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Abstract. Recent progress in machine learning has shown
how to forecast and, to some extent, learn the dynamics of a
model from its output, resorting in particular to neural net-
works and deep learning techniques. We will show how the
same goal can be directly achieved using data assimilation5

techniques without leveraging on machine learning software
libraries, with a view to high-dimensional models. The dy-
namics of a model are learned from its observation and an
ordinary differential equation (ODE) representation of this
model is inferred using a recursive nonlinear regression. Be-10

cause the method is embedded in a Bayesian data assimila-
tion framework, it can learn from partial and noisy observa-
tions of a state trajectory of the physical model. Moreover, a
space-wise local representation of the ODE system is intro-
duced and is key to cope with high-dimensional models.15

It has recently been suggested that neural network archi-
tectures could be interpreted as dynamical systems. Recipro-
cally, we show that our ODE representations are reminiscent
of deep learning architectures. Furthermore, numerical anal-
ysis considerations on stability shed light on the assets and20

limitations of the method.
The method is illustrated on several chaotic discrete and

continuous models of various dimensions, with or without
noisy observations, with the goal to identify or improve the
model dynamics, build a surrogate or reduced model, or25

produce forecasts from solely observations of the physical
model.

Copyright statement.

1 Introduction

1.1 Data assimilation and model error 30

Data assimilation aims at estimating the state of a physi-
cal system from its observation and a numerical dynamical
model for it. It has been successfully applied to numerical
weather and ocean prediction, where it often consisted in
estimating the initial conditions for the state trajectory of 35

chaotic geofluids (Kalnay, 2002; Asch et al., 2016; Carrassi
et al., 2018). This objective is impeded by the deficiencies of
the numerical model (discretrisation, approximate physical
schemes, unresolved scales and their uncertain parametrisa-
tions, e.g., Harlim, 2017) and the difficulty to match numeri- 40

cal representations of the system with the observations (rep-
resentation error, Janjić et al., 2018). As a result, the quality
of numerical weather predictions based on a methodologi-
cally sound data assimilation method crucially depends on
both the sensitivity to the initial condition due to the chaotic 45

unstable dynamics and on model error (Magnusson and Käl-
lén, 2013).

Model errors can take many forms and accounting for
them depends on the chosen data assimilation scheme. A first
class of solutions rely on parametrising model error by, for 50

instance, transforming the problem into a physical param-
eter estimation problem (e.g., Bocquet, 2012; Aster et al.,
2013). Other solutions are based on a weakly parametrised
form of model error, for instance when it is assumed to
be additive noise. Such techniques have been developed 55

for variational data assimilation (e.g., Trémolet, 2006; Car-
rassi and Vannitsem, 2010), for ensemble Kalman filters
and smoothers (e.g., Ruiz et al., 2013; Raanes et al., 2015)
and ensemble-variational assimilation (Amezcua et al., 2017;
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Sakov et al., 2018). In the weakly parametrised form, these
methods should be completed by an estimation of the model
error statistics (e.g., Pulido et al., 2018; Tandeo et al., 2018).
Moreover, model error’s impact can be mitigated, and this
is often the case in applications, by multiplicative and ad-5

ditive inflation (e.g., Whitaker and Hamill, 2012; Grudzien
et al., 2018; Raanes et al., 2019) and by physically-driven
stochastic perturbations of model simulations in ensemble
approaches (e.g., Buizza et al., 1999), or by stochastic sub-
grid parametrisations (e.g., Resseguier et al., 2017). This ac-10

count is very far from exhaustive as this is a vast, multiform
and very active subject of research.

These approaches essentially seek to correct, calibrate or
improve an existing model using observations. Hence, they
all primarily make use of data assimilation techniques.15

1.2 Data-driven forecast of a physical system

An alternative is to renounce physically-based numerical
models of the phenomenon of interest and instead to only
use observations of that system. Given the huge required
datasets, this may seem a far-reaching goal for operational20

weather and ocean forecasting systems, but recent progress
in data-driven methods and convincing applications to geo-
physical problems of small to intermediate complexity are
strong incentives to investigate this bolder approach. Even-
tually, the perspective of putting numerical models away has25

a strong practical appeal, even though such perspective may
generate intense debates.

For instance, forecasting of a physical system can be done
by looking up at past situations and patterns using the tech-
niques of analogues, which can be combined with present30

observations using data assimilation (Lguensat et al., 2017).
Or it can rely on a representation of the physical system
based on diffusion maps that look for a spectral representa-
tion of the dataset (see chapter 6 of Harlim, 2018). An orig-
inal data-driven stochastic modelling approach has been de-35

veloped by Kondrashov et al. (2015). The method, recently
extended to deal with multi-scale datasets (Kondrashov and
Chrekroun, 2017), has been applied to successfully estimate
reduced models of geophysical phenomena (see e.g., Kon-
drashov et al., 2018, and references therein). A fourth route40

relies on neural networks and deep learning to represent
the hidden model and make forecasts from this representa-
tion. Examples of such approach applied to the forecasting
of low-order chaotic geophysical models are: Park and Zhu
(1994) who use a bilinear recurrent neural network and ap-45

plied it on the three-variable Lorenz model (Lorenz, 1963,
hereafter L63), Pathak et al. (2017, 2018) who use reservoir
network techniques on the L63 model and on the Kuramoto-
Sivashinski model (Kuramoto and Tsuzuki, 1976; Sivashin-
sky, 1977, hereafter KS); Dueben and Bauer (2018) who use50

a neural network on a low-order Lorenz three-scale model,
and on coarse 2D geopotential height maps at 500 hPa. The
last three contributions have to resort to local reservoir net-

works or convolutional layers, respectively, to cope with the
dimensionality of the models. However, all these representa- 55

tions are not mechanistic and the neural network becomes a
surrogate for the hidden model. This marks a key distinction
with respect to our approach where the dynamics to be deter-
mined are explicitly formulated, as will be clarified later.

1.3 Learning the dynamics of a model from its output 60

Data-driven techniques that seek to represent the model in
a more explicit manner, and therefore with a greater inter-
pretability, may use specific classes of nonlinear regression
as advocated by Paduart et al. (2010); Brunton et al. (2016).
With a view to forecast dynamical systems, it is possible to 65

design neural networks in order to reflect the iterative form
of a Runge-Kutta (RK) integration scheme. Wang and Lin
(1998) proposed and achieved such a goal using classical ac-
tivation functions, which may however blur the interpretation
of the underlying dynamics. Fablet et al. (2018) went fur- 70

ther and used a bilinear residual neural network structured
so as to mimic a fourth-order RK scheme (RK4) and noise-
free data. Using the Keras tool with the TensorFlow back-
end, their approach proved to be a very effective tool for the
L63 model and to a lesser extent to the 40-variable Lorenz 75

model (Lorenz and Emanuel, 1998, hereafter L96). In partic-
ular, they retrieved the parameters of the L63 equations to a
high precision. Long et al. (2018) sought the operators of the
partial differential equations (PDEs) of a physical system by
identifying differentiations with convolution operators of a 80

feed-forward neural network. They successfully applied their
method to advection-diffusion problems. As opposed to our
proposal, described hereafter, none of the aforementioned
techniques are embedded in a Bayesian framework, making
them less suitable to work with noisy and partial data. 85

1.4 Goal and outline

From this point on, the physical system under scrutiny will be
called the reference model. It will be assumed to be known
only from observations. We follow a data-driven approach
inspired by the works of Paduart et al. (2010); Fablet et al. 90

(2018) in the sense that we will consider an observed phys-
ical reference model, which might be generated by a hidden
mathematical model or process. This work is focused on ei-
ther one or a combination of the following goals: (i) to build
a surrogate model for the dynamics, (ii) to produce forecasts 95

that emulate those of the reference model, and (iii) to iden-
tify the underlying dynamics of the reference model given by
a mathematical model. The reference model could be totally
unknown or only partially specified.

To achieve these goals, we introduce a surrogate model 100

defined by a set of ordinary differential equations (ODEs):

dx

dt
= φ(x), (1)
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where x ∈ RNx is the state vector, and x 7→ φ(x) is a vector
field that we shall call flow rate. For the sake of simplicity,
the dynamics in this study are supposed to be autonomous,
i.e. do not explicitly depend on time. Our technique seeks
a fit φ given observations of the reference model. This is a5

rather general representation since, for instance, PDEs can be
discretised into ODEs. We will restrict ourselves to the case
where φ is at most quadratic in {xn}0≤n<Nx

. The numerical
integration of Eq. (1) could be based on any RK scheme, but
should additionally rely on the composition of such integra-10

tion steps. As a result, quite general resolvents of Eq. (1) can
be built (the resolvent is the model, i.e. the flow rate, inte-
grated in time over a finite time interval).

