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Abstract.

Numerical models solved on adaptive moving meshes have become increasingly prevalent in recent years. Motivating prob-

lems include the study of fluids in a Lagrangian frame and the presence of highly localized structures such as shock waves or

interfaces. In the former case, Lagrangian solvers move the nodes of the mesh with the dynamical flow; in the latter, mesh reso-

lution is increased in the proximity of the localized structure. Mesh adaptation can include remeshing, a procedure that adds or5

removes mesh nodes according to specific rules reflecting constraints in the numerical solver. In this case, the number of mesh

nodes will change during the integration and, as a result, the dimension of the model’s state vector will not be conserved. This

work presents a novel approach to the formulation of ensemble data assimilation for models with this underlying computational

structure. The challenge lies in the fact that remeshing entails a different state space dimension across members of the ensem-

ble, thus impeding the usual computation of consistent ensemble-based statistics. Our methodology adds one forward and one10

backward mapping step before and after the EnKF analysis respectively. This mapping takes all the ensemble members onto

a fixed, uniform, reference mesh where the EnKF analysis can be performed. We consider a high- (HR) and a low-resolution

(LR) fixed uniform reference mesh, whose resolutions are determined by the remeshing tolerances. This way the reference

meshes embed the model numerical constraints and also are upper and lower uniform meshes bounding the resolutions of the

individual ensemble meshes. Numerical experiments are carried out using 1D prototypical models: Burgers and Kuramoto-15

Sivashinsky equations, and both Eulerian and Lagrangian synthetic observations. While the HR strategy generally outperforms

that of LR, their skill difference can be reduced substantially by an optimal tuning of the data assimilation parameters. The LR

case is appealing in high-dimensions because of its lower computational burden. Lagrangian observations are shown to be very

effective in that fewer of them are able to keep the analysis error at a level comparable to the more numerous observers for the

Eulerian case. This study is motivated by the development of suitable EnKF strategies for 2D models of the sea-ice that are20

numerically solved on a Lagrangian mesh with remeshing.

1



1 Introduction

1.1 Adaptive mesh models

The computational model of a physical phenomenon is typically based on solving a particular partial differential equation

(PDE) with a numerical scheme. Numerical techniques to solve PDEs evolving in time are most often based on a discretization

of the underlying spatial domain. The resulting mesh is generally fixed in time, but the needs of a given application may require5

for the mesh itself to change as the system evolves, adapting to the underlying physics (Weller et al., 2010). We consider here

the impact of such a numerical approach on data assimilation.

Two reasons that may lead to the use of an adaptive mesh are: (1) for fluid problems, it is sometimes preferable to pose

the underlying PDEs in a Lagrangian, as opposed to Eulerian, frame, or (2) the model produces a specific structure, such as a

front, shock wave or overflow, that is localized in space. In case (1), the Lagrangian solver will naturally move the mesh with10

the evolution of the PDE (Baines et al., 2011). For case (2), the idea is to improve computational accuracy by increasing the

mesh resolution in a neighborhood of the localized structure (see, e.g. Berger and Oliger, 1984). This may be compensated by

the decrease of resolution elsewhere in the domain. Adapting the mesh can prove computationally efficient in that an adaptive

mesh generally requires fewer points than a fixed mesh to attain the same level of accuracy (Huang and Russell, 2010). Some

important application areas where adaptive meshes have been used are: groundwater equations (Huang et al., 2002), and thin15

film equations (Alharbi and Naire, 2017) as well as large geophysical systems (Pain et al., 2005; Davies et al., 2011).

1.2 Data assimilation for adaptive mesh models: the issue

Data assimilation (DA) is the process by which data from observations are assimilated into a computational model of a physical

system. There are numerous mathematical approaches, and associated numerical techniques, for approaching this issue, (see,

e.g. Budhiraja et al., 2018). We use the term DA to refer to the collection of methods designed to obtain an estimate of the20

state and parameters of the system of interest using noisy, usually unevenly distributed, data and an, inevitably approximate,

model of its evolution (see, e.g. Asch et al., 2016). There has been considerable development of DA methods in the field of the

geosciences, particularly as a tool to estimate accurate initial conditions for numerical weather prediction models; a review on

the state-of-the-art of DA for the geosciences can be found in Carrassi et al. (2018).

Mesh adaptation brings significant challenges to DA. In particular, a time-varying mesh may introduce difficulties in the25

gradient calculation within variational DA (Fang et al., 2006). In an ensemble DA methodology (Evensen, 2009; Houtekamer

and Zhang, 2016), the challenge arises from the need to compare different ensemble members in the analysis step. With a

moving mesh that depends on the initialization, different ensemble members may be made up of physical quantities evaluated at

a different set of spatial points. There is another variation that is key to our considerations here, and that is relevant in both cases

described above. The issue is that the nodes in the mesh may become too close together, or too far apart. Both situations can30

lead to problems with the computational solver. Some adjustment of the mesh, based on some prescribed tolerance, may then

be preferable, and even necessary. We will be particularly interested in the implications for DA when this adjustment involves

the insertion or deletion of nodes in the mesh. The size of the mesh may then change in time which has the consequence that the
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state vectors at different times may not have the same dimension. In other words, the state space itself is changing in dimension

with time. Consequently, individual ensemble members, each of them representing a possible realization of the state vector,

can even have different dimensions. In this situation, it is not possible to straightforwardly compute the ensemble-based error

mean and error covariances that are necessary, and are at the core of the ensemble DA methods (Evensen, 2009). Dealing with

and overcoming this situation is the main aim of this study.5

Two specific pieces of work can be viewed as precursors of our methodology. Bonan et al. (2017) study an ice sheet that

is moving and modeled by a Lagrangian evolution, but without remeshing. The paper by Du et al. (2016) develops DA on

an unstructured adaptive mesh. Their mesh is adapted to the underlying solution to better capture localized structures with a

procedure that is akin to the remeshing in neXtSIM. The challenge we address here is the development of a method that will

address models that are based on Lagrangian solvers and involve remeshing.10

1.3 Motivation: the Lagrangian sea-ice model neXtSIM

This work is further motivated by a specific application, namely performing ensemble-based DA for a new class of computa-

tional models of sea-ice (Bouillon et al., 2018). In particular, the set-up we develop is based on the specifications of neXtSIM,

which is a stand-alone finite element model employing a Maxwell elasto-brittle rheology (Dansereau et al., 2016; Rampal et al.,

2019) to simulate the mechanical behavior of the sea ice. In this new rheological framework, the heterogeneous and intermittent15

character of sea ice deformation (Marsan et al., 2004; Rampal et al., 2008) is simulated via a combination of the concepts of

elastic memory, progressive damage mechanics and viscous-like relaxation of stresses. This model has been applied to sim-

ulate the long-term evolution of the Arctic sea ice cover, with significant success when compared to satellite observations of

sea ice concentration, thickness and drift (Rampal et al., 2016). It has also been recently shown how crucial this choice for the

ice rheology is in order to improve the model capabilities to reproduce e.g. sea ice drift trajectories. This makes neXtSIM a20

powerful research numerical tool to study polar climate processes but also for operational applications as e.g. to assist search

and rescue operations in ice-infested waters in the polar regions (Rabatel et al., 2018).

neXtSIM is solved on a 2-dimensional unstructured triangular adaptive moving mesh based on a Lagrangian solver that

propagates the mesh of the model in time along with the motion of the sea ice (Bouillon and Rampal, 2015). Moreover, a mesh

adaptation technique, referred to as remeshing, is implemented. It consists of a local mesh adaptation, a specific feature offered25

by the BAMG library that is included in neXtSIM (http://www.ann.jussieu.fr/hecht/ftp/bamg/bamg.pdf). The advantages of a

local mesh modification is that it is efficient, introduces very low numerical dissipation (Compère et al., 2009), and also allows

local conservation (Compère et al., 2008). The remeshing algorithm operates on the edges of the triangular elements to avoid

tangling or distortion of the mesh as well as inserting, or removing, nodes on the mesh in case it is needed to prevent very sharp

refinements resulting in an excessive computational burden.30

The specific DA methodology we develop for adaptive mesh problems is driven by the considerations of neXtSIM. The

remeshing in neXtSIM, and the consequent change in the state vector’s dimension, is addressed in our assimilation scheme by

the introduction of a reference mesh. The latter represents a common mesh for forming the error covariance matrix from the

ensemble members. The question then arises as to whether this common mesh is used to propagate each individual ensemble
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member forward in time. From the viewpoint of neXtSIM, however, continuing with the reference mesh, common to all mem-

bers, could throw away valuable physical information. In fact, the use of a Lagrangian solver in neXtSIM assures that the mesh

configurations are naturally attuned to the physical evolution of the ice. For this reason, we make the critical methodological

decision to map back to the meshes of the individual ensemble members after the assimilation step. The Lagrangian solver in

the model is thus the primary determinant of the mesh configuration used in each forecast step. The reference mesh is only5

used in a temporary capacity to afford a consistent update at the assimilation step.

