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Abstract. Most available verification metrics for ensemble forecasts focus on univariate quantities. That is, they assess whether

the ensemble provides an adequate representation of the forecast uncertainty about the quantity of interest at a particular

location and time. For spatially-indexed ensemble forecasts, however, it is also important that forecast fields reproduce the

spatial structure of the observed field, and represent the uncertainty about spatial properties such as the size of the area for

which heavy precipitation, high winds, critical fire weather conditions, etc. are expected. In this article we study the properties5

of
::
the

:::::::
fraction

::
of

::::::::
threshold

::::::::::
exceedance

:::::
(FTE)

:::::::::
histogram, a new diagnostic tool designed for spatially-indexed ensemble forecast

fields. The metric is based on a level-crossing statistic that we term
::::::
Defined

::
as

:
the fraction of threshold exceedance (FTE), and

:::
grid

::::::
points

:::::
where

::
a
:::::::::
prescribed

::::::::
threshold

::
is

::::::::
exceeded,

:::
the

::::
FTE

:
is calculated for the verification field, and separately for each

ensemble member. The FTE
:
It yields a projection of a – possibly high-dimensional – multivariate quantity onto a univariate

quantity that can be studied with standard tools like verification rank histograms. This projection is appealing since it reflects10

a spatial property that is intuitive and directly relevant in applications, though it is not obvious whether the FTE is sufficiently

sensitive to misrepresentation of spatial structure in the ensemble. In a comprehensive simulation study we find that departures

from uniformity of these so called
:::
the FTE histograms can be indeed be related to forecast ensembles with biased spatial

variability, and that these histograms detect shortcomings in the spatial structure of ensemble forecast fields that are not obvious

by eye. For demonstration, FTE histograms are applied in the context of spatially downscaled ensemble precipitation forecast15

fields from NOAA’s Global Ensemble Forecast System.

Copyright statement. TEXT

1 Introduction

Ensemble prediction systems like the ECMWF ensemble (Buizza et al., 2007) or NOAA’s Global Ensemble Forecast System

(GEFS; Zhou et al., 2017) are now state of the art in operational meteorological forecasting at weather prediction centers20

worldwide. One of the goals of ensemble forecasting is the representation of uncertainty about the state of the atmosphere at

a future time (Toth and Kalnay, 1993; Leutbecher and Palmer, 2008), and verification metrics are required that can assess to
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what extent this goal is achieved. For univariate quantities, i.e. if forecasts are studied separately for each location and each

forecast lead time, diagnostic tools like verification rank histograms (Anderson, 1996; Hamill, 2001) or reliability diagrams

(Murphy and Winkler, 1977) can be used to check whether ensemble forecasts are calibrated, i.e. statistically consistent with25

the values that materialize.

When entire forecast fields are considered, aspects beyond univariate calibration are important. For example, ensembles that

yield reliable probabilistic forecasts at each location may still over- or under-forecast regional minima/maxima if their members

exhibit an inaccurate spatial structure (e.g., Feldmann et al., 2015, their Fig. 6). For weather variables like precipitation, which

are used as inputs to hydrological forecast models, it is crucial that accumulations over space and time (and the associated30

uncertainty) are predicted accurately, and this again requires an adequate representation of spatial structure and temporal

persistence of precipitation by the ensemble.

There is an added difficultly for forecasters in that misrepresentation of the spatial structure of weather variables by ensemble

forecast fields may not be discernible by eye. For example, consider the simulated fields in Fig.
:
1: perhaps one of these forecast

fields has a clearly different spatial correlation length than the verification, but we suspect that even the sharp-eyed reader35

cannot distinguish between the remaining fields with confidence. Even if the differences are obvious, a quantitative verification

metric is required to objectively compare different forecast systems or methodologies.

Figure 1. Simulated verification field and three associated forecast fields (arbitrary color scale) in which the spatial correlation length is

either the same as for the verification, 10% miscalibrated, or 50% miscalibrated. Can you tell which is correct?

Several multivariate generalizations of verification rank histograms such as minimum spanning tree histograms (Smith and

Hansen, 2004; Wilks, 2004), multivariate rank histograms (Gneiting et al., 2008), average-rank and band-depth rank histograms

(Thorarinsdottir et al., 2016), and copula probability integral transform histograms (Ziegel and Gneiting, 2014) have been40

proposed and allow one to assess different aspects of multivariate calibration. They are all based on different projections of the

multivariate quantity of interest onto a univariate quantity that can then be studied using standard verification rank histograms.

Unfortunately, most of these projections do not allow an intuitive understanding of exactly what multivariate aspect is being

assessed, and none are tailored to the special case where the multivariate quantity of interest is a spatial field. A recent paper by

Buschow et al. (2019) proposes
:::
Two

::::::
recent

:::::
papers

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Buschow et al., 2019; Buschow and Friederichs, 2020) propose

:
a wavelet-45
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based verification approach in which wavelet transformations of forecast and observed fields are performed to characterize and

compare the fields’ texture. The authors demonstrate that this approach is able to detect differences in the spatial correlation

length similar to those shown in Fig.1.
:::

1.
::::::::::::::::::::
Kapp et al. (2018) define

:
a
::::
skill

:::::
score

:::::
based

:::
on

::::::
wavelet

:::::::
spectra

:::
and

:::::
study

:::
the

:::::
score

:::::::::
differences

:::::::
between

::
a

::::::::
randomly

:::::::
selected

::::::::
ensemble

:::::::
member

::::
and

:::
the

::::::::::
verification

::::
field

::
in

:::::
order

::
to

:::::
detect

::::::::
possible

::::::::::
deficiencies

::
in

:::
the

::::::
texture

::
of

:::
the

:::::::
forecast

::::::
fields. Our goal is similar,

:
but the approach studied here is more in line with

::::::
follows the idea50

of defining a projection from the multivariate quantity (here: a spatial field) to a univariate quantity that can be analyzed via

verification rank histograms. We are also more focused
:::
Our

:::::
main

:::::
focus

::
is

:
on the probabilistic nature of the forecasts. That

:
,

:::
that

:
is, we are studying whether the forecasts adequately represent spatial variability as an ensemble

::::
want

::
to

::::
test

:::::::
whether

:::
the

::::::::
ensemble

:::::::::
adequately

::::::::
represents

:::
the

::::::::::
uncertainty

:::::
about

::::::
spatial

::::::::
quantities.

The projection underlying the verification metric studied here is based on threshold exceedances of the forecast and ob-55

servation fields. This binarization of continuous weather variables is common in spatial forecast verification (see Gilleland

et al., 2009) as it allows one to study, for example, low, intermediate, and high precipitation amounts separately. In a recent

paper, Scheuerer and Hamill (2018) calculate the fractions of threshold exceedance (FTE)
:::
the

::::::
context

::
of

:::::::::::
deterministic

:::::::
forecast

::::::::::
verification,

::::::::::::::::::::::::::
Roberts and Lean (2008) define

:::
the

::::::::
fractions

::::
skill

:::::
score

:::::
(FSS)

:::::
based

:::
on

:::
the

:::::::
fraction

:::
of

::::::::
threshold

:::::::::::
exceedances

::::::
(FTEs)

::::::
within

:
a
::::::
certain

::::::::::::
neighborhood

:::
of

:::::
every

::::
grid

:::::
point,

::::
and

:::
use

::
it
::
to

::::::::
examine

::
at

::::::
which

::::::
spatial

::::
scale

::::
the

:::::::
forecast

:::::
FTEs60

::::::
become

:::::::
skillful.

:::::::::::::::::::::::::::
Scheuerer and Hamill (2018) use

:
a
::::::
similar

:::::::
concept

::
to

:::::
study

:::::::
whether

::
an

::::::::
ensemble

::
of

:::::::
forecast

:::::
fields

:::::::::
adequately

::::::::
represents

::::::
spatial

:::::::
forecast

::::::::::
uncertainty.

::::
They

::::::::
calculate

:::
the

::::
FTE

:
for all ensemble members and the verifying observation field,

and study verification rank histograms of the resulting univariate quantity in order to diagnose the advantages and limitations of

different statistical methods to generate high-resolution ensemble precipitation forecast fields based on lower resolution NWP

model output. The FTE is an interpretable quantity that is highly relevant in applications where the fraction of the forecast65

domain for which severe weather conditions are expected (e.g., heavy rain, extreme wind speeds, etc.) may be of interest.

However, it is not obvious whether FTE histograms are sufficiently sensitive to misrepresentation of the spatial structure by the

ensemble, and the goal of the present paper is to investigate this discrimination ability in detail.

In section 2, we describe the calculation of the FTE and the construction of the FTE histogram in detail. In section 3, a sim-

ulation study is designed and implemented that allows us to analyze the discrimination capability of the FTE histograms with70

regard to spatial structures. In section 4, we demonstrate the utility of FTE histograms in the context of spatially downscaled

ensemble precipitation forecast fields from NOAA’s Global Ensemble Forecast System. A discussion and concluding remarks

are given in section 5.

2 The fraction of threshold exceedance metric

Let Z(s) be a scalar field on a domain s ∈D. Here, we describe a strategy of studying exceedances of Z at various thresholds.75

That is, we focus interest in statistics based on 1{Z(s)>τ} for a given threshold τ ∈ R. In the domain D, we define the fraction
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of threshold exceedance (FTE) as the fraction of all points at which τ is exceeded. Specifically, let

FTE(Z,τ) =
1

|D|

∫
D

1{Z(s)>τ}(s)ds

=
1

n

n∑
j=1

1{Z(s)>τ}(sj) (1)

where the first equality represents the idealized continuous spatial process definition, while the second reflects the discrete80

nature of spatial sampling in an operational probabilistic forecasting context with D = {s1, . . . ,sn}. The resulting univariate

quantity can be evaluated by common univariate verification metrics (Scheuerer and Hamill, 2018).