Importantly, we will not require any machine learning
software tool since the adjoint of the model resolvent can15

be derived without a lot of effort. As opposed to the con-
tributions mentioned in the previous subsections, we embed
the technique in a data assimilation framework. From a data
assimilation standpoint, the technique can be seen as meant
to deal with model error (with or without some prior on the20

model) and it naturally accommodates partial and noisy ob-
servations. Moreover, we will build representations of the
dynamics that are either invariant by spatial translation (ho-
mogeneous) and/or local (i.e. the flow rate of a variable xn
only depends on neighbouring variables whose perimeter is25

defined by a stencil). These properties make our technique
scalable and thus potentially applicable to high-dimensional
systems.

In Sect. 2, we present model identification as a Bayesian
data assimilation problem. We first choose an ODE rep-30

resentation of the dynamics, introduce a nonlinear regres-
sor basis, and define the integration schemes we will work
with. We describe the local and homogeneous representa-
tions as physically-based simplifications of the most general
case, and we derive the gradient of the problem’s cost func-35

tion based on these representations. We then introduce the
Bayesian problem and the resulting cost function used for
joint supervised learning of the optimal representation and
estimation of the state trajectory. The latter is the standard
goal of data assimilation while the former is that of machine40

learning. Our approach blends them together using the for-
malism of data assimilation.

In Sect. 3, we discuss several theoretical issues: the prior
of the model, the convergence of the training step, the con-
nection with numerical analysis of integration schemes, the45

connection with deep learning architectures, and, finally, the
pros and cons of our approach.

In Sect. 4, we illustrate the method with several low-
order chaotic models (L63, L96, KS and a two-scale Lorenz
model) of various sizes, from a perfectly identifiable model,50

i.e. where the model used to generate the dataset can be re-
trieved exactly, to a reduced-order model where the model
used to generate the dataset cannot be retrieved exactly, us-
ing full or partial, noiseless or noisy observations. Conclu-
sions are given in Sect. 5.55

2 Model identification as a data assimilation problem

2.1 Ordinary differential equation representation

Our surrogate model is chosen to be represented by an ODE
system as described by Eq. (1). We additionally assume that
the flow rate can be written as 60

φA(x) = Ar(x), (2)

where A ∈ RNx×Np is a matrix of real coefficients to be es-
timated and r : RNx 7→ RNp is a map that defines regressor
functions of x. RNp is the latent space of the regressors in
which the flow rate is linear. 65

In the absence of any peculiar symmetry, we choose this
map to list all the monomials up to second-order built on x,
i.e the constant, linear and bilinear monomials. Let us call
D = {0,1, . . . ,Nx− 1} the set of all variable indices, and P
the set of all pairs of variable indices. We introduce the aug- 70

mented state vector

x̃ =

[
x
1

]
∈ RNx+1, (3)

extendD to D̃ =D∪{Nx}, and define P̃ as the distinct pairs
of variable indices in D̃.

As a result, the regressors are compactly defined by 75

r(x) =
[
{x̃nx̃m}(n,m)∈P̃

]
(4)

where the scalars in the bracket are the entries of the vector
r(x). We count

Np =

(
Nx + 1

2

)
=

1

2
(Nx + 1)(Nx + 2) (5)

regressors, i.e. the cardinal of P̃ . For instance, a model with 80

3 variables, x0,x1,x2, such as L63, has 10 such regressors:[
1,x0,x1,x2,x

2
0,x0x1,x0x2,x

2
1,x1x2,x

2
2

]
. (6)

Higher-order regressors, as well as regressors of differ-
ent functional form, could be included as in Brunton et al.
(2016). However, it is important to keep in mind that we 85

do not seek an expansion of the resolvent of the reference
model but of the flow rate φA. As a consequence, higher-
order products of the state variables are anyhow generated
by the integration schemes and their composition. It is worth
mentioning that nonlinear regressions are not widespread 90

in geophysical data assimilation. We are nonetheless aware
of at least one noticeable exception that extends traditional
Gaussian-based methods (Hodyss, 2011, 2012).

2.2 Local and homogeneous representations

At least two useful simplifications for the ODEs could be 95

exploited if the state x is assumed to be the discretisation of
a spatial field.
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2.2.1 Locality

First, we use a locality assumption based on the physical lo-
cality of the system: all multivariate monomials in the ODEs
have variables xn that belong to a stencil, i.e. a local arrange-
ment of grid points around a given node. This can signifi-5

cantly reduce the number of bilinear monomials in r(x). We
assume that sn is the stencil around node n, the pattern be-
ing the same for all nodes, except the last one. For the node
Nx corresponding to the extra variable x̃Nx = 1, we assume
that its stencil consists of all the Nx + 1 nodes. We then de-10

fine P̃s ⊂ P̃ as the sub-set of all pairs (n,m) of variables for
which m ∈ sn. The set of required monomials can therefore
be reduced to

r(x) =
[
{x̃nx̃m}(n,m)∈P̃s

]
. (7)

Under these conditions, A becomes sparse. Indeed, for each15

node n, we assume that ẋn, the time derivative of xn, is
impacted only by linear terms xm such that m ∈ sn and
quadratic terms xmxl such that m ∈ sn, l ∈ sn and m ∈ sl.
However, to keep a dense matrix, we choose to compactly
redefine and shrink A by eliminating all a priori zero entries20

due to the locality assumption. The number of columns of
A is then significantly reduced from Np to Na. As a conse-
quence of this redefinition of A, the matrix multiplication in-
between A and r(x) must be changed accordingly. Nonethe-
less, the operation that assigns coefficients in A to the mono-25

mials in r(x) remain linear and we write it as

φA(x) = A • r(x). (8)

Let us take the example of a one-dimensional extended
space as those used in Sect. 4. The domain is supposed to be
periodic (circle) and the nodes are indexed by 0≤ n <Nx.30

Recall that the node of index Nx is associated to the extra
{1}. For 0≤ n <Nx, the stencil sn is defined as the set of
2L+1 nodes of index n−L,n−L+1, . . .n+L−1,n+L, plus
the extra node of index Nx. The stencil sNx

consists of all
the nodes, i.e. D. We assume 2L+ 1≤Nx. In that case r(x)35

as defined by Eq. (7) has Np = 1 +Nx(2 +L) monomials.
For instance, there are 161 such regressors for a 40−variable
model defined on a circular domain, such as L96, withL= 2:

[1,

x0,x1, . . . ,x39,

x20,x0x1,x0x2,

x21,x1x2,x1x3,

...

x239,x39x0,x39x1
]
.

(9)

The row [A]n of the dense A contains the following40

coefficients for each 0≤ n <Nx. First there are 2L+ 2
regressors built with {1} (the constant and linear regres-
sors). Second, we consider the square monomials x2m with

m ∈ sn, i.e.
{
x2m
}
n−L≤m≤n+L whose number is 2L+

1. Then we consider those separated by one space step: 45

{xmxm+1}n−L≤m≤n+L−1 whose number is 2L, followed
by those separated by two space steps whose number is
2L−1, and so on until a separation ofL is reached. Quadratic
monomials of greater separation are discarded since they do
not belong to a common stencil as per the above definition 50

reflecting the locality assumption. Hence there is a total of
Na =

∑2L+2
l=L+1 l = 3

2 (L+1)(L+2) coefficients per grid-cell.
In appendix A, we show in the one-dimensional space case

how to compute the reduced form of the product between A
and r(x), assuming locality. This type of technical parametri- 55

sation is required for a parsimonious representation of the
control variables, i.e. the coefficients of A, and is key for a
successful implementation with high-dimensional models.

Note that this locality assumption is hardly restrictive. In-
deed, owing to the absence of long-range instantaneous inter- 60

actions (which are precluded in geophysical fluids), farther
distance correlations between state variables can be gener-
ated by small stencils in the definition of φA through time
integrations. This would not prevent potential specific long-
distance dependencies (such as teleconnections). 65

2.2.2 Homogeneity

Furthermore, a symmetry hypothesis could optionally be
used by assuming translational invariance of the ODEs,
called homogeneity in the following. Because our control pa-
rameters, i.e. the coefficients of A, parametrise the flow rate, 70

the symmetry simply translates into the rows [A]n of the
dense A being the same for all n. Hence A simply becomes
a vector in RNa .

