than other methods, while it canalso 

18 illustrate the law of runoff. 

19 Keywords:   Theory  of  composition;  Gamma  function;  Genetic  algorithm;  Unit  hydrograph;  Collins iteration 

20 method 

21 0. Introduction 

22 The  unit  hydrograph  is  an  important  method  for  simulating  the  flow  concentration  of a 

23 conceptual hydrological model; it was proposed by Sherman (1932). In actual applications, the 

24 derivation  of  the  unit  hydrograph  is  still  an  important  component when  forecasting the basin 

25 rainfall and runoff. 

26 A  unit  hydrograph  ( Viessman, 1989; Raghunath,  2006)  refers  to  the  unit net constant 

27 rainfall uniformly distributed over a watershed of unit surface and for unit duration. Periods of 1, 3, 

28 6, and 12 h can be selected and the unit rainfall (runoff depth) is generally 10 mm. The actual net 

29 rainfall often does not equal 1 unit for these time periods, so it is necessary to make two basic 

30 assumptions when calculating the watershed flow concentration process. 

31 (a)  Assumption  of  linear  hydrological  system:  if  the  unit  period  rainfall  is  k  units, the 

32 formation of the flow process is k times the unit hydrograph ordinate. 

33 (b) Superposition assumption: if the rainfall lasts m periods, the formation of the flow process 

34 is the superposition of each rainfall period. 

35 Based  on  the  above  assumptions,  the  basin  outlet  section  discharge  hydrograph  can  be 

36 expressed as： 
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37 Q  q 
 

  

 i  1,2, , l 
 j  1,2, , m （1） 

i
 10 i j 1 

38 where 

39 

j1  i  j  1  1,2, , n 

Qi  is the basin outlet section of each period discharge in m3/s; 

hj  is the rainfall in each period in mm; 
 

40 
qi  j 1   is the ordinate of the unit hydrograph in each period in m3/s; 

41 i  is the number of periods for the basin outlet section flow hydrograph; 

j   is the net number of rainfall periods;and 

43 In essence, the unit hydrograph is the characteristic of watershed concentration in the form of 

44 discharge hydrograph, i.e. concentration curve (d.johnstone, 1949). The calculation method of unit 

45 hydrograph confluence takes the basin as a whole and assumes that the net rain is uniformly 

46 distributed over  the  whole  basin, without considering the inhomogeneity within  the system;  the 

47 basin confluence system is a linear time-invariant system,  and at the  same  time, it  is viewed that 

48 the  net  rainfall  and  the  formation  of  the  flow  process  are  in  agreement  to  superposition 

49 relationship. Therefore, the  essential characteristics of the  unit hydrograph are  lumped resistance, 

50 linearity, and time invariance. 

51 Conceptually, the unit hydrograph is  a linear time-invariant basin system  with  a convergent 

52 flow curve.  However, the physical  mechanism of  the  watershed conflux is not considered by the 

53 method  used to  derive  the  unit hydrograph (Ramirez,  2000). The  principle used to calculate the 

54 unit  hydrograph  is  based  on  the  system  input  (rainfall),  which  is  converted  using  the  unit 

55 hydrograph to determine the system response output (outlet section flow process), where  the error 

56 is minimized. The traditional methods of derivation are as follows. 

57 Analytical approach: the basin outlet section of the surface runoff is   
Q1, Q2 , , Ql  , the 

58 rainfall  process  is    
h1, h2 , , hm    ,  where  Eqn.  (1)  comprises    

q1, q2 , ,qn  unknown  linear 

59 algebraic equations. The solutions of the equations can be obtained using a unit hydrograph. 
h j  q 

 

Qi 

qi 

60 

 
10 

h1 

10 

i  j 1 
 i  1,2, ,n 
 

j  1,2, , m 

（2） 
 

61 where n is the number of periods of the unit hydrograph and   n  l  m 1. 

62 In theory, there are no errors with the analytical approach when using the rainfall runoff 

63 measurements. This approach can obtain the correct answer if the watershed conflux conforms to a 

42 
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64 linear  time-invariant  system  (when  the  convergence  of  watershed  system  meets  multiple 

65 proportions   and   superposition   assumption,   for   a   linear   system).   However,   (1)   the data 

66 measurements have errors and, (2) rainfall-runoff system is not a linear time-invariant system. Due 

67 to   the   accumulation  of   errors,  unreasonable  solutions  often  occur.  For   example,  the   unit 

68 hydrograph may be irregular or appear to be negative. 
 

