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Abstract 9 

The purpose of the paper is to depict various mineralized zones and the barren 10 

host rock in accordance with the subsurface and surface lithogeochemical data using 11 

the concentration–volume (C–V) and power spectrum–volume (S–V) fractal models 12 

within the Pulang copper deposit, southwest China. Results obtained by  13 

concentration–volume model depict four geochemical zones defined by Cu thresholds 14 

of 0.25%, 1.38% and 1.88%, which represent non-mineralized wall rocks (Cu<0.25%), 15 

weakly mineralized zones (0.25%–1.38%), moderately mineralized zones 16 

(1.38%–1.88%), and highly mineralized zones (Cu>1.88%).S–V model is utilized by 17 

performing 3D fast Fourier transformation for assay data in the frequency domain. 18 

The S–V method indicates three mineralized zones characterized by Cu threshold 19 

valuesof 0.23% and 1.33%. The zones of <0.23% Cu represent barren host rocks and 20 

zonesof 0.23%-1.33% Cu represent the hypogene zones and zones >1.33% Cu 21 

represent supergene enrichment zones. Both the multifractal models show that high 22 

grade mineralization is located at the center and south of Pulang deposit. The results 23 

are in contrast with alteration and mineralogical models resulted from the 3D geologic 24 

model utilizing the logratio matrix method. Better results were obtained from S–V 25 

model to delineate high grade mineralization of Pulang deposit.However, results of 26 

C–V method of moderate and weak grade mineralization are more precise than the 27 

results gained from S–V method. 28 
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1. Introduction 31 

  The depiction and recognization of various mineralized zones and barren host rock 32 

is the primary goal of the mineral exploration work. The research of 33 

systematic ore-forming mineralogy offers helpful data about the metallogenic 34 

processes of deposits, for the mineral assemblages of different types of deposits 35 

reflect the typical characteristics (White and Hedenquist, 1995; Craig andVaughan, 36 

1994).Common means are on the basis of mineralography, petrography and alteration 37 

minerals assemblages to delineate various mineralized zones in porphyry deposits 38 

(Beane, 1982; Schwartz, 1947;Sillitoe, 1997; Berger et al., 2008). Lowell(1968) 39 

firstly put forward a theory model which indicated the mineralogy variations of lateral 40 

and vertical directions in the alteration zones. Some comparable models are usually 41 

proposed related to potassic zones frequently situated in the center and deep of 42 

porphyry ore deposits on the basis of this model (Sillitoe and Gappe, 1984; Cox and 43 

Singer, 1986;Melfos et al., 2002).There are also other methods such as stable isotope 44 

studies and fluid inclusion to outline various mineralization phases(Boyce et al., 2007; 45 

Wilson et al., 2007). The drillhole data with logging information containing 46 

mineralographical information, host rock changes and alteration is helpful to delineate 47 

the mineralization zones. The boundaries of different zones can be exhibited by 48 

different geological interpretations and various results can be obtained. 49 

Non-Euclidian fractal geometry is an significant branch of non-linear sciences. It 50 

is utilized in various research fields of geosciences since 1980s (Mandelbrot, 51 

1983).The correlations between geology, geochemistry and mineralogical 52 

backgrounds with spatial information can be researched by the methods on the basis 53 

of fractal geometry (Carranza,2008, 2009). The fact that the fractal dimensions exist 54 

in different geochemical patterns of diverse elements has been shown by Bolviken et 55 

al. (1992) and Cheng et al. (1994). The concentration–area(C–A) fractal method was 56 

put forward by Cheng et al. (1994) to recognize geochemical anomalies from 57 
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backgrounds and calculate thresholds of geochemical data of different elements. 58 