Suppose we have a k-member ensemble Z1(s), . . . ,Zk(s) and associated verification field Z0(s) (e.g., observation or analy-

sis) all onD; let π = {FTE(Z0, τ), . . . ,FTE(Zk, τ)}. Note that π depends on the threshold, but for ease of exposition we do not

include this dependence in notation. We call r the rank of the verification FTE relative to the set of verification and ensemble85

forecast FTEs, or the rank of FTE(Z0, τ) in π. There are three cases of interest when computing r: (1) no ties exist in π, (2)

ties exist among a subset of π that includes FTE(Z0, τ), or (3) there is only one unique value in π. In the first case no special

action is required, and in the second case ties in rank are simply broken uniformly at random. The third case arises when all

ensemble members have the exact same FTE as the verification, as may occure.g.
:
,
::
for

::::::::
example, when the precipitation amount

reported by the verification and predicted by all ensemble members is below the threshold τ everywhere in D.
:::::::
Instances

::
of

::::
this90

:::
case

:::
are

::::::::::
completely

::::::::::::
uninformative

::
for

:::
the

:::::::
purpose

::
of

::::::::::
diagnosing

::::::::::::
miscalibration

:::
and

:::
can

:::
be

::::::::
discarded.

:

Gathering ranks over N instances of forecast/verification pairs, r1, . . . , rN , a natural way to communicate the
:::
FTE

:
rank

behavior is through a histogram that we term the
::::::
(termed FTE histogram

::
by

::::::::::::::::::::::::
Scheuerer and Hamill (2018))

:
over the k+ 1

possible ranks. In construction , the FTE histogram is similar to the (univariate )
::
Its

::::::::::
construction

::
is

::::
akin

::
to

:::
that

::
of
:::
the

:::::::::
univariate

:::::::::
verification rank histogram discussed in Anderson (1996) and Hamill (2001). That rank histogram, however, ,

:::
but

:::
the

:::::
latter

::::
only95

evaluates the marginal distribution , or point-wise accuracy of the ensemble, and may be considered a first step in the verification

procedure. Once the marginal distribution has been checked, the FTE histogram can be used to measure spatial calibration of

the ensemble. An ensemble that is spatially calibrated will exhibit the same effective correlation length as the verification

(see Fig.1).As in the univariate case, flat FTE histograms are a necessary (but not sufficient!) condition for reliability as they

indicate that the verification and ensemble are indistinguishable with regard to the particular aspect of the forecast fields (here:100

fraction of threshold exceedance) assessed by this metric. Assuming that calibration of the marginal distributions has already

been confirmed, non-flat FTE histograms can be related to systematic differences in the spatial structure of the verification

and the ensemble forecast fields. If the correlation length of the ensemble fields is too large, a
:::
The

::::
FTE

:::::::::
histogram

:::::::
behaves

::::::
similar

::
to

:::
the

::::::::
univariate

::::::::::
verification

::::
rank

:::::::::
histogram

:::::
under

::::::::
marginal

::::::::::::
miscalibration

::
in

::::
that

::::::::::::
overpopulated

:::
low

::::::
(high)

::::
bins

:::
are

::
an

::::::::
indication

:::
of

::
an

:::::::::::
over-forecast

:::::::::::::
(under-forecast)

::::
bias,

::::
and

:
a
::::::::
∪–shaped

::
(∩–shaped histogram can be expected; that is

:::::::
–shaped)105

::::::::
histogram

::
is

::
an

:::::::::
indication

::
of

::
an

::::::::::::::
under-dispersed

:::::::::::::
(over-dispersed)

:::::::::
ensemble.

::::::::
However,

::
it

::
is

:::
also

::::::::
sensitive

::
to

:::::::::::::::
misrepresentation

::
of

:::::
spatial

::::::::::
correlations

:::
by

:::
the

::::::::
ensemble

:::::::
forecast

:::::
fields.

:::
To

:::
see

::::
this,

:::::::
consider

::::
first

:::
the

:::::::
extreme

::::
case

:::::
where

:::
the

:::::::
forecast

:::::
fields

:::
are

:::::::
spatially

::::::::::
uncorrelated

::::
(i.e., verification ranks are centrally overpopulated because the larger correlation length of the ensemble

makes it more likely that if one grid point is above (below) the threshold, many of the grid points in its vicinity are also above

4



(below)the threshold, and thus the ensemble FTEs often take on very low or very high ranks . Conversely
:::::
spatial

:::::
white

::::::
noise)110

::::
while

:::
the

::::::::::
verification

:::::
fields

::::
have

::::::::
maximal

::::::
spatial

::::::::::
correlations.

:::
In

:::
this

:::::
setup,

::
if
::
τ

::
is

:::::
equal

::
to

:::
the

::::::::::::
climatological

::::::
median

:::
of

:::
the

:::::::
marginal

:::::::::::
distributions

::
at

::::
each

:::
grid

::::::
point,

:::
the

::::
FTE

::
for

:::::
each

::::::::
ensemble

:::::::
member

::
is

::::
close

::
to

:::
0.5

:::::
while

:::
the

::::
FTE

:::
for

:::
the

::::::::::
verification

::::
field

:
is
:::::
either

::
0
::
or

::
1,

::::
with

:::::
equal

::::::::::
probability.

:::
The

:::::::::
associated

::::
FTE

::::::::
histogram

::
is
:::::::::
∪–shaped

::::
with

:::
half

::
of

:::
the

:::::
cases

::
in

:::
the

::::::
lowest

:::
bin

:::
and

:::
the

:::::
other

:::
half

::
in

:::
the

:::::::
highest

:::
bin.

::
If
::
τ

::
is

:::::
equal

::
to

:::
the

::::
95th

::::::::::::
climatological

:::::::::
percentile,

:::
the

::::
FTE

::
of

:::::
each

::::::::
ensemble

:::::::
member

::
is

::::
close

::
to

::::
0.05

::::
and

:::
the

::::
FTE

::
of

:::
the

::::::::::
verification

::::
field

::
is

:
0
:::::
with

:::::::::
probability

::::
0.95

:::
and

::
1
::::
with

::::::::::
probability

::::
0.05.

::::
The

:::::::::
associated

::::
FTE115

::::::::
histogram

::
is

::::::::
∪–shaped

::::
and

:::::::
skewed,

::::
with

::::
95%

::
of

:::
all

::::
cases

::
in
:::
the

::::::
lowest

:::
bin

::::
and

:::
5%

::
of

::
all

:::::
cases

::
in

:::
the

::::::
highest

::::
bin.

:::
For

::
τ

:::::
equal

::
to

:::
the

:::
5th

::::::::::::
climatological

:::::::::
percentile,

:::
the

::::::::
skewness

::
is

::
in

:::
the

:::::
other

::::::::
direction

::::
with

:::
5%

::::::
(95%)

::
of

::
all

:::::
cases

::
in

:::
the

::::::
lowest

::::::::
(highest)

:::
bin.

::
In

::
a

::::
more

:::::::
realistic

::::::::
situation,

:::::
where

:::::
both

::::::
forecast

::::
end

:::::::::
verification

:::::
fields

:::
are

::::::::
spatially

::::::::
correlated

:::
but

:::
the

::::::
spatial

::::::::::
correlations

::
of

:::
the

:::::::
forecast

:::::
fields

:::
are

:::
too

:::::
weak

::::
(i.e.,

:::::
they

::::::
exhibit

:::
too

:::::
much

::::::
spatial

::::::::::
variability), a

:::
we

:::
can

::::
still

::::::
expect

::
to

:::
see

::
a
:::::::::
somewhat

∪–shaped histogram is taken as sign that the correlation length of the ensemble is too small, resulting in verification ranks120

becoming excessively populated to the left or right as ensemble FTEs consistently take on intermediate ranks. We note that

cases where π has only one unique value
::::
FTE

:::::::::
histogram

::::
since

:::
the

::::::::::
verification

::::
FTE

::::::
values

:::
are

::::
more

:::::
likely

::
to

:::::::
assume

:::::::
extreme

::::
ranks

::::
than

:::
the

:::::::::
ensemble

::::
FTE

::::::
values.

:::
For

:::::
large

:::::
values

:::
of

::
τ ,

:::
the

:::::
lower

::::
bins

::::
will

::
be

:::::
more

:::::::::
populated,

:::
for

:::::
small

:::::
values

::
of
:::
τ ,

:::
the

:::::
higher

::::
bins

::::
will

::
be

:::::
more

:::::::::
populated.

::::::::::
Conversely,

:
if
:::
the

::::::
spatial

::::::::::
correlations

::
of

:::
the

:::::::
forecast

:::::
fields

:::
are

:::
too

::::::
strong,

:::
the

::::::::::
verification

::::
ranks

::::
will

::::::::::::
over-populate

:::
the

::::::
central

::::
bins,

::::::
slightly

::::::
shifted

:::::::
upward

::
or

:::::::::
downward

:::::
from

:::
the

:::::
center

:::::::::
depending

::
on

:::
τ .

:::
An

::::::::
ensemble125

:::
that

::
is

:::::::::
marginally

::::
and

:::::::
spatially

:::::::::
calibrated (i.e., all forecast and verificationFTEs are the same)are completely uninformative

and can be discarded in calculating the FTE histogram in order to avoid artificial uniformity
:::
the

:::::::
strength

::
of

::::::
spatial

::::::::::
correlations

:::::
within

::::
each

:::::::
forecast

::::
field

:::::::
matches

::::
that

::
of

:::
the

::::::::::
verification)

::::
will

:::::
result

::
in

:
a
:::
flat

::::
FTE

:::::::::
histogram.

:

:
If
:::
the

::::::::
marginal

::::::
forecast

:::::::::::
distributions

::
are

::::::::::::
miscalibrated,

:::
the

:::::::
resulting

::::::
effects

::
on

:::
the

::::
rank

::
of

:::
the

:::::::::
verification

::::
FTE

:::
are

::::::::::::
superimposed

::
on

:::::
those

::::::
caused

:::
by

:::::::::::::::
misrepresentation

::
of

::::::
spatial

:::::::::::
correlations.

::::
This

::::::::::
complicates

::::::::::::
interpretation

:::::::
because

:
it
:::

is
::::
often

::::::::::
impossible130

::
to

:::::::::
disentangle

::::
the

:::::::
different

:::::::
sources

::
of

::::::::::::
miscalibration

:::::
(this

:::
loss

:::
of

::::::::::
information

::
is

::
an

:::::::::
inevitable

:::::::::::
consequence

::
of

:::::::::
projecting

::
a

::::::::::
multivariate

:::::::
quantity

::::
onto

:
a
:::::::::
univariate

::::
one),

::::
and

::
it

:::
can

::::
even

:::::::
happen

:::
that

:::::::
different

::::::
effects

::::::
cancel

::::
each

:::::
other

::::
out.