' ' 

69 (b) Trial  and error: the  unit hydrograph is  assumed to be i . The flow 

Q 

 
determined by 

 

q' 

70 the  unit hydrograph is then compared with the  measured  flow 

71 produced when the error between Q’ and Q satisfies certain error. 

.  The unit hydrograph i  is 

72 The trial and error method proposed by Collins (Collins, 1939) uses an iterative strategy.  For 

73 a period of uneven net rainfall, the computational convergence is fast if the time period is large. 

74 However, the Collins iterative method has the following disadvantages: (1) the iterations are based 

75 on the initial unit hydrograph, but there is no strict method for selecting the initial unit hydrograph; 

76 and (2) trial-error approach does not necessarily converge to a solution. 

77 (c) Least squares method: the measured surface runoff is assumed to be  Q  and the error is 
 

 
78 as follows:   Q  Q ' 

. If 
2 '   2 

 (Q  Q )   min 
 
, we  try to  convert Eqn. (1)  into a 

79 normal equations system  where the  number of  equations is equal to  the  variables.   The optimal 

80 estimation  of  
qi    can be solved using the least squares method. The theory of the least squares 

81 method is better, but the results are sometimes fluctuating or negative. 

82 There are many methods for determining unit hydrographs, e.g., the Z transform method and 

83 the  harmonic analysis  method  (Dooge, 1973). A  previous study (Hanson  and  Johnson  1964 ） 

84 classified and compared the usual unit hydrograph calculation methods. 

85 In recent decades, the use of probability distribution functions (pdfs) to develop synthetic unit 

86 hydrographs  (SUH)   has  received   much   attention  because  of  its   similar   properties  to  unit 

87 hydrographs. First,  the  type  of  unit hydrograph needs to  be  subjected to  mathematical analysis. 

88 Typical functions, such as a parabola P-III (Yuan , et al., 1991) (Zhai and Li, 2004)curve, can be 

89 used to describe the unit line and a mathematical model of the unit hydrograph can be established. 

90 A previous study (Bhunya, et al., 2007) explored the potential of using four popular pdfs, i.e., 

91 two-parameter   Gamma,   three-parameter   Beta,   two-parameter  Weibull,  and one-parameter 

92 Chi-square  distribution, for  deriving  a  SUH.  The  Gamma  functions are  the most  widely used 

93 functions  (Singh,  2005,  2009;  Bhunya,  et  al.,  2003).  This  approach  aims  to  determine  the 

94 relationship between each variable in a unit hydrograph, which facilitates a more in-depth analysis 

95 of a unit hydrograph. 

96 In the present study, we used Gamma functions to describe a unit hydrograph and determined 

97 why  a  unit  hydrograph  may  follow  this  distribution.  The  Gamma  function  parameters  were 
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98 optimized using a genetic algorithm. Finally, the unit hydrograph was obtained using the Collins 

99 iterative method. 

100 For a specific basin, the confluence time of a flood is relatively stable  and can be determined 

101 according to the  flood  datas. Therefore, the  use  of gamma  function to derive  unit hydrograph is 

102 only in the trial calculation of parameters     and   k . The unit hydrograph expressed by gamma 

103 function based on the combination of these parameters is optimal, which is compared with the  use 

104 of  P-III  function  to  adjust  its  statistical  parameters.  The  principle  of  hydrological  frequency 

105 calculation by line fitness of numbers (mean, variation coefficient Cv and skewness coefficient Cs) 

106 is very similar. Meanwhile, the time interval t, parameters and values of gamma function can 

107 parameterize   the   regional  characteristics  of   river  basin  confluence,  which  hasthe  important 

108 significance for this study. 

109 1 Mathematical model and method 

110 1.1 Mathematical model 

111 In spatial or temporal physical entropy-based modeling of hydrology and water resources, the 

112 cumulative  distribution  function  (CDF)  of  a  design  variable  (e.g.,  a  flux  or  a  discharge)  is 

113 analyzed  in  terms  of  its  concentration (e.g.,  stage  of  flow)  (Cui,  et  al.,  2012).  The theory of 

114 composition proposed by Zhang  (2003) provides  a model  and  a uniform calculation method  for 

115 studying  the  composition  of things.  This theory considers the analysis of three concepts, i.e., the 

116 general set, the distribution function, and the degree of complexity. This theory is also considered 

117 the most highly approved principle followed by random systems, i.e., the entropy principle. 