Let us enumerate its coefficients in the case of the L96
model withL= 2 and assuming both locality and homogene- 75

ity. The coefficients are partitioned into: A(0) for the bias,
A

(1)
l for the linear sector, and A(2)

l,m for the bilinear sector. In
the linear sector, l =−2, . . . ,2 is the relative position with re-
spect to the current grid point. In the bilinear sector, l,m are
the relative positions with respect to the current grid point of 80

the two variables in the product. Proceeding in the same way
we counted them, the Na = 18 coefficients of A are[
A(0),

A
(1)
−2,A

(1)
−1,A

(1)
0 ,A

(1)
1 ,A

(1)
2 ,

A
(2)
−2,−2,A

(2)
−1,−1,A

(2)
0,0,A

(2)
1,1,A

(2)
2,2,

A
(2)
−2,−1,A

(2)
−1,0,A

(2)
0,1,A

(2)
1,2,

A
(2)
−2,0,A

(2)
−1,1,A

(2)
0,2,
]
.

(10)

Note that, while both constraints, locality and homogene-
ity, apply to the ODEs, they do not apply to the states per 85

se. For instance ODEs for discretised homogeneous two-
dimensional turbulence satisfy both constraints and yet gen-
erate non-uniform flows.
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For realistic geofluids, the forcing fields (solar irradiance,
bathymetry, boundary conditions, friction, etc.) are hetero-
geneous, so that the homogeneity assumption should be
dropped. Nonetheless, the fluid dynamics part of the model
would remain homogeneous. As a result, an hybrid approach5

could be enforced.

2.3 Integration scheme and cycling

The reference model will be observed at time steps tk, in-
dexed by integer 0≤ k ≤K. Hence, we need to be able to
express the resolvent of the surrogate model from tk to tk+1.10

We assume that tk+1−tk is a multiple of the integration time
step of the surrogate model: tk+1−tk =Nk

c h, where h is the
integration time step and Nk

c is the number of integrations.
The time steps tk+1− tk can be uneven, which is reflected
in the dependence of Nk

c on k. Hence, the resolvent of the15

surrogate model from tk to tk+1 can be written as

xk+1 = FkA(xk) where FkA ≡ f
Nk

c

A ≡ fA ◦ . . . ◦ fA︸ ︷︷ ︸
Nk

c times

, (11)

i.e. the integration of Eq. (1) from tk to tk+1 using the repre-
sentation Eq. (2).

We define intermediate state vectors inbetween [tk, tk+1]:20

xk,l is the state vector defined at time tk + (tk+1− tk)l/Nk
c

for 0≤ l ≤Nk
c , as the result of l compositions of fA on xk:

xk,l = f lA(xk). Figure 1 is a schematic of the composition of
the integration steps, along with the state vectors xk and xk,l.

The operator fA is meant to be an explicit numerical in-25

tegration scheme. In the following, we shall consider an RK
scheme applied to x≡ xk,l, with NRK steps. This number of
steps coincides with the accuracy of the schemes that we will
consider: first-order for the Euler scheme, second-order for
RK2, and fourth-order for RK4 (NRK = 1,2 and 4, respec-30

tively). Provided the dynamics are autonomous, a general RK
scheme reads

fA(x) = x +h

NRK−1∑
i=0

βiki, (12a)

ki = φA

x +h

i−1∑
j=0

αi,jkj

 , (12b)

where the coefficients βi and αi,j entirely specify the scheme35

and h= (tk+1− tk)/Nk
c . Note that αi,j are zero for j ≥ i,

so that Eq. (12b) can be computed iteratively from k0 to
kNRK−1, followed by the sum Eq. (12a) to get fA(x).

In the following, h will be absorbed in the definition of
A and hence φA, so that we can take h= 1 without loss of40

generality.

2.4 Bayesian analysis

We consider a sequence of observation vectors yk ∈ RN
k
y of

the physical system at tk indexed by 0≤ k ≤K. The system

state is observed through 45

yk = Hk(xk) + εk, (13)

where Hk is the observation operator at time tk. The obser-
vation error εk will be assumed Gaussian of zero mean and
covariance matrix Rk, It is also assumed to be white in time.
The flow rate φA is given by the approximation Eq. (2), so 50

that the resolvent FA of the surrogate model should also be
considered as an approximation of the reference model’s re-
solvent. Hence, we generalise Eq. (11) to

xk+1 = FkA(xk) +ηk, (14)

where ηk are unbiased Gaussian errors of covariance matri- 55

ces Qk, supposed to be white in time and uncorrelated from
the observation errors. Note that, in all generality, the state
space of the surrogate model does not have to match that of
the reference model. We will nonetheless take them to coin-
cide here merely for simplicity. 60

With the goal to identify a model, or build a surrogate
of the reference one, we are interested in estimating the
probability density function (pdf) p(A|y0:K) where y0:K

stands for all observations in the window [t0, tK ]. To obtain a
tractable expression for this conditional likelihood, we need 65

to marginalise over the state variables x0:K within the win-
dow:

p(A|y0:K) =

∫
dx0:K p(A,x0:K |y0:K). (15)

An approximate maximum a posteriori for A could be ob-
tained by using the Laplace approximation of this integral, 70

which would require to find the maximum of

p(A,x0:K |y0:K) =
p(A,x0:K ,y0:K)

p(y0:K)

=
p(x0:K ,y0:K |A)p(A)

p(y0:K)

=
p(y0:K |x0:K ,A)p(x0:K |A)p(A)

p(y0:K)
. (16)

Nonetheless, maximising Eq. (16) rigorously yields the 75

maximum a posteriori of the joint variables A,x0:K . The
cost function associated to this joint pdf is by definition
J (A,x0:K) =− ln(p(A,x0:K |y0:K)). Because Eq. (14) is
Markovian and given the Gaussian form of both model and
observational errors, the cost function reads 80

J (A,x0:K) =
1

2

K∑
k=0

‖yk −Hk(xk)‖2R−1
k

+
1

2

K∑
k=1

∥∥xk −Fk−1A (xk−1)
∥∥2
Q−1

k

− lnp(x0|A)− lnp(A), (17)



6 M. Bocquet et al.: Data assimilation as a learning tool to infer dynamics

x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f lA fA f
Nk

c −l−1
A

Figure 1. Representation of the data assimilation system as a hidden Markov chain model, and of the model resolvents Fk
A and fA.

up to a constant depending on Q1:K and R0:K only. The vec-
tor norm ‖z‖P is defined as

√
zTPz. This is the cost function

of a weak constraint 4D-Var (see Sect. 2.4.3.2 of Asch et al.,
2016) with A and x0:K as control variables.

In the case where the reference model is fully and directly5

observed, i.e. Hk ≡ Ix and in the absence of observation
noise, i.e. Rk ≡ 0, we have x0:K ≡ y0:K and the cost func-
tion simplifies to

J (A) =
1

2

K∑
k=1

∥∥yk −Fk−1A (yk−1)
∥∥2
Q−1

k

− lnp(y0|A)− lnp(A), (18)10

where y0:K is the fully and perfectly observed state trajec-
tory of the reference model. This is notably similar to a
traditional least-square function used in machine and deep
learning regression. This connection between machine learn-
ing and data assimilation cost functions had been previously15

put forward by Hsieh and Tang (1998) and Abarbanel et al.
(2018) although in a different form. Reciprocally, when the
aforementioned hypotheses of noiseless and complete obser-
vations do not hold, Eq. (17) can be seen as a natural data
assimilation extension of Eq. (18). Note that Eq. (18) only20

depends on the sequence Q1:K . If, in addition, the depen-
dence on p(y0,A) = p(y0|A)p(A) is neglected in Eq. (18),
then the maximum a posteriori should not depend on a global
rescaling of Q1:K .

The data assimilation system is represented in Fig. 1 as a25

hidden Markov chain model. This Bayesian view highlights
the choice that must be made for R0:K and/or Q1:K and pro-
vides an interpretation in terms of errors. Furthermore, one
could implement an objective estimation of these error statis-
tics as in Pulido et al. (2018).30

2.5 Gradients and adjoint of the representation

To efficiently minimise the cost function Eq. (17) with a
gradient-based optimisation tool, we need to analytically de-
rive the gradient of Eq. (17) with respect to both A and x0:K .

