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Abstract. Recent progress in machine learning has shown how to forecast and, to some extent, learn the dynamics of a model

from its output, resorting in particular to neural networks and deep learning techniques. We will show how the same goal can

be directly achieved using data assimilation techniques without leveraging on machine learning software libraries, with a view

to high-dimensional models. The dynamics of a model are learned from its observation and an ordinary differential equation

(ODE) representation of this model is inferred using a recursive nonlinear regression. Because the method is embedded in a5

Bayesian data assimilation framework, it can learn from partial and noisy observations of a state trajectory of the physical

model. Moreover, a space-wise local representation of the ODE system is introduced and is key to cope with high-dimensional

models.

It has recently been suggested that neural network architectures could be interpreted as dynamical systems. Reciprocally, we

show that our ODE representations are reminiscent of deep learning architectures. Furthermore, numerical analysis considera-10

tions on stability shed light on the assets and limitations of the method.

The method is illustrated on several chaotic discrete and continuous models of various dimensions, with or without noisy

observations, with the goal to identify or improve the model dynamics, build a surrogate or reduced model, or produce forecasts

from mere observations of the physical model.

Copyright statement.15

1 Introduction

1.1 Data assimilation and model error

Data assimilation aims at estimating the state of a physical system from observations and a numerical dynamical model of

that system. It has been successfully applied to numerical weather and ocean prediction, where it often consisted in estimating

the initial conditions for the state trajectory of chaotic geofluids (Kalnay, 2002; Asch et al., 2016; Carrassi et al., 2018).20
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This objective is mostly impeded by the deficiencies of the numerical model (discretrisation, approximate physical schemes,

unresolved scales and their uncertain parametrisations, e.g., Harlim, 2017) and the difficulty to match numerical representations

of the system with the observations (representation error, Janjić et al., 2018). As a result, the quality of numerical weather

predictions based on a methodologically sound data assimilation method crucially depends both on the sensitivity to initial

condition due to the chaotic unstable dynamics and on model error (Magnusson and Källén, 2013).5

Model errors can take many forms and accounting for them depends on the chosen data assimilation scheme. A first class

of solutions rely on parametrising model error by, for instance, transforming the problem into a physical parameter estimation

problem (e.g., Bocquet, 2012; Aster et al., 2013). Other solutions are based on a weakly parametrised form of model error, for

instance when it is assumed to be additive noise. Such techniques have been developed for variational data assimilation (e.g.,

Trémolet, 2006; Carrassi and Vannitsem, 2010), for ensemble Kalman filters and smoothers (e.g., Ruiz et al., 2013; Raanes10

et al., 2015) and ensemble-variational assimilation (Amezcua et al., 2017; Sakov et al., 2018). In the weakly parametrised form,

these techniques should be completed by an estimation of the model error statistics (e.g., Pulido et al., 2018; Tandeo et al.,

2018). Moreover, model error’s impact can be mitigated by multiplicative and additive inflation (e.g., Whitaker and Hamill,

2012; Grudzien et al., 2018; Raanes et al., 2019) and by physically-driven stochastic perturbations of model simulations in

ensemble approaches (e.g., Buizza et al., 1999), or by stochastic subgrid parametrisations (e.g., Resseguier et al., 2017). This15

account is very far from exhaustive as this is a vast, multiform and very active subject of research.

These approaches essentially seek to correct, calibrate or improve an existing model using observations. Hence, they all

primarily make use of data assimilation techniques.

1.2 Data-driven forecast of a physical system

Another approach is to renounce to physically-based numerical models of the phenomenon of interest and instead use obser-20

vations only of that system. Given the huge required datasets, this may seem a far-reaching goal for operational weather and

ocean forecasting systems, but recent progress in data-driven methods and convincing applications to geophysical problems

of small to intermediate complexity are strong incentives to investigate this bolder approach. Eventually, the perspective of

putting numerical models away has a strong practical appeal, even though such perspective may generate intense debates.

For instance, forecasting of a physical system can be done by looking up at past situations and patterns using the techniques25

of analogues, which can be combined with present observations using data assimilation (Lguensat et al., 2017). It can rely

on a representation of the physical system based on diffusion maps that look for a spectral representation of the dataset (see

chapter 6 of Harlim, 2018). An original data-driven stochastic modelling approach has been developed by Kondrashov et al.

(2015). The method, recently extended to deal with multi-scale datasets (Kondrashov and Chrekroun, 2017), has been applied

to successfully estimate reduced models of geophysical phenomena (see e.g., Kondrashov et al., 2018, and references therein).30

A fourth route relies on neural networks and deep learning to represent the hidden model and make forecasts from this repre-

sentation. Examples of such approach applied to the forecasting of low-order chaotic geophysical models are: Park and Zhu

(1994) who use a bilinear recurrent neural network and applied it on the three-variable Lorenz model (Lorenz, 1963, hereafter

L63), Pathak et al. (2017, 2018) who use reservoir network techniques on the L63 model and on the Kuramoto-Sivashinski
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model (Kuramoto and Tsuzuki, 1976; Sivashinsky, 1977, hereafter KS); Dueben and Bauer (2018) who use a neural network

on a low-order Lorenz three-scale model, and on coarse 2D geopotential height maps at 500 hPa. The last two contributions

have to resort to local reservoir networks or convolutional layers, respectively, to account for the dimensionality of the models.

However, all these representations are not explicit and the neural network becomes a surrogate for the hidden model. This

marks a key distinction with respect to our approach, as will be clarified later.5

1.3 Learning the dynamics of a model from its output

Data-driven techniques that seek to represent the model in a more explicit manner, and therefore with a greater interpretability,

may use specific classes of nonlinear regression as advocated by Paduart et al. (2010); Brunton et al. (2016). With a view to

forecast dynamical systems, it is possible to design neural networks in order to reflect the iterative scheme of a Runge-Kutta

(RK) integration scheme. Wang and Lin (1998) proposed and achieved such a goal using classical activation functions, which10

may however blur the interpretation of the underlying dynamics. Fablet et al. (2018) went further and used a bilinear residual

neural network structured to mimic a fourth-order Runge-Kutta scheme (RK4) and noise-free data. Using the Keras tool with

the TensorFlow backend, their approach proved to be a very effective tool for the L63 model and to a lesser extent to the

40-variable Lorenz model (Lorenz and Emanuel, 1998, hereafter L96). In particular, they retrieved the parameters of the L63

equations to a high precision. Long et al. (2018) sought the operators of the partial differential equations (PDEs) of a physical15

system by identifying differentiations with convolution operators of a feed-forward neural network. They successfully applied

their method to advection-diffusion problems. Note that, as opposed to our proposal, none of the aforementioned techniques is

embedded in a Bayesian framework, making them less suitable to work with noisy and partial data.

1.4 Goal and outline

From this point on, the physical system under scrutiny will be called the reference model. It will be assumed to be known only20

from observations. We follow a data-driven approach inspired by the work of Paduart et al. (2010); Fablet et al. (2018) in the

sense that we will consider an observed physical reference model, which might be generated by a hidden mathematical model.

This work is focused on either one or a combination of the following goals: (i) to build a surrogate model for the dynamics, (ii)

to produce forecasts that emulate those of the reference model, and (iii) to identify the underlying dynamics of the reference

model given by a mathematical model. The reference model could be totally unknown or only partially specified.25

To achieve these goals, we introduce a surrogate model defined by a set of ordinary differential equations (ODEs):

dx
dt

= φ(x), (1)

where x ∈ RNx is the state vector, and x 7→ φ(x) is a vector field that we shall call flow rate. For the sake of simplicity, the

dynamics in this paper are supposed to be autonomous, i.e. do not explicitly depend on time. Our technique seeks a fit φ given

observations of the reference model. This is a rather general representation since, for instance, PDEs can be discretised into30

ODEs. We will restrict ourselves to the case where φ is at most quadratic in {xn}0≤n<Nx
. The numerical integration of Eq. (1)
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could be based on any RK scheme as an integration, but should additionally rely on the composition of such integration steps.