Furthermore, there are many other fractal methods proposed and utilized in 59 

exploration work of geochemistry including number–size (N–S) fractal method 60 

proposed by Mandelbrot (1983), concentration–perimeter(C–P) fractal method  61 

proposed by Cheng (1995), power spectrum–area(S–A) fractal method proposed by 62 

Cheng et al.(1999), concentration–distance (C–D)fractal method proposed by Li et 63 

al.(2003), concentration–volume (C–V) fractal method proposed by Afzal et al.(2011) 64 

and power spectrum–volume (S–V) fractal method proposed by Afzal et al.(2012). 65 

Different geochemical processes could be described by the diversities within fractal 66 

dimensions, which obtained by research of relative geochemical data. Afzal et 67 

al.(2011) considered that the log–log plots obtained by fractal methods are useful 68 

means to delineate different populations of geochemical data and the thresholds could 69 

be determined as some break points in plots. 70 

The utilization of fractal models to delineate various grade mineralization is 71 

dependent on the correlations of metal grades and volumes (Afzal et al., 2011; Cheng, 72 

2007; Simet al., 1999; Agterberg et al., 1993). The concentration–volume (C–V) and 73 

power spectrum–volume (S–V) fractal methods were put forward by Afzal et al. (2011, 74 

2012) to delineate various grade mineralization. We utilized C–V and S–V fractal 75 

methods to delineate diverse mineralized zones and host rocks of Pulang copper 76 

deposit within this paper. 77 

2. Fractal models 78 

2.1. Concentration–volume fractal model 79 

Afzal et al. put forward concentration–volume fractal method in 2011 based on 80 

the same principle of the concentration–area method (Cheng et al., 1994) in order to 81 

analysis the correlation between the concentration of ore elements and relevant 82 

occupied volume which its concentration is above or less than the presented value 83 

(Afzal et al., 2011;Sadeghi et al., 2012; Soltani et al.,2014; Zuo et al., 2016).It could 84 

be shown as: 85 

V(ρ≤υ)∝ρ
-a

1; V(ρ≥υ)∝ρ
-a

2                                      (1) 86 
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V(ρ≥υ) and V(ρ≤υ) represent those occupied volumes which concentrations are above 87 

or equal to and less than or equal to presented value υ; υ indicates the threshold 88 

between two zones; a1 and a2 indicate the characteristic indexes.Thresholds obtained 89 

by this method indicate the boundaries of diverse grade mineralization of ore deposits. 90 

The drill hole data of elemental concentration values are interpolated with the method 91 

of geostatistical estimation to compute V(ρ≥υ) and V(ρ≤υ).They are those volume 92 

values surrounded with the given value υ within a 3D model. 93 

2.2. Power spectrum–volumefractal model 94 

    Different geochemical patterns existed within spatial domain could be seen as 95 

layered signals with various frequencies.Cheng et al. (1999) put forward power 96 

spectrum–area fractal method to recognize geochemical anomalies from backgrounds 97 

utilizing the method of spectrum analysis within frequency domain according to this 98 

argument. This model is combined with concentration–area method (Cheng et al. 99 

1994). It offers an useful mean to determine an optimum threshold value between 100 

various forms based on different scaling property. 101 

Afzal et al.(2012) put forward power spectrum–volume (S–V) fractal method to 102 

delineate different grade mineralization based on the same idea as the S–A method 103 

proposed by Cheng et al.(1999).S–V method was utilized in frequency domain. And it 104 

was performed by applying the fast Fourier transformation for assay data. The straight 105 

lines obtained by log–log plots indicate the relationships between power spectrums 106 

and relative volumes of ore elements. They were utilized to recognize the hypogene 107 

zones and supergene zones from barren host rocks and leached zone of the deposit. 108 

The recognization of various mineralization zones is on the basis of the power–law 109 

correlations of power spectrums and relative volumes. The formula is as follows: 110 