As for x0:K , we have: 35

∇x0
J =− (∇x0

H0)
T

R−10 δ0−
(
∇x0

F0
A

)T
Q−11 ∆1

−∇x0
lnp(x0|A), (19a)

∇xk
J =− (∇xk

Hk)
T

R−1k δk −
(
∇xk

FkA
)T

Q−1k+1∆k+1

+ Q−1k ∆k, for 1≤ k ≤K − 1, (19b)

∇xK
J =− (∇xK

HK)
T

R−1K δK + Q−1K ∆K , (19c) 40

where δk = yk −Hk(xk) for 0≤ k ≤K and ∆k = xk −
Fk−1A (xk−1) for 1≤ k ≤K; ∇xk

FkA is the tangent linear
operator of the resolvent FkA computed at xk for 0≤ k <K;
∇xk

Hk is the tangent linear operator of the observation oper-
ator Hk computed at xk for 0≤ k ≤K. As for A, we have: 45

∇AJ =−
K∑
k=1

δTkQ−1k ∇AFk−1A (xk−1)−∇A lnp(A), (20)

assuming x0 is independent from A. Hence, a key technical
aspect of the problem is to compute the tangent linear and ad-
joint operators required by these gradients. In this paper, we 50

assume that the adjoints (∇xk
Hk)

T of the tangent linear op-
erators of the observation operators are known, for instance
if the latter are linear as in Sect. 4.

The computations of the gradients and the required ad-
joints are developed in appendix B. These technicalities can 55

be skipped since they are not required to understand the
method. Nonetheless, they are critical to its numerical effi-
ciency.

3 Discussion of the theoretical points

In this section, we discuss about the prior pdf p(A), the op- 60

timisation of the cost function J (A,x0:K), and the connec-
tions with deep learning techniques.
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3.1 Prior information on the reference model

The goal is either to reconstruct an ODE for the reference
model, characterised by the coefficients A through φA, or to
build a surrogate model of it. The estimation of x0:K is then
accessory, even though factually critical to the estimation of5

A. The alternative would have been to consider the estima-
tion of x0:K as the primary problem, under model error of
a prescribed ODE form, the estimation of A becoming ac-
cessory. In both cases, but particularly in the latter once, one
may benefit from an informative prior pdf p(A).10

The prior pdf p(A) can be used to encode any prior knowl-
edge on the reference model, such as pieces of it that would
be known. Indeed, p(A) can formally quantity the uncer-
tainty associated to any part of the surrogate model. For in-
stance, assume that the reference model is partially identifi-15

able, which means that part of the reference model could be
represented by an up to bilinear flow-rate of the form Eq. (2)
and Eq. (4). Moreover, assume that there is one such part of
the reference model which is known, i.e. that elements of A
are actually known while others need to be estimated. Then,20

the known coefficients can formally be encoded in p(A) with
Dirac factors. In practice it could be implemented as a con-
strained optimisation problem, for instance using an aug-
mented Lagrangian, in order to avoid significantly altering
the gradients with respect to A. More generally, assigning a25

non-trivial prior likelihood, such as a Gaussian one for A, is
certainly appealing, but may not be practical.

3.2 Numerical optimisation: issues and solutions

The success of the optimisation of J (A,x0:K) depends
above all on the ability to evaluate it robustly. In particu-30

lar, it depends on the stability of the numerical integration
scheme x′ = fA(x). In this paper, we chose to rely on one-
step explicit schemes which are much simpler to describe and
efficient to integrate (a family to which the RK schemes of
any NRK belong). These schemes are 0-stable, which means35

that the finite time error growth goes to zero as the integra-
tion step goes to zero. But, as a major drawback, they have
a limited absolute (or A–)stability domain (see e.g., chapters
5 and 6 of Gautschi, 2012). For a given state trajectory, there
exists a stability domainDs ∈ RNx×Np out of which the eval-40

uation of J (A,x0:K) is hazardous. A failure to evaluate the
cost function also depends on the number of integration steps
since the instabilities are likely to increase exponentially with
Nk

c .
This tells that, in the absence of a strong prior p(A), it is45

safer to start with A = 0 likely to lie close to Ds. Alterna-
tively, if stability constraints are known about A, they could
be encoded in p(A). It also tells that we should strike an em-
pirical compromise between the composition numbers Nk

c

and the easiness to evaluate J (A,x0:K). In the one hand,50

the larger Nk
c the more the iterates of A in the optimisation

must be kept confined in Ds. On the other hand, the longer

Nk
c the broader the class of achievable resolvents, and hence

the ability to build a good surrogate. Moreover, the higher
the stability of the integration scheme, the larger Ds, and the 55

easier the optimisation in spite of an increase in its numerical
cost.

As for the sensitivity on K, the longer the time window,
the more observations are available to constrain the problem.
However, the longer K the higher the chances of having a 60

significant instability: the chances of a successful integration
typically decrease exponentially with the length K.

This stability issue can be somehow alleviated by normal-
ising the observations yk by their mean and variance in order
to avoid excessively large value ranges of the regressors. This 65

will not change the fundamental stability of the schemes, yet
may delay the occurrences of instabilities due to the nonlin-
ear terms.

Moreover, instabilities can significantly be mitigated by
replacing the monomials with smoothed or truncated ones: 70

r(x) =
[
{ζ(x̃n)ζ(x̃m)}(n,m)∈P̃

]
. (21)

One can for instance choose ζ(x) = λtanh(x/λ), in order to
cut-off too large values of |x| and hence delay the growth of
instabilities. The parameter λ > 0 is roughly chosen as the 75

typical maximum amplitude of |x| as approximately inferred
from the observations. If tanh is deemed to be numerically
too costly, one can choose instead ζ(x) =−λ1]−∞,−λ] +
x1[−λ,λ] +λ1[λ,+∞[, or more generally ζ(x) = (−λ+ε(x+
λ))1]−∞,−λ]+x1[−λ,λ]+(λ+ε(x−λ))1[λ,+∞[ with 0≤ ε� 80

1 a small trend.
This latter change of variables is the one implemented for

all numerical applications described in Sect. 4, together with
the normalisation. From these experiments, we learnt that
these tricks often turned critical in the first iterates of the op- 85

timisation as the estimate of A progressively migrates to the
A-stability domain. After a few iterations however, the inte-
grations are stabilised and the nonlinear regime of the trun-
cations in Eq. (21) is not tapped into anymore.

3.3 Connection and analogies with deep learning 90

architectures

It has recently been advocated that residual deep learning ar-
chitectures of neural networks can roughly be interpreted as
dynamical systems (e.g., E, 2017; Chang et al., 2018). Each
layer of the network contributes marginally to the output, so 95

that there exists an asymptotic continuum limit representa-
tion of the neural network. Furthermore, as mentioned in the
introduction, Wang and Lin (1998); Fablet et al. (2018) have
shown that the architecture of the network can follow that of
an integration scheme. 100

By contrast, we have started here from a pure dynami-
cal system standpoint, and proposed to use data assimilation
techniques. In order to explore complex model resolvents,
applied to each interval [tk, tk+1] between observations, we
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need the composition of Nc integration steps. In particular,
this allows for the resolvent to exhibit more realistic long-
range correlations. Even when using a reasonably small sten-
cil, long-correlations will arise as a result of the integration
steps. Nonetheless, the stencil might not be too small so as5

to model discretised higher-order differential operators. As
noted by Abarbanel et al. (2018), each application of fA
could be seen as a layer of the neural network. Moreover,
within such layer, there are sublayers corresponding to the
steps of the integration scheme. The larger Nc is the deeper10

this network is and the richer the class of resolvents to opti-
mise on.

Following this analogy, the analysis step where
J (A,x0:K) is optimised can be called the training
phase. Backpropagation in the network, as coined in ma-15

chine learning (Goodfellow et al., 2016), corresponds to
the computation of the gradient of the network with respect
to A and of the model adjoint derived in Sect. 2. This a
shortcut for the use of machine learning software libraries
such as TensorFlow or PyTorch (see appendix C for a brief20

discussion).
Because of our complete control of the backpropagation,

we hope for a gain in efficiency. However, our method does
not have the flexibility of deep learning through established
tools. For instance, adding extra parameters, adaptive batch25

normalisation, dropouts are not granted in our approach with-
out further considerations.