As a result, quite general resolvents of Eq. (1) can be built.

Importantly, we will not require any machine learning software tool since the adjoint of the model resolvent can be derived

without too much of an effort. As opposed to the contributions mentioned in the previous subsections, we embed the technique

in a data assimilation framework. From a data assimilation standpoint, the technique can be seen as meant to deal with model5

error (with or without some prior on the model) and it naturally allows to use partial and noisy observations. We will also build

representations of the dynamics that are either invariant by spatial translation (homogeneous) and/or local (i.e. the flow rate

of a variable xn only depends on neighbouring variables whose perimeter is defined by a stencil). These properties make our

technique scalable and thus potentially applicable to high-dimensional systems.

In Sect. 2, we present model identification as a Bayesian data assimilation problem. We first choose an ODE representation10

of the dynamics, introduce a nonlinear regressor basis, and define integration schemes we will work with. We describe the

local and homogeneous representations as physically-based simplifications of the most general case, and we build the adjoint

of these representations. We then introduce the Bayesian problem and the resulting cost function used for joint supervised

learning of the optimal representation and estimation of the state trajectory. The latter is the standard goal of data assimilation

while the former is that of machine learning. Our approach blend them together using the formalism of data assimilation.15

In Sect. 3, we discuss several theoretical issues: convergence of the learning step, the connection with numerical analysis of

integration schemes, the connection with deep learning architectures, and, finally, the pros and cons of our approach.

In Sect. 4, we illustrate the method with several low-order chaotic models (L63, L96, KS and a two-scale Lorenz model) of

various sizes, from a a perfectly identifiable model, i.e. where the model used to generate the dataset can be retrieved exactly,

to the design of a reduced-order model where the model used to generate the dataset cannot be retrieved exactly, using full or20

partial, noiseless or noisy observations. Conclusions are given in Sect. 5.

2 Model identification as a data assimilation problem

2.1 Ordinary differential equation representation

Our surrogate model is chosen to be represented by an ODE system as described by Eq. (1). We assume that the flow rate can

be written25

φA(x) = Ar(x), (2)

where A ∈ RNx×Np is a matrix of real coefficients to be estimated and r : RNx 7→ RNp is a map that defines regressor functions

of x. RNp is the latent space of the regressors in which the flow rate is linear.

In the absence of any peculiar symmetry, we choose this map to list all the monomials up to second-order built on x, i.e the

constant, linear and bilinear monomials. Let us call D = {0,1, . . . ,Nx− 1} the set of all variable indices, and P the set of all30
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pairs of variable indices. We introduce the augmented state vector

x̃ =


 x

1


 ∈ RNx+1, (3)

extend D to D̃ =D∪{Nx}, and define P̃ as the distinct pairs of variable indices in D̃.

As a result, the regressors are compactly defined by

r(x) =
[
{x̃nx̃m}(n,m)∈P̃

]
(4)5

where the scalars in the bracket are the entries of the vector r(x). We count

Np =
(
Nx + 1

2

)
=

1
2

(Nx + 1)(Nx + 2) (5)

regressors, i.e. the cardinal of P̃ . Higher-order regressors could be included, or of different functional form as in Brunton et al.

(2016). However, it is important to keep in mind that we do not seek an expansion of the resolvent of the reference model

but of the flow rate φA. Furthermore, higher-order products of the state variables are later generated by integration schemes10

and their composition. It is worth mentioning that nonlinear regressions are not widespread in geophysical data assimilation.

We are nonetheless aware of at least one noticeable exception that extends traditional Gaussian-based methods (Hodyss, 2011,

2012).

2.2 Local and homogeneous representations

At least two useful simplifications for the ODEs could be exploited if the state x is assumed to be the discretisation of a spatial15

field.

2.2.1 Locality

First, we use a locality assumption based on the physical locality of the system: all multivariate monomials in the ODEs have

variables xn that belong to a stencil, i.e. a local arrangement of grid points around a given node. This can significantly reduce

the number of bilinear monomials in r(x). We assume that sn is the stencil around node n, the pattern being the same for all20

nodes. For the nodeNx corresponding to the extra variable x̃Nx
= 1, we assume that its stencil consists of all theNx+1 nodes.

We can then define P̃s ⊂ P̃ as the sub-set of all pairs (n,m) of variables for which m ∈ sn. The set of required monomials can

therefore be reduced to

r(x) =
[
{x̃nx̃m}(n,m)∈P̃s

]
. (6)

Under these conditions, A becomes sparse. Indeed, for each node n, we assume that ẋn, the time derivative of xn, is impacted25

only by linear terms xm such that m ∈ sn and quadratic terms xmxl such that m ∈ sn, l ∈ sn and m ∈ sl. However, to keep

a dense matrix, we choose to compactly redefine and shrink A by eliminating all a priori zero entries due to the locality

5
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assumption. The number of columns of A is then significantly reduced from Np to Na. As a consequence of this redefinition

of A, the matrix multiplication inbetween A and r(x) must be changed accordingly. Nonetheless, the operation that assigns

coefficients in A to the monomials in r(x) remain linear and we write it as

φA(x) = A • r(x). (7)

Let us take the case of a one-dimensional state space as used in Sect. 4. The domain is supposed to be periodic and the nodes5

are indexed by 0≤ n <Nx. The node of index Nx is associated to the extra {1}. For 0≤ n <Nx, the stencil sn is defined as

the set of 2L+1 nodes of index n−L,n−L+1, . . .n+L−1,n+L, plus the extra node of index Nx. The stencil sNx
consists

of all the nodes, i.e. D. We assume 2L+ 1≤Nx. In that case r(x) as defined by Eq. (6) has Np = 1 +Nx(2 +L) monomials.

The row [A]n of the dense A contains the following coefficients for each 0≤ n <Nx. First there are 2L+ 2 regres-

sors built with {1} (the constant and linear regressors). Second, we consider the square monomials x2
m with m ∈ sn, i.e.10

{
x2
m

}
n−L≤m≤n+L

whose number is 2L+1. Then we consider those separated by one step: {xmxm+1}n−L≤m≤n+L−1 whose

number is 2L, followed by those separated by two steps whose number is 2L− 1, and so on until a separation of L is reached.

Quadratic monomials of greater separation are discarded since they do not belong to a common stencil as per the above defini-

tion reflecting the locality assumption. Hence there is a total of Na =
∑2L+2
l=L+1 l = 3

2 (L+ 1)(L+ 2) coefficients per grid-cell.

Note that this locality assumption is hardly restrictive. Indeed, owing to the absence of long-range instantaneous interactions15

(which are precluded in geophysical fluids), farther distance correlations between state variables can be generated by small

stencils in the definition of φA through time integrations.

2.2.2 Homogeneity

Furthermore, a symmetry hypothesis could optionally be used by assuming translational invariance of the ODEs, called the

homogeneity assumption in the following. Because our control parameters, i.e. the coefficients of A parametrise the flow rate,20

the symmetry simply translates into the rows [A]n of the dense A being the same for all n. Hence A simply becomes a vector

in RNa .