1.4 Goal and outline

In this paper, we construct a 1-dimensional setup designed to capture the core issues that neXtSIM presents for the application

of an ensemble-based DA scheme. We perform experiments using both Eulerian (where the observation locations are fixed)

and Lagrangian (where observation locations move with the flow) observations. We test the strategy for two well-known PDEs:10

the viscous Burgers and Kuramoto-Sivashinsky equation, whose associated computational models we refer to as BGM and

KSM, respectively. The Burgers’ equation, which can be viewed as modeling a one-dimensional fluid, is a canonical example

for which a localized structure, in this case a shock wave, develops and an adaptive moving mesh will get denser near the shock

front. The Kuramoto-Sivashinsky equation exhibits chaotic behavior and this provides a natural test-bed for DA in a dynamical

situation that is very common in physical science, and particularly in the DA applications to the geosciences (see Carrassi et al.,15

2018, their Sect. 5.2).

Our core strategy is to introduce a fixed reference mesh onto which the meshes of the individual ensemble members are

mapped. A key decision is how refined the fixed reference mesh be made. There are two natural choices here: (a) one that has

at most one node of an adaptive moving mesh in each of its cells, or (b) a reference mesh in which any adaptive moving mesh

that may appear has at least one node in each cell of the fixed reference mesh. We refer to the former as a high-resolution20

fixed reference mesh (HR) and the latter a low-resolution fixed reference mesh (LR). A natural guess would be that the high-

resolution mesh will behave more accurately. Although this turns out generally to be true, we will show that low-resolution

mesh may result in a better estimate when the ensemble is appropriately tuned.

There have been other recent studies aimed at tackling the issue of DA on adaptive and/or moving meshes. Partridge (2013)

studied a methodology to deal with a moving mesh model of an ice-sheet in a variational DA framework. Bonan et al. (2017)25

extended the study and provided a comparison between a three dimensional variational assimilation (3D-Var; Talagrand (1997))

and an ensemble transform Kalman filter (ETKF; Bishop et al. (2001)). The mesh they use adapts itself to the flow of the ice-

sheet but, in contrast to our case, the total number of nodes on the mesh is conserved.

Du et al. (2016) approach the issue in an ensemble DA framework using a three dimensional unstructured adaptive mesh

model of geophysical flows (Maddison et al., 2011; Davies et al., 2011). They adopt a fixed reference mesh on which the30

analysis is carried out. Each ensemble member is interpolated onto a fixed reference mesh conservatively using a method

called supermeshing developed by Farrell et al. (2009). In Jain et al. (2018) a similar methodology is used for a tsunami

application which exploits adaptive mesh refinement on a regular mesh. Instead of using a fixed reference mesh, they use the

union of meshes of all the ensemble members to perform the analysis.
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In summary, Bonan et al. (2017) addresses the issues that arise with a Lagrangian solver without any remeshing, whereas the

approach in Du et al. (2016) is developed for a model that has remeshing as part of its numerical algorithm, but uses another

wise static mesh. The numerical solver underlying neXtSIM has both features and thus requires a methodology that differs

from these two approaches. Our paper therefore goes beyond existent works in developing a scheme that addresses the case of

a moving mesh with non-conservative mesh adaptation.5

The paper is organized as follows: in Sect. 2, we detail the problem of interest. In Sect. 3, we describe the nature of the

adaptive moving mesh methodologies in one dimension and describe a remeshing process that is implemented intermittently.

Section 4 details the model state and its evolution on the adaptive, non-conservative, 1D mesh. In Sect. 5, we introduce the

EnKF using an adaptive moving mesh model. Here, we describe the fixed reference mesh on which the ensemble members are

projected in order to perform the analysis and discuss the forward and backward mapping between the adaptive moving and10

fixed reference meshes, along with the implications for, and the modifications to, the EnKF. Section 6 provides the experimental

setup of the numerical experiments whose results are presented and discussed in Sect. 7. Conclusions and a forward looking

discussion make up Sect. 8.

2 The physical model and its integration

This paper focuses on a physical model describing the evolution of a scalar quantity, u (e.g. the temperature, pressure, or one of15

the velocity components of a fluid), on a one-dimensional (1D) periodic domain [0,L). We assume that a model of the temporal

evolution of u is available in the form of a partial differential equation (PDE)

∂u

∂t
= f

(
u,
∂u

∂z
, . . . ,

∂iu

∂zi
, . . .

)
where i ∈ N, 0≤ z < L, 0< t0 < t (1)

with initial and boundary conditions

u(t0,z) = u0(z), u(t,0) = u(t,L), (2)20

and with f being, in general, a nonlinear function. Realistic models of geophysical fluids incorporate (many) more variables,

and are expressed as a coupled system of PDEs. A notable example in the field of geosciences, and fluid-dynamics in general,

is the system of Navier-Stokes equations; the fundamental physical equations in neXtSIM have the same form (Rampal et al.,

2016). In this study, we consider the simpler 1D framework as a proxy of the 2D one in neXtSIM but, as will be made clear

below, we formulate the 1D problem to capture many of the key numerical features of neXtSIM. Some of the challenges and25

issues for the higher dimensional case are discussed in Sect. 8.

Solving Eq. (1) numerically, with initial and boundary conditions Eqs. (2), would usually involve the following steps: first,

discretizing the original PDE in the spatial domain (e.g. using a central finite difference scheme), and then integrating, forward

in time, the resulting system of ordinary differential equations (ODEs) using an ODE solver (e.g. an Euler or Runge Kutta

method). This standard approach to numerically solving a PDE is appropriate when it is cast in an Eulerian frame. A key point30

about neXtSIM, however, is that it is solved in a Lagrangian frame. The use of a Lagrangian solver is a particular case of a
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class of techniques what is known as velocity-based methods in the adaptive mesh literature (see e.g. Baines et al., 2011, and

references therein). The dynamics of the adaptive mesh are given, in this case, by using u coming from the PDE (1) as the

velocity field for the mesh points. The book by Huang and Russell (2010) gives a comprehensive and detailed treatment of the

case of adaptive meshes.

A further key feature of neXtSIM as a computational model is that it incorporates a remeshing procedure. As a result, it is5

different from the usual problems considered in the adaptive mesh literature (Huang and Russell, 2010). In particular it entails

that, in general, no continuous mapping exists from a fixed mesh to the adaptive mesh that is continuous in time. We call

such an adaptive mesh non-conservative as the number of mesh points will change in time. It is this characteristic that we see

as presenting the greatest challenge to a formulation of DA for neXtSIM, and addressing it in a model situation as the main

contribution of this paper and one that makes it stand apart from previous work in the area of DA for computational models10

with non-standard meshes.

3 A one-dimensional, non-conservative, velocity-based adaptive moving mesh

3.1 The mesh features and its setup

We build here a 1D periodic adaptive moving mesh that retains the key features of the neXtSIM’s 2D mesh in being Lagrangian

and including remeshing.15

For a fixed time, a mesh is given by a set of points {z1, z2, · · · , zN} with each zj ∈ [0,L). The zj are referred to as the

mesh nodes, or points, and we assume they are ordered as follows:

0≤ z1 < · · ·< zj < · · ·< zN < L. (3)

To guide the remeshing, we define the notion of a valid mesh in which the mesh nodes are neither too close nor too far apart.

To this end, we define two parameters: 0< δ1 < δ2 < L. A mesh {z1, z2, · · · , zN} is a valid mesh if:20

δ1 ≤ |zj+1− zj | ≤ δ2 for all j ∈ N : 1 ≤ j < N − 1, and δ1 ≤ |z1 +L− zN | ≤ δ2. (4)

It is further assumed that δ2/δ1 ≥ 2 and that both δ2 and δ1 are divisors of L. The former hypothesis is related to the remeshing

procedure and will be discussed in Sect. 3.2, while the latter is useful in our DA approach and will be discussed in Sect. 5.1.

When condition (4) does not hold the mesh is called an invalid mesh.

The mesh will evolve following the Lagrangian dynamics associated with the solution of the PDE, Eq. (1). Each zj will25

therefore satisfy the equation:

żj = u(t,zj) , (5)

where ˙ = d
dt , and u(t,zj) is the velocity. The physical model, Eq. (1), together with the mesh model, Eq. (5), constitute a set

of coupled equations that can be solved either simultaneously, or alternately (Huang and Russell, 2010). In the former case,

the mesh and physical models are solved at the same time, which strongly ties them together. A drawback of simultaneous30
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numerical integration is that the large coupled system of equations arising by joining the mesh and the physical models is often

more difficult to solve and may not conserve some features of the original physical model.