:::
For

::::::::
example,

::::::::
ensemble

:::::::
forecast

:::::
fields

::::::
which

:::
are

::::
both

::::::::::::::
under-dispersive

::::
and

:::::
have

:::
too

::::::
strong

::::::
spatial

::::::::::
correlations

::::
may

::::::
result

::
in

:::
flat

:::::
FTE

:::::::::
histograms.

:::::
This

:::::
serves

:::
as

:
a
::::::::
reminder

::::
that

::
–

::
as

::
in

:::
the

:::::::::
univariate

::::
case

::
–
:
a
::::

flat
::::::::
histogram

::
is
::

a
:::::::::
necessary

:::
but

:::
not

::
a

::::::::
sufficient

::::::::
condition

:::
for

::::::::::
probabilistic

::::::::::
calibration.

::
It
::::::
simply

::::::::
indicates

::::
that

:::
the

::::::::::
verification

:::
and

::::
the

::::::::
ensemble

:::
are

::::::::::::::
indistinguishable

:::::
with135

:::::
regard

::
to

:::
the

:::::::::
particular

::::::
aspect

::
of

:::
the

:::::::
forecast

:::::
fields

::::::
(here:

:::::::::
exceedance

:::
of

:
a
:::::::::::

prespecified
:::::::::
threshold)

:::::::
assessed

:::
by

:::
this

:::::::
metric.

:::::::::
Systematic

:::::
over-

::
or

::::::::::::
under-forecast

:::::
biases

::::
can

::
be

:::::::::
accounted

:::
for

:::
by

:::::
using

:::::::
different

::::::::::
(depending

::
on

:::
the

:::::::::
respective

:::::::::::
climatology)

:::::::
threshold

::::::
values

::
τ
:::
for

:::
the

:::::::
forecast

::::
and

::::::::::
verification

:::::
fields.

::::
We

:::
are

:::
not

::::::
aware

::
of

:::
an

::::::
equally

:::::::::::::
straightforward

::::
way

:::
to

:::::::
account

::
for

:::::::::
dispersion

::::::
errors,

:::
so

:::
we

:::::::::
encourage

:::::
users

::
to

::::::
always

:::::
check

::::
the

:::::::
marginal

::::::::
forecast

::::::::::
distributions

:::::
first,

:::
and

::::
then

:::::
study

:::::
FTE

:::::::::
histograms

:::
for

:::::::
different

::::::::::
thresholds,

:::::::
possibly

::
in

::::::::::
conjunction

:::::
with

::::
other

:::::::::::
multivariate

::::::::::
verification

::::::
metrics

::
in

:::::
order

::
to
::::::

obtain
::
a140

::::::::::::
comprehensive

::::::
picture

::
of

:::
the

::::::::::
multivariate

:::::::::
properties

::
of

:::
the

::::::::
ensemble

::::::::
forecasts.

While the FTE histogram is visually intuitive
:
a
::::::
useful

:::::
visual

:::::::::
diagnostic

:::
tool, a quantitative measure for studying departures

from uniformity is desirable. Akin to Keller and Hense (2011), we summarize the FTE histogram ,
::
fit

:
a
::::
beta

::::::::::
distribution

::
to

:::
the

::::::::
histogram

:::::
values

::
(transformed to the unit interval, with two parameters from a beta distribution . However, as )

::::
and

::::::::::
characterize
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::
the

:::::::::
histogram

:::::
shape

:::::
based

:::
on

::
the

::
β
:::::
-score

:::
and

:
β
::::
-bias

:
,
::::::::::
respectively

::::::
defined

::
as

:
145

βS = 1−
√

1

a · b
, βB = b− a,

:::::::::::::::::::::::::

(2)

:::::
where

::
a

:::
and

::
b
:::
are

:::
the

::::
two

:::::::::
distribution

::::::::::
parameters.

:::::
Since

:
histogram values only occur at discrete points in [0,1], parameter

estimation methods will incur some bias due to the lack of data on the interior of adjacent ranks. Thus, we stochastically

disaggregate the (transformed) ranks r1, . . . , rN to continuous values in [0,1] ;
:
(see Appendix A for details. We then

:
)
::::
and

fit a beta distribution to the disaggregated ranks by
::
via

:
maximum likelihood. This provides

::::::::
Together,

:::
the

:::::::
β-score

:::
and

::::::
β-bias150

::::::
provide

:
a pair of succinct descriptive statistics in the form of the estimated shape parameters a and b, which respectively

describe the behavior of the left and right sides of the histogram
::::
which

::::::::::::
communicate

:::
the

:::::
visual

::::::::::::
characteristics

::
of

:::
the

:::::::::
histogram,

:::
and

::::::::
therefore

:::
the

:::::::::
ensemble’s

:::::::::
calibration

:::::::::
properties. In the ideal case, a and b

::
βS :::

and
:::
βB:

are both exactly one
::::
zero, indicating

that the FTE histogram is perfectly uniform. In practice, these parameters
::::::
metrics

:
are never exactly one

:::
zero. The resulting set

of possible parameter combinations and corresponding departures from uniformity
::::::::
deviations

:::
and

:::::
broad

:::::::::::::
interpretations

::
of

:::
the155

:::::::::::
corresponding

:::::::::
histogram

::::::
shapes are outlined in Table 1. With parameters a and b

:::
the

::::::
β-score

::::
and

:::::
β-bias, we have obtained an

easily interpreted measure of spatial forecast calibration.

Table 1. Possible departures from
::::::::::::
Characterization

::
of

:::
FTE

:
histogram uniformity, as characterized by beta parameter relationships

:::::
shapes

:::
via

::::::
β-score

:::
and

:::::
β-bias

:::
and

:::
their

:::::::::::
interpretation

:::
with

:::::
regard

::
to

:::::::
potential

:::::::::
deficiencies

::
of

::
the

::::::::
ensemble

::::::
forecast

::::
fields.

Parameter Histogram Relationship
:::::::

Histogram
: ::::::::

Parameters
: ::::

Score
::
&

:::
Bias

:
Interpretation

::::::
Uniform a= b= 1 Uniform a,b < 1

::::::::::
βS = βB = 0

:::::::
Ensemble

::::
FTEs

::::::::
consistent

:::
with

:::::::::
verification

::::
FTE

∪–shaped a,b > 1
::::::
a,b < 1

:::::
βS < 0

: ::::::::::::
Under-dispersed

:::::::
marginal

::::::::::
distributions

:::
OR

:::::::
excessive

:::::
spatial

::::::::
variability

∩–shaped
::::::
a,b > 1

:::::
βS > 0

: :::::::::::
Over-dispersed

:::::::
marginal

:::::::::
distributions

:::
OR

:::::::::
insufficient

:::::
spatial

::::::::
variability

::::::::::
Right-skewed a < b Right-skewed

:::::
βB > 0

: ::::::::::
Over-forecast

:::
bias

:::
OR

::::::::
excessive

:::::
spatial

::::::::
variability

:
at
::::
high

::::::::
thresholds

:::::::::
Left-skewed

:
a > b Left-skewed

::::::
βB < 0

:::::::::::
Under-forecast

:::
bias

:::
OR

:::::::::
insufficient

:::::
spatial

::::::::
variability

:
at
::::

high
::::::::
thresholds

Skewness is exaggerated by high thresholds; see text for more detail.

In summary, the FTE metric is composed of three steps: (1) calculate the FTE of each verification and ensemble forecast

field, (2) construct an FTE histogram over available instances of forecast and verification times, and (3) fit beta parameters to

the
:::::
derive

:::
the

::::::
β-score

::::
and

:::::
β-bias

:::::
from

:::
the stochastically disaggregated FTE histogram by maximum likelihood to characterize160

departure from uniformity.

3 Simulation study

In this section we consider an extensive simulation study to assess the ability of the proposed FTE histogram in diagnosing

mismatches between the correlation length of
:
to

::::::::
diagnose

::::::::::
deficiencies

::
in the forecast fields and that of the verification fields. It
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is not straightforward to define what a “correlation length” is in general for
:::::::::::
representation

::
of

::::::
spatial

::::::::
variability

:::
by

:::
the

::::::::
ensemble165

::::::
forecast

::::::
fields.

:::
Our

::::::::::
simulations

::::
will

::
be

:::::
based

:::
on

::::::::::
multivariate

::::::::
Gaussian

::::::::
processes

:::::
where

:::
the

::::::
notion

::
of

:::::::
“spatial

:::::::::
variability”

::::
can

::
be

::::::::
quantified

::
in
:::::
terms

:::
of

:
a
:::::::::
correlation

::::::
length

::::::::
parameter.

::::
The

:
various meteorological quantities of interest such as precipitation

and wind speeds , especially given possible heterogeneity and spatial nonstationarity
:::
can

::
be

:::::
quite

::::::::::::
heterogeneous

:::
and

::::::::
spatially

:::::::::::
nonstationary over the study domain. However, the effect of using a threshold exceedance helps mitigate this problem. Consider

::::
since

:::
we

:::::
study

:::
the

::::::
spatial

::::::::
structure

::
of

::::::::
threshold

:::::::::::
exceedances,

::
a
:::::::
suitable

:::::
choice

:::
of

:::::::::
thresholds

:::
can

:::::::
mitigate

:::::
these

::::::
effects

::
to

::
a170

:::::
degree

::::
that

:::::::::::
multivariate,

::::::::
stationary

::::::::
Gaussian

::::::::
processes

::::
can

::
be

::::::
viewed

:::
as

:
a
::::::::::
sufficiently

::::::
flexible

::::::
model

:::
for

:::::::::
simulating

:::::::
realistic

:::::
spatial

::::::
fields.