Note that, while both constraints, locality and homogeneity, apply to the ODEs, they do not apply to the states per se. For

instance ODEs for discretised homogeneous two-dimensional turbulence satisfy both constraints and yet generate hardly trivial

flows.25

In appendix A, we show in the one-dimensional case how to compute the reduced form of the product between A and

r(x), in the presence of both locality and homogeneity assumptions. This type of technical parametrisation is required for a

parsimonious representation of the control variables, i.e. the coefficients of A, and is key for a successful implementation in

high-dimensional models.

2.3 Integration scheme and cycling30

The reference model will be observed at time steps tk, indexed by integer 0≤ k ≤K. Hence, we need to be able to express

the resolvent of the surrogate model from tk to tk+1. We assume that tk+1− tk is a multiple of the integration time step of the

6
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x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f l
A fA fNk

c −l−1
A

Figure 1. Representation of the data assimilation system as a hidden Markov chain model, and of the model resolvents Fk
A and fA.

surrogate model: tk+1− tk =Nk
c h, where h is the integration time step and Nk

c is the number of integrations. The time steps

tk+1− tk can be uneven, which is reflected in the dependence of Nk
c on k. Hence, the resolvent of the surrogate model from

tk to tk+1 can be written as

xk+1 = FkA(xk) where FkA ≡ fN
k
c

A ≡ fA ◦ . . . ◦ fA︸ ︷︷ ︸
Nk

c times

, (8)

meant to be the integration of Eq. (1) from tk to tk+1 using the representation Eq. (2).5

We define intermediate state vectors inbetween [tk, tk+1]: xk,l is the state vector defined at time tk + (tk+1− tk)l/Nk
c for

0≤ l ≤Nk
c , as the result of l compositions of fA on xk: xk,l = f lA(xk). Figure 1 is a representation of the composition of the

integration steps, along with the state vectors xk and xk,l.

The operator fA is meant to be an explicit numerical integration scheme. We shall consider a Runge-Kutta (RK) scheme in

the following applied to x≡ xk,l. It has NRK steps. This number of steps coincides with the accuracy of the scheme for those10

that we consider in the following: first-order for the Euler scheme, second-order for RK2, and fourth-order for RK4. Provided

the dynamics are autonomous, a general RK scheme reads

fA(x) = x +h

NRK−1∑

i=0

βiki, (9a)

ki = φA


x +h

i−1∑

j=0

αi,jkj


 , (9b)

where the coefficients βi and αi,j entirely specify the scheme and h= (tk+1− tk)/Nk
c . Note that αi,j are zero for j ≥ i, so15

that Eq. (9b) can be computed iteratively from k0 to kNRK−1 followed by the sum Eq. (9a) to get fA(x).

It will be useful in the following to consider the variation of the ki with respect to either A or x:

δki = δφA,i +h

i−1∑

j=0

αi,j
(
∇xi

φA,i

)
δkj , (10)

7
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where φA,i is φA evaluated at xRK
i ≡ x +h

∑i−1
j=0αi,jkj , ∇xi

φA,i is the tangent linear with respect to x of φA evaluated at

xRK
i . Equation (10) can be written compactly in the form

Gδκ= δϕ, (11)

where G is the matrix of size (NRKNx)× (NRKNx) defined by its Nx×Nx blocks [G]i,j = Ix−hαi,j∇xi
φA,i, κ is the

vector of size NRKNx which results from the stacking of the ki ∈ RNx for 0≤ i < NRK, ϕ is the vector of size NRKNx5

which results from the stacking of the φA,i for 0≤ i < NRK, and Ix ∈ RNx is the identity matrix. The important point is that

G is a lower triangular matrix and describes an iterative construction of the ki. Moreover, the diagonal entries of G are 1 by

construction so that G is invertible and

δκ= G−1δϕ. (12)

This will be useful to evaluate the variations of fA(x) via Eq. (9a).10

In the following, hwill be absorbed in the definition of A and henceφA, so that we can take h= 1 without loss of generality.

2.4 Bayesian analysis

We consider a sequence of observation vectors yk ∈ RN
k
y of the physical system at tk indexed by 0≤ k ≤K. The system state

is observed through

yk = Hk(xk) + εk, (13)15

where Hk is the observation operator at time tk. The observation error εk will be assumed Gaussian of zero mean and covari-

ance matrix Rk, It is also assumed to be white in time. Since the flow rate φA is given by the approximation Eq. (2), so is the

resolvent FA of the surrogate model. Hence, we generalise Eq. (8) to

xk+1 = FkA(xk) +ηk, (14)

where ηk are unbiased Gaussian errors of covariance matrices Qk, supposed to be white in time. Note that, in all generality,20

the state space of the surrogate model does not have to match that of the reference model. We will nonetheless take them to

coincide here only for simplicity.

With the goal to identify a model, or build a surrogate of the reference one, we are interested in estimating the probability

density function (pdf) p(A|y0:K) where y0:K stands for all observations in the window [t0, tK ]. To obtain a tractable expression

for this conditional likelihood, we need to marginalise over the state variables x0:K within the window:25

p(A|y0:K) =
∫

dx0:K p(A,x0:K |y0:K). (15)

8
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An approximate maximum a posteriori for A could be obtained by using the Laplace approximation of this integral, and hence

getting the maximum of

p(A,x0:K |y0:K) =
p(A,x0:K ,y0:K)

p(y0:K)

=
p(x0:K ,y0:K |A)p(A)

p(y0:K)

=
p(y0:K |x0:K ,A)p(x0:K |A)p(A)

p(y0:K)
. (16)5

The cost function associated to this joint pdf is by definition J (A,x0:K) =− ln(p(A,x0:K |y0:K)). Under the Markovian

assumption of Eq. (14) and the Gaussian form of both model and observational errors, the cost function reads

J (A,x0:K) =
1
2

K∑

k=0

‖yk −Hk(xk)‖2R−1
k

+
1
2

K∑

k=1

∥∥xk −Fk−1
A (xk−1)

∥∥2

Q−1
k

− lnp(x0|A)− lnp(A), (17)10

up to a constant depending on Q1:K and R0:K only. The vector norm ‖z‖P is defined as
√

zTPz. This is the cost function of

a weak constraint 4D-Var (see Sect. 2.4.3.2 of Asch et al., 2016) with A and x0:K as control variables.

In the case where the reference model is fully observed, i.e. Hk ≡ Ix and in the absence of observation noise, i.e. Rk ≡ 0,

we have x0:K ≡ y0:K and the cost function simplifies to

J (A) =
1
2

K∑

k=1

∥∥yk −Fk−1
A (yk−1)

∥∥2

Q−1
k

15

− lnp(y0|A)− lnp(A), (18)

where y0:K is the fully and perfectly observed state trajectory of the reference model. This is similar to a traditional least-

square function used in machine and deep learning regression. Reciprocally, when the aforementioned hypotheses of noiseless

and complete observations do not hold, Eq. (17) can be seen as a natural data assimilation extension of Eq. (18). Note that

Eq. (18) only depends on the sequence Q1:K . If, in addition, the dependence on the prior p(y0,A) is neglected in Eq. (18),20

then the maximum a posteriori should not depend on a global rescaling of Q1:K . This connection between machine learning

and data assimilation cost functions had been previously put forward by Abarbanel et al. (2018) although in a different form.

The data assimilation system is represented in Fig. 1 as a hidden Markov chain model. This Bayesian view highlights the

choice that must be made for R0:K and/or Q1:K and provides an interpretation in terms of errors. Furthermore, one could

implement an objective estimation of these error statistics as in Pulido et al. (2018).25

The reader not interested by the following technicalities may skip the next subsection 2.5 and jump to Sect. 3. Nonetheless,

they are critical to the success of the method.