The neXtSIM model adopts an alternative strategy that bases the prediction of the mesh at time t+ ∆t, where ∆t is the

computational time step, on the mesh and the velocity field at the current time, t, and then subsequently obtain the physical

solution on the new mesh at time t+ ∆t. As a consequence, the mesh is adjusted to the solution at one time-step earlier. This5

can cause imbalance, especially for low-resolution time discretization and rapidly changing systems, but it offers the advantage

that the mesh generator can be coded as a separate module to be incorporated alongside the main PDE solver for the physical

model. This facilitates the possible addition of conditions or constraints on the mesh adaptation and evolution. Having this

ability is key to the remeshing procedure in neXtSIM.

In neXtSIM, the coupled system, which includes the mesh and the physical model, is solved in three successive steps: (1)10

The mesh solver is integrated to obtain the mesh points at t+∆t based on the mesh and the physical solution at time t; (2) It is

then checked whether the new mesh points satisfy the requisite condition and, if not, the remeshing procedure is implemented;

(3) The physical solution is then computed at t+ ∆t on the (possibly remeshed) mesh at t+ ∆t.

In the first step, the movement of the mesh nodes is determined by the behavior of the physical model, which is a special case

of the mesh being adaptive. In particular, the dynamics of the physical model can lead to the emergence of sharp fronts or other15

localized structures. These features can then be better resolved through the finer grid that now covers the relevant region, which

is the usual motivation behind the use of adaptive meshes in general. This may result, however, in the allocation of a significant

quantity of the total number of nodes to a small portion of the computational domain. Such a convergence of multiple nodes in

a small area can lead to a reduction of the computational accuracy in other areas of the model domain and to the increase of the

computational cost as smaller time steps will be required. In the case of a mesh made up of triangular elements, as in neXtSIM,20

those may get too distorted leading again to a reduction of the numerical accuracy of the finite element solution (Babus̆ka and

Aziz, 1976).

Adaptive mesh methods often invoke a mesh density function in Eq. (5) to control the mesh evolution (Huang and Russell,

2010). In some cases, such as at a fluid-solid interface, large distortions may not be easily handled by moving mesh techniques

alone, nor addressed by a mesh density functions (Saksono et al., 2007). In these cases, a remeshing is performed (step (2)25

above) in order to distribute the nodes in the mesh consistently with the numerical accuracy and the computational constraints.

In neXtSIM, an analogous situation occurs due to the rheology that generates and propagates fractures or leads breaking the

sea ice. For computational efficiency, a local remeshing is performed in the vicinity of a triangular element, called a cavity,

when an element is too distorted. For example, Rampal et al. (2016) considers a triangular element distorted if it has a node

with internal angle less than or equal to 10◦. The remeshing procedure involves adding new nodes and removing old ones if30

needed, as well as triangulation in the cavity to generate a suitable new mesh while maintaining the initially set resolution of

the triangular mesh to the same.

In the 1D models described in Sect. 6, the former challenge appears due to the nature of the physical system they describe.

For instance, in Burgers’ equation, the formation of sharp shock-like front causes a convergence of mesh points. A suitable

remeshing procedure is then applied.35
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Figure 1. An illustration of the remeshing process with δ1 = 0.2 and δ2 = 0.5: invalid mesh (a) remove z2(tk) which violates δ1 (b) and

insert z∗(tk) not to violate δ2 (c)

We now view the mesh points zj = zj(t) as evolving in time according to Eq. (5), and the computational time step ∆t is

chosen small enough so that the ordering given in Eq. (3) is preserved; the smallness of ∆t has thus afforded the use of a

low-order, straightforward Euler scheme to evolve the PDE forward in time. At each computational time step starting at, say,

t= tk, i.e., at each t= tk + i∆t remeshing may be performed according to the procedure given below.

3.2 The remeshing procedure5

When an invalid mesh is encountered as a result of the advection process, a new valid mesh is created that preserves as many of

these nodes as possible. A validity check is made at each computational time step. The remeshing is accomplished by looping

through the nodes zj at time tk to check if the next node zj+1 satisfies (4) based on the parameters δ1 and δ2. Recall that we

assume δ2 ≥ 2δ1.

For each j, if the mesh node zj+1 is too close to zj in that the left inequality in condition (4) is violated then zj+1 is deleted.10

Similarly, if node zj+1 is too far from zj , then a new node z∗ is inserted in between zj and zj+1 at z∗ =
zj+1+zj

2 . Further, if

z1 +L− zN is either too large or too small, a similar procedure is implemented. We can understand now what motivates the

choice of setting δ2 ≥ 2δ1 (cf Sect. 3.1): if δ2� 2δ1 the insertion of a new node in the middle of the cell would then create an

invalid mesh.

The result of the remeshing will be a new mesh re-ordered according to (3) and the mesh will be valid in that (4) is satisfied.15

Note that any newly introduced node in the last step of the procedure may end up as either the first or last in the ordered set of

mesh nodes. Further, a node that survives the remeshing may have a new index because of other new nodes or the deletion of

old nodes. The number of nodes in a mesh may change after a remeshing. This has the implication that the dimension of the

state vector will not be constant in time. It is this feature that makes this situation so different from standard DA and challenges

us to create a new formulation.20

The remeshing algorithm, with δ1/δ2 = 0.2/0.5, is illustrated in Fig. 1, for the node z1(tk) at a particular time t= tk of

the integration. The node z2(tk) has a distance of 0.15 from z1(tk) which is smaller than δ1: therefore, z2(tk) is removed
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Figure 2. An illustration of adaptive moving mesh over time solving Burgers’ equation (see Sect. 6) until t= 1 on a domain z=[0,1). In this

example, the remeshing criteria are based on δ1 = 0.02 and δ2 = 0.05. There are 40 initial adaptive moving mesh nodes and 27 at t= 1;

these are shown in green and red, respectively.

(Fig. 1a). The next node, now z3(tk), has distance 0.055 from z1(tk) which exceeds δ2 (Fig. 1b): therefore, a new node, z∗(tk)

is introduced at the mid-point between z1(tk) and z3(tk) (Fig. 1c).

Figure 2 shows an example of this remeshing procedure applied to a velocity-based adaptive moving mesh using Burgers’

equation (cf Sect. 6 for details) as a physical model. We see how the nodes, oriented along the horizontal axis, follow a moving

front. In particular, the mesh which initially has 40, equally distributed, nodes ends up having only 27, unevenly distributed5

nodes, as a result of the remeshing procedure.

4 The model state and its evolution

Since both the physical value(s) representing the system and the mesh on which the PDE is solved are evolved, we represent

both in the state vector. The dimension of the state vector is then 2N where N is the number of mesh nodes:

x =
(
u1,u2, · · · , uN ,z1,z2, · · · , zN

)
∈ RN × [0,L)

N (6)10

where the zi are viewed as the mesh nodes and ui the values of the physical variable u at zi.
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The model will encompass all the algebraic relations of the computation, including the mesh advancement and remeshing. It

not be defined for every x ∈ RN×[0,L)
N . Indeed, the mesh nodes will need to satisfy (3). We therefore introduce VN ⊂ [0,L)

N

by the condition that z =
(
z1,z2, · · · , zN

)
∈ VN when (3) holds.

The model will be operating between observation times. If we set t= tk as an observation time and t= tk+1 as the next time

at which observations will be assimilated, the model will be integrated with an adapting mesh, including Lagrangian evolution5

and possible multiple remeshings, from tk to tk+1. If xk = x(tk) then we set this model evolution as a map

xk+1 =M(xk). (7)

Note that if the original PDE (1) is nonautonomous, i.e., f depends on t directly, thenM will depend on k and we would write

M=Mk. For convenience, we assume that tk+1− tk is a multiple of the computational time step. Moreover, we begin and

end each integration between observation times with a remeshing if the given mesh is invalid. In this way, we guarantee that10

both zk and zk+1 can be taken to correspond to valid meshes. In principle, we can then applyM to any element x ∈ RN×VN .

Because of the tolerances δ1 and δ2 there are, however, constraints on N . Since they are both divisors of L, we can introduce

N1 and N2 by

L=N1δ1 =N2δ2, (8)

and we can restrict to N2 ≤N ≤N1. We can then view M as acting on a larger space that puts all of its possible domains15

together. To this end, we set XN = RN ×VN and, viewing each XN as distinct,

X =

N1⋃
N=N2

XN , (9)

and castM as a mapping from X to itself, i.e.,M : X→ X. Noting again that the N may change under this map, i.e., N may

be different for xk and xk+1. In other words if xk ∈ XNk
, the next iteration xk+1 ∈ XNk+1 with, in general Nk+1 6=Nk.

