
We would like to thank the editor and reviewers for giving us insightful suggestions 

which would help us in depth to improve the quality of the paper. We made a 

significant revision and the detailed responses are as follows. 

 

Response to Referee comment 1: 

Specific comments: 

The language is quite poor as it presents some traduction and grammar errors and it is 

sometimes difficult to follow the logic of the text. Some parts are rather obscure (e.g. 

lines 123-124 or 249-253).  

Response: We have tried our best to improve the grammatical errors and also 

consulted an English speaker. We hope it will meet with approval. A revision by a 

mother-tongue has been uploaded. The lines 123-124 have been revised as the lines 

149-157 in a new revision of this manuscript. The lines 249-253 have been revised as 

the lines 286-294 in a new revision of this manuscript. 

 

1. The histogram of Cu % (Fig. 5) seems to be log-normal. If this is the case, the 

statistical results (mean value and semivariogram parameters) can be biased. The 

authors are invited to check data distribution and, in case, to make a logarithmic 

transformation. 

Response 1: Thank you. Accept this point. We have checked the Cu data distribution 

of Pulang deposit. We made a logarithmic transformation for the original data. The 

histogram and Q-Q plot of the log-transformed Cu data indicate that the distribution 

of Cu data is log-normal (Fig. 5). We revised the statistical results. The experimental 

semivariogram of Cu data of Pulang deposit indicates a range and nugget effect of 

320.0 m and 0.25, respectively (Fig. 6). 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Histograms of (a) the Cu raw and (b) logarithmic transformation data and (c) 

Q-Q plot of the log-transformed Cu data in the Pulang deposit. 

 



 

Fig. 6. The experimental semivariogram of Cu data in Pulang deposit. 

 

2. The authors, following Afzal et al. (2011), apply kriging in order to make a 3D 

interpolation of Cu content. It is not clear if authors use kriging or block kriging. The 

last procedure in particular (but even the first one) introduces a bias because the 

fractal behaviour refers to interpolated concentration and not to original data and this 

aspect may influence fractal analysis. I suggest adding comments on the consequences 

of the application of an interpolation method on the found fractal ranges. 

Response 2: Thank you. Accept this point. The 3D model of the Cu concentration 

distribution of the Pulang deposit was produced with the ordinary kriging method 

using Geovia Surpac software on the basis of the semivariogram and anisotropic 

ellipsoid. Fundamentally, the accuracy of the interpolation results mainly depends on 

whether the interpolation model accurately fits the spatial distribution characteristics 

of the deposit. The original drillhole data of ore element concentrations were 

interpolated by using the ordinary kriging method to calculate the V(≤υ) and V(≥υ) 

enclosed by a concentration contour in a 3D model in this study. The method estimates 

values in unsampled locations based on the moving average of the interest variables, 

satisfying various distribution forms of data. Ordinary kriging is a spatial estimation 

method that provides a minimum error-variance estimate of any unsampled value. The 



correct variogram in kriging interpolation can guarantee the accuracy of the 

interpolation results. The accuracy of the spatial interpolation analysis is verified by 

comparing the difference between the measured values and the predicted values to 

select the best variogram model. In order to test the variogram model, the 

cross-validation method is used to determine whether the parameters of the variogram 

model are correct (Fig. 7). The distribution of the residual is normal and the mean of 

error between the actual and estimated Cu grade values is equal to 0 (Table 1). This 

result indicates that this model is reasonable and that the variogram parameters used 

for estimating the Cu grade are unbiased. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The cross-validation results: (a) residual VS Cu grade; (b) the residual 

distribution histogram. 

 

Table 1 The results of statistical characteristics of the residual. 

Variables Residual 

Mean 0.000 

Variance 0.016 

Standard Deviation 0.127 

 

 

 

 



3. The paper basically presents a comparison between two methods of analysis, for 

this reason, more comments should be added in the conclusions instead of simply 

describing the results. 

Response 3: Thank you. Accept this point. We have revised the conclusions. Given 

the referee comment 2, we have tried to add the N-S fractal model to improve the 

structure of the paper and revolutionize the style of the paper. We have added more 

comments and rewritten the conclusion as follows. 

In many cases, drillhole logging is dealing with the lack of proper diagnosis of 

geological phenomena, which can undermine the delineation of mineralized zones 

because it depends on the subjective interpretation of individual loggers, and no two 

loggers provide the same interpretations. However, conventional geological modeling 

based on drillhole data is fundamentally important for understanding the orebody 

spatial structure. Grades of ore elements are not determined by conventional methods 

of geological ore modeling, while the variation in ore grades in a mineral deposit is an 

obvious and salient feature. Given the problems mentioned above, using a series of 

newly established methods based on mathematical analyses such as fractal modeling 

seems to be inevitable. 

In this paper, the number-size (N-S), concentration-volume (C-V) and power 

spectrum-volume (S-V) fractal models were used to delineate and recognize various 

Cu mineralized zones of the Pulang porphyry copper deposit in the southern end of 

the Yidun continental arc, Southwest China. All these fractal models reveal that 

high-grade Cu mineralized zones are situated in the central and southern parts of the 

deposit. The Cu threshold values of highly mineralized zones are 1.45% and 1.88% 

based on the N-S and C-V fractal models. The Cu threshold of supergene enrichment 

zones is 1.33% based on the S-V fractal model. The models of moderately 

mineralized zones contain 0.28-1.45% Cu according to the N-S model and 1.48-1.88% 

Cu according to the C-V model. The hypogene zones contain 0.23-1.33% Cu 

according to the S-V model. The N-S model reveals weakly mineralized zones and 

barren host rocks containing <0.28% Cu. In contrast, the C-V model reveals that the 

barren host rocks contain <0.25% and that the weakly mineralized zones contain 



0.25-1.48% Cu. The S-V model reveals that the barren host rock and leached zone 

contain <0.23% Cu. 

The comparison between highly mineralized zones based on the fractal models 

and potassic zones resulting from the 3D geological model illustrates that the S-V 

fractal model is better than the N-S and C-V model because the number of overlapped 

voxels (A) in the S-V model is higher than those in the N-S and C-V model. The 

overall accuracies for the C-V, N-S and S-V models are 0.50, 0.51 and 0.52, 

respectively (Table 6), which indicates that the S-V model gives the best results for 

identifying highly mineralized zones in the deposit. On the other hand, the correlation 

(from OA results) between the highly mineralized zones obtained from S-V modeling 

and the potassic alteration zones is better than those of the N-S and C-V models 

because of a strong proportional relationship between the extension and positions of 

the voxels in the S-V model and potassic alteration zones in the 3D geological model. 

A comparison between phyllic alteration zones obtained from the 3D geological 

model and moderate grade mineralization zones obtained from the fractal models 

indicates that the OA values of the C-V, N-S and S-V fractal methods in reference to 

the phyllic alteration zones of the geological model are 0.59, 0.54 and 0.56, 

respectively. The overall accuracy of the moderately and weakly mineralized zones 

obtained from C-V modeling is higher than the mineralized zones obtained from N-S 

and S-V modeling (Table 7). 