9
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2.5 Gradients and adjoint of the representation

To efficiently minimise the cost function Eq. (17) with gradient-based optimisation tool, we need to derive the gradient of

Eq. (17) with respect to both A and x0:K . As for x0:K , we have:

∇x0J =− (∇x0H0)T R−1
0 δ0−

(
∇x0F

0
A

)T
Q−1

1 ∆1

−∇x0 lnp(x0|A), (19a)5

∇xk
J =− (∇xk

Hk)T R−1
k δk −

(
∇xk

FkA
)T

Q−1
k+1∆k+1

+ Q−1
k ∆k, for 1≤ k ≤K − 1, (19b)

∇xK
J =− (∇xK

HK)T R−1
K δK + Q−1

K ∆K , (19c)

where δk = yk −Hk(xk) for 0≤ k ≤K and ∆k = xk −Fk−1
A (xk−1) for 1≤ k ≤K; ∇xk

FkA is the tangent linear of the

resolvent FkA computed at xk for 0≤ k <K; ∇xk
Hk is the tangent linear of the observation operator Hk computed at xk for10

0≤ k ≤K. As for A, we have:

∇AJ =−
K∑

k=1

δT
kQ−1

k ∇AFk−1
A (xk−1)−∇A lnp(A), (20)

assuming x0 is independent from A. Hence, a key technical aspect of the problem is to compute the tangent linear and adjoint

operators required by these gradients. In the following, we assume that the adjoint of the tangent linear operators of the

observation operators (∇xk
Hk)T are known, for instance if the latter are linear as in Sect. 4.15

2.5.1 Integration step

We first consider the situation when the observation interval corresponds to one integration time step of the surrogate model,

i.e. Nk
c = 1: x′ = FA(x) = fA(x) with x≡ xk. As a result, the time index k can be omitted here. We will later consider the

composition of several integration schemes (Nc ≥ 2). Equation (9a) is written again but as

fA(x) = x + bκ, (21)20

where b = β⊗ Ix is the matrix of size Nx× (NRKNx) tensor product of the vector β defined by βT = (β0, . . . ,βNRK−1), i.e.

the coefficients of the RK scheme as defined in Eq. (9a), with the state space identity matrix, and where κ is the vector of size

NRKNx defined after Eq. (11). Looking first at the gradient with respect to the state variable, and using Eq. (12), we have

∇xfA =∇xx + b∇xκ= Ix + bG−1∇xϕ, (22)

which yields the adjoint operator25

(∇xfA)T = Ix + (∇xϕ)T G−TbT. (23)

Let us consider an arbitrary vector d ∈ RNx ; we have

(∇xfA)T d = d + (∇xϕ)T G−TbTd. (24)

10
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To avoid computing G−T explicitly, let us define the vector z ∈ RNxNRK such that

GTz = bTd. (25)

Because GT is upper triangular with diagonal entries of value 1, z is the solution of a linear system easily solvable iteratively,

which stands as an adjoint/dual to the RK iterative construction. Hence, we finally obtain a formula and algorithm to evaluate

(∇xfA)T d = d + (∇xϕ)T z, (26)5

which is key to computing Eq. (19). Indeed Eq. (19) now reads

∇x0J =− (∇x0H0)T R−1
0 δ0−Q−1

1 ∆1− (∇x0ϕ)T z0

−∇x0 lnp(x0|A), (27a)

∇xk
J =− (∇xk

Hk)T R−1
k δk −Q−1

k+1∆k+1− (∇xk
ϕ)T zk

+ Q−1
k ∆k, for 1≤ k ≤K − 1, (27b)10

∇xK
J =− (∇xK

HK)T R−1
K δK + Q−1

K ∆K , (27c)

where zk is the iterative solution of the system GT
k zk = bTQ−1

k+1∆k+1 for 0≤ k ≤K − 1.

Second, let us look at the gradient of J (A,x0:K) with respect to A. From Eq. (21) and Eq. (12), and now considering

variations with respect to A, we obtain:

∇AfA =∇Ax + b∇Aκ= bG−1∇Aϕ, (28)15

which yields, using z as defined by Eq. (25),

dT (∇AfA) = dTbG−1 (∇Aϕ) = zT (∇Aϕ) . (29)

For each 0≤ i < NRK, let us introduce ri = r(xi) ∈ RNp , and let us denote zi ∈ RNx the subvector of z for the i-th block of

the Runge-Kutta scheme. Then, we have for 0≤ n <Nx and 0≤ p < Np:

[
zT (∇Aϕ)

]
n,p

=
Nx−1∑

m=0

NRK−1∑

i=0

[zi]m
∂

∂An,p

Np−1∑

q=0

Am,q[ri]q20

=
Nx−1∑

m=0

NRK−1∑

i=0

Np−1∑

q=0

[zi]mδm,nδp,q[ri]q

=
NRK−1∑

i=0

[zi]n[ri]p =
NRK−1∑

i=0

zirT
i . (30)

This is key to efficiently computing Eq. (20), which now reads

∇AJ =−
K∑

k=1

NRK−1∑

i=0

zk,irT
k,i−∇A lnp(A), (31)

where zk is the solution of GT
k zk = bTQ−1

k δk. The index k of Gk indicates that the operators defined in the entries of G are25

evaluated at xk.

11
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2.5.2 Composition of integration steps

We now consider a resolvent which is the composition of Nk
c ≥ 2 integration steps over [tk, tk+1]: x′ = fN

k
c

A (x) where x is an

alias to xk. Let us first look at the gradient with respect to the state variable. Within the scope of this section, we define x0 ≡ x

and for 1≤ l ≤Nk
c : xl ≡ fA(xl−1). Hence, x′ = xNc . We also define ∇xl

fA to be the tangent linear of fA at xl. By Leibniz

rule, we obtain5

(
∇xFkA

)T
= (∇x0fA)T(∇x1fA)T · · ·(∇xNc−1fA)T. (32)

We can now apply Eq. (26) to each individual integration step and obtain for any d ∈ RNx

(∇xl
fA)Td = d + (∇xl

ϕ)T zl, (33)

where zl is the solution of

GT
l zl = bTd. (34)10

Hence, to compute
(
∇xFkA

)T ·d, we define x̃Nc = d and for Nc− 1≥ l ≥ 0: x̃l = (∇xl
fA)Tx̃l+1. This finally reads:

x̃l = x̃l+1 + (∇xl
ϕl)

T zl, (35)

for Nc− 1≥ l ≥ 0, where zl is the solution of

GT
l zl = bTx̃l+1. (36)

To compute the key terms in the gradients Eq. (19), d must be chosen to be Q−1
k+1∆k+1 where 0≤ k ≤K − 1 and15

(
∇xFkA

)T
Q−1
k+1∆k+1 = x̃0. (37)

Second, we look at the gradient with respect to A. In this case, the application of the Leibniz rule yields

∇AFkA =
Nc−1∑

l=0

(∇xNc−1fA) · · ·(∇xl+1fA)∇AfA(xl)

=
Nc−1∑

l=0

(
∇xl+1f

Nc−l−1
A

)
∇AfA(xl), (38)

where ∇xl+1f
Nc−l−1
A = (∇xNc−1fA) · · ·(∇xl+1fA). But ∇AfA(xl), which focuses on a single integration step, is given by20

Eq. (28):

∇AfA(xl) = bG−1
l ∇Aϕl (39)

and from Eq. (29):

dT∇AfA(xl) = zT
l (∇Aϕl) . (40)
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As a result, we obtain:

∇AJ =−
Nc−1∑

l=0

K∑

k=1

NRK−1∑

i=0

zk,l,irT
k,l,i−∇A lnp(A), (41)

where zk,l is the solution of

GT
k,lzk,l = bT

(
∇xl+1f

Nc−l−1
A

)T

Q−1
k δk. (42)

All of these results, Eqs. (27,31,37,41), allow to efficiently compute the gradients of the cost function J (A,x0:K) with5

respect to both A and x0:K . Note, however, that they have been derived under the simplifying assumption that φA is given

by Eq. (2) with a traditional matrix multiplication between A and r(x), but not by the compact Eq. (7). When relying on

homogeneity and/or locality, the calculation of the gradient with respect to A follows the principle described above but requires

further adaptations, which can be derived using Eq. (A2), with the asset of strongly reducing the computational burden.

