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Abstract. Many practical applications of statistical post-processing methods for ensemble weather forecasts require to accu-

rately model spatial, temporal and inter-variable dependencies. Over the past years, a variety of approaches has been proposed

to address this need. We provide a comprehensive review and comparison of state of the art methods for multivariate ensemble

post-processing. We focus on generally applicable two-step approaches where ensemble predictions are first post-processed5

separately in each margin, and multivariate dependencies are restored via copula functions in a second step. The comparisons

are based on simulation studies tailored to mimic challenges occurring in practical applications and allow to readily interpret

the effects of different types of misspecifications in the mean, variance and covariance structure of the ensemble forecasts on

the performance of the post-processing methods. Overall, we find that the Schaake shuffle provides a compelling benchmark

that is difficult to outperform, whereas the forecast quality of parametric copula approaches and variants of ensemble copula10

coupling strongly depend on the misspecifications at hand.

Copyright statement. TEXT

1 Introduction

Despite continued improvements ensemble weather forecasts often exhibit systematic errors that require correction via statis-

tical post-processing methods. Such calibration approaches have been developed for a wealth of weather variables and specific15

applications. The employed statistical techniques include parametric distributional regression models (Gneiting et al., 2005;

Raftery et al., 2005) as well as nonparametric approaches (Taillardat et al., 2016) and semi-parametric methods based on mod-

ern machine learning techniques (Rasp and Lerch, 2018). We refer to Vannitsem et al. (2018, 2020) for a general overview and

review.
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While much of the developments have been focused on univariate methods, many practical applications require to accu-20

rately capture spatial, temporal or inter-variable dependencies (Schefzik et al., 2013). Important examples include hydrological

applications (Scheuerer et al., 2017), air traffic management (Chaloulos and Lygeros, 2007) and energy forecasting (Pinson

and Messner, 2018). Such dependencies are present in the raw ensemble predictions, but are lost if standard univariate post-

processing methods are applied separately in each margin.

Over the past years, a variety of multivariate post-processing methods has been proposed, see Schefzik and Möller (2018)25

for a recent overview. Those can roughly be categorized into two groups of approaches. The first strategy aims to directly

model the joint distribution by fitting a specific multivariate probability distribution. This approach is mostly used in low-

dimensional settings, or if a specific structure can be chosen for the application at hand. Examples include multivariate models

for temperatures across space (Feldmann et al., 2015), for wind vectors (Schuhen et al., 2012; Lang et al., 2019), and joint

models for temperature and wind speed (Baran and Möller, 2015, 2017).30

The second group of approaches proceeds in a two-step strategy. In a first step, univariate post-processing methods are

applied independently in all dimensions, and samples are generated from the obtained probability distributions. In a second

step, the multivariate dependencies are restored by re-arranging the univariate sample values with respect to the rank order

structure of a specific multivariate dependence template. Mathematically, this corresponds to the application of a (parametric

or non-parametric) copula. Examples include ensemble copula coupling (Schefzik et al., 2013), the Schaake shuffle (Clark35

et al., 2004) and the Gaussian copula approach (Möller et al., 2013).1

Here, we focus on this second strategy which is more generally applicable in cases where no specific assumptions on the

parametric structure can be made, or where the dimensionality of the forecasting problem is too high to be handled by fully

parametric methods. The overarching goal of this paper is to provide a systematic comparison of state of the art methods

for multivariate ensemble post-processing. In particular, our comparative evaluation includes recently proposed extensions of40

the popular ensemble copula coupling approach (Hu et al., 2016; Ben Bouallègue et al., 2016). We propose three simulation

settings which are tailored to mimic different situations and challenges that arise in applications of post-processing methods.

In contrast to case studies based on real-world datasets, simulation studies allow one to specifically tailor the multivariate

properties of the ensemble forecasts and observations, and to readily interpret the effects of different types of misspecifications

on the forecast performance of the various post-processing methods. Simulation studies have been frequently applied to analyze45

model properties, and to compare modeling approaches and verification tools in the context of statistical post-processing, see,

e.g., Williams et al. (2014); Thorarinsdottir et al. (2016); Wilks (2017); Allen et al. (2019).