118 The  variable  x  is  continuous  and  random,  and  can  be  viewed  as  a  general  set  of flag 

119 variables. If the pdf f (x) of   x  agrees with the following function: 
 

 

 
120  

 

f (x) 
 k 

 
  

(k  1)! 
xk 1e x 

 

, x  0 

 

 
(3) 

121 Then the pdf follows a Gamma distribution, where  and  k   are shape and scale parameters. 

122 This  is one of the famous Pearson  pdfs, which is known  as a  Pearson type  III  distribution.  The 

123 curve has a peak with a left-right asymmetry. In nature, many phenomena follow this distribution. 

124 In China, hydrological studies often use the Pearson type III distribution to simulate hydrological 

125 data series, because it has a greater than or equal to zero lower bound on the variable requirements 

126 and  its  elasticity is greater than  the normal distribution  (Ye  and Xia, 2002). This choice is based 

127 on experience, but it lacks a theoretical justification. 

128 Using  entropy theory,  a  previous study (Zhang,  2003) described  the physical form  of  this 

129 distribution. By  analyzing the structure of Eqn. (3), is not difficult to  show that it  has   a negative 

130 exponential  distribution,  which   is   a   part  of   the   exponential  function,  and   it   also has the 

131 characteristics of  a  power  function in  a Pareto-family  distribution. The  exponential distribution 
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132 corresponds to  the  constraints on  the  invariant algebraic average  of  the flag variables, while the 

133 power  function  corresponds  to  the  constraints  on  the  invariant  geometric  mean.  It  may  be 

134 speculated that  the  constraints on  the  Gamma  distribution are  the  fixed  algebraic average  and 

135 geometric means of the variables. 

136 In this study,   f (x)   is the pdf of a positively defined random variable, i.e., 
 

 
 

137  



 f (x) 
1= 0 （4） 

138 u   represents the algebraic average of variables, thus 



u   xf (x)dx 
139 0 (5) 

140 while v is the geometric mean of the random variable x , which can be expressed as the 

141 algebraic average of the logarithm, i.e., 



v  ln xf (x)dx 
142 0 （6） 

143 The entropy of the random variable x can be written as 



H   f (x) ln xf (x)dx 
144 0 （7）. 

145 Given the constraints  in Eqns. (4), (5), and (6), the Lagrange method can be used to estimate 

146 the  distribution  function  F based  on  the  maximum  entropy  to  determine  the  distribution 

147 function. Thus,  F   is defined as follows: 

   

F   f ln f dx  C1( f dx  1)  C2( xf dx  u)  C3( ln xf dx  v) 

148 0 0 0 0 （8） 

149 Where, C1,  C2 , and 
C3 are undetermined constants. The entropy principle demands that the 

 

 
150 

151 

value of  F is maximal.  The partial derivative of 

obtained using Eqn (8). The results are as follows. 

f () , i.e., the  partial derivative is  0,  can be 

152 
f (x)  exp(C1  1  C2x  C3 ln x) 

(9)
 

153 This  formula can be  used to  obtain the  distribution function. It  is the product of the  power 

154 function and the exponential function, and its form is identical to a Gamma function. 

155 Hydrological  data are  random variables that exceed  zero. If  the  hydrological processes are 

156 stationary,  then  the  algebraic  average  and  geometric  mean  of  the  hydrological characteristics 

157 variable  can  be  approximated  as  a  fixed  value.  For  example,  a  mean  basin  annual  runoff is 

158 basically stable (the algebraic average is constant), so the probability of a major flood occurring is 
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159 small, and most floods are close to the normal value of the accumulated years (the geometric

160 is constant). However, the uncertainty of a different type of flood occurring each time is

161 Thus, the complexity of the outcome

162 generalized  (objective,  system,  sampling  experiment),  if  the  

163 mean of the variables (values of statistical indicators) are constant and the complexity is

164 then we  can conclude that the  probability (the percentage) of  the flag value (all the  values  of

165 variables) for each individual must obey a Gamma  distribution (Pearson  type  III  distribution) 

166 (Zhang, 2003).” 

167 At the same time, a lot of

168 characteristics of flood probability. In the view of this, the

169 function. 
 

q   k 

i k 1e i 
, i 

170  
i     

(k  1)! 

 
 

 

 

173 
 
 

174 Fig. 1    

 

 

175 1.2 Method 

176 1.2.1 Genetic algorithms 

177 Genetic Algorithms (GAs)

178 selection and genetic mechanism.