According to the correlation between the results driven by fractal modeling and 

geological logging from drillholes in the Pulang porphyry copper deposit, high-grade 

mineralization zones generated by fractal models, especially the S-V model, have a 

better correlation with potassic alteration zones resulting from the 3D geological 

model than from the N-S and C-V models. The highly and moderately mineralized 

zones obtained from the fractal models are both situated in the southern and central 

parts of the Pulang deposit and coincide with potassic and phyllic alteration zones. 

There is a better relationship between the moderately and weakly mineralized zones 

derived by the C-V model and the phyllic alteration zones from the 3D geological 

model than those derived by the N-S and S-V models. 



4. The lines 268-274 refer to particular samples that could validate results, but the 

outcome is not clear. 

Response 4: Thank you. Accept this point. We have revised this part. 

It could be considered that there are spatial correlations between different 

modeled Cu zones and geological features such as alterations and mineralogy. Several 

samples were collected from different drillholes in different grade mineralization 

zones of the Pulang deposit to validate the results of the fractal models. These 

samples were analyzed by microscopic identification and XRF (X-ray fluorescence 

spectrometry). The PL-B82 sample was collected from the drillhole situated in a 

high-grade mineralization zone and includes a high chalcopyrite content and some 

molybdenite (Fig. 16a). The PL-B62 sample was collected from the drillhole situated 

in a moderate-grade mineralization zone and includes a low chalcopyrite content and 

some pyrrhotite in the polished section (Fig. 16b). The PL-B74 sample was collected 

from the drillhole located in a weakly mineralized zone with lower chalcopyrite 

content and some pyrrhotite (Fig. 16c and Fig. 16d). The results obtained from the 

mineralogy, microscopic identification and drillhole scanning by XRF of these 

samples indicate that the Cu concentrations are 1.80%, 1.32% and 0.41% in the 

PL-B82, PL-B62 and PL-B74 samples, respectively (Table 8). 

Table 8 

Sample no. Mineralized zones obtained by 

fractal models 

Cu(%) 

PL-B74 Weakly mineralized zones 0.41 

PL-B62 Moderately mineralized zones 1.32 

PL-B82 Highly mineralized zones 1.80 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16. Chalcopyrite content in several samples based on mineralographical study: (a) 

PL-B82 sample was collected from the drillhole situated in the high grade 

mineralization zones.; (b) PL-B62 sample was collected from the drillhole situated in 

the moderately grade mineralization zones.; (c) and (d) PL-B74 sample was collected 

from the drillhole located at the weakly mineralized zones. 

 

5. Many of the articles listed in References are not cited in the text. 

Response 5: Thank you. Accept this point. We have revised the manuscript. Many of 

the articles listed in references have been added and cited in the text. A new revision 

by a mother-tongue has been uploaded. 

 

 

 

 

 

 

 



Response to Referee comment 2: 

1. Typing/spacing issues 

Response 1: Thank you. Accept this point. We have revised it as suggested. A 

revision by a mother-tongue has been uploaded. 

 

2. Grammatical issues 

Response 2: Accept this point. We have tried our best to improve the grammatical 

issues and also consulted an English speaker, hope it will meet with approval. A 

revision by a mother-tongue has been uploaded. 

3. You can improve the paper with many other, even newer references. 

Response 3: Accept this point. We have added many newer references to improve the 

paper. And a new revision of this manuscript has been uploaded. 

 

4. In some cases, the paper is prolonged by repeating obvious things. For example, 

about the amounts of the thresholds, some tables could be informative enough and no 

need to mention them. 

Response 4: Accept this point. We have checked this paper and found that the paper 

is prolonged by repeating obvious things for example the amounts of the thresholds. 

We have deleted these obvious things. And a new revision of this manuscript has been 

uploaded. 

 

5. Honestly to me, there was nothing new in this paper and the paper was totally like 

what Afzal et al have done but on a different case study. This is acceptable, but the 

readers may need at least a very tiny interesting, innovative or new thing in it. If you 

make something different, for example from a different point of view, it would make 

a big bonus for your paper. So, I believe if you revolutionize the style of the paper or 

even add one more fractal model, like N-S fractal model, to improve and change the 

structure of the paper, it would be great. 

Response 5: Accept this point. Given the referee comments, we have tried to add the 

N-S fractal model to improve the structure of the paper and revolutionize the style of 



the paper. Furthermore, the results of N-S fractal model were compared with the C-V 

and S-V fractal models. 

Number-size (N-S) fractal model 

The number-size (N-S) method proposed by Mandelbrot (1983) can be utilized 

to describe the distribution of geochemical populations (Sadeghi et al., 2012). In this 

method, geochemical data does not undergo any preprocessing (Mao et al., 2004). 

This model shows a relationship between desirable attributes (e.g., Cu concentration 

in this study) and their cumulative number of samples (Sadeghi et al.,2012). A 

power-law frequency model has been proposed to explain the N-S relationship 

according to the frequency distribution of elemental concentrations and cumulative 

number of samples with those attributes (e.g., Li et al., 1994; Sadeghi et al., 2012; 

Sanderson et al.,1994; Shi and Wang, 1998; Turcotte, 1996; Zuo et al., 2009a). 

The N-S model proposed by Mandelbrot (1983) can be expressed as follows: 

               N(≥ρ)=Fρ-D                                        (1) 

where ρ denotes the element concentration, N(≥ρ) denotes the cumulative number of 

samples with concentrations greater than or equal to ρ, F is a constant and D is the 

scaling exponent or fractal dimension of the distribution of element concentrations. 

According to Mandelbrot (1983), log-log plots of N(≥ρ) versus ρ show linear 

segments with different slopes -D corresponding to different concentration intervals. 

Number-size (N-S) fractal modeling 

The N-S model was applied to the Cu data (Fig. 8). The selection of breakpoints 

as threshold values is an objective decision because geochemical populations are 

defined by different line segments in the N-S log-log plot. The straight fitted lines 

were obtained based on least-square regression (Agterberg et al., 1996; Spalla et al., 

2010). In other words, the intensity of element enrichment is depicted by each slope 

of the line segments in the N-S log-log plots (Afzal et al., 2010; Bai et al., 2010). 

   Based on the classification of the 3D model of Cu data and the thresholds obtained 

from the N-S fractal model (Table 2), highly mineralized zones are situated in the 

southern and central parts of the Pulang deposit and coincide with the 



potassium-silicate alterations. However, small and highly mineralized zones are 

located in the central parts of the Pulang deposit (Fig. 9). Moderately mineralized 

zones occur along a northwest-southeast trend and correlate with the phyllic zones. 

Weakly mineralized zones and barren host rocks are situated in the marginal parts of 

the area. 