V(≥S)∝S
−2/β

                                                (2) 111 

Where, the relationships of power spectrums (S=−||F(Wx, Wy, Wz)||) and 112 

occupied volumes which power spectrums are greater than or equal to S can be 113 

indicated by this form; F represents the fast Fourier transformation for the 114 

measurement μ(x, y, z); Wx, Wy and Wz seperately indicate wavenumbers or angular 115 
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frequencies of the directions of X, Y and Z axis of a 3D model.The range of index β is 116 

0<β≤2 or 1≤2/β with particular circumstance of β=2 or 2/β=1 related to monofractal 117 

or non-fractal and 1<2/β to multifractal (Cheng, 2006). 118 

By utilizing the method of geostatistical estimation, drill hole data of elemental 119 

concentration values are interpolated to construct the block model with ore element 120 

distribution. The power spectrum values can be obtained by utilizing 3D fast Fourier 121 

transformation for ore element grades. 122 

The obtained data was classified to a number of classes. The determination of the 123 

amount of classes should consider the gross amount of data at a required precise level. 124 

The range value from the minimum to maximum values of power spectrum was 125 

calculated and the width of each class was finally decided by separating the range into 126 

the amount of classes. Then we count the amount of voxels of each class and compute 127 

their accumulative volume values. And all of the considered voxels are counted as 128 

points because they have constant volumes. The logarithm of all power spectrum 129 

values and accumulative volume values were calculated. And the log-log plot of 130 

power spectrums and volumes was drawed according to previous counted values. 131 

Then the filters were constructed on the basis of threshold values obtained by the 132 

log-log plot of S-V. Finally, the resulted power spectrums were converted back to 133 

space domain by utilizing inverse fast Fourier transformation. 134 

3. The geological setting of Pulang copper deposit 135 

The Pulang depositis situated in the southern end of Yidun continental arc of 136 

southwest China (Fig. 1). The continental arc is generated due to the westward 137 

subduction of Garze–Litang oceanic crust(Deng et al., 2014b, 2015; Wang et al., 138 

2014). And Leng et al. (2012) and Li et al.(2011, 2013) have systematically 139 

researched detailed geological characteristics of Pulang deposit, such as the 140 

representative porphyry alteration zones, the geometry of orebody, metallogenic time 141 

and the geodynamic settings of this deposit.The Pulang deposit consists of five 142 

ore–bearing porphyries. They cover an range of about 9 square kilometers. Liu et al. 143 

(2013) showed that Cu ore tonnage of Pulang deposit is reckoned to be 6.50 Mt. 144 
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The outcrop strata of Pulang deposit mainly consist of clastic rocks, andesite and 145 

quaternary sediments of UpperTriassic Tumugou Formation (Fig.1c).The Triassic 146 

porphyry intrusions mainly comprise quartz monzonite porphyry, quartz diorite 147 

porphyry,quartz diorite porphyrite and granodiorite porphyry. The Tumugou 148 

Formation strata was intruded by the quartz diorite porphyry with an age of 219.6 ± 149 

3.5 Ma obtained by Zircon U–Pb dating(Pang et al., 2009). Then quartz monzonite 150 

porphyry with an age of 212.8 ± 1.9 Ma and granodiorite porphyry with an age of 151 

206.3 ± 0.7 Ma obtained by Zircon U–Pb dating (Liu et al., 2013) seperately crosscut 152 

quartz diorite porphyry.The quartz monzonite porphyry is related to mineralization for 153 

its age is similar with the Re–Os isochron age of 213 ± 3.8 Ma from molybdenite of 154 

deposit (Zeng et al., 2004). Moreover, the Cu grades of quartz monzonite porphyry 155 

are higher than the other porphyries. 156 

<Fig. 1 inserts here> 157 

The porphyry-type alteration zones transform from potassium–silication, 158 

quartz–sericitization to propylitization zones upward and outward from the center of 159 

quartz monzonite porphyry(Fig.4).Most country rocks close to the porphyries were 160 

transformed to hornfels. The fact that potassic and quartz–sericitization zones control 161 

most orebodies has been validated by the systematic drilling. They constitute the core 162 