3 Discussion of the theoretical points10

In this section, we discuss about the optimisation of the cost function J (A,x0:K). The goal is either to reconstruct an ODE

for the reference model, characterised by the coefficients A through φA, or to build a surrogate model of it. The estimation of

x0:K is then accessory, even though critical to the estimation of A. The alternative would have been to consider the estimation

of x0:K as the primary problem, under model error of a prescribed ODE form, the estimation of A being accessory. In this

latter case, one may benefit from an informative prior pdf p(A). The prior pdf p(A) can also be used to encode a partially15

specified model or any prior knowledge on the reference model.

3.1 Numerical optimisation: issues and solutions

The success of the optimisation of J (A,x0:K) depends above all on the ability to robustly evaluate it. In particular, it depends

on the stability of the numerical integration scheme x′ = fA(x). In this paper, we chose to rely on one-step explicit schemes

which are much simpler to describe and efficient to integrate (a family to which the RK schemes of any NRK belong). These20

schemes are 0-stable, which means that the finite time error growth goes to zero as the integration step goes to zero. But, as a

major drawback, they have a limited absolute (or A–)stability domain (see e.g., chapters 5 and 6 of Gautschi, 2012). For a given

state trajectory, there exists a stability domainDs ∈ RNx×Np out of which the evaluation of J (A,x0:K) is hazardous. A failure

to evaluate the cost function depends on the number of integration steps. Indeed, instabilities are to increase exponentially with

Nk
c .25

This tells that, in the absence of a strong prior p(A), it is safer to start with A = 0 likely to lie close to Ds. Alternatively,

if stability constraints are known about A, they could be encoded in p(A). It also tells that we should strike an empirical

compromise between the composition numbers Nk
c and the easiness to evaluate J (A,x0:K). In the one hand, the larger Nk

c

the more iterates of A in the optimisation must be kept confined in Ds. On the other hand, the longer Nk
c the broader the class

13
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of achievable resolvents, and hence the ability to build a good surrogate. Moreover, the higher the stability of the integration

scheme, the larger Ds, and the easier the optimisation in spite of an increase in its numerical cost.

The longerK is, the more observations are available to constraint the problem. However, the longerK the higher the chances

of having a significant instability: a successful integration typically decreases exponentially with the length K.

This stability issue can be somehow alleviated by normalising the observations yk by their mean and variance in order to5

avoid excessively large value ranges of the regressors. This will not change the fundamental stability of the schemes, yet may

delay the occurrences of instabilities due to the nonlinear terms.

Moreover, instabilities can significantly be mitigated by replacing the monomials with smoothed or truncated ones:

r(x) =
[
{ζ(x̃n)ζ(x̃m)}(n,m)∈P̃

]
. (43)

One can for instance choose ζ(x) = λtanh(x/λ), in order to cut-off too large values of |x| and hence delay the growth10

of instabilities. The parameter λ > 0 is roughly chosen as the typical maximum amplitude of |x|. If tanh is deemed to be

numerically too costly, one can choose instead ζ(x) =−λ1]−∞,−λ] +x1[−λ,λ] +λ1[λ,+∞[. This latter change of variables is

the one implemented in Sect. 4, together with the normalisation. These tricks often turn critical in the first iterates of the

optimisation as the estimate of A progressively migrates to the A-stability domain.

3.2 Connection and analogies with deep learning architectures15

It has recently been advocated that residual deep learning architectures of neural networks can roughly be interpreted as

dynamical systems (e.g., E, 2017; Chang et al., 2018). Each layer of the network contributes marginally to the output, so that

there exists an asymptotic continuum limit representation of the neural network. Furthermore, as mentioned in the introduction,

Wang and Lin (1998); Fablet et al. (2018) have shown that the architecture of the network can follow that of an integration

scheme.20

By contrast, we have started here from a pure dynamical system standpoint, and proposed to use data assimilation techniques.

In order to explore complex model resolvents, applied to each interval [tk, tk+1] between observations, we need the composition

of Nc integration steps. In particular, this allows for the resolvent to exhibit more realistic long-range correlations. Even when

using a reasonably small stencil, long-correlations will arise as a result of the integration steps. Nonetheless the stencil might not

be too small so as to model discretised higher-order differential operators. As noted by Abarbanel et al. (2018), each application25

of fA could be seen as a layer of the neural network. Moreover, within such layer, there are sublayers corresponding to the

steps of the integration scheme. The larger Nc is the deeper this network is and the richer the class of resolvents to optimise on.

Following this analogy, the analysis step where J (A,x0:K) is optimised can be called the training phase. Backpropagation

in the network, as coined in machine learning (Goodfellow et al., 2016), corresponds to the computation of the gradient of the

network with respect to A and of the model adjoint derived in Sect. 2. This a shortcut for the use of machine learning software30

libraries such as TensorFlow or PyTorch.
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Because of our complete control of the backpropagation, we hope for a gain in efficiency. However, our method does not

have the flexibility of the use of deep learning through established tools. For instance, adding extra parameters, adaptive batch

normalisation, dropouts are not granted in our approach.

Convolutional layers play the role of localisation in neural architecture. In our approach this role is played by the locality

assumption and its stencil prescription. Recall that a tight stencil does not prevent longer-range correlation that are built up5

through the integration scheme and their composition. This is similar to stacking several convolutional layers to account for

multiple scales from the reference model which the neural network is meant to learn from.

Finally, we note that, as opposed to deep learning strategies with a huge amount of weights to estimate, we have reduced the

number of control variables (i.e. A) as much as possible.

4 Numerical illustrations10

4.1 Models setup and forecast skill

In this section, we shall consider four low-order chaotic models that will serve as reference model:

1. the L63 model as defined by the ODEs:

dx0

dt
= σ(x1−x0), (44a)

dx1

dt
= ρx0−x1−x0x2, (44b)15

dx2

dt
= ρx0x1−βx2, (44c)

with the canonical values (σ,ρ,β) = (10,28,8/3). Its Lyapunov time1 is about 1.10. This model is introduced for bench-

marking with e.g., Fablet et al. (2018). It is integrated relying on an RK4 scheme with δtr = 0.01 as the integration

time-step.

2. the L96 model as defined by ODEs defined over a periodic domain of variables indexed by n= 0, . . . ,Nx− 1 where20

Nx = 40:

dxn
dt

= (xn+1−xn−2)xn−1−xn +F, (45)

where xNx
= x0, x−1 = xNx−1, x−2 = xNx−2, andF = 8. This model is an idealised representation of a one-dimensional

latitude band of the Earth atmosphere for which localisation approaches can be tested. Its Lyapunov time is 0.60. It is

integrated with an RK4 scheme and δtr = 0.05.25

3. the KS model, as defined by the partial differential equations:

∂x

∂t
=−x∂x

∂α
− ∂2x

∂α2
− ∂4x

∂α4
, (46)

1The Lyapunov time is defined as the inverse of the first Lyapunov exponent, which corresponds to a growth of the error by e.
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over the periodic domain α ∈ [0,32π] on which we apply a spectral decomposition withNx = 128 modes. The Lyapunov

time of our KS model is 10.2 time units. This model is of interest because, even though it has dynamical properties

comparable to that of L96, it is much steeper so that much more stringent numerical integration schemes are required to

efficiently integrate it. It is integrated using the EDTRK4 scheme (Kassam and Trefethen, 2005) and δtr = 0.05.