 

Fig.8. N–S log–log plot for Cu concentrations in the Pulang deposit. 

 

Table 2 Thresholds concentrations obtained by using N-S model based on Cu% in 

Pulang deposit. 

Mineralized zones Thresholds(Cu%) Range(Cu%) 

Barren host rock and 

weakly mineralized 

       <0.28 

Moderatelymineralized 0.28      0.28-1.45 

Highly mineralized 1.45      >1.45 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig.9. Zones in the Pulang deposit based on thresholds defined from the N–S fractal 

model of Cu data: (a) highly mineralized zones; (b) moderately mineralized zones; (c) 

weakly mineralized zones and barren host rocks. (Scale is in m3.) 

 

 

 

 

 

 

 

 

 



A comparison between highly mineralized zones based on the fractal models and 

potassic alteration zones resulting from the 3D geological model shows that there is a 

similarity among these fractal models. The overall accuracies for the C-V, N-S and 

S-V models are 0.50, 0.51 and 0.52, respectively (Table 6), which indicate that the 

S-V model gives better results for identifying highly mineralized zones in the deposit. 

The number of overlapped voxels (A) in the S-V model is higher than those in the 

N-S and C-V models. The correlation (from OA results) between highly mineralized 

zones obtained from S-V modeling and potassic alteration zones is better than that of 

the N-S and C-V model because of a strong proportional relationship between the 

extension and positions of voxels in the S-V model and the potassic alteration zones 

in the 3D geological model. 

A comparison between phyllic alteration zones resulting from the 3D geological 

model and moderately and weakly mineralized zones from the fractal modeling shows 

that the overall accuracies of the C-V, N-S and S-V fractal models with respect to 

phyllic alteration zones of the geological model are 0.59, 0.54 and 0.56, respectively. 

The overall accuracy of moderately and weakly mineralized zones obtained from C-V 

modeling is higher than that of mineralized zones obtained from N-S and S-V 

modeling (Table 7). On the other hand, moderately mineralized zones defined by C-V 

modeling overlap with phyllic zones defined by the 3D geological model. However, 

the results of the C-V model are more accurate than those of the N-S and S-V models 

with respect to the phyllic zones defined by the 3D geological model. 

 

 

 

 

 

 

 

 

 

 

 

 

 



(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig.14. Highly mineralized zones in the Pulang deposit: (a) potassium-silicate zone 

resulted from the 3D geological model from drillhole geological data; (b) N–S 

modeling of Cu data; and (c) C–V modeling of Cu data; (d) S–V modeling of Cu data   

(Scale is in m3.) 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Fig.15. Moderately mineralized zones in the Pulang deposit:(a) quartz–sericite zones 

resulted from the 3D geological model from drillhole geological data; (b) N–S 

modeling of Cu data; and (c) C–V modeling of Cu data; (d) S–V modeling of Cu data 

(Scale is in m3.) 



Table 6 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 

with respect to potassic alteration zone resulted from geological model and threshold 

values of Cu obtained through C–V , N–S and S–V fractal modeling. 

  Potassic alteration of geological 

model 

Inside zones       Outside zones 

C–V fractal model of 

highly mineralized zones 

 

Inside zones 

Outside zones 

A  2850          B   1360 

C  77927         D   76913 

T1E  0.96        T2E  0.02 

OA             0.50 

N–S fractal model of 

highly mineralized zones 

 

 

S–V fractal model of 

supergene enrichment 

zones 

  

Inside zones 

Outside zones 

 

 

Inside zones 

Outside zones 

 

 

A   3092         B   1570 

C  75025         D   75473 

T1E  0.96        T2E  0.02 

OA             0.51 

A  4431         B  2318 

C  72985        D  75726 

T1E  0.94       T2E  0.03 

OA             0.52 

 

Table 7 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 

with respect to phyllic alteration zone resulted from geological model and threshold 

values of Cu obtained through C–V, N–S and S–V fractal modeling. 

  Phyllic alteration of 

geological model 

Inside zones  Outside zones 

C–V fractal model of 

moderately and weakly 

mineralized zones  

Inside zones 

Outside zones 

A   36518     B   48027 

C   25461     D   69155 

T1E  0.41     T2E  0.40 

OA           0.59 

N–S fractal model of 

moderately mineralized 

zones  

 

S–V fractal model of the 

hypogene zones 

 

Inside zones 

Outside zones 

 

 

Inside zones 

Outside zones 

 

 

A   35555     B   46943 

C   23955     D   48223 

T1E  0.40     T2E  0.49 

OA           0.54 

A  40080      B   44943 

C  26899      D   54239 

T1E  0.40     T2E  0.45 

OA           0.56 
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Abstract 9 

   The aim of this study is to delineate and identify various mineralized zones and 10 

barren host rocks based on surface and subsurface lithogeochemical data from the 11 

Pulang porphyry copper deposit, Southwest China, utilizing the number-size (N-S), 12 

concentration-volume (C-V) and power spectrum-volume (S-V) fractal models. The 13 

N-S model reveals three mineralized zones characterized by Cu thresholds of 0.28% 14 

and 1.45%: <0.28% Cu represents weakly mineralized zones and barren host rocks, 15 

0.28%-1.45% Cu represents moderately mineralized zones, and >1.45% Cu represents 16 

highly mineralized zones. The results obtained by the C-V model depict four 17 

geochemical zones defined by Cu thresholds of 0.25%, 1.48% and 1.88%, 18 

representing nonmineralized wall rocks (Cu<0.25%), weakly mineralized zones 19 

(0.25%-1.48%), moderately mineralized zones (1.48%-1.88%), and highly 20 

mineralized zones (Cu>1.88%). The S-V model is used by performing a 3D fast 21 

Fourier transformation of assay data in the frequency domain. The S-V model reveals 22 

three mineralized zones characterized by Cu thresholds of 0.23% and 1.33%: <0.23% 23 

Cu represents leached zones and barren host rocks, 0.23%-1.33% Cu represents 24 

hypogene zones, and >1.33% Cu represents supergene enrichment zones. All the 25 

multifractal models indicate that high-grade mineralization occurs in the central and 26 

southern parts of the ore deposit. Their results are compared with the alteration and 27 



mineralogical models resulting from the 3D geological model using a logratio matrix. 28 

The results show that the S-V model is best at identifying highly mineralized zones in 29 

the deposit. However, the results of the C-V model for moderately and weakly 30 

mineralized zones are more accurate than those obtained from the N-S and S-V 31 

models. 32 

Keywords: Fractal; Concentration-volume (C-V) model; Number-size (N-S) model; 33 

Power spectrum-volume (S-V) model; Mineralized zone; the Pulang porphyry copper 34 

deposit 35 

1. Introduction 36 

   The definition and delineation of different mineralized zones and non–mineralized 37 

wall rocks are the main goal in economic geology and mineral exploration. 38 

Investigation of ore mineralogy and paragenetic sequence provides useful data on 39 

ore-forming processes in deposits because typical characteristics of various types of 40 

ore deposits are reflected by their mineral assemblages (Craig and Vaughan, 1994; 41 