The remainder is organized as follows. Univariate and multivariate post-processing methods are introduced in Section 2.

Section 3 provides descriptions of the three simulation settings, with results discussed in Section 4. The paper closes with a

discussion in Section 5. Technical details on specific probability distributions and multivariate evaluation methods are deferred50

1An alternative post-processing approach that allows to preserve multivariate dependencies is the member-by-member method proposed by Van Schaey-

broeck and Vannitsem (2015). Schefzik (2017) demonstrates that member-by-member post-processing can be interpreted as a specific variant of ensemble

copula coupling, and can thus be seen as belonging to this group of methods.
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to the Appendix. Additional results are available in the Supplementary Material. R (R Core Team, 2019) code with replication

material and implementations of all methods is available from https://github.com/slerch/multiv_pp.

2 Post-processing of ensemble forecasts

We focus on multivariate ensemble post-processing approaches which are based on a combination of univariate post-processing

models with copulas. The general two-step strategy of these methods is to first apply univariate post-processing to the ensemble55

forecasts for each margin (i.e., weather variable, location, and prediction horizon) separately. Then, in a second step, a suitably

chosen copula is applied to the univariately post-processed forecasts in order to obtain the desired multivariate post-processing

taking account of dependence patterns.

A copula is a multivariate cumulative distribution function (CDF) with standard uniform univariate marginal distributions

(Nelsen, 2006). The underlying theoretical background of the above procedure is given by Sklar’s theorem (Sklar, 1959),60

which states that a multivariate CDF H (this is what we desire) can be decomposed into a copula function C modeling the

dependence structures (this is what needs to be specified) and its marginal univariate CDFs F1, . . . ,Fd (this is what is obtained

by the univariate post-processing) as follows:

H(x1, . . . ,xd) = C(F1(x1), . . . ,Fd(xd))

for x1, . . . ,xd ∈ R. In the approaches considered here, the copula C is chosen to be either the non-parametric empirical copula65

induced by a pre-specified dependence template (in the ensemble copula coupling method and variants thereof as well as in

the Schaake shuffle), or the parametric Gaussian copula (in the Gaussian copula approach). A Gaussian copula is a particularly

convenient parametric model, as apart from the marginal distributions it only requires estimation of the correlation matrix of

the multivariate distribution. Under a Gaussian copula the multivariate CDF H takes the form

H(x1, . . . ,xd |Σ) = Φd
(
Φ−1(F1(x1)), . . . ,Φ−1(Fd(xd)) |Σ

)
, (1)70

with Φd( · |Σ) denoting the CDF of a d-dimensional normal distribution with mean zero and correlation matrix Σ, and Φ−1

denoting the quantile function of the univariate standard normal distribution.

To describe the considered methods in more detail in what follows, let X1, . . . ,Xm ∈ Rd denote unprocessed ensemble fore-

casts frommmembers, where Xi := (X
(1)
i , . . . ,X

(d)
i ) for i= 1, . . . ,m, and let y := (y(1), . . . ,y(d)) ∈ Rd be the corresponding

verifying observation. We will use l = 1, . . . ,d to denote a multi-index that may summarize a fixed weather variable, location,75

and prediction horizon in practical applications to real-world datasets.

2.1 Step 1: Univariate post-processing

In a first step, univariate post-processing methods are applied to each margin l = 1, . . . ,d separately. Prominent state-of-the-

art univariate post-processing approaches include Bayesian model averaging (Raftery et al., 2005) and ensemble model output

statistics (EMOS; Gneiting et al., 2005). In the EMOS approach, which is employed throughout this paper, a non-homogeneous80
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distributional regression model

y(l)|X(l)
1 , . . . ,X(l)

m ∼ F
(l)
θ (y(l)|θ(l))

is fitted, where F (l)
θ is a suitably chosen parametric distribution with parameters θ(l) := g(X

(l)
1 , . . . ,X

(l)
m ) that depend on the

unprocessed ensemble forecast through a link function g(·).