:::
To

:::
see

::::
this,

:::::::
consider

:
a strictly positive and continuous variable Z(s) at two spatial locations s= s1,s2 with

possibly unequal continuous cumulative distribution functions F1 and F2, respectively. Rather than considering a spatially-

constant threshold such as 10 m/s for wind gusts, it is natural to consider
::
we

:::
can

::::
use a location-dependent threshold, say the

90% climatological quantiles q(s1) and q(s2) representing local characteristics. Then both quantities 1{Z(si)>q(si)}:,:::::::
i= 1,2,175

are identically distributed Bernoulli(0.1) random variables, i= 1,2. Exploiting a standard Gaussian probability integral trans-

formation method, we note that Φ−1(F (Z(si))) is a standard normal random variable, where Φ is the cumulative distribution

function of a standard normal. Thus, the original probability of threshold exceedance can be written

P (Z(si)> q(si)) = P (F (Z(si))> F (q(si))) = P (Φ−1(F (Z(si)))> Φ−1(F (q(si))) = P (X > Φ−1(0.9)) (3)

where X is a standard normal. Thus, we have shown that a field of random variables with
::::::::::
continuous, possibly distinct local180

probability distribution
::::::::::
distributions

:
can be transformed to Gaussian, and if we use

:::::::
standard

::::::::
Gaussian

::::::::
marginal

:::::::::::
distributions,

:::
and

:::::
using local quantiles as the threshold then this is

:
is
::::
then

:
equivalent to a spatially-constant threshold on the transformed

variables.
::
For

:::::::
weather

::::::::
variables

:::::
with

::::::::::::::::
discrete-continuous

::::::::
marginal

:::::::::::
distributions

:::::
(e.g.,

::::::::::::
precipitation),

::::
this

::::::::
direction

::
of

::::
the

::::::::::::
transformation

::
is

:::
not

:::::
quite

::
as

::::::::::::::
straightforward.

::::::::::
Conversely,

::::::::
however,

:::::::::
simulated

:::::
fields

::::
from

::::::::
Gaussian

:::::::::
processes

:::
can

:::::::
always

::
be

::::::::::
transformed

::
to

::::
any

::::::
desired

::::::::
marginal

::::::::::
distributions

:::::::::
(including

::::::::::::::::
discrete-continuous

::::::
ones). In our ensuing simulations studies185

we therefore consider stationary spatial Gaussian processes as representing forecast and verification fields.

The main technical difficulty in setting up the simulation study is in generating multiple, stationary Gaussian random fields

that have different correlation lengths while being correlated with each other. That is, we would like to generate Z0(s) and

Z1(s) in such a way that Cov(Z0(s),Z1(s))> 0 (representing that the forecast field is correlated with the verification field)

and where Z0 and Z1 have possibly distinct correlation lengths (representing that the forecast field is spatially miscalibrated).190

A natural approach is to use multivariate random field models.

3.1 Multivariate Gaussian processes

We call a vector of processes (Z0(s),Z1(s), . . . ,Zk(s)) a multivariate Gaussian process if its finite-dimensional distributions

are multivariate normal. We focus on second-order stationary mean zero multivariate Gaussian processes in that E(Zi(s)) = 0

for all i= 0, . . . ,k and s ∈D. Stationarity implies that the stochastic process is characterized by195

Cij(h) = Cov(Zi(s+h),Zj(s)), for all h such that s+h ∈D,
:::::::::::::::::::::::

(4)
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which are called covariance functions for i= j and cross-covariance functions for i 6= j. Not all choices of functions Cij will

result in a valid model, in particular we require that the matrix of functions C(h) = (Cij(h))ki,j=0 be a nonnegative definite

matrix function, the technical definition of which can be found in Genton and Kleiber (2015).

There are many models for multivariate processes (Genton and Kleiber, 2015), and here we exploit a particular class called200

the multivariate Matérn (Gneiting et al., 2010; Apanasovich et al., 2012). We rely on the popular Matérn correlation function

M(hd
:
|ν,a) =

21−ν

Γ(ν)

(
h

a

d

a
:

)ν
Kν

(
h

a

d

a
:

)
(5)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind of order ν
::
and

::
d
::
is
::
a
:::::::::::
non-negative

:::::
scalar. Parameters have interpretations as a smoothing

:::::::::
smoothness

:
(ν), and correlation length or spatial range

::::::
spatial

:::::
range

::
or

:::::::::
correlation

:::::
length

:
(a). The multivariate Matérn sets

::::::::
correlation

:::::::
function

::
is
:::::::
defined

::
as205

Cii(h) = σ2
iM(‖

:
h‖
:
|νi,ai), for i= 0, . . . ,k, (6)

and

Cij(h) = Cji(h) = ρijσiσjM(‖
:
h‖
:
|νij ,aij), for 0≤ i 6= j ≤ k. (7)

:::::
where

::::
‖ · ‖

:
is
:::
the

:::::::::
Euclidean

:::::
norm. In this latter equation, ρij ∈ [0,1]

::::::::::
ρij ∈ [−1,1]

:
is the co-located cross-correlation coefficient.

Interpretation of the cross-covariance parameters requires spectral techniques (Kleiber, 2017).210

3.2 Simulation setup

Simultaneously simulating the verification field Z0(s) and all forecast fields Z1(s), . . . ,Zk(s) is difficult due to the high-

dimensional joint covariance matrix. Instead, we approach simulations by jointly simulating the verification fields Z0(s) and

the
::::::
(scaled)

:
ensemble mean field, ZM (s) from a bivariate Matérn model. We then perturb the mean field with independent

univariate Gaussian random fields to generate an 11-member ensemble, k = 11.215

The simulation setup follows a series of steps:

1. Generate Z0 and ZM , the verification and
::::::
(scaled)

:
ensemble mean as a mean zero bivariate Gaussian random field

with multivariate Matérn range
:::::::::
correlation

:::::
length

:
parameters a0, aM , and a0M =

√
a0aM , smoothness parameters ν0 =

ν0M = νM = 1.5, and co-located correlation coefficient ρ0M = ω = 0.8.

2. Generate 11 independent mean zero Gaussian random fields W1(s), . . . ,W11(s) with Matérn covariance having range220

:::::::::
correlation

:::::
length

:
a= aM and smoothness ν = νM = 1.5.

3. The ensemble member fields Z1(s), . . . ,Z11(s) are constructed as

Zi(s) = ωZM (s) +
√

1−ω2Wi(s), i= 1, . . . ,11. (8)
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The third step implies that each field in the ensemble is a Gaussian process with mean zero, variance one, range
:::::::::
correlation

:::::
length

:
aM , smoothness νM , and univariate “forecast skill” controlled by the parameter ω (see Appendix B). Note that by225

choosing the co-located correlation coefficient ρ0M = ω, the correlation between the verification and each ensemble member

is ω2, the same as the correlation between ensemble members themselves. That is, Cov[Zi,Zj ] = ω2 for i, j = 0 . . . ,11 when

i 6= j (derivation in Appendix C), and thus the ensemble forecasts are calibrated in the univariate sense.

In this study, fields were constructed on a square grid [−20,20]
:::
over

:::
the

:::::::
domain

:::::::::::::::::
[−20,20]× [−20,20]

:
with resolution 0.2.

The simulation above was repeated five-thousand
:::::::::::::::::
Verification-ensemble

:::::::
samples

:::::
were

::::::::
collected

::
by

:::::::::
repeating

:::
the

:::::::::
simulation230

:::::
above

::::
5000

:
times for each combination of

a0 ∈ {1,1.5, . . . ,3.5,4},

aM ∈ {0.5a0,0.6a0, . . . ,1.4a0,1.5a0},

for

a0 ∈ {1,1.5, . . . ,3.5,4}, aM ∈ {0.5a0,0.6a0, . . . ,1.4a0,1.5a0},
::::::::::::::::::::::::::::::::::::::::::::::::::::

235

:::::::
resulting

::
in

:
a total of seventy-seven parameters sets investigated. For

::
77

:::::::::::
experiments.

:::::
Note

::::
that

::
in

::::::::
practice,

::::
each

:::::::
sample

::::::::::
corresponds

::
to

:
a
::::
date

:::
for

:::::
which

::::::::
forecasts

::::
have

:::::
been

:::::
issued

::::
and

::::::::
verifying

::::::::::
observations

:::
are

::::::::
available,

::::::::
meaning

:::
the

::::::
sample

::::
size

:
is
::::::::
governed

:::
by

:::
the

::::
time

:::::
period

:::
for

:::::
which

:::
the

::::::::::
verification

::
is

:::::::::
performed.

:::
For

::::
each

::::::::::
experiment,

::::
FTE

::::::::::
histograms

::::
were

::::::::::
constructed

::::
from

:::
the

:::::
5000

:::::::
samples

:::::
using each parameter set, we constructed FTE histograms from the five-thousand samples based on

each of τ ∈ {0,0.5, . . . ,3.5,4}. That is, for a given a0 and aM we analyzed nine FTE histograms, for a total of 693 histograms240

across all parameter sets
::::::::::
experiments.

3.3 Simulation analysis

The question of primary interest in this analysis is whether the FTE
::::::::
histogram

:
accurately identifies miscalibration of ensemble

correlation lengths.

3.3.1 Illustrative examples of FTE histograms245

First, we study the discrimination ability of the FTE
::::::::
histogram

:
in something of an exaggerated setting, where the miscalibration

is obvious. We choose the mean
::::::
median of the marginal distribution as the threshold (i.e.

:
, τ = 0) and a verification correlation

length of 2 which we found to produce "realistic" fields on this grid.
:
2.
:::
On

::::
this

::::
grid,

::::::
binary

:::::
fields

::::::::
produced

::
in

:::
this

::::
way

::::::
appear

::::::::::
qualitatively

::::::
similar

::
to
::::

the
:::::
binary

:::::::::::
precipitation

:::::
fields

::::::::
analyzed

:::::
later

::
in

:::
this

::::::::::
manuscript

::::
(see

::::
Fig.

:::
7). The correlation length

ratio is the ratio of the ensemble correlation length to that of the verification field. We study ensembles with too small of a250

correlation length using ratio 0.5 (Fig.
:
2, row A), correct correlation length using ratio 1.0 (Fig.

:
2, row B), and too large of

a correlation length using ratio 1.5 (Fig. 2, row C).
::::::::::::
Corresponding

:
FTE histograms are then constructed for these three sets

of verification and ensemble fields with
::::
with

::::::
respect

::
to

:::::
these

::::
three

::::::
ratios

:::::
using 5000

:::::::::::::::::
verification-ensemble

:
samples in each

set
::::
case. This revealing example is depicted in Fig.