White and Hedenquist, 1995). Common methods generally use mineralography, 42 

petrography and alteration mineral assemblage analysis to delineate various 43 

mineralized zones in porphyry deposits (Beane, 1982; Schwartz, 1947; Sillitoe, 1997; 44 

Berger et al., 2008). Lowell (1968) first proposed a conceptual model of the lateral 45 

and vertical variations in mineralogy within alteration zones. Some similar models 46 

were developed for potassic alteration, which is usually situated in the center and deep 47 

parts of porphyry ore deposits, based on this conceptual model (Sillitoe and Gappe, 48 

1984; Cox and Singer, 1986; Melfos et al., 2002). Fluid inclusion and stable isotope 49 

studies are other methods used to outline different mineralization phases based on 50 

thermometric and isotope element parameters and other geological parameters (e.g., 51 

Boyce et al., 2007; Faure et al., 2002; Wilson et al., 2007). Drillhole data and logging 52 

information, including mineralographical information, host rock changes and 53 

alterations are helpful in delineating mineralization zones. Different geological 54 

interpretations could be used to detect zone boundaries, which may also lead to 55 

different results because the elemental grade distribution may not be taken into 56 



consideration. 57 

Non-Euclidean fractal geometry (Mandelbrot, 1983) is an important branch of 58 

nonlinear mathematical sciences and has been applied in various research fields of the 59 

geosciences since the 1980s. The relationships between geology, geochemistry and 60 

mineralogical settings and spatial information can be researched by methods based on 61 

fractal geometry (Afzal et al., 2011; Carranza, 2008, 2009). Bolviken et al. (1992) 62 

and Cheng et al. (1994) have shown that geochemical patterns of various elements 63 

have fractal dimensions. The concentration-area (C-A) model was proposed by 64 

Cheng et al. (1994) to recognize geochemical anomalies from background 65 

concentrations and calculate elemental thresholds of different geochemical data. 66 

Furthermore, many other fractal models have been proposed and applied in 67 

geochemical exploration work, including the number-size (N-S) fractal model 68 

proposed by Mandelbrot (1983) and Agterberg (1995), the power spectrum-area (S-A) 69 

fractal model proposed by Cheng et al. (1999), the concentration-distance (C-D) 70 

fractal model proposed by Li et al. (2003), the concentration-volume (C-V) fractal 71 

model proposed by Afzal et al. (2011) and the power spectrum-volume (S-V) fractal 72 

model proposed by Afzal et al. (2012). 73 

Methods of fractal analysis also illustrate the relationships between geological, 74 

geochemical and mineralogical settings and spatial information derived from the 75 

analysis of mineral deposit occurrence data (Carranza, 2008; Carranza et al., 2009; 76 

Goncalves et al., 2001). Various geochemical processes can be described based on the 77 

differences in fractal dimensions obtained from the analysis of relevant geochemical 78 

data. Afzal et al. (2011) considered that the log-log plots obtained by fractal methods 79 

are useful tools to delineate different geological populations of geochemical data, and 80 

the thresholds could be determined as some breakpoints in those plots. 81 

The application of fractal models to delineate various grade mineralization zones 82 

was dependent on the relationships between the metal grades and volumes (Afzal et 83 

al., 2011; Agterberg et al., 1993; Cheng, 2007; Sim et al., 1999; Turcotte, 1986). Afzal 84 

et al. (2011 and 2012) proposed a concentration-volume (C-V) and power 85 

spectrum-volume (S-V) fractal model to delineate different porphyry-Cu mineralized 86 



zones and barren host rocks. In this paper, N-S, C-V and S-V fractal models were 87 

applied to delineate various mineralized zones and barren host rocks in the Pulang 88 

porphyry copper deposit, Yunnan, Southwest China. 89 

2. Fractal models 90 

2.1. Number-size (N-S) fractal model 91 

The number-size (N-S) method proposed by Mandelbrot (1983) can be utilized 92 

to describe the distribution of geochemical populations (Sadeghi et al., 2012). In this 93 

method, geochemical data does not undergo any preprocessing (Mao et al., 2004). 94 

This model shows a relationship between desirable attributes (e.g., Cu concentration 95 

in this study) and their cumulative number of samples (Sadeghi et al., 2012). A 96 

power-law frequency model has been proposed to explain the N-S relationship 97 

according to the frequency distribution of elemental concentrations and cumulative 98 

number of samples with those attributes (e.g., Li et al., 1994; Sadeghi et al., 2012; 99 

Sanderson et al., 1994; Shi and Wang, 1998; Turcotte, 1996; Zuo et al., 2009a). 100 

The N-S model proposed by Mandelbrot (1983) can be expressed as follows: 101 

N(≥ρ)=Fρ-D                                        (1) 102 

where ρ denotes the element concentration, N(≥ρ) denotes the cumulative number of 103 

samples with concentrations greater than or equal to ρ, F is a constant and D is the 104 

scaling exponent or fractal dimension of the distribution of element concentrations. 105 

According to Mandelbrot (1983), log-log plots of N(≥ρ) versus ρ show linear 106 

segments with different slopes -D corresponding to different concentration intervals. 107 

2.2. Concentration-volume (C-V) fractal model 108 

Afzal et al. (2011) proposed a concentration-volume (C-V) fractal model based 109 

on the same principle of the concentration-area (C-A) model (Cheng et al., 1994) to 110 

analyze the relationship between the concentration of ore elements and accumulative 111 

volume with concentrations greater than or equal to a given value (Afzal et al., 2011; 112 

Zuo et al., 2016; Lin et al., 2013; Sadeghi et al., 2012; Soltani et al., 2014; Sun and 113 

Liu, 2014; Wang, G. et al., 2012). This model can be expressed as follows: 114 



V(ρ≤υ)∝ρ-a
1; V(ρ≥υ)∝ρ-a

2                                                (2) 115 

V(ρ≥υ) and V(ρ≤υ) represent the occupied volumes with concentrations above or 116 

equal to and less than or equal to the contour value υ; υ indicates the threshold value 117 

of a zone; and a1 and a2 are the characteristic indexes. The thresholds obtained by this 118 

method indicate the boundaries between the different grade mineralization zones and 119 

barren host rocks of ore deposits. The drillhole data of the elemental concentrations 120 

were interpolated by using geostatistical estimation to compute V(ρ≥υ) and V(ρ≤υ), 121 

which are the volume values enclosed by a contour level ρ in a 3D model. 122 

2.3. Power spectrum-volume (S-V) fractal model 123 

    Different geochemical patterns in the spatial domain could be seen as layered 124 

signals of various frequencies. Cheng et al. (1999) proposed the power spectrum-area 125 