The choice of F (l)
θ is in practice mainly determined by the weather variable being considered in the margin l. For instance,85

when F (l)
θ can be assumed to be Gaussian with mean µ and variance σ2, such as for temperature or pressure, one may set

F
(l)
θ =N (µ,σ2), where (µ,σ2) := (a0 + a1X̄,b0 + b1S

2) = g(X
(l)
1 , . . . ,X(l)

m ) (2)

if the ensemble members are exchangeable, with X̄ and S2 denoting the empirical mean and variance of the ensemble predic-

tions X(l)
1 , . . . ,X

(l)
m , respectively. The coefficients a0,a1, b0 and b1 are then derived via suitable estimation techniques using

training data consisting of past ensemble forecasts and observations (Gneiting et al., 2005).90

2.2 Step 2: Incorporating dependence structures using copulas to obtain multivariate post-processing

When applying univariate post-processing for each margin separately, multivariate (i.e. inter-variable, spatial and/or temporal)

dependencies across the margins are lost. These dependencies are restored in a second step. Here, we consider five different

approaches to do so. An overview of selected key features is provided in Table 1. For further discussion of advantages and

shortcomings, as well as comparisons of subsets of theses methods see, e.g., Schefzik et al. (2013); Wilks (2015). In the95

following we use z to denote univariate quantities in the individual dimensions. Z in bold print is used to represent vector-

valued quantities, and Z in normal print is used to for components thereof.

Assumption of independence (EMOS-Q)

Instead of modeling the desired dependencies in any way, omitting the second step corresponds to assuming independence

across the margins. To that end, a univariate sample x̂(l)
1 , . . . , x̂

(l)
m is generated in each margin by drawing from the post-100

processed forecast distribution F (l)
θ , l = 1, . . . ,d. The univariate samples are then simply combined into a corresponding vector.

Following Schefzik et al. (2013), we use equidistant quantiles of F (l)
θ at levels 1

m+1 , . . . ,
m
m+1 to generate the sample, and denote

this approach by EMOS-Q.

Ensemble copula coupling (ECC)

The basic ensemble copula coupling (ECC) approach proposed by Schefzik et al. (2013) proceeds as follows:105

1. A sample x̂(l)
1 , . . . , x̂

(l)
m , where we assume x̂(l)

1 ≤ ·· · ≤ x̂
(l)
m to simplify notation, of the same size m as the unprocessed

ensemble is drawn from each post-processed predictive marginal distribution F (l)
θ , l = 1, . . . ,d.

2. The sampled values are rearranged in the rank order structure of the raw ensemble, i.e., the permutation σl of the set

{1, . . . ,m} defined by σl(i) = rank(X
(l)
i ), with possible ties resolved at random, is applied to the post-processed sample
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Table 1. Overview of selected key characteristics of the multivariate post-processing methods considered in this paper.

Method
Dependence

template

Flow-dependent

copula structure

Size of resulting

multivariate ensemble

Univariate

sampling

Involves

randomness

EMOS-Q
assumes

independence
- arbitrary equidistant no

ECC-R raw ensemble yes m random yes (sampling)

ECC-Q raw ensemble yes m equidistant no

ECC-S raw ensemble yes m stratified yes (sampling)

dECC
raw ensemble &

forecast errors
yes m equidistant no

SSh observations no arbitrary equidistant
yes (selection of

training cases)

GCA observations no arbitrary random yes (sampling)

from the first step in order to obtain the final ECC ensemble X̃(l)
1 , . . . , X̃

(l)
m via110

X̃
(l)
i = x̂

(l)
σl(i)

,

where i= 1, . . . ,m and l = 1, . . . ,d.

Depending on the specific sampling procedure in step 1, we here distinguish the following different ECC variants:

– ECC-R: The sample x̂(l)
1 , . . . , x̂

(l)
m is randomly drawn from F

(l)
θ (and subsequently arranged in ascending order).

– ECC-Q: The sample is constructed using equidistant quantiles of F (l)
θ at levels 1

m+1 , . . . ,
m
m+1 :115

x̂
(l)
1 := (F

(l)
θ )−1

(
1

m+ 1

)
, . . . , x̂(l)

m := (F
(l)
θ )−1

(
m

m+ 1

)
.