5 The ensemble Kalman filter for an adaptive moving mesh model20

We introduce a modification of the EnKF (Evensen, 2009) suitable for numerical models integrated on an adaptive moving

mesh. The discussion herein pertains to the stochastic version of the EnKF (Burgers et al., 1998), but the approach can be

straightforwardly extended to deterministic EnKFs (see, e.g. Sakov and Oke, 2008) without major modifications. A recent

review on EnKF-like methods and their application to atmospheric circulation models can be found in (Houtekamer and

Zhang, 2016).25

The EnKF, originally introduced by Evensen (1994), is an ensemble-based formulation of the classical Kalman Filter (KF)

for linear dynamics (KF; Kalman, 1960). Like the KF, the EnKF is based on a Gaussian assumption for the error statistics, in

that they are fully described by the mean and covariance. The solution is obtained recursively by alternating a forecast step

during which the state estimate and the associated error covariance are propagated in time, and an analysis step in which the

forecast state is combined with the observations. The analysis, which is viewed as the best possible estimate of the system’s30
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state, is obtained as the minimum variance estimator (see, e.g. Evensen, 2003). The EnKF computes the error statistics (i.e.,

mean and covariance) using an ensemble of model realizations (Evensen, 2003). The forward integration of the ensemble

under the model dynamics replaces the explicit matrix multiplications involved in the forecast step of the KF. The EnKF, in

conjunction with implementing localization and inflation (see, e.g. Carrassi et al., 2018, their Sect. 4.4 and references therein),

has proved accurate in high-dimensional systems by using a number of ensemble members several orders of magnitude smaller5

than the system’s dimension. The EnKF has led to dramatic computational savings over the standard KF, and, importantly, does

not require the model dynamics to be linear or linearized.

The challenge in implementing an EnKF on an adaptive moving mesh model with remeshing is that the dimension of the state

vector will be potentially different for each ensemble member. This is addressed by Du et al. (2016) in which the idea of a fixed

reference mesh, called observation mesh, is introduced which has higher resolution around the predefined observations. We10

will adopt this approach here but introduce a new variant in utilizing meshes of different resolutions. In particular, we will work

with a high- and a low-resolution mesh. We see these as representing the extremes which should bracket the possible results of

using meshes of various resolutions. They are, respectively, associated with the two tolerance parameters δ1 and δ2, therefore

linked directly to the mesh of the models while giving us the flexibility of assimilating any type of observations without prior

information so as is generally the case in realistic applications. In addition, in our approach, the analyzed states are mapped15

back onto the adaptive moving meshes to preserve the mesh resolving fine scale structures generated by the dynamics of the

models.

The location of the nodes and their total number are bound to change with time and across ensemble members: each member

will now provide a distinct discrete representation of the underlying continuous physical process, based on a different number

of differently located sample points. The individual ensemble members have to be intended now as samples from a different20

partition of the physical system’s phase space and they do not provide a statistically consistent sampling of the discrete-in-space

uncertainty distribution. This is reflected in practice by the fact that the members can not any longer be stored column-wise to

form ensemble matrices and thus the matrix computations involved in the EnKF analysis to evaluate the ensemble-based mean

and covariance, cannot be performed.

On the other hand, on the reference mesh, the members are all samples from the same discrete distribution and can thus25

be used to compute the ensemble-based mean and covariance. The entire EnKF analysis process is carried out on this fixed

reference mesh, and the results are then mapped back to the individual ensemble meshes. This procedure amounts to the

addition of two steps on top of those in the standard EnKF. First, we map each ensemble member from its adaptive moving

mesh to an appropriate fixed uniform mesh, and perform the analysis. Then, the updated ensemble members are mapped back

to their adaptive moving meshes, providing the ensemble for the next forecast step.30

The process is summarized schematically in Fig. 3. Steps S0 and S2, integration of the modelM to compute prior statistics,

and the analysis step, respectively, are common in an EnKF. At step S1, before the analysis, the forecast ensemble on adaptive

moving meshes is mapped onto the fixed uniform mesh (Sect. 5.1), while step S3 amounts for the back mapping from the fixed

to the individual adaptive meshes. In the following sections, we give the details of processes in S1, S2, and S3 following their

respective order in the whole DA cycle.35
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Figure 3. Illustration of the analysis cycle in the proposed EnKF method for adaptive moving mesh models. In S1, adaptive moving meshes

are mapped onto the fixed reference mesh. The ensemble is updated on the fixed reference mesh at step S2 (i.e. the analysis). Then, in S3 the

updated ensemble members are mapped back to the corresponding adaptive moving meshes. The full process is illustrated in Fig. 4 for one

ensemble member. See text in Sect. 5 for full details on the individual process steps, S0, S1, S2 and S3.

5.1 Fixed reference meshes

We divide the physical domain [0,L) into M cells of equal length, ∆γ:

[0,L) = L1 ∪L2 ∪ ·· · ∪LM , (10)

where Li = [γi,γi+1). It follows that γ1 = 0 and γi = (i− 1)∆γ for each i, and that γM+1 = L. Because of the periodicity,

we identify 0 and L in the fixed mesh; in other words, γM+1 = γ1 modulo L. The points γi are the mesh nodes of the fixed5

reference mesh.

While we are, in principle, free to choose the fixed reference mesh arbitrarily, it makes sense to tailor it to the application

under consideration. We choose to define the resolution of this fixed uniform mesh based on the maximum and minimum

possible resolution of the individual adaptive moving meshes in the ensemble. The resolution range in the adaptive moving

mesh reflects the computational constraints adapted to the specific physical problem: it therefore behooves us to bring these10

constraints into the definition of the fixed mesh for the analysis.

The high resolution fixed reference mesh (HR) will be obtained by setting M =N1 and the low resolution fixed reference

mesh (LR) by settingM =N2. We will focus on these two particular fixed meshes, although the methodology described below

could be adapted to working with any fixed reference mesh. Recalling that L=N1δ1 =N2δ2, and the criteria for a valid mesh

given by (4), it can be seen that any valid mesh {z1,z2, · · · ,zN} will have at most one node in each cell Li of an HR, and at15

least one node in each cell of an LR. As will be seen below, the HR case will require some interpolation to fill in empty cells,
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whereas the LR case will average physical values at nodes that share a cell. It may seem that the higher resolution mesh would

always be preferable, but a key finding of this work is that this is not always true.

Note that the hypothesis L=N1δ1 =N2δ2, i.e. the tolerances δ1 and δ2 are divisors of the domain dimension L, does not

need to be assumed. The computational/physical constraints of the model may suggest δ1 and δ2 not satisfying this condition;

it would be a technical change in our method to accommodate such a situation.5

5.2 Mapping onto a fixed reference mesh

The mapping will take a state vector x = (u1,u2, · · · ,uN ,z1,z2, · · · ,zN ), where {z1,z2, · · · ,zN} is a valid mesh, onto a vector

in XM = RM ×VM with M =N1 (HR) or M =N2 (LR). The state vector to which the map is applied should be thought of

as an ensemble member at the forecast step, so that it has gone through remeshing after its final model evolution step. Thus N

may be any integer between N1 and N2. This is Step S1 in the scheme of Fig. 310

We denote the mapping as Pj : X 7→ XM , with M =N1 for j = 1 (HR) or M =N2 for j = 2 (LR) as above. Recalling that

the γi are nodes of the fixed reference mesh, the image of a specific x ∈ XN has the form,

Pj(x) = (ũ1, ũ2, · · · , ũM ,γ1,γ2, · · · ,γM ) . (11)

The physical value ũi is viewed as the value of u at mesh node γi, the tilde is used hereafter to refer to quantities on the fixed

reference mesh.15

To set the u-values, we introduce a shifted mesh as follows: set L̃i = [γi− δ/2,γi + δ/2) for i= 2, · · · ,M where δ = δ1

or δ2 and again M =N1 or N2, respectively. Further, set L̃1 = [0, δ/2)∪ [L− δ/2,L). We view L̃1 as an interval since we

identify 0 and L.The procedure is now separated into the high and low resolution cases.

Case 1 - HR: Taking x ∈ XN as above, if there is a zk ∈ L̃i then set ũi = uk. If there is no zk ∈ L̃i but there is a zk < γi then

find k so that zk < γi < zk+1 and set20

ũi =
uk +uk+1

2
. (12)

If there is no such zk, then set

ũi =
u1 +uN1

2
. (13)

Case 2 - LR: For each i, find all zk ∈ L̃i. Denote these zki , · · · ,zki+ni
and set

ũi =
1

ni

ki+ni∑
j=ki

uj . (14)25

The map Pj is now well defined, in both the HR and LR cases, for each x ∈ XN .

For the EnKF, we will also need the map that omits the mesh points in the fixed reference mesh:

P̃j(x) = (ũ1, ũ2, · · · , ũM ) , (15)
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and again M =N1 or N2 for HR or LR, respectively.