179 through  natural  evolutionary  process  has  been  applied  in  many   problems  such   as 

171 When the parameters of 

172 different, as shown in Fig. 1. 
 

6 

small, and most floods are close to the normal value of the accumulated years (the geometric

nt). However, the uncertainty of a different type of flood occurring each time is

outcome is maximized. This is consistent with the following: 

generalized  (objective,  system,  sampling  experiment),  if  the  algebraic  average  and

mean of the variables (values of statistical indicators) are constant and the complexity is

then we  can conclude that the  probability (the percentage) of  the flag value (all the  values  of

variables) for each individual must obey a Gamma  distribution (Pearson  type  III  distribution) 

of practical experiences showed that Gamma function

of flood probability. In the view of this, the unit line 
qi  is  defined  as

 1,2, , n 

（10）  

Fig. 1    The change of function under different parameters 

(GAs) is an effective global search method, which simulates

mechanism. This method of searching the optimal solution

through  natural  evolutionary  process  has  been  applied  in  many   problems  such   as 

 and  k value were different types, the line type of

  

small, and most floods are close to the normal value of the accumulated years (the geometric mean 

nt). However, the uncertainty of a different type of flood occurring each time is maximal. 

following:  “In a 

algebraic  average  and geometric 

mean of the variables (values of statistical indicators) are constant and the complexity is maximal, 

then we  can conclude that the  probability (the percentage) of  the flag value (all the  values  of the 

variables) for each individual must obey a Gamma  distribution (Pearson  type  III  distribution) 

function can reflect the 

is  defined  as Gamma 

 
qi qi was 

 

simulates natural 

solution of the problem 

through  natural  evolutionary  process  has  been  applied  in  many   problems  such   as  function 

of 
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180 optimization  and  combinatorial  optimization. Genetic  algorithm  can  automatically acquire and 

181 accumulate the knowledge of search space in the search process, and adaptively control the search 

182 process to find the  best solution(Davis,1991;Michalewicz,1996). The  genetic algorithm regards a 

183 family of  randomly generated  feasible solutions as  the  parent population, takes  fitness function 

184 (objective function or one of its transformation forms) as the measurement of the ability of the 

185 parent individual to adapt to the environment, generates the offspring individual through  selection 

186 and  hybridization, and  then mutates the  latter,  eliminating the  fittest and  the  fittest, so  that the 

187 individual adapts to the environment through repeated evolutionary iterations. With the continuous 

188 improvement of  ability,  excellent individuals keep  approaching the  optimum point(Yuan,2002) . 

189 After several generations, the algorithm converges to the best individual. The best individual in a 

190 group is likely to be the optimal or approximate optimal solution of the problem. 

191 As a new random search and optimization method to simulate biological evolution, genetic 

192 algorithm has been widely used   in the  field of  optimization(Chen,1996;Li,2009). The parameter 

193 optimization of many empirical formulas of hydrological models is essentially based on the global 

194 optimization ability of genetic algorithm. 

195 1.2.2 Collins iteration method 

196 Iterative  method is  a  mathematical  process  to  solve  the  problem by  finding approximate 

197 solutions that meet the restrictive conditions from an initial value. Iterative algorithm is also a 

198 basic method to solve problems by computer. It makes use of the characteristicof fast computing 

199 speed and suitable for repetitive operation, so that the computer can repeat a set of instructions (or 

200 steps). When the instructions (or steps) are executed, a new value of the variable will be derived 

201 from the original value of the variable. Assuming that we  want to derive an approximate solution, 

202 we should determine an initial value, an iteration function and a restriction condition according to 

203 the actual situation and data firstly, until the absolute value of the initial value and the calculated 

204 approximation value is less than a certain value.That is to say, we find the exact desired value. 

205 2 Approach used to determined the unit hydrograph 

206 The  overall calculation  process is  divided  into two  parts:  (1)  the  parameters   of  the unit 

207 hydrograph  are  optimized  using  the  genetic  algorithm,  so  the  initial  unit  hydrograph  can be 

208 calculated; and (2) the final unit hydrograph is calculated using the Collins iterative method. 
 