(S-A) fractal model to recognize geochemical anomalies from backgrounds utilizing 126 

the method of spectrum analysis in the frequency domain according to this argument. 127 

This model is combined with a concentration-area (C-A) model (Cheng et al. 1994), 128 

offering a useful tool to determine an optimum threshold value between various 129 

patterns based on the scaling property. 130 

Afzal et al. (2012) proposed the power spectrum-volume (S-V) fractal model to 131 

delineate different grade mineralization zones based on the same principle as the S-A 132 

model proposed by Cheng et al. (1999). The S-V model was utilized in the frequency 133 

domain by applying a fast Fourier transformation to the assay data. The straight lines 134 

obtained by log-log plotting indicate the relationships between the power spectra and 135 

relevant volumes of ore elements. These relationships were utilized to recognize the 136 

hypogene zones and supergene enrichment zones from the barren host rocks and the 137 

leached zone of the deposit. The recognition of various mineralization zones is based 138 

on the power-law relationships between the power spectra and occupied volumes. The 139 

formula is as follows: 140 

V(≥S)∝S−2/β                                          (3) 141 

where the power-law relationships between the power spectra (S=-||F(Wx, Wy, 142 

Wz)||) and occupied volumes with power spectra greater than or equal to S can be 143 



indicated by this form; F represents the fast Fourier transformation of the 144 

measurement μ(x, y, z); and Wx, Wy and Wz indicate wave numbers or angular 145 

frequencies in the X, Y and Z directions in a 3D model. The range of index β is 0<β≤2 146 

or 1≤2/β with the special cases of β=2 and 2/β=1 corresponding to nonfractal and 147 

monofractal expressions, and 1<2/β corresponding to multifractals (Cheng, 2006). 148 

By using the method of geostatistical estimation, the drillhole data of elemental 149 

concentration values were interpolated to construct a block model of ore element 150 

distribution. The power spectrum values can be obtained by 3D fast Fourier 151 

transformation of the ore element grades. The logarithm of all the power spectrum 152 

values and accumulative volume values were calculated. Additionally, the log-log plot 153 

between power spectrum and volume was drawn according to previously determined 154 

values. Then, the filters were constructed on the basis of threshold values obtained by 155 

the log-log plot of S-V. Finally, the power spectra were converted back to the space 156 

domain by utilizing inverse fast Fourier transformation. 157 

3. Geological setting of the Pulang porphyry copper deposit 158 

The Pulang porphyry copper deposit is situated in the southern end of the Yidun 159 

continental arc, Southwest China (Fig. 1). The continental arc was produced due to the 160 

westward subduction of Garze–Litang oceanic crust (Deng et al., 2014b, 2015; Wang 161 

et al., 2014). The Pulang ore deposit, one of the largest porphyry copper deposits in 162 

China (Deng et al., 2012, 2014a; Mao et al., 2012, 2014), is characterized by a typical 163 

porphyry-type alteration zone. The geological characteristics of the deposit, including 164 

the alteration types and their zonation, the geometry of the orebody, the metallogenic 165 

time and the geodynamic settings, have been systematically researched (Leng et al., 166 

2012; Li et al., 2011, 2013). The deposit consists of five ore-bearing porphyry bodies 167 

covering an area of approximately 9 km2, and the explored ore tonnage of Cu is 168 

estimated to be 6.50 Mt (Liu et al., 2013). 169 

The outcrop strata of the Pulang deposit are dominated by Upper Triassic 170 

Tumugou Formation clastic rocks and andesite and Quaternary sediments (Fig. 1c). 171 

The Triassic porphyry intrusions primarily comprise quartz diorite porphyry, quartz 172 



monzonite porphyry, quartz diorite porphyrite and granodiorite porphyry. The 173 

Tumugou Formation strata were intruded by the quartz diorite porphyry with an age 174 

of 219.6 ± 3.5 Ma (zircon U-Pb dating) (Pang et al., 2009). Then, quartz monzonite 175 

porphyry with an age of 212.8 ± 1.9 Ma and granodiorite porphyry with an age of 176 

206.3 ± 0.7 Ma (zircon U-Pb dating) (Liu et al., 2013) crosscut the quartz diorite 177 

porphyry. The quartz monzonite porphyry is considered to be associated with 178 

mineralization because its age is similar to the molybdenite Re-Os isochron age of 179 

213 ± 3.8 Ma from the orebody (Zeng et al., 2004). Moreover, the Cu concentrations 180 

of the quartz monzonite porphyry are higher than those of the other porphyries. 181 

The porphyry-type alteration zones transition from early potassium-silicate 182 

alteration through quartz-sericite alteration to propylitization, upward and outward 183 

from the core of the quartz monzonite porphyry (Fig. 4). The wall rocks near the 184 

porphyries were mostly changed into hornfels. Systematic drilling has demonstrated 185 

that the potassium-silicate and quartz-sericite zones host the main orebodies, 186 

constituting the core of mineralized zones. The propylitic zones and hornfels only 187 

develop weak mineralization. The orebodies occur mainly in potassium-silicate and 188 

quartz-sericite and occur as veins in the propylitic zones and hornfels. The major rock 189 

types in the deposit are quartz monzonite porphyry, quartz diorite porphyrite, granite 190 

diorite porphyry, quartz diorite porphyry and hornfels (Fig. 2). Metallic minerals 191 

mainly include pyrite, chalcopyrite with a small amount of molybdenite and pyrrhotite 192 

(Fig. 3). 193 

4. Fractal modeling 194 

Based on the geological data (which include the collar coordinates of each 195 

drillhole, azimuth and dip (orientation), lithology and mineralogy) recorded from 130 196 

drillholes in the Pulang deposit, 20492 lithogeochemical samples were collected at 2 197 

m intervals. The laboratory of the 3rd Geological Team of the Yunnan Bureau of 198 

Geology and Mineral Resources utilized the iodine-fluorine and oscillo polarographic 199 

method to analyze the concentrations of Cu and associated paragenetic elements, and 200 

its analytical uncertainty is less than 7% (Yunnan Diqing Nonferrous Metal Co. Ltd., 201 



2009). Only Cu concentrations were studied in this study. The histogram and Q-Q plot 202 

of the log-transformed Cu data indicate that the distribution of Cu data is log-normal 203 

(Fig. 5). The experimental semivariogram of the Cu data of the Pulang deposit 204 

indicates a range and nugget effect of 320.0 m and 0.25, respectively (Fig. 6). The 205 

spherical model is fitted with regard to the experimental semivariogram. The 3D 206 

model of the Cu concentration distribution of the Pulang deposit was produced with 207 

the ordinary kriging method using Geovia Surpac software on the basis of the 208 

semivariogram and anisotropic ellipsoid. Fundamentally, the accuracy of the 209 

interpolation results mainly depends on whether the interpolation model accurately 210 

fits the spatial distribution characteristics of the deposit. Ordinary kriging was used 211 

because it is compatible with a stationary model; it only requires a variogram, and it is 212 

the most commonly used form of kriging (Chilès and Delfiner, 1999). Goovaerts 213 