– ECC-S (Hu et al., 2016): First, random numbers u1, . . . ,um, where ui ∼ U( i−1
m , im ] for i= 1, . . . ,m, are drawn, with

U(a,b] denoting the uniform distribution on the interval (a,b]. Then, x̂(l)
i is set to the quantile of F (l)

θ at level ui:

x̂
(l)
1 := (F

(l)
θ )−1(u1), . . . , x̂(l)

m := (F
(l)
θ )−1(um).

Besides the above sampling schemes, Schefzik et al. (2013) propose an alternative transformation approach referred to as120

ECC-T. This variant is in particular appealing for theoretical considerations, as it provides a link between the ECC notion
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and member-by-member post-processing approaches (Schefzik, 2017). However, as it may involve additional modeling steps,

ECC-T is not as generic as the other schemes and thus not explicitly considered here.

Dual ensemble copula coupling (dECC)

Dual ECC (dECC) is an extension of ECC which aims at combining the structure of the unprocessed ensemble with a compo-125

nent accounting for the forecast error autocorrelation structure (Ben Bouallègue et al., 2016), proceeding as follows:

1. ECC-Q is applied in order to obtain re-ordered ensemble forecasts X̃1, . . . ,X̃m, with X̃i := (X̃
(1)
i , . . . , X̃

(d)
i ) for i=

1, . . . ,m.

2. A transformation based on an estimate of the error autocorrelation Σ̂e is applied to the bias-corrected post-processed

forecast in order to obtain correction terms c1, . . . ,cm. Precisely, ci := (Σ̂e)
1
2 · (X̃i−Xi) for i= 1, . . . ,m.130

3. An adjusted ensemble X̆1, . . . ,X̆m is derived via X̆i := Xi + ci. for i= 1, . . . ,m.

4. ECC-Q is applied again, but now performing the re-ordering with respect to the rank order structure of the adjusted

ensemble from step 3 used as a modified dependence template.

Schaake shuffle (SSh)

The Schaake shuffle (SSh) proceeds as ECC-Q, but re-orders the sampled values in the rank order structure of m past observa-135

tions (Clark et al., 2004) and not with respect to the unprocessed ensemble forecasts. For a better comparison with (d)ECC, the

size of the SSh ensemble is restricted to equal that of the unprocessed ensemble here. However, in principle, the SSh ensemble

may have an arbitrary size, provided that sufficiently many past observations are available to build the dependence template.

Extensions of the SSh that select past observations based on similarity are available (Schefzik, 2016; Scheuerer et al., 2017),

but not explicitly considered here as their implementation is not straightforward and may involve additional modelling choices140

specific to the situation at hand.

The reordering-based methods considered thus far can be interpreted as non-parametric, empirical copula approaches. In

particular, in the setting of Sklar’s theorem, C is taken to be the empirical copula induced by the corresponding dependence

template, i.e., the unprocessed ensemble forecasts in case of ECC, the adjusted ensemble in case of dECC, and the past

observations in case of the SSh.145

Gaussian copula approach (GCA)

By contrast, in the Gaussian copula approach (GCA) proposed by Pinson and Girard (2012) and Möller et al. (2013), the copula

C is taken to be the parametric Gaussian copula. GCA can be traced back to similar ideas from earlier work in spatial statistics

(e.g., Berrocal et al., 2008) and proceeds as follows:

6



1. A set of past observations y1, . . . ,yK , with yk = (y
(1)
k , . . . ,y

(d)
k ), is transformed into latent standard Gaussian observa-150

tions ỹ1, . . . , ỹK by setting

ỹ
(l)
k = Φ−1

(
F

(l)
θ (y

(l)
k )
)

(3)

for k = 1, . . . ,K and l = 1, . . . ,d, where F (l)
θ is the marginal distribution obtained by univariate post-processing. The

index k = 1, . . . ,K here refers to a training set of past observations.

2. An empirical (or parametric) (d× d) correlation matrix Σ̂ of the d-dimensional normal distribution in (1) is estimated155

from ỹ1, . . . , ỹK .

3. Multivariate random samples Z1, . . . ,Zm ∼Nd(0,Σ̂) are drawn, where Nd(0,Σ̂) denotes a d-dimensional normal dis-

tribution with mean vector 0 := (0, . . . ,0) and estimated correlation matrix Σ̂ from Step 2, and Zi := (Z
(1)
i , . . . ,Z

(d)
i )

for i= 1, . . . ,m.