of mineralized zones. And the weak mineralization often appear in the propylitic 163 

zones and hornfels surrounding the core.The orebodies occur as veins within the 164 

propylitic zones and hornfels.Major rock types in the deposit are quartz monzonite 165 

porphyry, quartz diorite porphyrite, granite diorite porphyry, quartz diorite porphyry 166 

and hornfels(Fig. 2). Metallic minerals mainly include chalcopyrite, pyrite and some 167 

molybdenite and pyrrhotite (Fig. 3). 168 

<Fig. 2 inserts here> 169 

<Fig. 3 inserts here> 170 

<Fig. 4 inserts here> 171 

 172 

4. Fractal modeling 173 
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On the basis of the geological data of this deposit, such as the collar coordinates, 174 

azimuth, dip, mineralogy and lithology of 130 drill holes, 19996 samples were 175 

gathered from these drill holes every other 2 meters. The laboratory of the 3rd 176 

geological team of Geology and Mineral Resources Bureau of YunnanDiqing 177 

Nonferrous Metal Co. Ltd. utilized iodine–fluorine and oscillo-polarographic method 178 

to analyze the concentrations of Cu and associated paragenetic elements of all the drill 179 

holes and its analytical uncertainty is less than 7%. Only Cu concentrations were 180 

researched in this study. The distribution of Cu concentrations is presented in Fig. 5 181 

with Cu mean value of 0.296%. The experimental semi–variogram of Cu data of 182 

Pulang deposit indicates that these values of the nugget effect and range are 0.126 and 183 

160.0m, seperately(Fig. 6).The spherical model is fitted in regard to the experimental 184 

semi–variogram.The 3D model of Cu concentrations dispersion of Pulang deposit is 185 

produced by utilizing ordinary kriging method of the Geovia Surpac on the basis of 186 

the semi–variogram and anisotropic ellipsoid. Goovaerts (1997) showed that the 187 

values in un-sampled locations are estimated by the ordinary kriging method 188 

according to moving average of interest variables fitting various distribution patterns 189 

of data.It is a spatial estimation means and its error variance related to characteristics 190 

and patterns of the data is minimized. The obtained block model by this method are 191 

utilized as input to fractal models.The Pulang deposit is modeled by 20m × 20m × 5m 192 

voxels and they are decided by the grid drilling dimensions and geometrical 193 

characteristics of the Pulang deposit (David, 1970). Pulang deposit is totally modeled 194 

with 150,973 voxels. Different mineralized zones are classified on the basis of these 195 

two fractal methods in this deposit. 196 

<Fig. 5 inserts here> 197 

<Fig. 6 inserts here> 198 

4.1. Concentration–volume (C–V) fractal modeling 199 

The occupied volume values related to Cu grades are computed to obtain the 200 

concentration–volume model according to the 3D model of Pulang deposit.Through 201 

the obtained log–log plot of concentrations vs volumes, the threshold values of Cu 202 
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grades were determined (Fig.7). It indicates the power-law relation of Cu grades and 203 

volumes. Three thresholds and four populations are gained from C–V log–log plot, 204 

consequently. The first Cu threshold is 0.25%. The range of Cu values of <0.25% 205 

represent barren host rock.The second Cu threshold is 1.38%, and values of 206 

0.25–1.38% Cu represent weak grade mineralization.And the third Cu threshold is 207 