(1997) showed that the values in unsampled locations are estimated by the ordinary 214 

kriging method according to the moving average of the interest variables, satisfying 215 

various distribution forms of data. Ordinary kriging is a spatial estimation method in 216 

which the error variance is minimized. This error variance is based on the 217 

configuration of the data and its variogram (Yamamoto, 2005). The correct variogram 218 

in kriging interpolation can guarantee the accuracy of the interpolation results. 219 

The accuracy of the spatial interpolation analysis is verified by comparing the 220 

difference between the measured values and the predicted values to select the best 221 

variogram model. To test the variogram model, the cross-validation method was used 222 

to determine whether the parameters of the variogram model were correct. The 223 

distribution of the residual is normal (Fig. 7), and the mean error between the actual 224 

and estimated Cu grades is equal to 0 (Table 1). This result indicates that this model is 225 

reasonable and that the variogram parameters used for estimating the Cu grade are 226 

unbiased. 227 

The obtained block models were used as inputs to the fractal models. The Pulang 228 

deposit was modeled by 20 m×20 m×5 m voxels, and they were decided by the grid 229 

drilling dimensions and geometrical properties of the deposit (David, 1970). The 230 

Pulang deposit is totally modeled with 150973 voxels. The terms “highly”, 231 



“moderately” and “weakly” have been used to classify mineralized zones based on 232 

fractal modeling, in accordance with the classification of the ore grades in the deposit. 233 

4.1. Number-size (N-S) fractal modeling 234 

   The N-S model was applied to the Cu data (Fig. 8). The selection of breakpoints 235 

as threshold values is an objective decision because geochemical populations are 236 

defined by different line segments in the N-S log-log plot. The straight fitted lines 237 

were obtained based on least-square regression (Agterberg et al., 1996; Spalla et al., 238 

2010). In other words, the intensity of element enrichment is depicted by each slope 239 

of the line segments in the N-S log-log plots (Afzal et al., 2010; Bai et al., 2010). 240 

   Based on the classification of the 3D model of Cu data and the thresholds obtained 241 

from the N-S fractal model (Table 2), highly mineralized zones are situated in the 242 

southern and central parts of the Pulang deposit and coincide with the 243 

potassium-silicate alterations. However, small and highly mineralized zones are 244 

located in the central parts of the Pulang deposit (Fig. 9). Moderately mineralized 245 

zones occur along a northwest-southeast trend and correlate with the phyllic zones. 246 

Weakly mineralized zones and barren host rocks are situated in the marginal parts of 247 

the area. 248 

4.2. Concentration-volume (C-V) fractal modeling 249 

    The occupied volumes corresponding to the Cu grades were computed to obtain 250 

the concentration-volume model according to the 3D model of the Pulang deposit. 251 

Through the obtained C-V log-log plot, the threshold values of the Cu grades were 252 

determined (Fig. 10). These results indicate the power-law relationship between Cu 253 

grade and volume. According to these results (Table 3), the low-concentration zones 254 

exist in many parts of the deposit and occur along a northwest-southeast trend. 255 

Moderately and highly mineralized zones are situated in several parts of the central 256 

deposit and to the south of the deposit (Fig. 11). 257 

4.3. Power spectrum-volume (S-V) fractal modeling 258 

Based on the geological data (which include the collar coordinates of each 259 

drillhole, azimuth and dip (orientation), lithology and mineralogy) recorded from 130 260 



drillholes in the deposit, a 3D model and block model of the distribution of Cu in the 261 

Pulang deposit were constructed with ordinary kriging using Geovia Surpac software. 262 

The power spectrum (S) was calculated for the 3D elemental distribution using 263 

3D fast Fourier transformation in MATLAB (R2016a). The logarithmic values of the 264 

power spectra and relevant volumes were plotted against each other (Fig. 12). The 265 

straight lines fitted in the log-log plot indicate different relationships between the 266 

power spectra and occupied volumes. The thresholds of logS = 7.81 and logS = 8.70 267 

were determined by the log-log S-V plot. The 3D filters were designed to separate 268 

different mineralization zones on the basis of these threshold values. Inverse fast 269 

Fourier transformation was used to convert the decomposed components back into the 270 

space domain by using MATLAB (R2016a). According to the results, the Cu 271 

concentrations of the hypogene zones range from 0.23% to 1.33% (Table 4), and 272 

values of >1.33% Cu correspond to the supergene enrichment zones, whereas values 273 

of <0.23% Cu correspond to the leached zone and barren host rocks (Fig. 13). 274 

5. Comparison of the fractal models and geological model of the 275 

deposit 276 

    Alteration models have a key role in zone delineation and in presenting 277 

geological models, as described by Lowell and Guilbert (1970). The potassic and 278 

phyllic alterations control major mineralization within supergene enrichment and 279 

hypogene zones according to these models. Models of Cu mineralization zones 280 

derived via fractal models can be compared with geological data to validate the results 281 

of analysis in different porphyry Cu deposits. The results of the fractal modeling of 282 

the Pulang deposit were compared with the 3D geological model of the deposit 283 

constructed by using Geovia Surpac and drillhole data (Fig. 2). Moreover, the results 284 

obtained from these fractal models were controlled by mineralogical investigations. 285 

Carranza (2011) has illustrated an analysis for the calculation of spatial 286 

correlations between two binary datasets, especially mathematical and geological 287 

models. An intersection operation between the mineralization zones obtained from 288 

fractal models and the different alteration zones in the geological model was 289 



performed to derive the amount of voxels corresponding to each of the classes of 290 

overlap zones (Table 5). Using the obtained numbers of voxels, the Type I error (T1E), 291 

Type II error (T2E), and overall accuracy (OA) of the fractal model were estimated 292 

with respect to different alteration zones and the geological data (Carranza, 2011). 293 

The OAs of the fractal models of the mineralized zones were compared as follows. 294 

A comparison between highly mineralized zones based on the fractal models and 295 

potassic alteration zones resulting from the 3D geological model shows that there is a 296 

similarity among these fractal models. The overall accuracies for the C-V, N-S and 297 

S-V models are 0.50, 0.51 and 0.52, respectively (Table 6), which indicate that the 298 

S-V model gives better results for identifying highly mineralized zones in the deposit. 299 

The number of overlapped voxels (A) in the S-V model is higher than those in the 300 