In the EnKF analysis, we will denote P̃j(x) by ũ and work with this reduced state vector which consists only of the physical

values and not the mesh points. A consequence is that we will not be updating the mesh locations, but rather re-mapping the

analysis back onto the original adaptive mesh for each ensemble member. We will discuss the possibility of updating the mesh

locations in the conclusions.5

5.3 Observation operator

The observations will be of physical values (u) at specific locations (zo). Assume there are d observations, then the observation

operator will be a mapping on reduced state vectors ũ = (ũ1, ũ2, · · · , ũM ) given as y =H(ũ), i.e.,H : RM 7→ Rd withM =N1

or N2. Each component of H(ũ) is the estimate the state vector ũ gives of the observations at locations zo. For the explicit

representation of the observation operator, let consider one observation at once, so that for all 1≤ j ≤ d we consider the j− th10

observation and find i so that zoj ∈ Li; then the j− th component of the observation operator reads:

hj(ũ) = ũi +
zoj − γi
γi+1− γi

(ũi+1− ũi) . (16)

Since γi ≤ zoj < γi+1, this is the natural linear interpolation between values of u at γi and γi+1. The full observation operator

is then

H(ũ) = (h1(ũ),h2(ũ), · · · ,hd(ũ)) , (17)15

where each hj(ũ) has the above form of an observation value at their respective observation locations zoj .

Thus, we can eventually define the state vector on Γ̃ as

w̃(t) =

x̃(t)

z̃(t)

=

[
x̃1(t) x̃2(t) . . . x̃M−1(t) x̃M (t) z̃1(t) z̃2(t) . . . z̃M−1(t) z̃M (t)

]T
(18)

5.4 Analysis using the ensemble Kalman filter

After mapping all the ensemble members onto the dedicated fixed reference mesh (either the high- or the low-resolution one),20

the stochastic EnKF can be applied in the standard way. This is Step S2 in our scheme. The mapped forecast ensemble members

can be stored as columns on the forecast ensemble matrix

Ef =

[
ũf
1, . . . , ũ

f
Ne

]
∈ RM×Ne

, (19)

with M =N1 or M =N2 for HR and LR reference mesh, respectively, N e being the ensemble size. To simplify the notation

the time index and the tilde from the matrices are omitted: all terms entering the analysis update operations are defined at the25

same analysis time onto the fixed, either HR or LR, mesh. The forecast ensemble mean is computed as

ũ
f

=
1

N e

Ne∑
n=1

ũf
n, (20)
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while the normalized forecast anomaly matrix Xf is formed by subtracting the forecast ensemble mean from each of the

ensemble members as

Xf =
1√

N e− 1

[
ũf
1− ũ

f
, . . . , ũf

Ne − ũ
f
]
. (21)

Model outputs are confronted with the observations at the end of every analysis interval, and are stored in the observation

vector, y ∈ Rd. The observations are related to the system state via the (generally nonlinear) observational model5

y =H(ũ) + ε (22)

and are assumed affected by a Gaussian, zero-mean white-in-time noise ε with covariance R ∈ Rd×d, ε∼N (0,R). In the

experiments described in Sect. 7, we directly observe the model physical variables (onto the fixed reference mesh), ũ, so that

as explained in Sect. 5.3, the observation operator only involves a linear interpolation and is thus linear. Nevertheless, the

approach herein described is suitable to work with nonlinearH subject to minor modifications.10

In the stochastic EnKF (Burgers et al., 1998), the observations are treated as random variables, so that each ensemble member

assimilates a different perturbed observations vector

yn = y + εn, 1≤ n≤N e, (23)

with εn ∼N (0,R). We can now compute the normalized anomaly ensemble of the observations

Yo =
1√

N e− 1

[
y1−y, . . . ,yNe −y

]
=

1√
N e− 1

[
ε1, . . . ,εNe

]
,

(24)15

and define the ensemble-based observational error covariance matrix,

Re = Yo

(
Yo

)T
, (25)

and the observed ensemble-anomaly matrix,

Y :=H(Ef)−H(E
f
), (26)

with E
f

= ũ
f
1 and 1 = [1, . . . ,1]

T ∈ RM . The forecast ensemble member are then individually updated according to20

ũa
n = ũf

n + K
[
yn−H(ũf

n)
]
, 1≤ n≤N e, (27)

where

K = XfYT

[
1

N e− 1
YYT + Re

]−1

(28)

is the ensemble-based Kalman gain matrix. It is worth recalling that in the limit, N e→∞, Re→R and the Kalman gain, K

converges to that of a classical, full rank, Kalman filter if both the dynamical and the observational models are linear and all of25

the errors are Gaussian.
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When applied to large dimensional systems, for which N e�M as typical in the geosciences, the success of the EnKF

is related to the use of localization and inflation (see, e.g. Carrassi et al., 2018, their Sect. 4.4 for a review). In this work

localization is not used, but the covariance multiplicative scalar inflation (Anderson and Anderson, 1999) is adopted, so that

the ensemble-based forecast anomaly matrix is inflated as

Xf 7→ αXf (29)5

with α≥ 1, before Xf is used in the analysis update Eq. (27). Multivariate multiplicative inflation or more sophisticated

adaptive inflation procedures exist and could have been implemented here, but this is not of great importance in this work, and

the scalar coefficient α has been properly tuned. A recent review of adaptive inflation methods can be found in Raanes et al.

(2019).

The updated analysis ensemble in Eq. (27) is then used to initialize the next forecast step. However, prior to this, we need10

to map back each individual analysis member on their respective adaptive, non-uniform, mesh; the process is described in

Sect. 5.5.

5.5 From a fixed reference mesh to an adaptive moving mesh

After the analysis, the update on the fixed reference mesh has to be mapped back on the individual adaptive moving meshes

of the ensemble members. In forward mapping step S1 (see Fig. 3), the mapping indices associating the nodes in the adaptive15

moving mesh with nodes in the reference mesh, are stored in an array. These are the indices resulting from the projections on

the HR or the LR reference mesh as described in Sect. 5.2.

Each analysis ensemble member ũa
n will thus retrieve its adaptive mesh (z1,z2, . . . ,zN(n)) from the stored array. In the

reverse mapping step S3 (Fig. 3) the updated solution is projected to the adaptive moving meshes by locating each zj in an

interval L̃m and assigning the mth component of ũa
n to be the ith component of u in the vector xk that will initialize the model20

after the analysis time step.

In summary, each ensemble member after the analysis step will have the form:

xk = (u1,u2, . . . ,uN ,z1,z2, . . . ,zN ) (30)

where if zi ∈ L̃m, then ui = ũ(γm). The backward mapping procedure is the same for both HR and LR cases, although it will

provide different results.25

The process steps S1→ S2→ S3 are illustrated in Fig. 4a/b, representing HR/LR cases, respectively, for one ensemble

member, and using the Burgers’ equation as model (Burgers, 1948); the model and experimental setup are described in details

in Sect. 6.

Let consider first the HR case of Fig. 4a. In S1, the forecasted physical quantity uf on the adaptive moving mesh (dark blue

with large circles) is mapped to the fixed reference mesh nodes (light blue with small circles) at γm−1 = 0.68 and γm+1 =30

0.70. The fixed mesh’s node γm = 0.69 is left emptied : a value is thus assigned by interpolation from the adjacent nodes

γm−1 and γm+1. This provides the forecasted physical quantity, ũf , on the full reference mesh and completes step S1. In the
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Figure 4. Schematic illustration of the DA cycle on the high resolution (a) and low resolution (b) fixed reference mesh. On the legend, dark

and light blue/red lines are forecast/analysis on adaptive moving mesh (AMM) and fixed reference mesh (FRM), respectively. Observations

(gray circles) are sampled from the truth (black line). Following the arrows: S1 is the mapping the adaptive moving mesh on to the fixed

reference mesh, S2 is update of the ensemble member, S3 is backward mapping on the adaptive moving mesh (see Fig. 3).

next step, S2, ũf is updated using the stochastic EnKF as described in Sect. 5.4 to get the analysis field ũa (light red line and

small circles). Finally, in step S3, the ũa is mapped back to the adaptive moving mesh so as to get ua (dark red line with large

circles). Note that, the physical quantity on the interpolated node γm in the fixed reference mesh is not mapped back (that node

“did not exist” in the original adaptive mesh) yet it was required at step S2 to perform the analysis.

Similarly, Fig. 4b describes the LR case. In this situation however, the forecasted physical quantity on the adaptive moving5

mesh nodes at 0.672 and 0.686 are averaged (step S1) in order to associate a value on the fixed reference mesh node γm = 0.68

before the analysis. After the update (step S2), in step S3 the analysis ũm at γm = 0.68 is used to provide the analyses on

both the original nodes (at 0.672 and 0.686) on the adaptive mesh that will have thus the same analyzed value. As a result of

this, we observe that the analysis is better than the forecast (in the sense of being closer to the truth: compare dark blue/red

circles, respectively, for forecast and analyses) at node z = 0.672 but worse at node z = 0.686. In this latter case in fact, the10

overestimate of the truth passes from about 0.15 to more than 0.3 for the forecast and analysis, respectively. On the other hand,

at node z = 0.672 the forecasted overestimate of about 0.2 is reduced to a slight underestimate of about 0.04.