:
2 and behaves as described in Table 1, where the FTE histogram takes a
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∪-shape
::::::::
(∩-shape) when the ensemble correlation length is too small , a ∩-shape when the correlation length is too large, and255

is
::::::
(large),

::::::::
indicating

::::::::
excessive

:::::::::::
(insufficient)

::::::
spatial

:::::::::
variability.

:::
As

:::::::
desired,

:::
the

::::
FTE

:::::::::
histogram

::
is approximately flat when the

ensemble fields have the same correlation length as the verification field.

Figure 2. Example binary exceedance verification field and a subset of ensemble fields with representative FTE histogram for threshold

τ = 0 found using 5000 samples. Dark blue regions indicate threshold exceedance. All verification fields have correlation length a0 = 2 and

ensemble fields have correlation length aM = 1,2,3 in rows A, B, and C respectively. FTE histograms are density histograms with a dotted

grey line y = 1 and estimated beta distribution parameters
:::::::::::
corresponding

::::::
β-score

::::
(left)

:::
and

:::::
β-bias

:::::
(right) annotated.

While the FTE
::::::::
histogram is able to correctly identify the obvious miscalibration of the ensemble for the scenario in Fig.

2, one could likely draw the same conclusions by visual inspection and would not use the FTE
::::::::
histogram

:
for these fields in

practice. However, ensemble forecast models are not generally so grossly miscalibrated; though a true correlation length ratio260

does not exist in reality, the theoretical ratio will often be much closer to unity. Therefore, the true utility of the FTE
::::::::
histogram

is realized when the miscalibration is not so visually obvious. This more realistic example is illustrated in Fig.
:

3 where the

above experiment is repeated using different correlation length ratios. In row A, the ensembles have ratio 0.9 and the resulting

FTE histogram is still noticeably ∪-shaped. The ratio in row B is 1.0 which yields a flat FTE histogram. In row C, the ratio is
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1.1 and the FTE
::::::::
histogram is noticeably ∩-shaped. Again, these results are consistent with Table 1, and we conclude that the265

FTE metric
::::::::
histogram maintains accurate discrimination ability even when ensemble members are only slightly miscalibrated.

Figure 3. Same as
::
As Fig. 2, but ensemble fields have ranges

:::::::
correlation

:::::
length

:
aM = 1.8,2,2.2 in rows A, B, and C respectively.

Of course, one may often want to use a threshold parameter other than the mean
::::::
median of the marginal distribution

::::::::::
distributions.

The choice of τ is somewhat application specific; for example, it can be chosen such as to focus on high precipitation amounts.

Thus, it is important that the FTE metric
::::::::
histogram

:
maintains discrimination ability for different choices of τ . For a visual

example, the same experiment depicted in Fig.
:
3 is repeated in Fig. 4, but with FTE histograms constructed using τ = 2270

(equivalent to two standard deviations from the mean in this case). When the ensemble fields have a correlation length that is

slightly too small (row A), the resulting FTE histogram is ∪-shaped and has a slight right-skew
:::
due

::
to
:::
the

::::::
higher

:::::::::
threshold,

:::
but

:::::::
correctly

::::::::
indicates

::::::::
excessive

::::::
spatial

:::::::::
variability. When the ensemble

:::::::
exhibits

:::::::::
insufficient

::::::
spatial

::::::::::
variability,

:::
i.e.

:
correla-

tion length is slightly too large (row C), the FTE histogram is ∩-shaped and
::::::::
somewhat

:
left-skewed. Reassuringly, the FTE

histogram remains flat when the ensemble fields share the same correlation length as the verification fields (row B). While275

these results are in agreement with Table 1, the effect of the threshold can be studied more generally using the estimated beta

parameters
::::::
β-score

:::
and

::::::
β-bias.
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Figure 4. Same as
::
As Fig. 3, but for

:::
with threshold τ = 2.

3.3.2 Quantifying deviation from uniformity

Recall that we propose quantifying the shape of the FTE histogram by the pair of beta distribution parameters (a,b) that

approximate its shape. When a= b= 1
:::
with

:::
the

:::::::
β-score

:::
and

:::::::
β-bias.

:::::
When

:::::::::::
βS = βB = 0, the FTE histogram is perfectly uni-280

form. How do these parameter values
::::::
metrics change as the threshold τ increases? Figure 5 shows that when the correlation

length
::::::::::
demonstrates

::::
how

::::
the

::::::
β-score

::::
and

::::::
β-bias

::::
vary

::::
over

:::::::::
increasing

:::::::::
thresholds

:::
for

::::::::
different

:::::::::
correlation

::::::
length

::::::
ratios;

:::
the

::::::::
estimated

::::::::::::
β-distribution

:::::::::
parameters

:::
are

::::
also

::::::::
depicted

:::
for

::::::::::
comparison

:::::
with

:::::
Table

::
1.

::::::
Where

:::::::::
provided,

:::::::::
confidence

::::::::
intervals

::::
were

::::::::
estimated

:::
via

:::
the

:::
the

::::::::::::
nonparametric

::::::::
bootstrap

::::::
method

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Delignette-Muller and Dutang, 2015; Cullen and Frey, 1999).

:::::
When

:::
the

:::::::::
correlation

:::::
length

:
ratio is 1.0, the estimated beta distribution parameters are both about 1

:::
both

:::
the

:::::::
β-score

:::
and

::::::
β-bias285

::
are

:::::::::::::
approximately

::::
zero for every choice of τ , correctly indicating flat histogramsa

::::::::
spatially

::::::::
calibrated

:::::::::
ensemble. When the

correlation length ratio is less
:::::::
(greater)

:
than 1.0, the beta parameters

:::::::
β-scores

:
are themselves generally less than 1, indicating

∪-shaped histograms. Conversely, when the ratio is greater than 1.0,
:::::::
(greater)

::::
than

:::::
zero,

::::::::
indicating

:::::::::
excessive

:::::::::::
(insufficient)

:::::
spatial

:::::::::
variability.

:::
As

:::::::::
previously

::::::::
discussed,

:
the beta parameters are themselves greater than 1, indicating ∩-shaped histograms.
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Figure 5. Estimated beta distribution parameters
::::
(top)

:::
and

:::::::::::
corresponding

::::::
β-score

:::
and

:::::
β-bias

:::::::
(bottom) of FTE histograms calculated over

different thresholds for forecasts with low, even, and high correlation length ratios
::::
about

::::::
a0 = 2.

::::::
Vertical

::::
lines

:::::
denote

:::
the

:::
95%

:::::::::
confidence

:::::
interval

:::::
found

:::
via

::
the

:::::::::::
nonparametric

:::::::
bootstrap

:::::::
method.

There is an interesting tendency toward unity in the beta parameters for high thresholds
:::::
β-bias

::::::::
becomes

:::::
more

::::::::::
pronounced290

:
at
::::::

higher
:::::::::
thresholds,

::::
thus

:::::::::::
highlighting

:::
the

::::::::::
inextricable

:::
link

::::::::
between

::::::::
threshold

:::
and

:::::::::
skewness.

::::::
Above

:
a
::::
very

::::
high

::::::::
threshold

:::
of

::::
about

:::::
three

::::::::
standard

::::::::
deviations

:
(i.e., τ greater than three standard deviations from the mean)

::::::
τ ≈ 3),

::::
both

:::::::
metrics

::::::
exhibit

::
a

:::::::
tendency

::::::
toward

::::
zero. This is because the

:::::::
partially

:::
due

::
to
::::

the
:::
fact

::::
that

:::
the

:
number of exceedances for high thresholds will

often be zero . Since
:::
and

:::::
since ranks are only discarded from the histogram if all ensemble members and the verification field

have the same FTE, the FTE histogram for
::::
very high thresholds will be composed largely of ranks resulting from ties broken295

uniformly at random. This results in a more deceptively uniform histogram which is why the estimated beta parameters tend

toward 1 for high thresholds .
::::::
explains

:::
the

::::::::
tendency

::::::
toward

::::
zero.

:::
For

:::
the

::::
most

:::::::
extreme

:::::::::
thresholds

::::::
studied

::::
here,

:::
the

:::::::::::
confounding

:::::
effect

::
of

::::::::
resolving

:::
ties

::::::
(which

::::
can

::::
exist

:::::::
between

:::
all

:::
but

:
a
::::::
single

::::::::
ensemble

:::::::
member

:::::
FTE)

::
at

::::::
random

::::::::
becomes

::::
very

:::::::::
dominant,

:::
and

:::::::::
histogram

:::::
shapes

::::
get

:::::::
distorted

::
to

::
a
::::::
degree

:::::
where

:::
the

:::::::::::::
interpretations

:::::::
provided

::
in
:::::

Table
::

1
:::
no

:::::
longer

:::::
hold.

::::
The

:::::::::
associated

::::
FTE

:::::::::
histograms

::::
still

::::::
exhibit

:::::::::::::
non-uniformity

::::
and

::::
thus

:::::::
indicate

::::
that

:::
the

::::::::
ensemble

::::::::
forecasts

:::
are

:::
not

::::::::
perfectly

:::::::::
calibrated,

::::
but300

:
it
::::::::
becomes

:::::::::
impossible

::
to

::::::::
diagnose

:::
the

:::::::::
particular

::::
type

::
of

::::::::::::
miscalibration

:::::
from

:::
the

::::::::
histogram

::::::
shape.

:::
We

::::
can

::::
also

:::
see

::::
that

:::
the

:::::::
sampling

:::::::::
variability

::::::::
increases

::::
with

:::::::::
increasing

::::::::
threshold

:::::
since

::::
more

::::
and

::::
more

::::::::::::
uninformative

:::::
cases

::::
with

::::
fully

::::
tied

::::
FTE

::::::
values

::::
exist,

::
so

::
a
:::::
much

:::::
larger

::::
total

::::::
number

::
of

::::::::::
verification

:::::
cases

:
is
:::::::
required

::
in
:::::
order

::
to

::::
have

:
a
::::::::::
comparable

:::::::
number

::
of

::::::::::
informative

:::::
cases.

::
In

:::::::
practice,

::
if

::::
FTE

:::::::::
histograms

:::
are

::::
used

::
as
::

a
:::::::::
diagnostic

::::
tool,

:::
we

::::::::::
recommend

:::::::
focusing

:::
on

::::::::
moderate

:::::::::
thresholds.