209 2.1 Calculation of the initial unit hydrograph using a genetic algorithm 

210  (a) Parametrization of Gamma Function 

211  For simplicity, Eqn. (10) is transformed as follows 
 

qi 
212 

 1x 
x
(2i  x 

(x    1) 3 )( x2 1)  e x1(i x3 ) , i  2, , n -1 
 
（11） 

q    q2  0 
  1 n 
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

213 Where,  x1 ,   x2 , and 
x3   are the constants of the unit hydrograph   

214 of the problem for the genetic

215 period number.  i is the known

216 time period of the unit hydrograph, which is defined according to the actual engineering

 
217  

218  

 

The variables x1 , 

point value. 

x2 , and   

219 If one chromosome is   v

220 the unit hydrograph), the unit hydrograph obtained using the constant given above is as

  '  1.74508.7014
 

qi  
(8.7014 -1) 





 (i 

221     q1  q11  0 

222 Using Eqn. (12), the results obtained for the unit hydrograph are [0, 570, 688, 563, 356, 187, 223

 86, 35, 13, 5, 0], as shown in Fig.

 

224 

225 

226 (b) Determination of objective

227 According to the basic principle used to derive the unit hydrograph, the objective 

228 the genetic algorithm can be expressed as

max : (q (x , x  , x )) 

229  
i 1 2 3 

8 

q

i

are the constants of the unit hydrograph   
qi , which is the

genetic algorithm.  i   is the argument of the unit hydrograph,

known number, which is processed by the genetic algorithm.

time period of the unit hydrograph, which is defined according to the actual engineering

, and   
x3 are in a range of [0, 5]. The chromosome is coded as a floating

v'  [1.7450, 8.7014, 1.5042] and   n  11   (n is the time period

unit hydrograph), the unit hydrograph obtained using the constant given above is as

(8.70141) 1.7450(i1.5042) 

1.5042)  e , 

i  2,3, ,10 

（12） 

Using Eqn. (12), the results obtained for the unit hydrograph are [0, 570, 688, 563, 356, 187, 223

86, 35, 13, 5, 0], as shown in Fig. 2. 

' 

 Fig. 2   Unit hydrograph i 

of objective function 

According to the basic principle used to derive the unit hydrograph, the objective 

the genetic algorithm can be expressed as follows: 

))   
1
 

  

(Q '(q )  Q) 2 

（13） 

, which is the argument 

hydrograph, which is a 

algorithm. n is the 

time period of the unit hydrograph, which is defined according to the actual engineering problem. 

are in a range of [0, 5]. The chromosome is coded as a floating 

(n is the time period of 

unit hydrograph), the unit hydrograph obtained using the constant given above is as follows. 

Using Eqn. (12), the results obtained for the unit hydrograph are [0, 570, 688, 563, 356, 187, 223

According to the basic principle used to derive the unit hydrograph, the objective  function of 
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i

Q'(q ) q (x , x  , x ) 
230 Where i    is the converging flow obtained by the  unit hydrograph i 1 2 3  in a 

 

231 basin, and  Q  is the measured flow in the basin outlet section. 

232 Physical interpretation of the objective function Eqn. (13) 

x*  x* x* 

233 A  set of parameters, 1 , 2 , and 3  ,  are  searched based on  the following conditions. The 
 

 
234 inverse square of the difference between 

Q'(q ) 
and  Q 

 
is maximal. To avoid computations if 

235 the objective function value is too small, the expansion coefficient  M is introduced. The value 

236 of   M   is determined according to the specific situation. Eqn. (13) is converted into the following 

237 form. 

max : (q (x , x  , x ))  
M

 
  i 1 2 3 
(Q '(q )  Q) 2 

（14） 
 

238  

239 (c) Optimization parameters 

240 We use the steps shown in Figure 3 of genetic algorithm to optimize the unit line parameters: 

 

241  

i
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q

i

*

h
i q

' '



242 Fig. 3   The processes map that was used the genetic algorithm to optimize the parameters 
 

(x*, x*, x*) 
243 The optimum parameters 1 2 3   are obtained by the above steps, and then the unit line 

244 is calculated by the optimum parameters, as follows: 
 1 

    ( x  1)   x  (i  x ) 
q   x 

2
 (i  x  )        e    , i  2, , n - 1 

245   i   
(x 

x 
1) 

2 1 3 

3 （15） 

 q 
2 

 1   qn  0 
 

246 2.2 Calculation of the final unit hydrograph using the iterative method 

247 Collins iteration method is used to calculate the final unit  hydrograph. Firstly, each period of 

* 

248 the net rainfall runoff process is calculated by unit hydrograph   i . Meanwhile, the maximum net 
 

 
249 rainfall 

hmax    and  its  runoff process 
Q(q*, h max ) 

 
are  determined, and  overall  net rainfall total 

250 runoff  
Q(qi , h max ) 

 

is calculated; Secondly, another unit hydrograph 
 
 
 

251  

Q Q(q *, h  ) 
q '  i max 

max 

 
 

 
' 

is deduced, and new i   is deduced continuously by 

   q*  q '  ErrorExcepted 

 
 

 
* 
i  according to 

252 the  restriction condition of i i until  the  error between  the two 

q   q'
 

253 units meets the requirement, then the final unit hydrograph i i . 