Convolutional layers play the role of localisation in neu-
ral architecture. In our approach this role is played by the
locality assumption and its stencil prescription. Recall that30

a tight stencil does not prevent longer-range correlation that
are built up through the integration scheme and their compo-
sition. This is similar to stacking several convolutional lay-
ers to account for multiple scales from the reference model
which the neural network is meant to learn from.35

Finally, we note that, as opposed to most practical deep
learning strategies with a huge amount of weights to esti-
mate, we have reduced the number of control variables (i.e.
A) as much as possible.

4 Numerical illustrations40

4.1 Models setup and forecast skill

In this section, we shall consider four low-order chaotic mod-
els defined on a physical one-dimensional space, except for
L63 which is 0-dimensional. They will serve as reference
models:45

1. the L63 model as defined by the ODEs:

dx0
dt

= σ(x1−x0), (22a)

dx1
dt

= ρx0−x1−x0x2, (22b)

dx2
dt

= ρx0x1−βx2, (22c)

with the canonical values (σ,ρ,β) = (10,28,8/3). Its 50

Lyapunov time1 is about 1.10. Besides its intrin-
sic value, this model is introduced for benchmarking
against Fablet et al. (2018). It is integrated using an RK4
scheme with δtr = 0.01 as the integration time-step.

2. the L96 model as defined by ODEs defined over a peri- 55

odic domain of variables indexed by n= 0, . . . ,Nx− 1
where Nx = 40:

dxn
dt

= (xn+1−xn−2)xn−1−xn +F, (23)

where xNx = x0, x−1 = xNx−1, x−2 = xNx−2, and
F = 8. This model is an idealised representation of a 60

one-dimensional latitude band of the Earth atmosphere.
Its Lyapunov time is 0.60. It is integrated using the RK4
scheme and with δtr = 0.05.

3. the KS model, as defined by the PDE:

∂x

∂t
=−x∂x

∂α
− ∂2x

∂α2
− ∂4x

∂α4
, (24) 65

over the periodic domain α ∈ [0,32π] on which we ap-
ply a spectral decomposition with Nx = 128 modes.
The Lyapunov time of our KS model is 10.2 time units.
This model is of interest because, even though it has
dynamical properties comparable to that of L96, it is 70

much steeper so that much more stringent numerical in-
tegration schemes are required to efficiently integrate it.
It is defined by a PDE, not an ODE system. It is in-
tegrated using the EDTRK4 scheme (Kassam and Tre-
fethen, 2005) and δtr = 0.05. 75

4. the two-scale Lorenz model (L05III, Lorenz, 2005) is
given by the two-scale ODEs:

dxn
dt

= ψ+
n (x) +F −hc

b

9∑
m=0

um+10n, (25a)

dum
dt

=
c

b
ψ−m(bu) +h

c

b
xm/10, (25b)

ψ±n (x) = xn∓1(x±1−xn∓2), (25c) 80

for n= 0, . . . ,Nx− 1 with Nx = 36, and
m= 0, . . . ,Nu− 1 with Nu = 360. The indices

1The Lyapunov time is defined as the inverse of the first Lya-
punov exponent, i.e. the typical time over which the error grows by
a factor e.
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apply periodically over their domain; m/10 stands for
the integer division of m by 10. We use the original
values for the parameters: c= 10 for the time-scale
ratio, b= 10 for the space-scale ratio, h= 1 for the
coupling, and F = 10 for the forcing. When uncoupled5

(h= 0), the Lyapunov time of the slow variables x
sector of the model Eq. (25) is 0.72, which will be the
key time scale when focusing on the slow variables (see
e.g., Carlu et al., 2019).

This model is of interest because the variable u is meant10

to represent unresolved scales and hence model error
when only considering the slow variables x. For this
reason, it has been used in data assimilation papers fo-
cusing on estimating model error (e.g., Mitchell and
Carrassi, 2015; Pulido et al., 2018). It is integrated with15

an RK4 scheme and δtr = 0.005 since it is steeper than
the L96 model.

The numerical experiments consist of three main steps.
First, the truth is generated, i.e. a trajectory of the reference
model is computed. The reference model equations are sup-20

posed to be unknown, but the trajectory is observed through
Eq. (13) to generate the observation vector sequence y0:K .

Next, estimators of the ODEs model and state trajec-
tory x0:K are learned by minimising the cost function
J (A,x0:K). We choose to minimise it using an implementa-25

tion of the quasi-Newton BFGS algorithm (Byrd et al., 1995),
which critically relies on the gradients obtained in Sect. 2.
The default choices for the initial ODEs model are A = 0
and x0:K defined as the space-wise linear interpolation of
y0:K . Note that the minimisation could converge to a lo-30

cal minimum, which may or may not yield satisfactory es-
timates.

Finally, we can make forecasts using the tentative opti-
mal ODEs model A? obtained from the minimisation. With
a view to compare it to the reference model used to generate35

the data, we will consider a set of forecasts with (approx-
imately) independent initial conditions. Both the reference
model and the surrogate one will be forecasted from these
initial conditions. The departure from their trajectories, as
measured by a root mean square error (RMSE) over the ob-40

served variables, will be computed for several forecast lead
times. The RMSE is then averaged over all the initial con-
ditions. We will also display the state trajectories of the ref-
erence and surrogate models starting from one of the initial
conditions.45

The integration time step of the truth (reference model) is
δtr over the time window [t0, tK ]. This parameter only mat-
ters for the reference model integration since only the train-
ing time steps tk+1− tk and the output of the model y0:K

(which may include knowledge of the observation operator)50

are known to the observer.
The integration time step of the surrogate model within

the training time window [t0, tK ] is δta. It is assumed to be
an integer divisor of the training time step ∆t= tk+1− tk

supposed to be constant, i.e. ∆t/δta is a constant integer, 55

the number of compositions Nc, and that is why the index
k on Nk

c has been dropped. The integration time step of the
surrogate model within the forecast time window [T,T +Tf ]
is denoted δtf . Note that δta and δtf can be distinct, and that
they are critical to the stability of the training and the forecast 60

step, respectively.
The three steps of the numerical experiments are depicted

in Fig. 2. Except when explicitly mentioned, the prior p(A)
is disregarded, which means that no explicit regularisation on
A is introduced. 65

4.2 Inferring the dynamics from dense and noiseless
observations: perfectly identifiable models

In the first couple of experiments, we consider a densely
observed2 reference model with noiseless observations. In
this case, Hk is the identity operator, i.e. each grid point 70

value is observed, and Rk ≡ 0 so that a uniform rescal-
ing of the Qk, all chosen to be Ix, is irrelevant, assuming
p(y0,A) = p(y0|A)p(A) can be neglected which is hypoth-
esised here and is generally true for large K. Moreover, we
use the same numerical scheme with the same integration 75

time step to generate the reference model trajectory as the
one used by the surrogate model. In principle, we should be
able to retrieve the reference model, since the reference is
identifiable, meaning that it belongs to the set of all possible
surrogate models. 80

Let us first experiment with the L63 model, using an RK4
integration scheme, with ∆t= 0.01 and K = 104 (this cor-
responds to about 91 Lyapunov times). We have Nx = 3 and
Np = 10. We choose δta = δtf = 0.01. A convergence to the
highest possible precision is achieved after about 120 itera- 85

tions. The cost function value reaches 0 to machine preci-
sion at A?. The estimated A is given by Aa = A?/δta, be-
cause, as mentioned above, the optimised A matrix absorbs
the time step. The accuracy of Aa is measured by the uni-
form norm ‖Aa−Ar‖∞, i.e. the absolute values of the en- 90

tries of the difference Aa−Ar, where Ar is the matrix of the
flow rate of L63 (including the zero coefficients). We obtain
‖Aa−Ar‖∞ = 8.46× 10−18. To compute the RMSE as a
function of the forecast lead time, we average over Ne = 103

runs (each one starting from a difference initial condition). 95

The RMSE (not shown) starts significantly diverging from 0
after 16 Lyapunov time units and reaches a saturation for a
lead time of 23 Lyapunov times.

A similar experiment is carried out with the L96 model,
using an RK4 integration scheme, with ∆t= 0.05 and K = 100

50 (this corresponds to about 4.2 Lyapunov times). We
choose here to implement the locality and homogeneity as-
sumptions (see Sects. 2.2.1 and 2.2.2). The stencil has a
width of 5 (i.e. the local grid points with 2 points on its left

2We choose the qualifier densely observed instead of fully ob-
served because there is no way to tell from the observations alone
if the reference model is fully observed.
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δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

Figure 2. Schematic of the three steps of the experiments, with the associated time steps (see main text). The beginning of the forecast
window may or may not coincide with the end of the training window. The lengths of the segments δtr, δta, and δtf are arbitrary in this
schematic.

and 2 points on its right). We have Nx = 40, Np = 161 and
Na = 18. We choose δta = δtf = 0.05. Through the minimi-
sation, the main coefficients of the L96 model (forcing F ,
advections terms, dissipation) are retrieved with a precision
of a least 8.88× 10−15.5

To compute the RMSE as a function of the forecast lead
time, we average over Ne = 103 runs. The RMSE starts sig-
nificantly diverging from 0 after 12 Lyapunov times and
reaches a saturation for a lead time of 25 Lyapunov times.