4. The final GCA post-processed ensemble forecast X∗1, . . . ,X
∗
m, with X∗i := (X

∗(1)
i , . . . ,X

∗(d)
i ) for i= 1, . . . ,m is ob-160

tained via

X
∗(l)
i :=

(
F

(l)
θ

)−1(
Φ(Z

(l)
i )
)

(4)

for i= 1, . . . ,m and l = 1, . . . ,d, with Φ denoting the CDF of the univariate standard normal distribution. While the size

of the resulting ensemble may in principle be arbitrary, it is here set to the size m of the raw ensemble.

3 Simulation settings165

We consider several simulation settings to highlight different aspects and provide a broad comparison of the effects of potential

misspecifications of the ensemble predictions on the performance of the various multivariate post-processing methods. The

general setup of all simulation settings is as follows.

An initial training set of pairs of simulated ensemble forecasts and observations of size ninit is generated. Post-processed

forecasts are then computed and evaluated over a test set of size ntest. Therefore, n := ninit +ntest iterations are performed in170

total for all simulation settings. In the following, we set m= 50,ninit = 500,ntest = 1000 throughout.

To describe the individual settings in more detail, we here begin by first identifying the general structure of the steps that

are performed in all settings. For each iteration t in both training and test set (i.e., t= 1, . . . ,n), multivariate forecasts and

observations are generated:

(S1) Generate multivariate observations and ensemble forecasts.175

For all iterations t in the test set (i.e., t= ninit + 1, . . . ,n), the following steps are carried out:
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(S2) Apply univariate post-processing separately in each dimension.2

(S3) Apply multivariate post-processing methods.

(S4) Compute univariate and multivariate measures of forecast performance on the test set.

Unless indicated otherwise all simulation draws are independent across iterations. To simplify notation we will thus typically180

omit the simulation iteration index t in the following.

To quantify simulation uncertainty, the above procedure is repeated 100 times for each tuning parameter combination in each

setting. In the interest of brevity, we omit ECC-R which did show substantially worse results in initial tests (see also Schefzik

et al., 2013). In the following, the individual simulation settings are described in detail, and specific implementation choices

are discussed.185

3.1 Setting 1: Multivariate Gaussian distribution

As starting point we first consider a simulation model where observations and ensemble forecasts are drawn from multivariate

Gaussian distributions.3 This setting may for example apply in the case of temperature forecasts at multiple locations considered

simultaneously. The simplicity of this model allows to readily interpret misspecifications in the mean, variance and covariance

structures.190

(S1) For iterations t= 1, . . . ,n, independent and identically distributed samples of observations and ensemble forecasts are

generated as follows:

– observation: y ∼Nd(µ0,Σ
0), where µ0 = (0, . . . ,0) ∈ Rd, and Σ0

i,j = ρ
|i−j|
0 , for i, j = 1, . . . ,d.

– ensemble forecasts: X1, . . . ,Xm
iid∼Nd(µ,Σ), where µ= (ε, . . . , ε) ∈ Rd, and Σi,j = σρ|i−j|, for i, j = 1, . . . ,d.

The parameters ε and σ introduce a bias and a misspecified variance in the marginal distributions of the ensemble195

forecasts. These systematic errors are kept constant across dimensions 1, . . . ,d. The parameters ρ0 and ρ control the

autoregressive structure of the correlation matrix of the observations and ensemble forecasts. Setting ρ0 6= ρ introduces

misspecifications of the correlation structure of the ensemble forecasts.

(S2) As described in Section 2.1, univariate post-processing is applied independently in each dimension 1, . . . ,d. Here, we

employ the standard Gaussian EMOS model (2) proposed by Gneiting et al. (2005). The EMOS coefficients a0,a1, b0, b1200

are estimated by minimizing the mean continuous ranked probability score (CRPS, see Appendix B) over the training

set consisting of the ninit initial iterations, and are then used to produce out of sample forecasts for the ntest iterations in

the test set.
2With the exception of Setting 3, the estimation of univariate post-processing models utilizes the initial training set only. Setting 3 covers the possibly more

realistic case of variations across repetitions of the experiment.
3Wilks (2017) considers a similar setting in the context of multivariate calibration assessment which we here extend towards multivariate ensemble post-

processing.
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(S3) Next, the multivariate post-processing methods described in Section 2.2 are applied. Implementation details for the

individual methods are as follows.205

– For dECC, the estimate of the error autocorrelation Σ̂e is obtained from the ninit initial training iterations to compute

the required correction terms for the test set.