254 3 Examples 

255 Example 1 

256 In Table 1, the data were taken from a previous study (Zhuang and Lin, 1986). 
 
257 Table 1    The calculations of example 1 

 

258 R：unit hydrograph；Q：measured discharge；Q 、 q ：discharge and unit hydrograph of trial and error method； 

259 discharge and unit hygrograph of GACIM 

Time 
The measured 

runoff 

The trial and error 

method 

 
GACIM 

series(h) R(mm) 
Q(m3/s) Q' 

(m3/s) q'  
(m3/s) Q''  

(m3/s) q'' 
(m3/s) 

 

① ② ③ ④ ⑤ ⑥ ⑦ 

0  0 0 0 0 0 

6 3.8 0 0 0 0 0 

12 3.9 50 190 500 195 514 

18 0 252 455 685 461 687 

24 27.3 662 446 470 450 480 

30 2.9 1700 1650 280 1700 292 

q
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 36 2210 2200 195 2210 186 

42 1630 1610 125 1630 129 

48 1020 981 85 1020 88 

54 650 669 60 650 60 

60 440 433 35 440 30 

66 290 288 15 290 0 

72 190 195 0 190  

78 100 113  100  

84 40 51  9  

90 0 4  0  

260 
      

 

261 The unit hydrographs determined using the two methods are shown in columns (5) and (7)  in 

262 Table  1.  A  comparison  of  the  unit  hydrographs  is  shown  in  Figure  4.  The  flow  processes 

263 calculated using the unit hydrographs are shown in columns (4) and (6) in Table 1. A comparison 

264 between the calculated flow process and the measured flow is shown in Figure 5. 

 

265  

266 Fig. 4    Example1: Unit hydrographs ascertained by two methods 
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267  

 

268 Fig. 5    Example1: The flow process of outlet section 
 

269 The actual hydrological data in Table 1 show that the period number for the runoff was 5 and 

270 the period number for the flow process in the  outlet section was 15. According to the theory of the 

271 unit hydrograph, the period number for the unit hydrograph should be 15  −  5 + 1  = 11. Using the 

272 GACIM (genetic algorithm and the Collins iterative method), the period number for the unit 

273 hydrograph was  11. Using  the trial and error method, the  period number for the unit  hydrograph 

274 was 12. To further consider the performance of the two methods, we compared the flow process in 

275 the outlet section and the results obtained using the two unit hydrographs (measured value and 

276 calculated value). A statistical analysis of the results is shown in Table 2. 
 

277 Table 2    The error statistics of example 1 

 
Project Method 

 
GACIM 

 
The trial and error 

The error of flood peak(m3/s) 
 

0 
 

10 

The maximum error of discharge(m3/s) 
 

212 
 

216 

The average absolute error of discharge(m3/s) 37.31 46.19 

 

The total error of   flood peak discharge(m3/s.h) －111 －51 

 

The relative error of flood peak discharge (%) －1.20 －0.55 

278  

279 Example 2 

280 In Table 3, the data were taken from a previous study (Li and Zheng, 1982). 
 

281 Table 3    The calculations of example 2 

Time 
R(mm) 

series(h) 

The measured 

runoff Q(m3/s) 

The trial and error 
GACIM 

method 
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Q
' 
(m3/s) q

' 
(m3/s) Q''  

(m3/s) q
'' 
(m3/s) 

 

 ① ② ③ ④ ⑤ ⑥ ⑦ 

0  0 0 0 0 0 

6 15.3 97 96 63 97 49 

12 7.4 214 215 110 214 119 

18 5.8 304 308 124 304 149 

24  371 374 143 371 128 

30  294 294 76 294 85 

36  190 202 41 190 47 

42  123 120 30 123 23 

48  80 80 22 80 10 

54  49 52 12 49 4 

60  30 22 0 19 0 

66  15 7  4  

72  0 0  0  

282        

283 The unit hydrographs determined using the two methods are shown in columns (5) and (7)  in 

284 Table 3. A comparison of the unit hydrograph is shown in Figure  6. The flow processes calculated 

285 using the  unit hydrographs are  shown in  columns (4)  and (6)  in  Table 3.  A  comparison of  the 

286 calculated flow process and the measured flow is shown in Figure 7. 