1.88%. The range of Cu values of 1.38–1.88% denote moderately mineralized zones, 208 

and values of >1.88% Cu indicate highly mineralized zones (Table 1). According to 209 

the results, the low concentration zones develop in a lot of sections of Pulang deposit 210 

and are inclined to the northwest–southeast direction of the deposit. Moderately and 211 

highly mineralized zones are located at several parts of the center and south of Pulang 212 

deposit(Fig. 8). 213 

<Fig. 7 inserts here> 214 

<Fig. 8 inserts here> 215 

< Table 1 inserts here> 216 

4.2. Power spectrum–volume (S–V) fractal modeling 217 

According to the geological data from this deposit, such as the collar coordinates, 218 

azimuth, dip, mineralogy and lithology of 130 drill holes, a 3D model and block 219 

model of Cu grades dispersion of Pulang deposit were constructed by ordinary kriging 220 

method utilizing the Geovia Surpac. 221 

The power spectrum (S) of Cu grades distribution are computed by utilizing 3D 222 

fast Fourier transformation by MATLAB (R2016a). The logarithmic values of power 223 

spectrum and relevant volume values are fitted against each other (Fig. 9). The 224 

straight lines fitted through the log–log plot indicate the relation of power spectrums 225 

and occupied volumes. The results have indicated that there are two thresholds and 226 

three populations. The thresholds of logS=7.81 and logS=8.70 are decided by the 227 

log–log S–V plot. The 3D filters were designed to separate different mineralization 228 

zones on the basis of these threshold values. Inverse fast Fourier transformation was 229 

utilized to convert the resulted power spectrums back into space domain by MATLAB 230 

(R2016a). According to the results, Cu grades of hypogene zones range from 0.23% to 231 

1.33% (Table 2), and values of >1.33% Cu refer to the supergene enrichment zones, 232 
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whereas values of <0.23% Cu pertain to the leached zone and barren host rock(Fig. 233 

10).  234 

<Fig. 9 inserts here> 235 

<Fig. 10 inserts here> 236 

< Table 2 inserts here> 237 

5. The contrast of results of fractal models and geologic models of 238 

Pulangdeposit 239 

Lowell and Guilbert(1970) depicted that the alteration models are very critical 240 

within zone recognization. The potassic and phyllic alterations control the most 241 

mineralization within supergene and hypogene zones according to these models. The 242 

various mineralization zones obtained by the fractal methods could be in contrast with 243 

geologic data to verify these results. 244 

Results of fractal models of Pulang deposit were in contrast with 3D geologic 245 

model of Pulang deposit constructed by utilizing Geovia Surpac and drillholes data 246 

(Fig. 2). Furthermore, results gained from fractal models are also dominated by 247 

mineralogical research. 248 

The analysis of spatial relationships of two binary particularly geology and 249 

mathematics models has been indicated by Carranza (2011).The intersection operation 250 

between the mineralization zones obtained from fractal models and alteration zones is 251 

carried out to derive the amount of voxels related to every class of overlap zones 252 

(Table3). And overall accuracy (OA) values of different grade mineralization obtained 253 

by these fractal methods are in contrast with each other. 254 

The contrast between highly mineralized zones on the basis of the fractal models 255 

and potassic zones resulted from 3D geologic model illustrates that the results of these 256 

two fractal models are similar.The OA values of C–V and S–V methods are 0.50 and 257 

0.52 as shown in Table 4, which illustrate that the S–V model gets more accurate 258 

results to recognize high grade mineralization of Pulang deposit. 259 

The contrast between phyllic alteration zones resulted from 3D geologic model 260 

and moderate grade mineralization obtained from fractal methods indicates that OA 261 
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values of C–V and S–V fractal methods in regard to phyllic alteration zones of the 262 

geological model are 0.59 and 0.56 (Table 5). The OA values of moderate and weak 263 

grade mineralization zones gained from C–V model is better than the results gained 264 

by S–V model. 265 

It could be considered that there are spatial correlations between different grade 266 

mineralization and geologic features for instance alterations and mineralogy. Several 267 

samples of drillholes are gathered from different grade mineralization zones of Pulang 268 

deposit to validate the results of fractal models. PL-B82 was collected from supergene 269 

enrichment zones with high chalcopyrite content (Fig.13a). PL-B62 and PL-B74 270 

samples were collected from the hypogene zones with low chalcopyrite content and 271 

some pyrrhotite content, respectively (Fig.13b and Fig.13c). PL-B94 sample was 272 

collected from leached zone and barren host rock with lower and no chalcopyrite 273 

content (Fig.13d). 274 

<Fig. 11 inserts here> 275 

<Fig. 12 inserts here> 276 

<Fig. 13 inserts here> 277 

6. Conclusions 278 

This study utilized the concentration–volume(C–V) and power spectrum–volume 279 

(S–V) fractal models to delineate and recognize different grade Cu mineralization of 280 