We remark a key aspect of our methodological choice: the ratio of the remeshing criteria δ2
δ1

exerts a control on the relation

between the adaptive moving meshes and the fixed reference mesh. In fact, δ2δ1 is the upper bound of the number of nodes that

will be interpolated in the HR case, and averaged in the LR case respectively, since it represents the maximum ratio between15

the dimension of the fixed reference mesh and that a moving mesh can ever reach.

17



6 Experimental setup

Our aim is to test the modified EnKF methodology described in Sect. 5 by performing controlled DA experiments with two

numerical models and two types of synthetic observations: Eulerian and Lagrangian. In particular, we aim at assessing the

impact and comparing the performance of the HR and LR options detailed in Sect. 5.

The first numerical model is the diffusive version of Burgers’ equation (Burgers, 1948)5

∂u

∂t
+u

∂u

∂z
= ν

∂2u

∂z2
, z ∈ [0,1), t ∈ (0,T ] (31)

with periodic boundary conditions u(0, t) = u(1, t). In our experiments, we set the viscosity ν = 0.08; the model Eq. (31) is

hereafter referred to as BGM. Given that Burgers’ equation can be solved analytically, it has been used in several DA studies

(see, e.g. Cohn, 1993; Verlaan and Heemink, 2001; Pannekoucke et al., 2018).

As second model, we use an implementation of Kuramoto-Sivashinsky equation (Papageorgiou and Smyrlis, 1991)10

∂u

∂t
+ ν

∂4u

∂z4
+
∂2u

∂z2
+u

∂u

∂z
= 0, z ∈ [0,2π), t ∈ (0,T ] (32)

which is also given periodic boundary conditions, and is referred to as KSM throughout the text. Concentration waves, flame

propagation and free surface flows are among the problems for which this equation is used. The higher-order viscosity, ν, is

chosen as 0.027 which makes Eq. (32) display chaotic behavior (Papageorgiou and Smyrlis, 1991). Both numerical models are

discretised using finite central differences and integrated with an Eulerian time-stepping scheme. We integrate them using very15

small time-steps, 10−3 and 10−5 for BGM and KSM, respectively, since the equations are propagated forward explicitly. For

the BGM, the remeshing criteria for mesh adaptation are δ1 = 0.01 and δ2 = 0.02, while they are δ1 = 0.02π and δ2 = 0.04π

for the KSM. Given that the model domain has dimension L= 1 and L= 2π for BGM and KSM, respectively, this implies

that the number of nodes in the HR/LR fixed reference mesh for the analysis is 100/50 for both BGM and KSM.

Two “nature runs” are obtained, one for each model, by integrating them on a high resolution fixed uniform mesh. For20

both models, the meshes for the nature are intentionally chosen to be of at least the same resolution of the HR fixed uniform

reference mesh of the analysis. The size of the nature run’s mesh for the BGM is 100 (corresponding to a resolution of 0.01),

while it is 120 for KSM (equivalent to a resolution of about 0.052).

We have limited the time length of the simulations in BGM to T = 2 as the viscosity tends to dominate over longer times

and dampen the wave motion. Figure 5a shows the nature run for BGM until T = 2 with the initial condition25

u(z,0) = sin(2πz) +
1

2
sin(πz). (33)

The figure shows clearly how the amplitude of the wave, picking around z = 0.5 at initial time, is almost completely dampened

out at the final time.

With the given choice of the viscosity, KSM is not as dissipative as BGM and simulations can be run for longer. KSM is

initialized using30

u(z,0) =−sin(2πz) (34)
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(a) BGM (b) KSM

Figure 5. Numerical solutions of Burgers’ and Kuramoto-Sivashinsky equations. The solutions are computed on an uniform fixed mesh, and

represent the nature run from which synthetic Eulerian and Lagrangian observations are sampled.

as initial condition. Then, it is spun-up until T = 20 and the solution at T = 20 is used as initial condition for the DA experi-

ments. Figure 5b shows the KSM nature run until t= 5 after re-initialization of the model following the spin-up (i.e. the actual

simulation time being T + t= 25); the chaotic behavior of the KSM solution can be qualitatively identified by the random-like

oscillations.

Synthetic Eulerian and Lagrangian observations are sampled from the nature run. Eulerian observations are always collected5

at the same, fixed-in-time, locations of the domain. We assume that Eulerian observers are evenly distributed along the one-

dimensional domain (i.e. observations are at equally spaced locations) and that their total number is constant, so the number

of observations at time step tk, dEUL(tk) = dEULk = d for all k > 0. The locations of the Lagrangian observations, on the

other hand, change in time: the data are sampled by following the trajectories, solutions of the model. Being advected by the

flow, Lagrangian observations may eventually concentrate within a small area of the model domain; they can thus be more10

spatially localized compared to Eulerian observations. In our experiments with Lagrangian observations, if two observations

come within the threshold distance, 10−3, the one closer to the upper boundary of the spatial domain is omitted from the

assimilation at that and all future observation times so as not to over-sample a specific location. As a result, the total number of

Lagrangian observations will tend to decrease in time. An illustration of the different spatial coverage provided by the Eulerian

and Lagrangian observations is given in Fig. (6), for the BGM model with dEUL = dLAG0 = 10 on the mesh of the nature run.15

In the experiments that follow, we have chosen to deploy as many Lagrangian observers at t0 as Eulerian ones and to

place them at the same locations, i.e. d0 = d. The number of Eulerian observations, and the initial number of Lagrangian
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(a) Eulerian Observations (b) Lagrangian Observations

Figure 6. Observations sampled from the BGM nature run (see Fig. 5a) in Eulerian (a) and Lagrangian (b) manner, mimicking geo-stationary

satellite and buoy measurements, respectively.

Table 1. Experimental setup parameters: ν is the viscosity, δ1 and δ2 the remeshing criteria, N1 and N2 the number of nodes in the HR and

LR fixed reference mesh, T the duration of the experiments, ∆t the analysis interval, dEUL and dLAG
0 the number of Eulerian observations

and the initial number of Lagrangian observations.

ν δ1/δ2 N1/N2 T ∆t d/d0 σo

BGM 0.008 0.01 / 0.02 100 / 50 2 0.05 10 0.01

KSM 0.027 0.02π / 0.04π 100 / 50 5 0.05 20 0.78

observations, is set to dEUL = dLAG
0 = 10 and dEUL = dLAG

0 = 20 for BGM and KSM, respectively. Gaussian, white-in-time,

spatially uncorrelated noise is added to these observations; the observational error covariance matrix is diagonal, so that R =

σ2
oI, with σo being the observational error standard deviation, and I the identity matrix. These synthetic observations are

assimilated with the modified EnKF presented in Sect. 5.4, and the specifications of its implementation, namely the number of

initial ensemble members, initial mesh size, and inflation, are provided in the Sect. 7. The analysis interval is set to ∆t= 0.055

time units in all the DA experiments and for both models and observation types. A summary of the experimental setup is given

in Table 1.

The experiments are compared by looking at the root mean square error (RMSE) of the ensemble mean (with respect to the

nature run) and the ensemble spread. Since the analysis is performed on either the HR or the LR fixed mesh, the computation of
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the RMSE and spread is done on the mesh resulting from their intersection. Given that we have chosen the remeshing criteria

in both models such that δ1 is half of δ2, the intersection mesh is the LR mesh itself. Finally, in all of the experiments, the

time-mean of the RMSE and spread are computed after T = 1 time units, unless stated otherwise.

7 Results

We present the results in three subsections. In Sect. 7.1 and 7.2, we investigate the modified EnKF with fixed reference mesh5

(either HR or LR), for the BGM and KSM, respectively, using Eulerian observations. In these sections we also present the

tuning of the EnKF with respect to the ensemble size (N e), inflation factor (α) and initial adaptive moving mesh size (N0).

The combination of those parameters giving the best performance with BGM is then kept and used in Sect. 7.3 where the

comparison between Eulerian and Lagrangian observations cases is described.

7.1 Modified EnKF for adaptive moving mesh models - Burgers’ equation10

In this section, the experiments using BGM are presented. In order to calculate the base error due to the choice of the specific

fixed reference mesh, HR or LR, and the resulting mapping procedures, we first perform an ensemble run without assimilation.

This DA-free ensemble run is subject to all of the steps described in Fig. 3 except for step S2 in which the analysis update is

performed. Given that DA is not carried out, the difference between the HR and LR experiments (if any) can only be due to

the mapping procedures. Recall that this procedure differs in that it involves interpolation or averaging in the HR or LR cases,15

respectively. For consistency, the mapping to/from the fixed reference mesh is performed every ∆t= tk+1− tk, i.e. the time

between the assimilation of observations.