 

287  

288 Fig. 6    Example2: Unit hydrographs ascertained by two methods 
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289  
 

290 Fig. 7    Example2: The flow process of outlet section 
 

291 Figure 4 shows that GACIM was significantly  better than the trial and error method in terms 

292 of the shape of the curve. We also compared the flow process in the outlet section and the data 

293 obtained using the two unit hydrographs. A statistical analysis of the results is shown in Table 4. 
 

294 Table 4    The error statistics of example 2 

 

Project Method 
 

GACIM 
 

The trial and error 

The error of flood peak(m3/s) 0 -3 

The maximum error of discharge(m3/s) 11 -12 

The average absolute error of discharge(m3/s) 1.69 -0.23 

The total error of   flood peak discharge(m3/s.h) 22 －3 

The relative error of flood peak discharge (%) 1.25 -0.17 

295  

296 From Table 2 and Table 4, the calculation accuracy of BGACM is obviously better than 

297 that of trial-and-error method in most projects. Although the total error of flood volume is larger 

298 than that of trial-and-error method, the relative error of flood volume is only 1.2% and 1.25%, so it 

299 does not affect the application of actual projects. 

300 Figure  6  and  7  show  that  the  flow  processes  of  the  two  unit hydrographs  were similar. 

301 However,  a  comparison  of  the  shapes of  the  unit hydrograph showed  that the  continuity  and 

302 smoothness  of  GACIM  were  better  than  the  trial  and  error  method.  The  GACIM  method 

303 conformed better with the features of a time-invariant system. 

304 It  can  be seen that BGACM  method is  better at simulating  river basin confluence  process, 

305 which depends on the physical mechanism of the algorithm, while trial-and-error method pays 

306 more  attention  to  the  balance  of  total  flood volume.  This  is  the  respective characteristics and 

307 advantages of the two algorithms exactly. 
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308 4 Discussion 

309 The present study used a combination of a genetic algorithm and the Collins iterative  method 

310 (GACIM)  for  determining  a  unit  hydrograph.  The  method  and  implementation  steps  were 

311 described, while examples and analyses were used to demonstrate the scientificity, reliability and 

312 practicability of this method. The outcomes of this study are discussed below. 

313 (a) Difference between GACIM and other methods 

314 In principle, GACIM is based on composition theory and it describes the physical mechanism 

315 and process of flood confluence using mathematical equations. Using the basic concept of the unit 

316 hydrograph and a genetic algorithm as a mathematical tool, this method can be used to simulate 

317 the flood confluence process. 

318 Therefore, the simulation of the convergence process is more accurate with GACIM. 

319 Other  methods for  calculating unit hydrographs  include the  analysis  method,  least squares 

320 method, and the trial and error method. These methods are more focused on the unit hydrograph as 

321 an  outlet flow process and they fit  the  measured flow precisely, but they ignore  the composition 

322 and structure of the unit hydrograph itself. Example 2 shows that GACIM performed better at 

323 simulating the basin confluence process, whereas other methods paid more attention to the balance 

324 of the total flood volume. 

325 (b) Genetic operator design issues 

326 A  genetic algorithm  is a  very  useful optimization tool. Its  biggest  advantage  is  that it has 

327 wide  adaptability and unlimited problem space, so  it can handle many  different constraints. This 

328 strategy uses a  penalty factor. This  is  because the  genetic algorithm  method delivers exhaustive 

329 engineering accuracy if the population is sufficiently large. 

330 There are two types of genetic algorithm, i.e., the standard genetic algorithm (crossover and 

331 mutation) and evolutionary  computing (selection).  A genetic algorithm   simulates  the 

332 recombination  of   genes   to   create  new  offspring  in   each  generation,  whereas   evolutionary 

333 computation is a population process that updates each generation. 

334 In this study, a genetic algorithm was used to optimize the parameters of the Gamma function 

335 and  the  unit  hydrograph  was  calculated  according  to  the  law  of  basin  confluence.  Thus, the 

336 parameters were generated by a genetic algorithm. Therefore, the design of the genetic operators is 

337 related directly to whether reasonable generation parameters could be obtained. 