4. the two-scale Lorenz model (L05III, Lorenz, 2005) is given by the two-scale ODEs:5

dxn
dt

= ψ+
n (x) +F −hc

b

9∑

m=0

um+10n, (47a)

dum
dt

=
c

b
ψ−m(bu) +h

c

b
xm/10, (47b)

ψ±n (x) = xn∓1(x±1−xn∓2), (47c)

for n= 0, . . . ,Nx− 1 with Nx = 36 and m= 0, . . . ,Nu− 1 with Nu = 360. The indices apply periodically over their

domain; m/10 is the integer division of m par 10. We use the original values for the parameters: c= 10 for the time-10

scale ratio, b= 10 for the space-scale ratio, h= 1 for the coupling, and F = 15 for the forcing. The Lyapunov time of

the model is 0.72.

This model is of interest because the variable u is meant to represent unresolved scales and hence model error when only

considering the large scale variable x. For this reason, it has been used in data assimilation papers focusing on estimating

model error (e.g., Mitchell and Carrassi, 2015; Pulido et al., 2018). It is integrated with an RK4 scheme and δtr = 0.00515

since it is steeper than the L96 model.

The numerical experiments consist of three main steps. First, the truth is generated; i.e. a trajectory of the reference model

is computed. The reference model equations are supposed to be unknown, but the trajectory is observed through Eq. (13) to

generate the observation vector sequence y0:K .

Next, estimators of the ODEs model and state trajectory x0:K are learned by minimising the cost function J (A,x0:K). We20

choose to minimise it using the quasi-Newton BFGS algorithm, which critically relies on the gradients obtained in Sect. 2. The

default choices for the initial ODEs model are A = 0 and x0:K defined as the space-wise linear interpolation of y0:K . Note

that the minimisation could converge to a local minimum, which may or may not yield satisfactory estimators.

Finally, we can make forecasts using the tentative optimal ODEs model A? obtained from the minimisation. With a view

to compare it to the reference model used to generate the data, we will consider a set of forecasts with (approximately)25

independent initial conditions. Both the reference model and the surrogate one will be forecasted from these initial conditions.

The departure from their trajectories, as measured by a root mean square error (RMSE) over the observed variables, will be

computed for several forecast lead times. The RMSE is then averaged over all the initial conditions. We will also display the

state trajectories of the reference and surrogate models starting from one of the initial conditions.

The integration time step of the truth (reference model) is δtr over the time window [t0, tK ]. This parameter only matters30

for the reference model integration since only the training time steps tk+1− tk and the output of the model y0:K (which may

include knowledge of the observation operator) are known to the observer.
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δtr

δta

δtf

∆t
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t0 tK

T + TfT

y0 yK

generating physical states

learning step

forecast step

yk yk+1

Figure 2. Schematic of the three steps of the experiments, with the associated time steps (see main text). The beginning of the forecast

window may or may not coincide with the end of the learning window. The lengths of the segments δtr, δta, and δtf are arbitrary in this

schematic.

The integration time step of the surrogate model within this learning time window [t0, tK ] is δta. It is assumed to be an

integer divisor of the training time step ∆t= tk+1−tk supposed to be constant, i.e. ∆t/δta is a constant integer, the number of

compositions Nc, and that is why the index k on Nk
c has been dropped. The integration time step of the surrogate model within

the forecast time window [T,T +Tf ] is denoted δtf . Note that δta and δtf can be distinct. They are critical to the stability of

the learning and the forecast step, respectively.5

The three steps of the numerical experiments are depicted in Fig. 2. Except when explicitly mentioned, the prior p(A) is

disregarded, which means that no regularisation on A is introduced.

4.2 Inferring the dynamics from dense and noiseless observations of perfectly identifiable models

In the first couple of experiments, we consider a densely observed2 reference model with noiseless observations. In this case,

Rk ≡ 0 and a uniform rescaling of the Qk, all chosen to be Ix, is irrelevant, assuming the prior p(y0,A) can be neglected10

which is assumed here and is generally true for largeK. Moreover, we use the same numerical scheme and the same integration

time step to generate the reference model trajectory as the one used by the surrogate model. In principle, we should be able to

retrieve the reference model, since the reference is identifiable among all the possible surrogate models.

Let us first experiment with the L63 model, using an RK4 integration scheme, with ∆t= 0.01 and K = 104. We have

Nx = 3 and Np = 10. We choose δta = δtf = 0.01. A convergence to the highest possible precision is achieved after about 12015

iterations. The cost function value reaches 0 to machine precision at A?. The estimated A is given by Aa = A?/δta, because,

2We choose the qualifier densely observed instead of fully observed because there is no way to tell from the observations alone if the reference model is

fully observed.
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as mentioned above, the optimised A matrix absorbs the time step. The accuracy of Aa is measured by the uniform norm

‖Aa−Ar‖∞, i.e. the absolute values of the entries of the difference Aa−Ar, where Ar is the matrix of the flow rate of L63

(including the zero coefficients). We obtain ‖Aa−Ar‖∞ = 2.00×10−10. To compute the RMSE as a function of the forecast

lead time, we average over Ne = 103 runs (each one starting from a difference initial condition). The RMSE (not shown) starts

significantly diverging from 0 after 16 Lyapunov time units and reaches a saturation for a lead time of 23.5

A similar experiment is carried out with the L96 model, using an RK4 integration scheme, with ∆t= 0.05 and K = 50. We

choose here to implement the locality and homogeneity assumptions. The stencil has a width of 5 (i.e. the local grid points

with 2 points on its left and 2 points on its right). We have Nx = 40, Np = 161 and Na = 18. We choose δta = δtf = 0.05. The

minimisation stops after about 30 iterations at the highest possible accuracy and the cost function value reaches 0 to machine

precision. The main coefficients of the L96 model (forcing F , advections terms, dissipation) are retrieved with a precision of10

at least 3.61× 10−8.

To compute the RMSE as a function of the forecast lead time, we average overNe = 103 runs. The RMSE starts significantly

diverging from 0 after 12 time units and reaches a saturation for a lead time of 25.

4.3 Inferring the dynamics from dense and noiseless observations of a non-identifiable model

In this second couple of experiments, we consider again a densely observed reference model with noiseless observations. The15

reference model trajectory is generated by the L96 model (Nx = 40) integrated with the RK4 scheme, with ∆t= 0.05 and

K = 50.

As opposed to the reference model, in these non-identifiable model experiments, the surrogate model is based on the RK2

scheme, with Nc compositions. We choose to implement the locality and homogeneity assumptions, with a stencil of width 5.

We have Np = 161 and Na = 18. We choose δta = δtf = ∆t/Nc. In all cases, the convergence is reached within a few dozens20

of iterations. The error on the coefficients of A (i.e. ‖Aa−Ar‖∞) is about 4× 10−2 but with the dominant contribution from

F . The RMSE as a function of the forecast lead time is computed forNc = 1,2,3,4,5 and shown in Fig. 3. The error is reduced

as Nc is increased. But the improvement saturates at about Nc = 5.

Figure 4 shows the trajectories of the reference and surrogate models starting from the same initial condition, as well as their

difference, as a function of the forecast lead time. Their divergence becomes significant after 4 Lyapunov times and saturates25

after 8 Lyapunov times.