N-S and C-V models. The correlation (from OA results) between highly mineralized 301 

zones obtained from S-V modeling and potassic alteration zones is better than that of 302 

the N-S and C-V model because of a strong proportional relationship between the 303 

extension and positions of voxels in the S-V model and the potassic alteration zones 304 

in the 3D geological model. 305 

A comparison between phyllic alteration zones resulting from the 3D geological 306 

model and moderately and weakly mineralized zones from the fractal modeling shows 307 

that the overall accuracies of the C-V, N-S and S-V fractal models with respect to 308 

phyllic alteration zones of the geological model are 0.59, 0.54 and 0.56, respectively. 309 

The overall accuracy of moderately and weakly mineralized zones obtained from C-V 310 

modeling is higher than that of mineralized zones obtained from N-S and S-V 311 

modeling (Table 7). On the other hand, moderately mineralized zones defined by C-V 312 

modeling overlap with phyllic zones defined by the 3D geological model. However, 313 

the results of the C-V model are more accurate than those of the N-S and S-V models 314 

with respect to the phyllic zones defined by the 3D geological model. 315 

It could be considered that there are spatial correlations between different 316 

modeled Cu zones and geological features such as alterations and mineralogy. Several 317 

samples were collected from different drillholes in different grade mineralization 318 

zones of the Pulang deposit to validate the results of the fractal models. These 319 



samples were analyzed by microscopic identification and XRF (X-ray fluorescence 320 

spectrometry). The PL-B82 sample was collected from the drillhole situated in a 321 

high-grade mineralization zone and includes a high chalcopyrite content and some 322 

molybdenite (Fig. 16a). The PL-B62 sample was collected from the drillhole situated 323 

in a moderate-grade mineralization zone and includes a low chalcopyrite content and 324 

some pyrrhotite in the polished section (Fig. 16b). The PL-B74 sample was collected 325 

from the drillhole located in a weakly mineralized zone with lower chalcopyrite 326 

content and some pyrrhotite (Fig. 16c and Fig. 16d). The results obtained from the 327 

mineralogy, microscopic identification and drillhole scanning by XRF of these 328 

samples indicate that the Cu concentrations are 1.80%, 1.32% and 0.41% in the 329 

PL-B82, PL-B62 and PL-B74 samples, respectively (Table 8). 330 

6. Conclusions 331 

   In many cases, drillhole logging is dealing with the lack of proper diagnosis of 332 

geological phenomena, which can undermine the delineation of mineralized zones 333 

because it depends on the subjective interpretation of individual loggers, and no two 334 

loggers provide the same interpretations. However, conventional geological modeling 335 

based on drillhole data is fundamentally important for understanding the orebody 336 

spatial structure. Grades of ore elements are not determined by conventional methods 337 

of geological ore modeling, while the variation in ore grades in a mineral deposit is an 338 

obvious and salient feature. Given the problems mentioned above, using a series of 339 

newly established methods based on mathematical analyses such as fractal modeling 340 

seems to be inevitable. 341 

In this paper, the number-size (N-S), concentration-volume (C-V) and power 342 

spectrum-volume (S-V) fractal models were used to delineate and recognize various 343 

Cu mineralized zones of the Pulang porphyry copper deposit in the southern end of 344 

the Yidun continental arc, Southwest China. All these fractal models reveal that 345 

high-grade Cu mineralized zones are situated in the central and southern parts of the 346 

deposit. The Cu threshold values of highly mineralized zones are 1.45% and 1.88% 347 

based on the N-S and C-V fractal models. The Cu threshold of supergene enrichment 348 



zones is 1.33% based on the S-V fractal model. The models of moderately 349 

mineralized zones contain 0.28-1.45% Cu according to the N-S model and 1.48-1.88% 350 

Cu according to the C-V model. The hypogene zones contain 0.23-1.33% Cu 351 

according to the S-V model. The N-S model reveals weakly mineralized zones and 352 

barren host rocks containing <0.28% Cu. In contrast, the C-V model reveals that the 353 

barren host rocks contain <0.25% and that the weakly mineralized zones contain 354 

0.25-1.48% Cu. The S-V model reveals that the barren host rock and leached zone 355 

contain <0.23% Cu. 356 

The comparison between highly mineralized zones based on the fractal models 357 

and potassic zones resulting from the 3D geological model illustrates that the S-V 358 

fractal model is better than the N-S and C-V model because the number of overlapped 359 

voxels (A) in the S-V model is higher than those in the N-S and C-V model. The 360 

overall accuracies for the C-V, N-S and S-V models are 0.50, 0.51 and 0.52, 361 

respectively (Table 6), which indicates that the S-V model gives the best results for 362 

identifying highly mineralized zones in the deposit. On the other hand, the correlation 363 

(from OA results) between the highly mineralized zones obtained from S-V modeling 364 

and the potassic alteration zones is better than those of the N-S and C-V models 365 

because of a strong proportional relationship between the extension and positions of 366 

the voxels in the S-V model and potassic alteration zones in the 3D geological model. 367 

A comparison between phyllic alteration zones obtained from the 3D geological 368 

model and moderate grade mineralization zones obtained from the fractal models 369 

indicates that the OA values of the C-V, N-S and S-V fractal methods in reference to 370 

the phyllic alteration zones of the geological model are 0.59, 0.54 and 0.56, 371 

respectively. The overall accuracy of the moderately and weakly mineralized zones 372 

obtained from C-V modeling is higher than the mineralized zones obtained from N-S 373 

and S-V modeling (Table 7). 374 

According to the correlation between the results driven by fractal modeling and 375 

geological logging from drillholes in the Pulang porphyry copper deposit, high-grade 376 

mineralization zones generated by fractal models, especially the S-V model, have a 377 

better correlation with potassic alteration zones resulting from the 3D geological 378 



model than from the N-S and C-V models. The highly and moderately mineralized 379 

zones obtained from the fractal models are both situated in the southern and central 380 

parts of the Pulang deposit and coincide with potassic and phyllic alteration zones. 381 

There is a better relationship between the moderately and weakly mineralized zones 382 

derived by the C-V model and the phyllic alteration zones from the 3D geological 383 

model than those derived by the N-S and S-V models. 384 
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Fig.1. Geological map of the Pulang porphyry copper deposit, SW China. Modified 617 

after Yunnan Diqing Nonferrous Metal Co. Ltd., 2009. 618 

Fig.2. Geological 3D models including lithology, alteration and 3D drill hole plot 619 

with the legend of each in the Pulang porphyry copper deposit. (Scale is in m3.) 620 

Fig.3. Photographs of alteration and mineralization in the Pulang porphyry copper 621 

deposit, SW China. (a) Quartz monzonite porphyry with potassium-silicate alteration; 622 

(b) Quartz diorite porphyrite with quartz-sericite alteration; (c) Quartz diorite 623 

porphyrite with propylitic alteration; (d) Hornfels. Qtz=quartz; Pl=plagioclase; 624 

Kfs=K-feldspar; Bt=biotite; Ser=sericite; Chl=chlorite; Ep=epidote; Py=pyrite; 625 