4.3 Inferring the dynamics from dense and noiseless10

observations: non-identifiable models

In this second couple of experiments, we consider again a
densely observed reference model with noiseless observa-
tions. The reference model trajectory is generated by the
L96 model (Nx = 40) integrated with the RK4 scheme, with15

∆t= 0.05 and K = 50.
As opposed to the reference model, in these non-

identifiable model experiments, the surrogate model is based
on the RK2 scheme, with Nc compositions. We choose to
implement the locality and homogeneity assumptions, with20

a stencil of width 5. We have Np = 161 and Na = 18. We
choose δta = δtf = ∆t/Nc. In all cases, the convergence is
reached within a few dozens of iterations. The error on the
coefficients of A (i.e. ‖Aa−Ar‖∞) is about 4× 10−2 but
with the dominant contribution from F . The RMSE as a25

function of the forecast lead time is computed for Nc =
1,2,3,4,5 and shown in Fig. 3. The error is reduced as Nc

is increased. But the improvement saturates at about Nc = 5.
Figure 4 shows the trajectories of the reference and surro-

gate models starting from the same initial condition, as well30

as their difference, as a function of the forecast lead time.
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Figure 3. Average RMSE of the surrogate model (L96 with an RK2
structure) compared to the reference model (L96 with an RK4 inte-
gration scheme) as a function of the forecast lead time (in Lyapunov
time unit) for an increasing number of compositions.

Their divergence becomes significant after 4 Lyapunov times
and saturates after 8 Lyapunov times.

Next, the reference model trajectory is generated by the
KS model (Nx = 128) integrated with the ETDRK4 scheme, 35

with ∆t= 0.05 and K = 50 (this corresponds to about 0.25
Lyapunov time). We choose to implement the locality and
homogeneity assumptions, with a stencil of width 9. The
surrogate model is based on the RK4 scheme, with Nc = 2
compositions. Note that in this experiment, the reference 40

and surrogate models and their integration schemes signif-
icantly differ. We have Np = 769 and Na = 45. We choose
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Figure 4. Density plot of the L96 reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast
lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.

δta = ∆t/Nc and δtf = 10−3. The forecast time step δtf is
somehow smaller than δta because the KS equations are stiff
and so will the surrogate model. This emphasises once again
that we have learned about the intrinsic flow rate of the ref-
erence model, and not a resolvent thereof. Alternatively, we5

could use a more robust integration scheme than RK4 such
as ETDRK4 for the forecast.

Figure 5 shows the trajectories of the reference and surro-
gate models starting from the same initial condition, as well
as their difference, as a function of the forecast lead time, for10

a stencil of 9. Their divergence becomes significant after 4
Lyapunov times and saturates after 8 Lyapunov times.

To check whether the PDE of the KS model could be re-
trieved in spite of the differences in the method of integra-
tions and representations, we have computed a Taylor expan-15

sion of all monomials in the surrogate ODEs flow rate up
to order 4 so as to obtain an approximately PDE equivalent.
The coefficients of this PDE (up to order 4 in the expansion)
are displayed in Fig. 6 and compared to the coefficients of
the reference model’s PDE. The match is good and the terms20

−x∂αx,−∂2αx and−∂4αx are correctly identified as the dom-
inant ones. Nonetheless, there are three non-negligible coeffi-
cients for higher-order terms that might have been generated
by the Taylor expansion, or may originate from a degeneracy
among the higher-order operators, or may simply be identi-25

fied with a shortcoming of our specific ODE representation.

4.4 Inferring the dynamics from partial and noisy
observations

We come back to the L96 model which is densely observed 30

but with noisy observations that are generated using an inde-
pendently identically distributed normal noise. The surrogate
model is based on an RK4 scheme, Nc = 1 and a stencil of
length 5, which makes the reference model identifiable. In
this case, the outcome theoretically depends on the choice 35

for Rk and Qk, given that Eq. (17) is now used instead of
Eq. (18). For the sake of simplicity, we have chosen them
to be of the scalar form Rk ≡ σ2

yIy and Qk ≡ qIx. In these
synthetic experiments, σy is supposed to be known, while
q is not. We only have a qualitative view on the potential 40

mismatch between the reference and the surrogate model.
Moreover, a Gaussian additive noise might not even be the
best statistical model for such error. Nonetheless holding to
the above Gaussian assumptions for model error, the optimal
value of q could be determined using an empirical Bayes ap- 45

proach based on, for instance, the expectation-maximisation
technique in order to determine the maximum a posteriori
of the conditional density of q (see e.g., Dreano et al., 2017;
Pulido et al., 2018). The use of advanced methods of that sort
to estimate model error will be considered in future works, 50

while, in the following, we have chosen values of q that yield
near to optimal skill scores (typically q ∈ [10−4,1]σ2

y).
Moreover, note that we have chosen the relatively small

K = 50. While we expect increasing K to be beneficial, es-
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Figure 5. Density plot of the KS reference and surrogate model trajectories, as well as their difference trajectory, as a function of the forecast
lead time (in Lyapunov time unit). The observations are noiseless and dense; the model is not identifiable.
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Figure 6. Coefficients of the surrogate PDE model (blue) resulting
from the expansion of the surrogate ODEs, and compared to the
reference PDE’s coefficients (orange).

pecially with noisy observations, it would force us to address
issues related to weak constraint 4D-Var optimisation for
long time windows, a topic which is also beyond the scope of
this paper. Preliminary results on this aspect are nonetheless
discussed later in this section.5
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Figure 7. Average RMSE of the surrogate model (L96 with an RK4
structure) compared to the reference model (L96 with an RK4 inte-
gration scheme) as a function of the forecast lead time (in Lyapunov
time unit) for a range of observation error standard deviation σy.

Figure 7 shows the forecast skill of the surrogate model
as a function of the forecast lead time, and for increasing
noise in the observations. Even though, in this configuration,
the model is identifiable, the reference value A0 for A may
not correspond to a minimum of the cost function. The cost 10
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Figure 8. Gap between the surrogate (L96 with an RK4 structure)
and the (identifiable) reference dynamics (L96 with an RK4 inte-
gration scheme) as a function of the observation error standard de-
viation σy. Note the use of logarithmic scales.

function might have several local minima. As a consequence,
there is no guarantee, starting from a non-trivial initial value
for A, that the model will be identified. Indeed, as seen in
Fig. 7, the forecast skill degrades significantly as the obser-
vation error standard deviation is increased.5

This is confirmed by Fig. 8 where the precision in iden-
tifying the model, measured by either the spectral norm
‖A0−A‖2 or the uniform norm ‖A0−A‖∞ are plotted as
functions of the observation error standard deviation.

Using the same setup, we have also reduced the number of10

observations. The observations of grid point values are regu-
larly spaced and shifted by one grid cell at each observation
time step. The initial A in the optimisation remains 0 while
the initial state x0:K is taken as a cubic spline interpolation
of the observations over the whole surrogate model grid.15

If the observations are noiseless, the reference model is
easily retrieved to a high precision down to a density of 1 site
over 4. If the observations are noisy, the performance slowly
degrades when the density is decreased down to about 1 site
over 4, below which the minimisation, trapped in a deceiving20

local minimum, yields an improper surrogate model.
We would like to point out that in the case of noiseless

observations, the performance depends little on the length of
the training window, beyond a relatively short length, typ-
ically K = 50. However, in presence of noisy observations,25

the overall performance improves with longerK, as expected
since the information content of the observations linearly in-
creases with the length of the window.

Figure 9 displays the values of the coefficients in A with
respect to the minimisation iteration index for the noiseless30

and fully observed case. As expected, 4 coefficients converge
to the value specified by the exact L96 flow rate while the 14

other coefficients collapse to 0. Figure 10 shows the same
but in the significantly noisy case where σy = 1 and a sig-
nificantly longer window K = 5000 (about 417 Lyapunov 35

times).