Next, the reference model trajectory is generated by the KS model (Nx = 128) integrated with the ETDRK4 scheme, with

∆t= 0.05 and K = 50. We choose to implement the locality and homogeneity assumptions, with a stencil of width 9. The

surrogate model is based on the RK4 scheme, with Nc = 2 compositions. Note that in this experiment, the reference and

surrogate models and their integration schemes significantly differ. We have Np = 769 and Na = 45. We choose δta = ∆t/Nc30

and δtf = 10−3. The forecast time step δtf is somehow smaller than δta because the KS equations are stiff and so will the

surrogate model. This emphasises once again that we have learned about the intrinsic flow rate of the reference model, and not

a resolvent thereof. Alternatively, we could use a more robust integration scheme than RK4 such as ETDRK4 for the forecast.
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Figure 3. Average RMSE of the surrogate model (L96 with an RK2 structure) compared to the reference model (L96 with an RK4 integration

scheme) as a function of the forecast lead time (in Lyapunov time unit) for an increasing number of compositions.
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Figure 4. Density plot of the L96 reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast

lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.
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Figure 5. Density plot of the KS reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast

lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.

Figure 5 shows the trajectories of the reference and surrogate models starting from the same initial condition, as well as their

difference, as a function of the forecast lead time, for a stencil of 9. Their divergence becomes significant after 4 Lyapunov

times and saturates after 8 Lyapunov times.

To check whether the PDE of the KS model could be retrieved in spite of the differences in the method of integrations and

representations, we have computed a Taylor expansion of all monomials in the surrogate ODEs flow rate up to order 4 so as to5

obtain an approximately PDE equivalent. The coefficients of this PDE (up to order 4 in the expansion) are displayed in Fig. 6

and compared to the coefficients of the reference model’s PDE. The match is good and the terms −x∂αx, −∂2
αx and −∂4

αx are

correctly identified as the dominant ones. Nonetheless, there are three non-negligible coefficients for higher-order terms that

may have been generated by the Taylor expansion, or may originate from a degeneracy among the higher-order operators, or

may simply be identified with a shortcoming of our specific ODE representation.10

4.4 Inferring the dynamics from partial and noisy observations

We come back to the L96 model which is densely observed but with noisy observations that are generated using an indepen-

dently identically distributed normal noise. The surrogate model is based on an RK4 scheme, Nc = 1 and a stencil of length 5,

which makes the reference model identifiable. In this case, the outcome theoretically depends on the choice for Rk and Qk, as
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Eq. (17) is now used instead of Eq. (18). For the sake of simplicity, we have chosen them to be of the scalar form Rk ≡ σ2
yIy

and Qk ≡ qIx. In this synthetic experiments, σy is supposed to be known. However, q is not. We only have a qualitative view

on the potential mismatch between the reference and the surrogate model. A Gaussian additive noise might not even be the best

statistical model for such error. The optimal value of q could be determined using an empirical Bayes approach based on, for

instance, the expectation-maximisation technique in order to determine the maximum a posteriori of the conditional density of5

q (see e.g., Dreano et al., 2017; Pulido et al., 2018). However, this would make us deviate too much from the objective of this

work. In the following we have chosen values of q that yield near to optimal skill scores (typically q ≈ 10−3σ2
y).

Moreover, we have chosen the relatively smallK = 50. It must be beneficial to increaseK but this would force us to address

issues relative to weak constraint 4D-Var optimisation for long time windows, a topic which is also beyond the scope of this

paper. Preliminary results on this topic are nonetheless discussed later in this section.10

Figure 7 shows the forecast skill of the surrogate model as a function of the forecast lead time, and for increasing noise in the

observations. Even though, in this configuration, the model is identifiable, the reference value A0 for A may not correspond to

a minimum of the cost function. The cost function might have several local minima. As a consequence, there is no guarantee,

starting from a non-trivial initial value for A, that the model will be identified. Indeed, as seen in Fig. 7, the forecast skill

degrades significantly as the observation error standard deviation is increased.15

This is confirmed by Fig. 8 where the precision in identifying the model, measured by either the spectral norm ‖A0−A‖2
or the uniform norm ‖A0−A‖∞ are plotted as functions of the observation error standard deviation.
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Using the same setup, we have also reduced the number of observations. The observations are regularly spaced and shifted

by one grid cell at each observation time step. The initial A in the optimisation remains 0 while the the initial state x0:K is

taken as a cubic spline interpolation of the observations over the whole surrogate model grid.

If the observations are noiseless, the reference model is easily retrieved to a high precision down to a density of 1 site over

4. If the observations are noisy, the performance slowly degrades down as the density is decreased down to about 1 site over 4,5

below which the minimisation, trapped in a deceiving local minimum, yields an improper surrogate model.

Finally, we would like to point out that in the case of noiseless observations, the performance little depends on the length

of the learning window, beyond a relatively short length, typically K = 50. However, in presence of noisy observations, the

overall performance improves with longer K, as expected since the information content of the observations linearly increases

with the length of the window.10

4.5 Inferring reduced dynamics of a multiscale model

In this experiment, we consider the L05III model. With the locality and the homogeneity assumptions, the scalability is typically

linear with the size of the system, and we actually consider the 10-fold model where Nx = 360 and Nu = 3600 to demonstrate

that no issues was encountered when scaling up the method. The large scale variable x of the reference model is noiselessly and

fully observed over a short learning window (K = 50) whereas the short scale variable u is not observed. The surrogate model15

is based on the RK4 scheme and Nc = 2 compositions. We choose to implement the locality and homogeneity assumptions,

with a stencil of width 5. We have Np = 161 and Na = 18. We choose δta = δtf = ∆t/Nc.

Figure 9 shows the trajectories of the reference and surrogate models starting from the same initial condition, as well as their

difference, as a function of time.

The emergence of error, i.e. the divergence from the reference, appears as long space-time stripes. We argue that they result20

from the emergence of subscale perturbations that are not properly represented by the surrogate model. Reciprocally there are

long lasting stripes of low error not yet impacted by subscale perturbations. As expected and similarly to the L96 model, the

perturbations are transported eastward as shown by the upward tilt of the stripes in Fig. 9. Clearly, in this case, a flow rate of

the form Eq. (2) could be insufficient. Adding a stochastic parametrisation with parameters additionally inferred might offer

a solution, as in Pulido et al. (2018). Because of this mixed performance, the RMSE slowly degrades (compared to the other25

experiments reported so far) with the increase of the forecast lead time (not shown).

5 Conclusions

We have proposed to infer the dynamics of a reference model from its observation using Bayesian data assimilation, which is

a new and original scope for data assimilation. Over a given training time window, the control variables are the state trajectory

and the coefficients of an ODE representation for the surrogate model. We have chosen the surrogate model to be the com-30

position of an explicit integration scheme (Runge-Kutta typically) applied to this ODE representation. Time-invariance, space

homogeneity and locality of the dynamics can be enforced making the method suitable for high-dimensional systems. The cost
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Figure 9. Density plot of the L05III reference and surrogate model trajectories, as well as their difference trajectory, as a function of the

forecast lead time (in Lyapunov time unit).

function of the data assimilation problem is minimised using the adjoint of the surrogate resolvent which is explicitly derived.

Analogies between the surrogate resolvent and a deep neural network have been discussed, as well as the impact of stability

issues of the reference and surrogate dynamics.

The method has been applied to densely noiseless observed systems with identifiable reference model yielding a perfect

reconstruction close to machine precision (L63 and L96 models). It has also been applied to densely or partially observed,5

identifiable or non-identifiable model with or without noise in the observations (L96 and KS model). For moderate noise and

sufficiently dense observation, the method is successful in the sense that the forecast is accurate beyond several Lyapunov

times. The method has also been used as a way to infer a reduced model for a multi-scale observed system (L05-III model).