::
If

::::
they

:::
are

::::
used

::
to

:::::::
compare

:::
the

:::::::::
calibration

::
of

:::::::
different

:::::::
forecast

::::::::
systems,

::::
they

:::
can

:::
still

:::
be

:::::::
effective

::
at

:::::
more

:::::::
extreme

:::::::::
thresholds.305
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Another variable of interest in evaluating the FTE metric
::::::::
histograms

:
is the size of the domain to which the metric is applied.

In our simulation framework, making the domain larger or smaller while keeping the correlation length constant is equivalent

to keeping the domain size constant and varying the correlation length of the verification field. That is, for a fixed domain

size, a smaller correlation length mimics a “large domain”
::::
(with

::::
low

:::::::::
resolution) and larger correlation length mimics a “small

domain.” Analyzing estimated beta parameters
:
”
:::::
(with

::::
high

::::::::::
resolution).

:::::::::
Analyzing

:::
the

:::::::
β-score

::::
and

:::::
β-bias

:
over a range of310

correlation length ratios is then equivalent to studying the FTE metric’ s
::::::::::
histograms’ utility for different domain sizes. For the

domain used in this study, a correlation length of 1 is considered small and 3 is considered large .
::::
(see

:::
Fig.

:::
2). In either case, Fig.

6 shows that the beta parameters estimated using the FTE metric quickly rise above or fall below unity
::::::
β-score

:::::::
quickly

:::::::
deviates

::::
from

::::
zero when the correlation length ratio is not 1.0 itself. The steep slopes

::::
ratio

:
is

:::::::
different

:::::
from

:::
one.

::::
The

::::::::
β-score’s

::::::::
relatively

::::
steep

:::::
slope around the correlation length of 1.0 in both cases indicate

:::::::
indicates

:
that the FTE metric

::::::::
histogram maintains good315

discrimination ability regardless of domain size. ,
::::::::
provided

::::
that

::::
there

:::
are

::::::::::
sufficiently

:::::
many

::::
grid

:::::
points

::::::
within

:::
the

:::::::
domain

::
to

::::
keep

:::
the

:::::::
(spatial)

::::::::
sampling

::::::::
variability

:::::::::
associated

::::
with

:::
the

::::::::::
calculation

::
of

:::
the

::::
FTE

:::::
values

::::
low.

::::::::
Notably,

:::
the

::::::
inverse

::::::::::
relationship

:::::::
between

:::::
β-bias

::::
and

:::
the

:::::::::
correlation

:::::
length

::::
ratio

::
is
::::
also

::
in

:::::::::
agreement

::::
with

:::::
Table

::
1.

Figure 6. Estimated beta parameters
::::::
β-score

:::
and

:::::
β-bias

:
of FTE histograms

::::::::
constructed

::::
with

:::::
τ = 1

:
for verification correlation length

a0 = 1,3
::::::::
a0 ∈ {1,3}

:
and ensemble range aM varying from 0.5a0 to 1.5a0, with τ = 1.

We now turn attention back to our motivating figure (Fig. 1), which was created with verification correlation length a0 = 2.

Forecast 1 exhibited the correct spatial structure (i.e., aM = 2), forecast 2 was incorrectly specified with correlation length aM320

= 3, and forecast 3 was incorrectly specified with correlation length aM = 1.8. While it may be obvious that forecast 2 has

incorrect spatial structure, the structural difference between forecasts 1 and 3 is not so apparent. However, as demonstrated by

the analysis above (Fig. 2 – Fig.4
:
5), these misspecifications are certainly identifiable using the FTE metric

:::
FTE

:::::::::
histograms.
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4 Application to downscaling of ensemble precipitation forecasts

Distributed hydrological models like NOAA’s National Water Model (NWM) require meteorological inputs at a relatively high325

spatial resolution. At shorter forecast lead times (typically up to one or two days ahead) limited-area NWP models provide

such high-resolution forecasts, but for longer lead times only forecasts from global ensemble forecast systems like NOAA’s

GEFS are available. These come at a relatively coarse resolution and need to be downscaled (statistically or dynamically) to

the high-resolution output grid. Here, we use a combination of the statistical post-processing algorithm proposed by Scheuerer

and Hamill (2015), ensemble copula coupling (ECC; Schefzik et al., 2013), and the spatial downscaling method proposed330

by Gagnon et al. (2012) to obtain calibrated, high-resolution precipitation forecasts
::::::
forecast

:
fields based on GEFS ensemble

forecasts. Does the spatial disaggregation method produce precipitation fields with appropriate sub-grid scale variability? This

question will be answered using the FTE-based verification metric discussed above.

4.1 Data and downscaling methodology

We consider 6-hour precipitation accumulations over a region in the South-Eastern US between -91° and -81° longitude and 30°335

and 40° latitude during the period from January 2002 to December 2016. Ensemble precipitation forecasts for lead time 66-h

to 72-h were obtained from NOAA’s second-generation GEFS reforecast dataset (Hamill et al., 2013) at a horizontal resolution

of ∼0.5°. Downscaling and verification is performed against precipitation analyses from the ∼0.125° climatology-calibrated

precipitation analysis (CCPA) dataset (Hou et al., 2014).

In order to obtain calibrated ensemble precipitation forecasts at the CCPA grid resolution we proceed in three steps. First,340

we apply the post-processing algorithm by Scheuerer and Hamill (2015) to the GEFS forecasts and upscaled (to the GEFS

grid resolution) precipitation analyses in order to remove systematic biases and ensure adequate representation of forecast

uncertainty at this coarse grid scale. The resulting predictive distributions are turned back into an 11-member ensemble using

the ECC-mQ-SNP variation (Scheuerer and Hamill, 2018) of the ECC technique. This variation removes discontinuities and

avoids randomization that can occur when the standard ECC approach is applied to precipitation fields. Finally, each ensemble345

member is downscaled from the GEFS to the CCPA grid resolution using a slightly simplified version of the Gibbs sampling

disagregation model (GSDM) proposed by Gagnon et al. (2012). To generate downscaled fields with spatial properties that vary

depending on the season, we rely here on a monthly calibration of the GSDM, rather than on meteorological predictors as in the

original model. The 15 years of data are cross-validated: one year at a time is left out for verification and the post-processing

and downscaling models are fitted with data from the remaining 14 years. Repeating this process for all years leaves us with350

15 years of downscaled ensemble forecasts and verifying analyses. See Fig.
:
7 for a visual reference.

4.2 Univariate verification

Before applying the FTE
::::::::
histogram

:
to investigate whether the spatial disaggregation used in the downscaling method produces

precipitation fields with appropriate sub-grid scale variability, we check the calibration of the univariate ensemble forecasts

across all fine scale grid points. We study (separately) the months January, April, July, and October in order to represent winter,355
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Figure 7. Examples of different data fields for 6-hour precipitation accumulation on July 24, 2004.
:::

2004
::::
(top)

:::
and

:::::::::::
corresponding

::::
5mm

:::::
binary

::::::::
exceedance

:::::
fields

::::::
(bottom;

::::
dark

::::
blue

::::::
regions

::::::
indicate

:::::::
threshold

::::::::::
exceedance). From left to right: coarse-scale GEFS ensemble member, the

same member downscaled to the analysis resolution, and the corresponding CCPA analysis.

spring, summer, and fall, respectively. Daily analyses and corresponding ensemble forecasts from each of these months are

pooled over the entire verification period and all grid points within the study area, and are used to construct the verification

rank histograms in Fig.8. Note that grid points receiving the same rank for the observation and all forecast fields
::
8.
::::::

Cases

:::::
where

::
all

:::::::::
ensemble

:::::::
member

:::::::
forecasts

::::
and

:::
the

:::::::
analysis

:::
are

:::
tied

:
– for example, when there is zero accumulation at a

:::
grid

:
point

for all fields – are withheld from the histogram to avoid artificial uniformity introduced by breaking ties in rank at random.360

Recall that a calibrated forecast should yield
::::::
Ideally,

:::
the

::::::::
statistical

:::::::::::::
post-processing

:::
and

:::::::::::
downscaling

::::::
should

::::
yield

:::::::::
calibrated

::::::::
ensemble

:::::::
forecasts

::::
and

:::
thus

:
rank histograms that are approximately uniform. Clearly, the rank histograms for the downscaled

forecast fields shown in Fig. 8 are not exactly uniform; there is a consistent peak in the higher ranks indicating that the

downscaled ensemble forecasts tend to underestimate precipitation accumulations, especially in fall and winter. This bias

could be an indication that either the post-processing distribution (gamma) or the disaggregation distribution (log-normal) are365

not perfectly suited to represent the respective forecast uncertainties. It may also be a result of a superposition of biases in

different sub-domains or for different weather situations. Univariate calibration in July - which happens to be a month with

more frequent precipitation in this region of the US - is relatively good, and while the histograms of other months show clear

departures from uniformity, there is at least no strong ∪– or ∩–shape to indicate significant dispersion errors. We thus continue
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Figure 8. Verification rank histograms (density) for downscaled fields at representative months with cases of fully tied ranks removed.

:::::::
Estimated

::::::
β-score

::::
(left)

:::
and

:::::
β-bias

:::::
(right)

::::::::
annotated.

with our analysis of the spatial calibration of the downscaled ensemble forecasts
::::::
forecast fields, keeping in mind though that370

some of the possible non-uniformity of FTE histogramsin January, April and October could be due to univariate miscalibration.

::
the

::::::::::::
under-forcast

:::::
biases

::::
seen

::
in
::::
Fig.

::
8

:::
will

:::::
carry

::::
over

::
to

:::
the

::::
FTE

::::::::::
histograms,

::::
and

:::
will

:::::::::::
superimpose

::::
any

:::::
shape

:::::::
resulting

:::::
from

:::::
spatial

:::::::::::::
miscalibration.

::
In

:::::
July,

:::::
where

:::::
only

:
a
:::::
mild

:::::::::::
under-forcast

::::
bias

::
is

::::::::
observed,

:::
we

::::
will

:::::
have

:::
the

::::
best

::::::
chance

::
of
::::::::

drawing

:::::::::::
unambiguous

::::::::::
conclusions

:::::
about

:::
the

:::::
spatial

::::::::
structure

::::
from

:::
the

:::::
shape

::
of

:::
the

::::
FTE

:::::::::
histogram.