Figure 7 displays the RMSE and the ensemble spread for the HR and LR in these DA-free ensemble runs. We see that the

RMSE is slightly larger in the LR than in the HR case, indicating that averaging introduces larger errors than interpolation in

this specific model scenario. This can be interpreted in terms of the sharpness of the Burgers’ solution (cf Fig. 5a) that might20

not be accurately described using the LR mesh. Furthermore, this is also consistent with what is observed in Fig. 4b, in which

the LR analysis was deteriorating the forecast in some instances. After an initial faster error growth in the LR case, at about

t= 0.4, the difference between LR and HR almost stabilizes, with the two error curves having the same profile. The ensemble

spread is initially slightly larger in the HR case but it then attains similar values for both HR and LR after t= 0.6, suggesting

that the spread does not depend critically on the type of mapping and resolutions of the fixed reference mesh. While this appears25

to be a reasonable basis for building the EnKF, Fig. 7 also highlights the undesirable small spread of values compared with the

RMSE. We will come back to this point in the DA experiments to follow.

In the DA experiments, we study the sensitivity of the EnKF to the ensemble size, inflation factor and initial size of the

adaptive moving meshes. Recall that the ensemble members are all given the same uniform mesh at the initial time; however

these meshes will then inevitably evolve into a different, generally non uniform, mesh for each member. We remark that the30

three parameters under consideration are all interdependent and a proper tuning would involve varying them simultaneously,
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Figure 7. Time evolution of the forecast RMSE (solid line) and spread (σ, dashed line) of DA-free ensemble run using BGM. Dark and light

blue lines represent the HR and LR, respectively.

Figure 8. Time-mean of the RMSE of the analysis ensemble mean (solid line) and ensemble spread (σ, dashed line) of BGM for different

ensemble size, Ne (a); inflation factor, α (b); and initial mesh size, N0 (c). Dark and light red show the HR and LR, respectively.

which would make the number of experiments grow too much. To reduce the computational burden, we have opted instead to

vary only one at a time, while keeping the other two fixed.

The results of this tuning are displayed in Fig. 8, that shows the RMSE of the EnKF analysis (the ensemble mean), and

the spread, as a function of the ensemble size, inflation factor and initial mesh size, respectively in panels a, b and c. The

RMSE and spread are averaged in space and time, after the initial spin-up period T = 1. For reference, we have also plotted5

the observational error standard deviation (horizontal black dashed line).
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Table 2. Ensemble size (Ne), inflation factor (α) and initial mesh size (N0) chosen from the sensitivity experiments in Fig. 8 to perform

the experiment in Fig. 9. Resulting time mean of the RMSE and spread (σ) in for the HR and LR using BGM between t= 0 and 2 are also

listed.

BGM Ne α N0 RMSEf RMSEa σf σa

HR 30 1.0 70 0.025 0.023 0.026 0.015

LR 30 1.45 70 0.018 0.017 0.023 0.014

In the case of the sensitivity to the ensemble size (Fig. 8a), N e is varied between 10 and 90, while the initial mesh size

is kept to 70 for both HR and LR cases, and inflation is not used (i.e., α= 0). The RMSE in the HR case is generally lower

than in the LR case, which are respectively slightly below and above the observational error standard deviation. In both cases,

however, the RMSE approximately converges to quasi-stationary values as soon as N e ≥ 30. This phenomenon, that we also

observe for KSM in the next section, is reminiscent of the behavior in a chaotic system, where the EnKF error converges when5

N e is larger or equal to the dimension of the unstable-neutral subspace of the dynamics (Bocquet and Carrassi, 2017).

We therefore set N e = 30 and study the sensitivity to the inflation factor in Fig. 8b (the initial mesh size is still kept to 70).

Inflation is expected to mitigate the difference (the underestimation) between the RMSE and the spread shown in Fig. 8a. By

looking at Fig. 8b this seems actually to be the case and in the LR case, the RMSE/spread decreases/increases by increasing

the inflation factor α. In the HR case, the RMSE is already lower than the observational standard deviation and the inflation10

has only a small effect: the increase of spread is not accompanied by a similar decrease of error. Based on this, we hereafter

set the inflation to α= 1 and α= 1.45 for HR and LR, respectively.

Finally, in Fig. 8c, we consider the initial mesh size; recall that the ensemble size is set toN e = 30. Also recall that the size of

the individual member’s adaptive moving mesh size, N , is controlled by the remeshing tolerances δ1 = 0.01 and δ2 = 0.02 and

can vary throughout the integration between 50 and 100. In the set of experiments depicted in Fig. 8c, we initialize the ensemble15

on an adaptive moving mesh of size N0 ranging from 50 to 90. Interestingly, the EnKF does not exhibit great sensitivity to N0

and the differences between HR and LR appear to be very small and not systematic. The fact that LR kept the RMSE at the

level of the HR is the result of successful tuning. We saw in fact that the mapping error in the LR case is larger (cf Fig. 7).

Nevertheless this initial disadvantage of the LR has been largely compensated by the inflation. In the experiments that follow,

we have chosen to fix N0 = 70 for both HR and LR.20

The results of the tuning experiments of Fig. 8 and selected values of the parameters are reported in Table 2, and are used in

the experiments of Fig. 9 that shows the forecast/analysis RMSE and spread for both HR and LR as a function of time. Notably

the HR and LR perform quite similarly for t > 1.2, when the solution of the model is possibly of small amplitude due to the

viscous damping. Nevertheless, for t≤ 1.2, LR is often as good as (t < 0.4) or better (0.4≤ t≤ 1.2) than HR, making LR a

viable, computationally more economic, solution. The time-averaged RMSE and spread of these experiments are included in25

Table 2.
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Figure 9. Time evolution of the RMSE (solid line) and spread (σ, dashed line) for BGM until t=2. Dark and light lines represent the HR and

LR, respectively. Blue and red show forecast and analysis, respectively.

7.2 Modified EnKF for adaptive moving mesh models - Kuramoto-Sivashinsky equation

This section shows the same type of results as in the previous section, this time applied to the KSM. We begin by evaluating

the errors related to the mapping on the HR and LR case by running a DA-free ensemble; results are shown in Fig. 10.

Figure 10. Same as Fig. 7 but using KSM

As opposed to what is observed in Fig. 7, we see now that the different mapping procedures in the HR and LR cases induce

similar errors and impact the spread in a similar way. This difference is certainly due to the different dynamical behavior in5

BGM and KSM, with the solution of the latter displaying oscillations over all of the model domain. These can be, in some
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Figure 11. Same as Fig. 8 but using KSM.

instances, well represented (i.e., less affected) by the averaging procedure in the LR case, in others by the interpolation in the

HR case. Another remarkable difference with respect to BGM is that now the ratio spread/RMSE is larger, meaning that the

spread is underestimating the RMSE relatively less than for BGM.

Figure 11 shows the same set of experiments as in Fig. 8, this time using KSM. The time-mean of the RMSE and spread are

again considered after t= 1, but experiments are run until t= 5 since KSM is not as dissipative as BGM with chosen values5

for the viscosity. Furthermore, all values are normalized using an estimate of the model internal variability based on the spin-up

integration from t= 0 to t= T = 20 (see Sect. 6).

In Fig. 11a, the analysis RMSE and spread are shown against the ensemble size, N e. No inflation is applied and initial mesh

size is chosen to be 80 in both the HR and LR cases. The analysis RMSE goes below the observation error standard deviation

as soon as N e = 30 in the HR case, but an ensemble as big as N e = 50 is required in the LR case. Based on these results,10

we have chosen to use N e = 40 for both cases as a trade-off between computational cost and accuracy, given that the RMSE

in the LR case is very close to observational accuracy. Notably, the spread is quite large in both cases , even larger than the

RMSE in the HR configuration. With N e = 40, the impact of inflation is considered in Fig. 11b. We see here how the spread is

consistently increased by increasing the inflation factor α and the corresponding RMSEs decrease until α= 1.3 and increase

afterward, possibly as a consequence of too much spread. The selected values for the inflation factor are α= 1.2 and 1.3 for15

the HR and LR cases, respectively. Fig. 11c studies the sensitivity to the initial mesh size,N0. Similarly to what is observed for

the BGM in Fig. 8c, the performance of the EnKF does not show a marked sensitivity to N0: it is arguable that the mesh size of

the individual members quickly adjust to the values with little memory of the initial dimension. In the experiments that follow,

the initial mesh size is set to N0 = 80 in both HR and LR configurations. Overall Fig. 11 indicates that, as opposed to BGM,

with KSM the EnKF on the HR fixed reference mesh is always superior to the LR fixed mesh. The selected optimal values of20

N e, α and N0 are reported in Table 3.
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Table 3. Same as Table 2 but using KSM deduced from experiments in Fig. 11

KSM Ne α N0 RMSEf RMSEa σf σa

HR 40 1.2 80 1.30 0.51 2.96 0.85

LR 40 1.3 80 1.25 0.78 1.83 0.71

Figure 12. Same as Fig. 9, but using KSM.