The reduced model was successful in emulating slow dynamics of the reference model but could not properly account for the

impact of the fast unresolved scale dynamics on the slow ones. A subgrid parametrisation would be required or would have to10

be inferred.

Two potential obstacles have been left aside on purpose but should later be addressed. First, the model error statistics

have not been estimated. This could be achieved using for instance an empirical Bayesian analysis based on a ensemble-

based stochastic expectation maximisation technique. This is an especially interesting problem since the potential discrepancy

between the reference and the surrogate dynamics is in general non trivial. Second, we have used relatively short learning15
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time windows. Numerical efficient learning on longer windows will likely require using advanced weak constraint variational

optimisation techniques.

In this paper, only autonomous dynamics have been considered. We could at least partially extent the method to non-

autonomous systems by keeping a static part for the pure dynamics and consider time-dependent forcing fields. We have not

numerically explored non-homogeneous dynamics but we have shown how to learn from them using non-homogeneous local5

representations.

A promising yet challenging path would be to consider implicit or semi-implicit scheme following for instance the idea in

Chen et al. (2018). This idea is known in geophysical data assimilation as the continuous adjoint (see e.g., Bocquet, 2012).

This would considerably strengthen the stability of the learning and forecast steps at the cost of more intricate mathematical

developments.10

If observations keep coming after the learning time window, then one can perform data assimilation using the ODE surrogate

model of the reference model. This data assimilation scheme could only focus on state estimation, or it could continue to update

the ODE surrogate model for the forecast.

Data availability. No data sets were used in this article

Appendix A: Parametrisation of φA for one-dimensional local and homogeneous representations15

In this appendix, we show in the one-dimensional case how to parametrise φA assuming locality and homogeneity of the

representation. It is of the generic form:

[A • r]n =
Np−1∑

p=0

An,π(n,p)rp, (A1)

where π(n,p) is an integer such that 0≤ π(n,p)<Na. We can treat the bias, linear and bilinear monomials separately into

sectors, 0, 1 and 2, respectively. Set 0≤ ai ≤Na− 1 the indices which spans the columns of A for each of the three sectors20

i and 0≤ pi ≤Np− 1 the indices which spans the entries of r for each of the three sectors i. Then, Eq. (A1) can be more

explicitly written:

[A • r]n =An,a0(0)rp0(0) +
2L∑

l=0

An,a1(n,l)rp1(n,l)

+
L∑

l=0

2L−l∑

m=0

An,a2(n,l,m)rp2(n,l,m), (A2)

where the dummy index l for the linear terms browses the stencil, and the dummy indices l,m for the bilinear monomials25

browse the stencil, in the same way as we did above to enumerate them. By enumeration, we find:

– For the bias sector, we have p0(0) = 0 and a0(0) = 0.
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– For the linear sector, we have a1(n, l) = 1 + l and p1(n, l) = 1 + [n+ l−L] , where [n] means the index in [0,Nx− 1]

congruent to n modulo Nx, in order to respect the periodicity of the domain.

– Finally, for the bilinear sector, we have a1(n, l) = 1+2L+1+ 1
2 l(4L− l+1)+m and p2(n, l,m) = 1+Nx+[n−L+

m](1 +L) + l.

Author contributions. MB first developed the theory, implemented, run and interpreted the numerical experiments, and wrote the original5

version of the manuscript. All authors have discussed the theory, the interpretation of the results and edited the manuscript. The four authors

approved the manuscript for publication.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. MB is thankful to S. Ouala and R. Fablet for enlightening discussions. AC and JB have been funded by the project

REDDA (#250711) of the Norwegian Research Council. CEREA and LOCEAN are members of Institut Pierre–Simon Laplace (IPSL).10

26

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-7
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 28 February 2019
c© Author(s) 2019. CC BY 4.0 License.



References

Abarbanel, H. D. I., Rozdeba, P. J., and Shirman, S.: Machine Learning: Deepest Learning as Statistical Data Assimilation Problems, Neural

Computation, 30, 2025–2055, https://doi.org/10.1162/neco_a_01094, 2018.

Amezcua, J., Goodliff, M., and van Leeuwen, P.-J.: A weak-constraint 4DEnsembleVar. Part I: formulation and simple model experiments,

Tellus A, 69, 1271 564, https://doi.org/10.1080/16000870.2016.1271564, 2017.5

Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM,

Philadelphia, 2016.

Aster, R. C., Borchers, B., and Thuber, C. H.: Parameter Estimation and Inverse Problems, Elsevier Academic Press, second edn., 2013.

Bocquet, M.: Parameter field estimation for atmospheric dispersion: Application to the Chernobyl accident using 4D-Var, Q. J. R. Meteorol.

Soc., 138, 664–681, https://doi.org/10.1002/qj.961, 2012.10

Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Discovering governing equations from data by sparse identification of nonlinear dynamical

systems, PNAS, p. 201517384, https://doi.org/10.1073/pnas.1517384113, 2016.

Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J.

R. Meteorol. Soc., 125, 2887–2908, 1999.

Carrassi, A. and Vannitsem, S.: Accounting for model error in variational data assimilation: A deterministic formulation, Mon. Wea. Rev.,15

138, 3369–3386, https://doi.org/10.1175/2010MWR3192.1, 2010.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data Assimilation in the Geosciences: An overview on methods, issues, and per-

spectives, WIREs Climate Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018.

Chang, B., Meng, L., Haber, E., Tung, F., and Begert, D.: Multi-level residual networks from dynamical systems view, in: Proceedings of

ICLR 2018, 2018.20

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D.: Neural Ordinary Differential Equations, arXiv preprint arXiv:1806.07366,

2018.

Dreano, D., Tandeo, P., Pulido, M., Ait-El-Fquih, B., Chonavel, T., and Hoteit, I.: Estimating model error covariances in nonlinear

state-space models using Kalman smoothing and the expectation-maximisation algorithm, Q. J. R. Meteorol. Soc., 143, 1877–1885,

https://doi.org/10.1002/qj.3048, 2017.25

Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model

Dev., 11, 3999–4009, https://doi.org/10.5194/gmd-11-3999-2018, 2018.

E, W.: A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5, 1–11, https://doi.org/10.1007/s40304-017-0103-z,

2017.

Fablet, R., Ouala, S., and Herzet, C.: Bilinear residual neural network for the identification and forecasting of dynamical systems, https:30

//hal.archives-ouvertes.fr/hal-01686766, submitted, 2018.

Gautschi, W.: Numerical analysis, Springer Science & Business Media, second edn., 2012.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, The MIT Press, Cambridge Massachusetts, London England, 2016.

Grudzien, C., Carrassi, A., and Bocquet, M.: Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with

model error, Nonlin. Processes Geophys., 25, 633–648, https://doi.org/10.5194/npg-25-633-2018, 2018.35

Harlim, J.: Model error in data assimilation, in: Nonlinear and stochastic climate dynamics, edited by Franzke, C. L. E. and O’Kane, T. J.,

pp. 276–317, Cambridge University Press, https://doi.org/10.1017/9781316339251.011, 2017.

27

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-7
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 28 February 2019
c© Author(s) 2019. CC BY 4.0 License.



Harlim, J.: Data-driven computational methods: parameter and operator estimations, Cambridge University Press, Cambridge, 2018.

Hodyss, D.: Ensemble State Estimation for Nonlinear Systems Using Polynomial Expansions in the Innovation, Mon. Wea. Rev., 139, 3571–

3588, https://doi.org/10.1175/2011MWR3558.1, 2011.

Hodyss, D.: Accounting for Skewness in Ensemble Data Assimilation, Mon. Wea. Rev., 140, 2346–2358, https://doi.org/10.1175/MWR-D-

11-00198.1, 2012.5
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