4.5 Inferring reduced dynamics of a multiscale model

In this experiment, we consider the L05III model. With the
locality and the homogeneity assumptions, the scalability is
typically linear with the size of the system, and we actually 40

consider the 10-fold model where Nx = 360 and Nu = 3600
to demonstrate that no issues was encountered when scal-
ing up the method. The large scale variable x of the refer-
ence model is noiselessly and fully observed over a short
training window (K = 50, which corresponds to about 0.35 45

Lyapunov time), i.e. all slow variable values are observed,
whereas the short scale variable u is not observed. The surro-
gate model is based on the RK4 scheme and Nc = 2 compo-
sitions. We choose to implement the locality and homogene-
ity assumptions, with a stencil of width 5. We haveNp = 161 50

and Na = 18. We choose δta = δtf = ∆t/Nc.
Figure 11 shows the trajectories of the reference and surro-

gate models starting from the same initial condition, as well
as their difference, as a function of time. The emergence of
error, i.e. the divergence from the reference, appears as long 55

darker stripes on the density plot of the difference (close to
zero difference values appear as white or light colour). We
argue that these stripes result from the emergence of sub-
scale perturbations that are not properly represented by the
surrogate model. Reciprocally there are long lasting stripes 60

of low error not yet impacted by subscale perturbations. As
expected and similarly to the L96 model, the perturbations
are transported eastward as shown by the upward tilt of the
stripes in Fig. 11. Clearly, in this case, a flow rate of the form
Eq. (2) could be insufficient. Adding a stochastic parametri- 65

sation with parameters additionally inferred might offer a so-
lution, as in Pulido et al. (2018). Because of this mixed per-
formance, the RMSE slowly degrades (compared to the other
experiments reported so far) with the increase of the forecast
lead time (not shown). 70

5 Conclusions

We have proposed to infer the dynamics of a reference model
from its observation using Bayesian data assimilation, which
is a new and original scope for data assimilation. Over a
given training time window, the control variables are the state 75

trajectory and the coefficients of an ODE representation for
the surrogate model. We have chosen the surrogate model to
be the composition of an explicit integration scheme (Runge-
Kutta typically) applied to this ODE representation. Time-
invariance, space homogeneity and locality of the dynam- 80

ics can be enforced making the method suitable for high-
dimensional systems. The cost function of the data assim-
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Figure 9. L96 is the reference model, which is fully observed without noise: plot of the Na = 18 coefficients of the surrogate model as a
function of the minimisation iteration number. The coefficient of the forcing (F ) is in green, the coefficients of the convective terms are in
cyan, and the dampening coefficient is in magenta.
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Figure 10. L96 is the reference model, which is fully observed with observation error standard deviation σy = 1: plot of the Na = 18
coefficients of the surrogate model as a function of the minimisation iteration number. Note that the index axis is in logarithmic scale. The
coefficient of the forcing (F ) is in green, the coefficients of the convective terms are in cyan, and the dampening coefficient is in magenta.

ilation problem is minimised using the adjoint of the surro-
gate resolvent which is explicitly derived. Analogies between
the surrogate resolvent and a deep neural network have been
discussed, as well as the impact of stability issues of the ref-
erence and surrogate dynamics.5

The method has been applied to densely noiseless ob-
served systems with identifiable reference model yielding a
perfect reconstruction close to machine precision (L63 and
L96 models). It has also been applied to densely or partially
observed, identifiable or non-identifiable model with or with-10

out noise in the observations (L96 and KS model). For mod-
erate noise and sufficiently dense observation, the method is
successful in the sense that the forecast is accurate beyond
several Lyapunov times. The method has also been used as a

way to infer a reduced model for a multi-scale observed sys- 15

tem (L05-III model). The reduced model was successful in
emulating slow dynamics of the reference model but could
not properly account for the impact of the fast unresolved
scale dynamics on the slow ones. A subgrid parametrisation
would be required or would have to be inferred. 20

Two potential obstacles have been left aside on purpose
but should later be addressed. First, the model error statistics
have not been estimated. This could be achieved using for
instance an empirical Bayesian analysis built on a ensemble-
based stochastic expectation maximisation technique. This 25

is an especially interesting problem since the potential dis-
crepancy between the reference and the surrogate dynam-
ics is in general non-trivial. Second, we have used relatively
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Figure 11. Density plot of the L05III reference and surrogate model trajectories, as well as their difference trajectory, as a function of the
forecast lead time (in Lyapunov time unit). The right panel shows a zoom of the difference between times 4 and 5.

short training time windows. Numerical efficient training on
longer windows will likely require using advanced weak con-
straint variational optimisation techniques.

In this paper, only autonomous dynamics have been con-
sidered. We could at least partially extent the method to non-5

autonomous systems by keeping a static part for the pure
dynamics and consider time-dependent forcing fields. We
have not numerically explored non-homogeneous dynam-
ics but we have shown how to learn from them using non-
homogeneous local representations.10

A promising yet challenging path would be to consider
implicit or semi-implicit scheme following for instance the
idea in Chen et al. (2018). This idea is known in geophysical
data assimilation as the continuous adjoint (see e.g., Bocquet,
2012). This would considerably strengthen the stability of15

the training and forecast steps at the cost of more intricate
mathematical developments.

If observations keep coming after the training time win-
dow, then one can perform data assimilation using the ODE
surrogate model of the reference model. This data assimila-20

tion scheme could only focus on state estimation, or it could
continue to update the ODE surrogate model for the forecast.

Data availability. No data sets were used in this article

Appendix A: Parametrisation of φA for local
representations defined over a circle 25

In this appendix, we show how to parametrise φA assuming
locality of the representation, in the case where it is defined
over a periodic one-dimensional domain, i.e. a circle. It is of
the generic form:

[A • r]n =

Np−1∑
p=0

An,π(n,p)rp, (A1) 30

where π(n,p) is an integer such that 0≤ π(n,p)<Na. We
can treat the bias, linear and bilinear monomials separately
into sectors, 0, 1 and 2, respectively. Let 0≤ ai ≤Na− 1
be the indices which span the columns of A for each of the
three sectors i and 0≤ pi ≤Np− 1 the indices which span 35

the entries of r for each of the three sectors i. Then, Eq. (A1)
can be more explicitly written:

[A • r]n =An,a0(0)rp0(0) +

2L∑
l=0

An,a1(n,l)rp1(n,l)

+

L∑
l=0

2L−l∑
m=0

An,a2(n,l,m)rp2(n,l,m), (A2)

where the dummy index l for the linear terms browses the 40

stencil, and the dummy indices l,m for the bilinear mono-
mials browse the stencil, in the same way as we did in
Sect. 2.2.1 to enumerate them. By enumeration, we find:



16 M. Bocquet et al.: Data assimilation as a learning tool to infer dynamics

– For the bias sector, we have p0(0) = 0 and a0(0) = 0.

– For the linear sector, we have a1(n, l) = 1 + l and
p1(n, l) = 1 + [n+ l−L] , where [n] means the index
in [0,Nx− 1] congruent to n modulo Nx, in order to
respect the periodicity of the domain.5

– Finally, for the bilinear sector, we have a2(n, l,m) =
1 + 2L+ 1 + 1

2 l(4L− l+ 1) +m and p2(n, l,m) = 1 +
Nx + [n−L+m](1 +L) + l.

We observe that these indices a0(0),a1(n, l),a2(n, l,m)
do not depend on the site index n. They only indicate a rel-10

ative position with respect to n. Hence, if homogeneity is
additionally assumed, An,a0 ,An,a1 ,An,a2 do not depend on
n anymore and A becomes a vector.

Appendix B: Computations of the gradients with
respect to A and x0:K15

B1 Differentiation of the RK schemes

It will be useful in the following to consider the variation of
each ki, defined by Eq. (12b), with respect to either A or x:

δki = δφA,i +h

i−1∑
j=0

αi,j
(
∇xiφA,i

)
δkj , (B1)

where φA,i is φA evaluated at xRK
i ≡ x +h

∑i−1
j=0αi,jkj ,20

∇xi
φA,i is the tangent linear operator with respect to x of

φA evaluated at xRK
i . Equation (B1) can be written com-

pactly in the form

Gδκ= δϕ, (B2)

where G is the matrix of size (NRKNx)×(NRKNx) defined25

by its Nx×Nx blocks [G]i,j = Ix−hαi,j∇xi
φA,i, κ is the

vector of size NRKNx which results from the stacking of the
ki ∈ RNx for 0≤ i < NRK, ϕ is the vector of size NRKNx
which results from the stacking of theφA,i for 0≤ i < NRK,
and Ix ∈ RNx is the identity matrix. The important point is30

that G is a lower triangular matrix and describes an iterative
construction of the ki. Moreover, the diagonal entries of G
are 1 by construction so that G is invertible and

δκ= G−1δϕ. (B3)

This will be used to compute the variations of fA(x) via35

Eq. (12a).