:

4.3 Verification of spatial structure375

In the remaining analysis, we employ FTE histograms to investigate the spatial properties of the ensemble forecast fields

obtained by the downscaling algorithm for the same representative months outlined above. Spatial variability of precipitation

fields depends on whether precipitation is stratiform or convective, and in the latter case also on the type of convection (local

vs synoptically forced). The frequency of occurrence of these categories has a seasonal cycle, and it is therefore interesting

to study how well the downscaling methodology works in different seasons. The first step in computing the FTE is deciding380

what value to use for the threshold. If the climatology varies strongly across the domain, it may be desirable to use a variable

threshold such as a climatology percentile. However, the South-Eastern US is a flat and relatively homogeneous region meaning

the precipitation accumulation patterns will not be affected as much by orography, and we therefore select a fixed threshold

for constructing the FTE
:::
FTE

::::::::::
histograms. Another advantage of this approach is that a fixed threshold has a direct physical

interpretation; here we use thresholds of 5mm, 10mm, and 20mm to study the spatial calibration of the ensemble for low,385

medium, and high accumulation levels over the 6-hour window.

In Fig. 9, it is clear by visual inspection that the FTE histograms are all ∪-shaped to some extent, though the fitted beta

parameters
::::::::::::
corresponding

:::::::
β-scores

:
highlight that the histograms are explicitly more uniform in the fall and winter months. In

the spring and summer months (i.e., April and and July) the histograms reveal a clear under-dispersion in the ensemble FTEs

at all analyzed thresholds. Since we noted above that July (and, to a lesser extent, April) had the best univariate calibration, this390

::::
This would suggest that the downscaled ensemble overestimates fine scale variability during the seasons with more convective
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Figure 9. FTE histograms for downscaled fields at different thresholds in representative monthswith estimated beta distribution parameters.

:::::::
Estimated

::::::
β-score

::::
(left)

:::
and

:::::
β-bias

:::::
(right)

::::::::
annotated.

events. This could indicate that the calibration procedure of the GSDM downscaling method in Gagnon et al. (2012) struggles

with selecting good parameters that produce downscaled precipitation fields with just the right amount of spatial variability

during the summer season with mainly (but not exclusively) convective precipitation. The FTE metric
:::::::::
histograms

:
can thus

provide valuable diagnostic information that helps identify shortcomings of a forecast methodology. Indeed, in one of our395

current projects we seek to improve the GSDM, with one objective being to calibrate the model such that the downscaled

fields reproduce the correct amount of spatial variability, in a flow-dependent fashion, using meteorological predictors such

as instability indices and vertical wind shear (Bellier et al., 2020).
:::
For

:::
the

:::::::
β-biases

:::::
seen

::
in

::::
Fig.

::
9,

:::
the

:::::::::::
interpretation

::
is

:::::
more

:::::::
difficult.

:::::
Their

::::
value

::
at
::::::
higher

:::::::::
thresholds

:::
has

:::
the

:::::::
opposite

::::
sign

::
as

:::::
what

::
we

::::::
would

::::::
expect

::::
from

:::::
Table

:
1
:::

in
:
a
:::::::
situation

::::::
where

:::
the

::::::
forecast

:::::
fields

:::::::
simulate

:::::::::
excessive

:::
fine

:::::
scale

:::::::::
variability.

::
As

:::::
noted

::::::
above,

::::::::
however,

:::
this

::
is

:::::
likely

:::
due

::
to
:::

an
::::::::::::
under-forecast

::::
bias

::
in400

::
the

::::::::
marginal

::::::::::
distributions

::::
and

:::
the

::::::::
associated

:::::
effect

:::
on

:::
the

:::::
β-bias

::::::
which

::
is

:::::::
opposite

::
to

::::
(and

:::::
seems

::
to
:::
be

::::::::::
dominating)

:::
the

::::::
effects

::
of

:::::
spatial

:::::::::::::
miscalibration.
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5 Conclusions

When forecasting meteorological variables on a spatial domain, it is important for many applications that not only the marginal

forecast distributions but also the spatial (and/or temporal) correlation structure is represented adequately. In some instances,405

misrepresentation of spatial structure by ensemble forecast fields may be visually obvious; otherwise, a quantitative verification

metric is desired to objectively evaluate the ensemble calibration. The FTE metric studied here is a projection of a multivariate

quantity (i.e., a spatial field) to a univariate quantity, and can be combined with the concept of a (univariate) verification rank

histogram to analyze the spatial structure of ensemble forecast fields. This idea has first been applied by Scheuerer and Hamill

(2018) to study the properties of downscaled ensemble precipitation forecasts, but an understanding of the general capability410

of the FTE metric to detect misrepresentation of the spatial structure by the ensemble has been lacking as yet.

In this paper, we performed a systematic study in which we simulated ensemble forecast and verification fields with different

correlation lengths to understand how well a misspecification of the correlation length can be detected by the FTE metric. To

this end, the metric was slightly extended and is composed of three steps: (1) calculate the FTE of each verification and en-

semble forecast field, (2) construct an FTE histogram over available instances of forecast and verification times, and (3) fit beta415

parameters to the
:::::
derive

:::
the

:::::::
β-score

:::
and

::::::
β-bias

::::
from

:::
the

:
stochastically disaggregated FTE histogram by maximum likelihood

to summarize
::
to

::::::::::
characterize departure from uniformity. We have found that the FTE metric is capable of detecting even minor

issues with the correlation length (e.g., 10% miscalibration) in ensemble forecasts, and this conclusion was consistent across a

range of thresholds and domain sizes. Applied in a data example with downscaled precipitation forecast fields, the FTE metric

pointed to some shortcomings of the underlying spatial disaggregation algorithm during the seasons where precipitation is to420

be driven by local convection.

The FTE metric is relatively simple and thus enjoys an easy and intuitive interpretation. In particular, the estimated beta

distribution parameters
::::::
β-score

::::
and

::::::
β-bias can be compared according to Table 1 to obtain a simple objective summary of

dispersion and bias in the ensemble forecast.
::
to

::::::::
diagnose

:::::::::::
shortcomings

::
in
::::

the
:::::::::
calibration

::
of

::::::::
ensemble

::::::::
forecasts.

::
If
::::::::
different

::::
types

:::
of

::::::::::::
miscalibration

:::::
occur

::::::::
together,

:::::::::
additional

:::::::::
diagnostic

:::::
tools

:::
like

:::::::::
univariate

::::::::::
verification

::::
rank

::::::::::
histograms

:::::
have

::
to

:::
be425

:::::::::
considered

::::::::
alongside

:::
the

:::::
FTE

:::::::::
histograms

::
to
::::::::::

disentangle
::::

the
:::::::
different

:::::::
effects. While we have focused on verification rank

histograms in the analysis of the univariate verification FTE rank here, the same projection could also be used in combination

with proper scoring rules. We believe that FTE histograms are a useful addition to the set of spatial verification metrics. They

complement metrics like the wavelet-based verification approach proposed by Buschow et al. (2019) which has additional

capabilities when it comes to analyzing aspects of the spatial texture of forecast fields but is not primarily targeted at proper430

uncertainty quantification by an ensemble.

Code and data availability. The code and data used for this study are available in the accompanying Zenodo repositories (code: https:

//doi.org/10.5281/zenodo.3592506, data: https://doi.org/10.5281/zenodo.3592495). The most recent version of the code can also be found in

JJ’s Git repository (https://github.com/joshhjacobson/FTE).
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Appendix A: Stochastic disaggregation of transformed ranks435

The data vector of ranks R
:
r has discrete elements ri ∈ {1,2, . . . ,k+1} where k is the number of ensemble members. In order

to disaggregate these elements to a continuous domain for use with maximum likelihood estimation, the following algorithm

is applied to each element ri:

1. Let di = (ri− 1
2 )/(k+ 1).

2. Simulate a (continuous) uniform random variable440

U i ∼ Uniform
(
di−

1

2(k+ 1)
,di +

1

2(k+ 1)

)
3. Set ri = Ui.

The effect of Step 1 is a mapping into [0,1], while Step 2 is the stochastic disaggregation to evenly-spaced uniform intervals

whose supports form a partition of unity of [0,1].

Appendix B: Ensemble
::::::::
Properties

:::
of

::::::::
simulated

:::::::::
ensemble memberswith standard Gaussian marginals445

Suppose X and W

:::
Let

::::::
ZM (s)

:::
and

::::::
Wi(s) ::

be
:::::::::::
independent,

::::::::
mean-zero

::::::::
Gaussian

:::::::::
processes,

::::
each

::::
with

::::::
Matérn

:::::::::
covariance

:::::::
function

:::::::::::::
M(d|νM ,aM ).

::::
Now

:::::::
suppose

:::
ZM::::

and
:::
Wi are independent standard Gaussian random variables . Letting

::::::::::
representing

:::
the

:::::::
marginal

::::::::::
distribution

::
of

::::::::
processes

::::::
ZM (s)

:::
and

::::::
Wi(s).

:::::::
Setting

::::::
random

:::::::
variable

:

Zi = ωXZM
:::

+
√

1−ω2W i, ω ∈ [−1,1], (B1)450

we see E[Z] = 0
::::::::
E[Zi] = 0 by linearity of the expectation operator, and

Var[Z]Var[Zi]
:::::

= Var[ωX +
√

1−ω2W ]Var[ωZM +
√

1−ω2Wi]
::::::::::::::::::::

= ω2Var[X]Var[ZM ]
:::::::

+ (1−ω2)Var[W ]Var[Wi]
::::::

(B2)

= 1
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using independence of X and W .
::::
ZM :::

and
::::
Wi.:::::

Then
::
Zi::

is
::

a
:::::::
standard

::::::::
Gaussian

:::::::
random

:::::::
variable

:::::::::::
representing

:::
the

::::::::
marginal455

:::::::::
distribution

::
of

::::::::
ensemble

:::::::
member

::::::::::::::::::::::::::::::
Zi(s) = ωZM (s) +

√
1−ω2Wi(s).