Pulang copper deposit. Both the fractal models reveal high grade Cu mineralization is 281 

located at the center and south of Pulang deposit.The Cu threshold of high grade 282 

mineralization is 1.88% according to C–V method. And Cu threshold of supergene 283 

enrichment zones is 1.33% on the basis of S–V method. Models of moderate grade 284 

mineralization zones contain 1.38–1.88% Cu due to C–V method. And the hypogene 285 

zones contain 0.23–1.33% Cu according to the S–V model. 286 

The C–V method shows barren host rock includes <0.25% and weak grade 287 

mineralization include 0.25–1.38% Cu. And the S–V model reveals that barren host 288 

rock and leached zone contain <0.23% Cu. 289 

    The high grade Cu mineralization determined by fractal methods, specially by 290 
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S–V method, give better relations with potassic zones of the 3D geologic model based 291 

on the relationship between results obtained from fractal methods and geologic 292 

logging of drill holes of Pulang deposit. In addition, there is a better correlation of 293 

moderate and weak grade mineralization obtained from C–V method and phyllic 294 

alteration zones based on the 3D geologic model. 295 

< Table 3 inserts here> 296 

< Table 4 inserts here> 297 

< Table 5 inserts here> 298 
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Fig.1. Geological map of the Pulang porphyry copper deposit, SW China.Modified 590 

after Yunnan Diqing Nonferrous Metal Co. Ltd., 2009. 591 

Fig.2. Geological 3D models including lithology, alterationand 3Ddrillholeplot with 592 

the legend of each in thePulang porphyry copper deposit. (Scale is in m
3
.) 593 

Fig.3. Photographs of alteration and mineralization in the Pulang porphyry copper 594 

deposit, SW China. (a) Quartz monzonite porphyry with potassium-silicate alteration; 595 

(b) Quartz diorite porphyrite with quartz-sericite alteration; (c) Quartz diorite 596 

porphyrite with propylitic alteration; (d) Hornfels. Qtz=quartz; Pl=plagioclase; 597 

Kfs=K-feldspar; Bt=biotite; Ser=sericite; Chl=chlorite; Ep=epidote; Py=pyrite; 598 

Ccp=chalcopyrite; Mo=molybdenite; Po= pyrrhotite. 599 

Fig.4. Cross section along exploration line 0 in the Pulang porphyry copper deposit, 600 

SW China. Modified after Wang et al., 2012. 601 

Fig.5. Histogram of Cu concentrations in lithogeochemical samples from the Pulang 602 

deposit. 603 

Fig.6. The experimental semi–variogram (omni-directional) of Cu data in Pulang 604 

deposit. 605 

Fig.7. C–V log–log plot for Cu concentrations in the Pulang deposit. 606 

Fig.8. Zones in the Pulang deposit based on thresholds defined from the C–V fractal 607 

model of Cu data: (a) highly mineralized zones; (b) moderately mineralized zones; (c) 608 

weakly mineralized zones; (d) barren host rock.(Scale is in m
3
.) 609 

Fig.9. S–V log–log plot for Cu concentrations in the Pulang deposit. 610 

Fig.10. Zones in the Pulang deposit based on thresholds defined from the S–V fractal 611 

model of Cu data: (a) the supergene enrichment zones; (b) the hypogene zones; (c) the 612 

leached zone and barren host rock (Scale is in m
3
.) 613 

Fig.11. Highly mineralized zones in the Pulang deposit: (a) potassium-silicate zone 614 