Figure 12 shows the time evolution of the forecast and analysis RMSE and spread for HR and LR until t= 5 using these

selected values. First, we observe that the analysis RMSE is always lower than the corresponding RMSE of the forecast in

both the HR and the LR cases. Remarkably the spread of the forecast is also larger than the RMSE of the forecast, in both

configurations, pointing to healthy performance of the EnKF. As for the comparison between HR and LR we see that now the

former is systematically better than the latter, suggesting that in the KSM, the benefit of performing the analysis on HR are5

larger compared to BGM. Nevertheless, the LR case also performs well, and it could well be preferred when computational

constraints are taken into consideration. The time-averaged RMSEs and spreads are reported in Table 3.

7.3 Impact of observation type: Eulerian versus Lagrangian

Up to this point, we have only utilized Eulerian observations. Using the optimal setup presented in the previous sections, we

now assess the impact of different observation types, i.e. Eulerian or Lagrangian (see Figs. 6a and 6b). We consider here only10

the BGM with the LR configuration for the fixed reference mesh and the values for the experimental parameters are those in

Table 2 (first three columns of the second row). Results (not shown) with the KSM using Lagrangian observations indicate that

the EnKF was not able to track the true signal, possibly as a consequence of the Lagrangian observers ending trapped within
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only few of the many fronts in the KSM solution (see Fig. 5b): the number of observations and their distribution then becomes

insufficient.

Figure 13 shows the forecast and analysis RMSE as a function of time, for both Eulerian and Lagrangian data. As for previous

figures, the observation error standard deviation is superimposed as reference, but the number of Lagrangian observers is now

included (right y-axis). Recall that Lagrangian data are bound to decrease with time (cf. Sect. 6 and Fig. 6b) and that their initial5

number and locations are the same as for the Eulerian observations, i.e., dEUL = dLAG
0 = 10 and they are equally spaced.

Figure 13. Time evolution of the RMSE until t= 2 using BGM. Light blue and red lines are the forecast and analysis RMSE with the

Eulerian observations, respectively. Dark blue and gray are, respectively, the same with the Lagrangian observations. Gray dashed line shows

the number of Lagrangian observations in time.

At first sight, one can infer from Fig. 13 that overall Lagrangian data are approximately as effective as their Eulerian

counterparts, even though they are fewer in number. This is reminiscent of a known advantage of Lagrangian observations

that has been documented in a number of studies (see, e.g., Kuznetsov et al., 2003; Nodet, 2006; Apte and Jones, 2013;

Slivinski et al., 2015, and references therein); although the actual positions at which the observations are made are assimilated10

in these pieces of work. A closer inspection of Fig. 13 reveals also other aspects. For instance, it is remarkable that between

0.2≤ t≤ 0.4, the assimilation of 5≤ dLAG
obs ≤ 10 = dEUL

obs Lagrangian observations is superior to using dEUL
obs = 10 fixed, evenly

distributed, Eulerian ones. On the other hand, when t≥ 1.3, the assimilation of Eulerian data is always better than Lagrangian,

a behavior possibly due to the fact that dLAG
obs ≤ 3 and that, despite their dynamically guided locations, they are not as many

as required to properly keep the error low. It is finally worth pointing out that the episode of very high analysis RMSE (higher15

than the corresponding forecast RMSE) occurring at t= 1.5: the assimilation was in that case clearly detrimental. Nevertheless

the EnKF was quickly able to recover and the RMSE is reduced to much smaller values, close to the observation error.
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8 Conclusions

We propose a novel methodology to perform ensemble data assimilation with computational models that use non-conservative

adaptive moving mesh. Meshes of this sort are said to be adaptive because their node locations adjust to some prescribed rule

that is intended to improve model accuracy. We have focused here on models with a Lagrangian solver, in which the nodes

move following the model’s velocity field. They are said to be non-conservative because the total number of nodes in the mesh5

can itself change when the mesh is subject to remeshing. We have considered the case in which remeshing avoids having nodes

too close or too far apart than given tolerance distances; in practice the tolerances define the set of valid meshes. When an

invalid mesh appears through integration, it is then remeshed and a valid one is created.

The major challenge for ensemble data assimilation stands in that the dimension of the state space changes in time and differs

across ensemble members, impeding the normal ensemble based operations (i.e., matrix computations) at the analysis update.10

To overcome this issue, we have added in our methodology one forward and one backward mapping step before and after the

analysis respectively. This mapping takes all the ensemble members onto a fixed, uniform reference mesh. On this mesh, all

ensemble members have the same dimension and are defined onto the same spatial mesh, thus the assimilation of data can be

performed using standard EnKF approaches. We have used the stochastic EnKF, but the approach can be easily adapted to the

use of a square-root EnKF. After the analysis, the backward mapping returns the updated values to the individual, generally15

different and non-uniform, meshes of the respective ensemble members.

We consider two cases: a high resolution and a low resolution fixed uniform reference mesh. The essential property is that

their resolution is determined by the remeshing tolerances δ1 and δ2, such that the high- and low-resolution fixed reference

meshes are the uniform meshes that bound, from above and below respectively, the resolution of all relevant adaptive meshes.

While one can in principle use a fixed reference mesh of arbitrary resolution, our choice connects the resolution of the reference20

mesh to the given physical and computational constraints, reflected by the tolerances values in the model design. This in practice

means that our reference mesh cell will contain at most, or at least, one node of the ensemble member mesh, in either the high-

or low-resolution cases respectively. Hence, using this characterization, we can avoid excessive smoothing or interpolation at

the mapping stages. Depending on whether the tolerances are divisors of the model domain dimension, the reference meshes

can also be themselves valid meshes; nevertheless this condition is not required for the applicability of our approach.25

We tested our modified EnKF using two 1D models, the Burgers and Kuramoto-Sivashinsky equations. A set of sensitivity

tests are carried through some key model and DA setup parameters: the ensemble size, inflation factor and initial mesh size.

We have considered two types of observations: Eulerian and Lagrangian. It is shown that, in general, a high resolution fixed

reference mesh improves the estimate more than a low resolution fixed reference mesh. Whereas this might indeed be expected,

our results also show that a low-resolution reference mesh affords a very high level of accuracy if the EnKF is properly tuned30

for the context. The use of a low-resolution fixed mesh has the obvious advantage of a lower computational burden, given that

the size of the matrix operations to be implemented at the analysis step scales with the size of the fixed reference mesh.

We then examined the impact of assimilating Lagrangian observations compared with Eulerian ones and have seen, in the

context of Burgers equation, that the former improves the solution as much as the latter. The effectiveness of Lagrangian
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observers, despite being fewer in number than for the case of fixed, Eulerian observations, comes from their concentrating

where their information is most useful, i.e., within the sharp single (shock-like) front of the Burgers solution.

In this work, we have focused on the design of the strategy and, for the sake of clarity, have focused only on updating the

physical quantities, while the locations of the ensemble mesh nodes were left unchanged. A natural extension of this study is

to subject both the model physical variables and the mesh locations to the assimilation of data. Both would then be updated at5

the analysis time, and this is currently under investigation.

This paper is part of a longer range research effort aimed at developing suitable EnKF strategies for a next generation 2D

sea ice model of the Arctic Ocean, neXtSIM, which solves the model equations on a triangular mesh using finite element

methods and a Lagrangian solver. The velocity-based mesh movement and remeshing procedure that we have built into our

1D model scenarios were formulated with the aim of mimicking those specific aspects of neXtSIM. In terms of our different10

types of observation, the impact of Eulerian and Lagrangian observational data was studied in light of observations gathered

by satellites and drifting buoys respectively, which are two common observing tools for Arctic sea ice.

Such a 2D extension is, however, a non-trivial task for a number of fundamental reasons. First of all, given the triangular

unstructured mesh in neXtSIM, we cannot straightforwardly define an ordering of the nodes on the adaptive moving mesh, as is

done in the 1D case considered here. As a consequence, the determination of a fixed reference mesh might not be linked to the15

remeshing criteria in the same straightforward way. However, it is still possible to define a high-/low-resolution fixed reference

mesh with respect to the mesh of neXtSIM, since the remeshing in neXtSIM is mainly used to keep the initial resolution

throughout the integration. Secondly, the models considered in this study are proxies of continuous fluid flows whereas the

rheology implemented in neXtSIM treats the sea ice as a solid brittle material which results in discontinuities when leads

and ponds form due to fracturing and ice melting; the Gaussian assumptions implicit in the EnKF formulation need then to20

be reconsidered. Nevertheless, the methodology presented in this study, and the experiments herein, confronts some of the

key technical issues of the 2D case. The current results in 1D are encouraging regarding the applicability of the proposed

modification of the EnKF to adaptive moving mesh models in 2D, and the extension to 2D is the subject of the authors’ current

research.
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