:::::::
Further,

::::::
observe

::::
that

Cov
:::

[Zi(s+h),Zi(s)
:::::::::::::

]

= Cov[ωZM (s+h) +
√

1−ω2Wi(s+h),ωZM (s) +
√

1−ω2Wi(s)]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

= ω2Cov[ZM (s+h),ZM (s)] + (1−ω2)Cov[Wi(s+h),Wi(s)]
:::::::::::::::::::::::::::::::::::::::::::::::::::

(B3)

= ω2M(||h|||νM ,aM ) + (1−ω2)M(||h|||νM ,aM )
:::::::::::::::::::::::::::::::::::::::::

460

=M(||h|||νM ,aM )
::::::::::::::::

::
by

:::::::::::
independence

:::
of

::::::
ZM (s)

:::
and

::::::
Wi(s).

::::
That

:::
is,

::::::::
ensemble

:::::::
members

::::::
Zi(s),

::::::::::
i= 1, . . . ,k,

:::::::
preserve

:::
the

:::::::::
covariance

::::::::
structure

::
of

:::
the

::::::::
ensemble

::::
mean

:::::::
ZM (s).

:

Appendix C: Derivation of an appropriate co-located correlation coefficient

Suppose Z0 and ZM are standard Gaussian random variables with Corr[Z0,ZM ] = ρ, and {Wi}ki=1 is a set of independent465

standard Gaussian random variables, each independent of Z0 and ZM . Define

Zi = ωZM +
√

1−ω2Wi, i= 1, . . . ,k, ω ∈ [−1,1]. (C1)

From Appendix B we have that each of Zi is again a standard Gaussian random variable. Then, for i 6= j, we see that

Cov[Zi,Zj ] = Cov(ωZM +
√

1−ω2Wi,ωZM +
√

1−ω2Wj)

= ω2Cov(ZM ,ZM ) (C2)470

= ω2

using pairwise independence of ZM ,Wi and Wj . Using a similar technique we see

Cov[Z0,Zi] = ωρ. (C3)

Now let Z = (Z0,Z1, . . . ,Zk)′. Then,

Cov[Z] =



1 ωρ . . . . . . ωρ

ωρ
. . . ω2 . . . ω2

... ω2 . . . . . .
...

...
...

. . . . . . ω2

ωρ ω2 . . . ω2 1


(C4)475

Setting ρ= ω is thus necessary (except for the trivial case where ω = 0) and sufficient for univariate probabilistic calibration

of the ensemble as this choice makes Z0 indistinguishable from Z1, . . . ,Zk::
in

::::::::::
distribution.
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Appendix D:
:::::::::
Sensitivity

::
of

::::
FTE

::::::::::
histograms

::
to

::::::::
forecast

::::
skill

:::
The

:::::::::
simulation

:::::
setup

::::::::::
introduced

::
in

:::::::
section

:::
3.2

::::::
allows

::
us

:::
to

::::::
control

:::
the

:::::
skill

::
of

:::
the

::::::::
synthetic

:::::::::
ensemble

::::::::
forecasts

:::::::
through

::
the

::::::::::
parameters

::
ρ
::::
and

::
ω,

::::::
where

:::
(as

::::::
shown

:::::::
above)

:::
the

:::::::::
restriction

:::::
ρ= ω

:::
is

:::::::
required

:::
to

::::::
ensure

:::::::::
calibration

:::
of

:::
the

::::::::
marginal480

::::::::::
distributions.

:::::
Does

:::
the

:::::::::
sensitivity

:::
of

:::
the

::::
FTE

:::::::::
histogram

::
to

:::::::::::
mis-specified

::::::::::
correlation

::::::
lengths

::::::
change

:::::
with

::::::::
changing

:::::::
forecast

::::
skill?

:::
To

::::::::::
investigate

:::
this

:::::::
further,

:::
we

:::::
show

::::::
results

:::
for

:::
the

::::::::
extreme

:::
‘no

:::::
skill’

::::
case

::::::
where

::::::::::
ρ= ω = 0,

::
to

:::::::::::
complement

:::::
those

:::::
shown

::::::
above

:::::
where

:::
we

:::::::::
simulated

::::::::
forecasts

::::
with

::
a
::::::::
relatively

:::::
high

:::::::::
correlation

::::::::::::
(ρ= ω = 0.8)

::::::::
between

::::::::
ensemble

:::::
mean

::::
and

:::::::::
verification

::
at

::::
each

::::
grid

:::::
point.

::::
The

::::
other

::::::::::
parameters

::::::
remain

:::::::::
unchanged;

::::
i.e.,

:::::::::
simulation

::::::::::
experiments

:::
are

:::::::::
performed

:::
for

::::::
a0 = 2

:::
and

:::::::::::::::::::
aM ∈ {1,1.8,2,2.2,3}.:::

By
::::

Eq.
:
(8),

::::
the

::::::::
ensemble

::::::::
members

:::
are

::::
then

:::::::::::
independent

::::::::::
realizations

::
of

:
a
::::::

mean
::::
zero

::::::::
Gaussian485

::::::
random

::::
field

::::
with

::::::
Matérn

::::::::::
covariance

:::::
having

::::::::::
correlation

:::::
length

:::::::
a= aM .

:

Figure D1.
::
As

:::
Fig.

::
3,

::
but

::::::::
ensemble

::::
fields

:::
are

::::::::
constructed

::::
with

::::
skill

:::::::
parameter

:::::::::
ρ= ω = 0.

:::::
Figure

:::
D1

:::::
gives

:::
an

:::::::
example

::
of

:::::::::
simulated

::::::::
ensemble

:::::::
member

:::::
fields

:::::
which

:::
are

::::::::
mutually

::::::::::
independent

::::
and

:::::::::::
uncorrelated

::::
with

::
the

::::::::::
verification

:::::
field,

::::
while

:::::
their

:::::
spatial

::::::::
structure

::
is

::::
10%

:::::::::::
miscalibrated

::
in

:::
the

::::
case

::
of

::::
rows

::
A

:::
and

:::
C.

::
In

:::::::
contrast

::
to

:::
Fig.

::
3,
::::::
where

::
the

:::::::
positive

::::
skill

:::
of

:::
the

::::::::
ensemble

::::::::
forecasts

::::::
entails

:::::
some

::::::
degree

::
of

:::::::::::::
correspondence

::::::::
between

:::
the

:::::::
features

::
in

:::
the

:::::::
forecast

::::
and
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:::::::::
verification

:::::
fields,

:::::
there

::
is

::
no

::::
such

:::::::::::::
correspondence

::
in
::::::::
between

:::
the

::::
fields

::
in
::::::
Figure

::::
D1.

:::
The

::::::::::::
corresponding

::::
FTE

:::::::::
histograms

::::
and490

::::
their

::::::::
associated

::::::::
β-scores,

::::::::
however,

:::
are

::::
able

::
to

::::::
identify

::::
row

::
B

::
as

:::::::
spatially

:::::::::
calibrated

:::
and

::::
row

:
A
:::::
(row

::
C)

::
as

::::::
having

::
a

:::::::::
correlation

:::::
length

:::::
ratio

::::
that

:
is
::::

too
::::
small

:::::::
(large).

Figure D2.
::
As

:::
Fig.

::
5,

::
but

::::::::
ensemble

::::
fields

:::
are

::::::::
constructed

::::
with

::::
skill

:::::::
parameter

:::::::::
ρ= ω = 0.

:
A
::::::
similar

:::::
story

::
is

:::::::
provided

:::
by

::::
Fig.

::
D2

::::::
which,

::::
like

:::
Fig.

::
5
:::::
where

:::::::::::
ρ= ω = 0.8,

:::::::::::
demonstrates

::::
how

:::
the

::::::::
estimated

::::::::::::
β-distribution

:::::::::
parameters,

::::::::
β-score,

:::
and

::::::
β-bias

::::
vary

::::
over

:::::::::
increasing

:::::::::
thresholds

:::
for

::::::::
different

:::::::::
correlation

::::::
length

:::::
ratios.

::::::
While

:::
the

:::::::::
associated

::::::::::
experiments

:::::
differ

::
in

:::
that

::::::::
ensemble

::::::::
members

::::
have

:::
no

::::::::
univariate

::::
skill

::::
here

::::
(i.e.,

::::::::::
ρ= ω = 0),

:::
the

::::::::
behavior

::::::::
witnessed

::
in

:::
the

::::
two495

:::::
figures

::
is
::::::
nearly

:::::::::::::::
indistinguishable.

:::::
Thus,

:::
we

:::::::
conclude

::::
that

:::::::::
correlation

:::::::
between

:::
the

::::::::
ensemble

::::
and

::::::::::
verification

:::
has

:
a
:::::::::
negligible

:::::
effect

::
on

:::
the

:::::
FTE

::::::::::
histograms’

::::::
ability

::
to

:::::
detect

:::::::::::::
miscalibration

::
in

::::::
spatial

::::::::
structure.

::::
This

::::
was

:::
not

:::::::
obvious

:::
to

::
us

::
a
:::::
priori,

::::
but

::::::
perhaps

::::
one

:::
can

:::::
think

::
of

:::::
these

:::
‘no

:::::
skill’

::::::::::
simulations

::
as

:::
the

:::::::
residual

:::::
fields

::::
that

::::::
remain

::::
after

:::
the

::::::::::
‘predictable

::::::::::
component’

::::
has

::::
been

:::::::::
subtracted

::::
from

:::::
both

::::::::
ensemble

:::::::
member

::::
and

::::::::::
verification

:::::
fields.

:::
In

:::
any

:::::
case,

:::
the

::::::::::
insensitivity

:::
to

:::::::
forecast

::::
skill

::
is

:::::
good

::::
news

:::
for

:::
the

::::::::
practical

:::::::::
application

:::
of

::::
FTE

::::::::::
histograms,

:::::
where

:::::::
forecast

::::
skill

::
is
:::::::

usually
::::::::
unknown,

::::
and

:::::::::::
confounding

::::::
effects

:::
are500

::::::::::
undesirable.

:
It
::
is
::
a

:::::::
reminder

::::::
though

::::
that

::::
they

:::
are

:
a
::::
tool

:::
for

::::::::
assessing

::::::
forecast

::::::::::
calibration,

:::
not

:::::::
forecast

::::
skill.

:
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