B2 Integration step

We first consider the situation when the observation inter-
val corresponds to one integration time step of the surro-
gate model, i.e. Nk

c = 1: x′ = FA(x) = fA(x) with x≡ xk.40

As a result, the time index k can be omitted here. We will

later consider the composition of several integration schemes
(Nc ≥ 2). Equation (12a) is written again but as

fA(x) = x + bκ, (B4)

where b = β⊗Ix is the matrix of sizeNx×(NRKNx) tensor 45

product of the vector β defined by βT = (β0, . . . ,βNRK−1),
i.e. the coefficients of the RK scheme as defined in Eq. (12a),
with the state space identity matrix, and where κ is the vector
of size NRKNx defined after Eq. (B2). Looking first at the
gradient with respect to the state variable, and using Eq. (B3), 50

we have

∇xfA =∇xx + b∇xκ= Ix + bG−1∇xϕ, (B5)

which yields the adjoint operator

(∇xfA)
T

= Ix + (∇xϕ)
T

G−TbT. (B6)

Let us consider an arbitrary vector d ∈ RNx ; we have 55

(∇xfA)
T

d = d + (∇xϕ)
T

G−TbTd. (B7)

To avoid computing G−T explicitly, let us define the vector
z ∈ RNxNRK such that

GTz = bTd. (B8)

Because GT is upper triangular with diagonal entries of 60

value 1, z is the solution of a linear system easily solvable
iteratively, which stands as an adjoint/dual to the RK iter-
ative construction. Hence, we finally obtain a formula and
algorithm to evaluate

(∇xfA)
T

d = d + (∇xϕ)
T

z, (B9) 65

which is key to computing Eq. (19). Indeed Eq. (19) now
reads

∇x0J =− (∇x0H0)
T

R−10 δ0−Q−11 ∆1− (∇x0ϕ)
T

z0

−∇x0 lnp(x0|A), (B10a)

∇xk
J =− (∇xk

Hk)
T

R−1k δk −Q−1k+1∆k+1− (∇xk
ϕ)

T
zk 70

+ Q−1k ∆k, for 1≤ k ≤K − 1, (B10b)

∇xK
J =− (∇xK

HK)
T

R−1K δK + Q−1K ∆K , (B10c)

where zk is the iterative solution of the system GT
k zk =

bTQ−1k+1∆k+1 for 0≤ k ≤K − 1.
Second, let us look at the gradient of J (A,x0:K) with re- 75

spect to A. From Eq. (B4) and Eq. (B3), and now considering
variations with respect to A, we obtain:

∇AfA =∇Ax + b∇Aκ= bG−1∇Aϕ, (B11)

which yields, using z as defined by Eq. (B8),

dT (∇AfA) = dTbG−1 (∇Aϕ) = zT (∇Aϕ) . (B12) 80
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For each 0≤ i < NRK, let us introduce ri = r(xi) ∈ RNp ,
and let us denote zi ∈ RNx the subvector of z for the i-th
block of the Runge-Kutta scheme. Then, we have for 0≤
n <Nx and 0≤ p < Np:

[
zT (∇Aϕ)

]
n,p

=

Nx−1∑
m=0

NRK−1∑
i=0

[zi]m
∂

∂An,p

Np−1∑
q=0

Am,q[ri]q5

=

Nx−1∑
m=0

NRK−1∑
i=0

Np−1∑
q=0

[zi]mδm,nδp,q[ri]q

=

NRK−1∑
i=0

[zi]n[ri]p =

NRK−1∑
i=0

zir
T
i . (B13)

This is key to efficiently computing Eq. (20), which now
reads

∇AJ =−
K∑
k=1

NRK−1∑
i=0

zk,ir
T
k,i−∇A lnp(A), (B14)10

where zk is the solution of GT
k zk = bTQ−1k δk. The index k

of Gk indicates that the operators defined in the entries of G
are evaluated at xk.

B3 Composition of integration steps

We now consider a resolvent which is the composition of15

Nk
c ≥ 2 integration steps over [tk, tk+1]: x′ = f

Nk
c

A (x) where
x is an alias to xk. Let us first look at the gradient with
respect to the state variable. Within the scope of this sec-
tion, we define x0 ≡ x and for 1≤ l ≤Nk

c : xl ≡ fA(xl−1).
Hence, x′ = xNc

. We also define ∇xl
fA to be the tangent20

linear operator of fA at xl. By Leibniz rule, we obtain(
∇xFkA

)T
= (∇x0

fA)T(∇x1
fA)T · · ·(∇xNc−1

fA)T. (B15)

We can now apply Eq. (B9) to each individual integration
step and obtain for any d ∈ RNx

(∇xl
fA)Td = d + (∇xl

ϕ)
T

zl, (B16)25

where zl is the solution of

GT
l zl = bTd. (B17)

Hence, to compute
(
∇xFkA

)T ·d, we define x̃Nc = d and for
Nc− 1≥ l ≥ 0: x̃l = (∇xl

fA)Tx̃l+1. This finally reads:

x̃l = x̃l+1 + (∇xl
ϕl)

T
zl, (B18)30

for Nc− 1≥ l ≥ 0, where zl is the solution of

GT
l zl = bTx̃l+1. (B19)

To compute the key terms in the gradients Eq. (19), d must
be chosen to be Q−1k+1∆k+1 where 0≤ k ≤K − 1 and(
∇xFkA

)T
Q−1k+1∆k+1 = x̃0. (B20)35

Second, we look at the gradient with respect to A. In this
case, the application of the Leibniz rule yields

∇AFkA =

Nc−1∑
l=0

(∇xNc−1
fA) · · ·(∇xl+1

fA)∇AfA(xl)

=

Nc−1∑
l=0

(
∇xl+1

fNc−l−1
A

)
∇AfA(xl), (B21)

where ∇xl+1
fNc−l−1
A = (∇xNc−1

fA) · · ·(∇xl+1
fA). But 40

∇AfA(xl), which focuses on a single integration step, is
given by Eq. (B11):

∇AfA(xl) = bG−1l ∇Aϕl (B22)

and from Eq. (B12):

dT∇AfA(xl) = zTl (∇Aϕl) . (B23) 45

As a result, we obtain:

∇AJ =−
Nc−1∑
l=0

K∑
k=1

NRK−1∑
i=0

zk,l,ir
T
k,l,i−∇A lnp(A), (B24)

where zk,l is the solution of

GT
k,lzk,l = bT

(
∇xl+1

fNc−l−1
A

)T
Q−1k δk. (B25)

All of these results, Eqs. (B10,B14,B20,B24), allow 50

to efficiently compute the gradients of the cost function
J (A,x0:K) with respect to both A and x0:K . Note, however,
that they have been derived under the simplifying assumption
that φA is given by Eq. (2) with a traditional matrix multipli-
cation between A and r(x), but not by the compact Eq. (8). 55

When relying on homogeneity and/or locality, the calcula-
tion of the gradient with respect to A follows the principle
described above but requires further adaptations, which can
be derived using Eq. (A2), with the asset of strongly reducing
the computational burden. 60

Appendix C: Adjoint differentiation with PyTorch and
TensorFlow

As an alternative to the explicit computation of the gradi-
ents of Eq. (17) and the associated adjoint models, we have
used PyTorch and TensorFlow as automatic differentiation 65

tools. Only the cost function code needs to be implemented.
We made a few tests on the experiments of Sect. 4 that
showed that the fastest code is a C++ implementation using
the explicit gradients, followed by an implementation using
Python/Numpy/Numba using the explicit gradients, followed 70

by a much slower implementation with TensorFlow (graph
execution), followed by an implementation with TensorFlow
(eager execution), and finally by PyTorch. Our experiments
made use of a muti-core CPU and/or a GPU. This purely
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qualitative ranking is not surprising since (i) PyTorch and
TensorFlow excel in tensor algebra operations which are not
massively use in the way we built our cost function with rela-
tively few but significant parameters (ii) the time spent in the
development of each method scales with their speed.5
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