resulted from the 3D geological model from drillcore geological data; (b) C–V 615 

modeling of Cu data; and (c) S–V modeling of Cu data(Scale is in m
3
.) 616 

Fig.12. Moderately mineralized zones in the Pulang deposit:(a) quartz–sericite zones 617 

resulted from the 3D geological model from drillcore geological data; (b) C–V 618 

modeling of Cu data; and (c)S–V modeling of Cu data (Scale is in m
3
.) 619 

Fig.13. Chalcopyrite content in several samples based on mineralographical study: (a) 620 

PL-B82 sample collected from supergene enrichment zones; (b) PL-B62 sample 621 

collected from the hypogene zones; (c) PL-B74 sample collected from the hypogene 622 

zones; (d) PL-B94 sample collected from leached zone and barren host rock. 623 

Po= pyrrhotite; Ccp=chalcopyrite. 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-8
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 27 March 2019
c© Author(s) 2019. CC BY 4.0 License.



22 
 

Table 1 Thresholds concentrations obtained by using C–V model based on Cu% in 632 

Pulang deposit. 633 

Table 2 Ranges of power spectrum (S) for different mineralization zones in Pulang 634 

deposit. 635 

Table 3 Matrix for comparing performance of fractal modeling results with geological 636 

model. A, B, C, and D represent numbers of voxels in overlaps between classes in the 637 

binary geological model and the binary results of fractal models (Carranza, 2011). 638 

Table 4 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 639 

with respect to potassic alteration zone resulted from geological model and threshold 640 

values of Cu obtained through C–V and S–V fractal modeling. 641 

Table 5 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 642 

with respect to phyllic alteration zone resulted from geological model and threshold 643 

values of Cu obtained through C–V and S–V fractal modeling. 644 
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Fig. 12. 766 
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Table 1 811 

Mineralized zones Thresholds(Cu%) Range(Cu%) 

Barren host rock  <0.25 

Weakly mineralized 0.25 0.25–1.38 

Moderately mineralized 1.38 1.38–1.88 

Highly mineralized 1.88 >1.88 

Table 2 812 

Mineralized zones PS threshold Range of PS Range(Cu%) 

leached zone and 

barren host rock 

 <7.81 <0.23 

hypogene zones 7.81 7.81-8.70 0.23-1.33 

supergene 

enrichment zones 

8.70 >8.70 >1.33 

Table 3 813 

  
 

Geological model 

Inside zone 

 

Outside zone 

Fractal model Inside zone 

Outside 

zone 

True positive (A) 

False negative (C) 

TypeIerror=C/(A+C) 

Overallaccuracy=(A+D)/(A+B

+C+D) 

False positive (B) 

True negative (D) 

TypeIIerror=B/(B+D) 

 814 

Table 4 815 

  Potassic alteration of geological 

model 

Inside zones       Outside zones 

C–V fractal model of 

highly mineralized 

zones 

 

Inside zones 

Outside zones 

A  2850          B   1360 

C  77927         D   76913 

T1E  0.96        T2E  0.02 

OA             0.50 

S–V fractal model of 

supergene enrichment 

zones 

 

Inside zones 

Outside zones 

 

 

A  4131          B  2318 

C  73985         D  74726 

T1E  0.95        T2E  0.03 

OA             0.52 

 816 

 817 
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Table 5 818 

  Phyllic alteration of 

geological model 

Inside zones  Outside zones 

C–V fractal model of 

moderately and weakly  

mineralized zones  

Inside zones 

Outside zones 

A   36518    B   48027 

C   25461    D   69155 

T1E  0.41    T2E  0.40 

OA          0.59 

S–V fractal model of the 

hypogene zones 

 

Inside zones 

Outside zones 

 

 

A  40080     B   44943 

C  26899     D   54239 

T1E  0.40    T2E  0.45 

OA          0.56 
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