338 A genetic algorithm has two components: crossover and mutation. Crossover is the main 

339 genetic  operation that generates new  individuals, but it  also maintains the  relative stability of the 

340 population at the same time. However, the variation is a basic calculation and the main effect is to 

341 produce a new gene from the population, which provides new information for the population. 

342 In  general, the  initial population  of  the genetic  algorithm is  generated  in  the value space. 

343 Crossover and mutation are performed in the value space. In the present study, the value of the 

344 Gamma  function was  in  a certain range. Initially, we  could not define  a reasonable space. If the 

345 value  space is too  large,  a bigger  population must be  used to  meet the needs   of  the individual 

15 
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346 distribution density. However,  this greatly reduces the computational speed. If the value  space  is 

347 too small, it might not meet the parameter combination required for the engineering precision. To 

348 solve this problem, we observed the following principles during the design of the genetic operator. 

349 (i) The crossover operator was determined where a new individual was generated at random 

350 in the space [0,a] (a>0). 

351 (ii)  The  random expansion value space of  the mutation operator was  [0 a] and its amplitude 

352 was   random.  For   the   floating  point  coding  mutation  operator,  the   following  program was 

353 implemented in MATLAB: 

354 1) numMut=round(size(parent,1)*Ops/2); to calculate the number of variations 

355 2) numPop=size(parent,1); to calculate the size of the population 

356 3) numPara=size(parent,2); to calculate the number of parameters 

357 4) for j=1:numPara 

358 5) for i=1:numMut 

359 6) a=round(rand*(numPop-2)+2); select a male parent 

360 7) parent(a,numPara) = parent(a,numPara)*(1+rand/gen); generate a new generation 

361 8) end 

362 9) end. 

363 The parameters of the offspring chromosome were calculated during step 7) of this program, 

364 where  the  variation  in  the amplitude was  related to  the  number  of evolutionary passages. The 

365 variation in the amplitude declined gradually with increasing passage numbers. 

366 Figure   8  illustrates  the  crossover  operator  and  mutation   operator  with   the  passage  of 

367 evolutionary time. 

 

368  

369 Fig. 8    The sketch map of the continuation of parameters value space 

370  

371 In the first generation, the filial generation caused by the crossover operator was still in the 

372 initial  parameter space, which  corresponds to  the  inner   loop  in  Figure  8.  However,  the filial 

373 generation caused by the mutation operator was beyond this range and it expanded to the second 
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374 ring.  In the  second generation, the  filial generation of the crossover operator was  extended to the 

375 second ring while the filial generation of the mutation operator was extended to the third ring. The 

376 expanding amplitude of  the  adjacent ring  decreased with  the  passage of  evolutionary time. This 

377 method was repeated until the predetermined evolutionary algebra was completed. 

378 In  Examples  1  and  2,  the  initial  values  of  the  parameters  were  [0  5].  The  two  sets of 

379 optimized parameters were as follows. 

380 Example 1: [1.7450, 8.7014, 1.5042] 

381 Example 2: [1.6052, 7.9209, 0.30007] 

382 These  two  examples  demonstrate  the  design  rationality   and  the  validity  of  the  genetic 

383 operator. 

384 (c) Research methods for hydrological analysis and calculation 

385 The factors that affect hydrological phenomena are  very  complex. There is  still no  accurate 

386 understanding  of  the  causal  relationships  among  hydrologic  phenomena.  It  is  considered that 

387 hydrological phenomena involve certainty and randomness, which form  the basis  of hydrological 

388 research.  Therefore, causal analysis  and  probabilistic  statistics  are  the  main  methods used for 

389 hydrological analysis and calculation. In  practical applications, causal analysis is confined mostly 

390 to  qualitative analysis.  Quantitative problems demand empirical statistical relationships based  on 

391 actual observational data. 

392 Based on the theory of composition, the distribution function in statistical physics has been 

393 extended to hydrology as  a non-physics  field.  Thus,  hydrological systems  can be  viewed  as  a 

394 generalized  collection. The  regularities  of  hydrological  phenomena  have  been  simulated using 

395 distribution  functions. Distribution  functions and  functional relationships have  been determined 

396 using observation data, which generally means that objective laws are formalized. 

397 The  present  study  was  a  preliminary  attempt  to  investigate  the  quantitative relationships 

398 among  hydrological phenomena based on the  theory of composition and its distribution  function. 

399 The author believes that this theory could be a new approach to exploring hydrological rules. 
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