Ccp=chalcopyrite; Mo=molybdenite; Po= pyrrhotite. 626 

Fig.4. Cross section along exploration line 0 in the Pulang porphyry copper deposit, 627 

SW China. Modified after Wang et al., 2012. 628 

Fig.5. Histograms of (a) the Cu raw and (b) logarithmic transformation data and (c) 629 

Q-Q plot of the log-transformed Cu data in the Pulang deposit. 630 

Fig.6. The experimental semivariogram (omni-directional) of Cu data in Pulang631 

deposit. 632 

Fig.7. The cross-validation results: (a) residual VS Cu grade; (b) the residual d633 

istribution histogram. 634 

Fig.8. N–S log–log plot for Cu concentrations in the Pulang deposit. 635 

Fig.9. Zones in the Pulang deposit based on thresholds defined from the N–S fractal 636 

model of Cu data: (a) highly mineralized zones; (b) moderately mineralized zones; (c) 637 

weakly mineralized zones and barren host rocks. (Scale is in m3.) 638 

Fig.10. C–V log–log plot for Cu concentrations in the Pulang deposit. 639 

Fig.11. Zones in the Pulang deposit based on thresholds defined from the C–V fractal 640 

model of Cu data: (a) highly mineralized zones; (b) moderately mineralized zones; (c) 641 

weakly mineralized zones; (d) barren host rock.(Scale is in m3.) 642 

Fig.12. S–V log–log plot for Cu concentrations in the Pulang deposit. 643 

Fig.13. Zones in the Pulang deposit based on thresholds defined from the S–V fractal 644 

model of Cu data: (a) the supergene enrichment zones; (b) the hypogene zones; (c) the 645 

leached zone and barren host rock (Scale is in m3.) 646 

Fig.14. Highly mineralized zones in the Pulang deposit: (a) potassium-silicate zone 647 

resulted from the 3D geological model from drillhole geological data; (b) N–S 648 

modeling of Cu data; and (c) C–V modeling of Cu data; (d) S–V modeling of Cu data   649 

(Scale is in m3.) 650 

Fig.15. Moderately mineralized zones in the Pulang deposit:(a) quartz–sericite zones 651 

resulted from the 3D geological model from drillhole geological data; (b) N–S 652 

modeling of Cu data; and (c) C–V modeling of Cu data; (d) S–V modeling of Cu data 653 

(Scale is in m3.) 654 

Fig.16. Chalcopyrite content in several samples based on mineralographical study: (a) 655 

PL-B82 sample was collected from the drillhole situated in the high grade 656 

mineralization zones.; (b) PL-B62 sample was collected from the drillhole situated in 657 

the moderately grade mineralization zones.; (c) and (d) PL-B74 sample was collected 658 

from the drillhole located at the weakly mineralized zones. 659 

 660 



Table 1 The results of statistical characteristics of the residual. 661 

Table 2 Thresholds concentrations obtained by using N-S model based on Cu% in 662 

Pulang deposit. 663 

Table 3 Thresholds concentrations obtained by using C-V model based on Cu% in 664 

Pulang deposit. 665 

Table 4 Ranges of power spectrum (S) for different mineralization zones in Pulang 666 

deposit. 667 

Table 5 Matrix for comparing performance of fractal modeling results with geological 668 

model. A, B, C, and D represent number of voxels in overlaps between classes in the 669 

binary geological model and the binary results of fractal models (Carranza, 2011). 670 

Table 6 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 671 

with respect to potassic alteration zone resulted from geological model and threshold 672 

values of Cu obtained through C–V , N–S and S–V fractal modeling. 673 

Table 7 Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) 674 

with respect to phyllic alteration zone resulted from geological model and threshold 675 

values of Cu obtained through C–V, N–S and S–V fractal modeling. 676 

Table 8 Results of XRF analysis of samples collected from different mineralized 677 

zones in the Pulang porphyry copper deposit. 678 
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Table 1 937 

Variables Residual 

Mean 0.000 

Variance 0.016 

Standard Deviation 0.127 

Table 2 938 

Mineralized zones Thresholds (Cu%) Range (Cu%) 

Barren host rock and 

weakly mineralized 

       <0.28 

Moderately mineralized 0.28      0.28-1.45 

Highly mineralized 1.45      >1.45 

Table 3 939 

Mineralized zones Thresholds (Cu%) Range (Cu%) 

Barren host rock  <0.25 

Weakly mineralized 0.25 0.25–1.48 

Moderately mineralized 1.48 1.48–1.88 

Highly mineralized 1.88 >1.88 

Table 4 940 

Mineralized 

zones 

PS threshold Range of PS Range (Cu%) 

leached zone 

and barren host 

rock 

 <7.81 <0.23 

hypogene 

zones 

7.81 7.81-8.70 0.23-1.33 

supergene 

enrichment zones 

8.70 >8.70 >1.33 

Table 5 941 

  
 

Geological model 

Inside zone 

 

Outside zone 

Fractal model Inside zone 

Outside 

zone 

True positive (A) 

False negative (C) 

TypeIerror=C/(A+C) 

Overallaccuracy=(A+D)/(A+B

+C+D) 

False positive (B) 

True negative (D) 

TypeIIerror=B/(B+D) 



Table 6 942 

  Potassic alteration of geological 

model 

Inside zones       Outside zones 

C–V fractal model of 

highly mineralized zones 

 

Inside zones 

Outside zones 

A  2850          B   1360 

C  77927         D   76913 

T1E  0.96        T2E  0.02 

OA             0.50 

N–S fractal model of 

highly mineralized zones 

 

 

S–V fractal model of 

supergene enrichment 

zones 

  

Inside zones 

Outside zones 

 

 

Inside zones 

Outside zones 

 

 

A   3092         B   1570 

C  75025         D   75473 

T1E  0.96        T2E  0.02 

OA             0.51 

A  4431         B  2318 

C  72985        D  75726 

T1E  0.94       T2E  0.03 

OA             0.52 

Table 7 943 

  Phyllic alteration of 

geological model 

Inside zones  Outside zones 

C–V fractal model of 

moderately and weakly 

mineralized zones  

Inside zones 

Outside zones 

A   36518     B   48027 

C   25461     D   69155 

T1E  0.41     T2E  0.40 

OA           0.59 

N–S fractal model of 

moderately mineralized 

zones  

 

S–V fractal model of the 

hypogene zones 

 

Inside zones 

Outside zones 

 

 

Inside zones 

Outside zones 

 

 

A   35555     B   46943 

C   23955     D   48223 

T1E  0.40     T2E  0.49 

OA           0.54 

A  40080      B   44943 

C  26899      D   54239 

T1E  0.40     T2E  0.45 

OA           0.56 

Table 8 944 

Sample no. Mineralized zones obtained by 

fractal models 

Cu (%) 

PL-B74 Weakly mineralized zones 0.41 

PL-B62 Moderately mineralized zones 1.32 

PL-B82 Highly mineralized zones 1.80 
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