– To obtain the dependence template for SSh,m past observations are randomly selected from all iterations preceding

the current iteration t.

– The correlation matrix Σ required for GCA is estimated by the empirical correlation matrix based on all iterations210

preceding the current iteration t.

– The verification results for all methods that require random sampling (ECC-S, SSh, GCA) are averaged over 10

independent repetitions for each iteration t= ninit + 1, . . . ,n in the test set.

The multivariate Gaussian setting is implemented for d= 5 and all combinations of ε ∈ {0,1,3},σ2 ∈ {0.5,1,2,5}, and

ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}. As indicated above, the simulation experiment is repeated 100 times for each of the 300215

parameter combinations. If the setting from above is interpreted as a multivariate model for temperatures at multiple locations,

observations from the extant literature on post-processing suggest that typically, values of σ < 1 and ρ > ρ0 would be expected

in real-world datasets.

A variant of Setting 1 based on a multivariate truncated Gaussian distribution has also been investigated. Apart from a

slightly worse performance of GCA, the results are similar to those of Setting 1. We thus refer to Section 5 of the Supplemental220

Material where details on the simulation setting and results are provided.

3.2 Setting 2: Multivariate censored extreme value distribution

To investigate alternative marginal distributions employed in post-processing applications, we further consider a simulation

setting based on a censored version of the generalized extreme value (GEV) distribution. The GEV distribution was introduced

by Jenkinson (1955) among others, combining three different types of extreme value distributions. It has been widely used225

for modelling extremal climatological events such as flood peaks (e.g., Morrison and Smith, 2002) or extreme precipitation

(e.g., Feng et al., 2007). In the context of post-processing, GEV distributions have for example been applied for modeling

wind speed in Lerch and Thorarinsdottir (2013). Here, we consider multivariate observations and forecasts with marginal

distributions given by a left-censored version of the GEV distribution which was proposed by Scheuerer (2014) in the context

of post-processing ensemble forecasts of precipitation amounts.230

(S1) For iterations t= 1, . . . ,n samples of observations and ensemble forecasts are generated as follows. For l = 1, . . . ,d, the

marginal distributions are GEV distributions left-censored at 0,

F
(l)
θ = GEV0(µ,σ,ξ),

9



where the distribution parameters µ (location), σ (scale) and ξ (shape) are identical across dimensions l = 1, . . . ,d.

Details on the left-censored GEV distribution are provided in Appendix A. Misspecifications of the marginal ensem-235

ble predictions are obtained by choosing different GEV parameters for observations (µ0,σ0, ξ0) and forecasts (µ,σ,ξ).

Combined misspecifications of the three parameters result in more complex deviations of mean and variance (on the

univariate level) compared to Setting 1. Typically there is a joint influence of the GEV parameters on mean and dis-

persion properties of the distribution. In order to exploit the complex behavior a variety of parameter combinations for

observations and ensemble forecasts were considered.240

To generate multivariate observations y = (y(1), . . . ,y(d)) and ensemble predictions Xi = (X
(1)
i , . . . ,X

(d)
i ), i= 1, . . . ,m,

the so-called NORTA (normal to anything) approach is chosen, see Cario and Nelson (1997); Chen (2001). This method

allows one to generate realizations of a random vector z = (z(1), . . . ,z(d)) with specified marginal distribution func-

tions F (l)
θ , l = 1, . . . ,d, and a given correlation matrix R= (Corr(z(k),z(l)))dk,l=1. The NORTA procedure consists of

three steps. In a first step a vector v = (v(1), . . . ,v(d)) is generated from Nd(0,R∗) for a correlation matrix R∗. In a245

second step, u(l) = Φ(v(l)) is computed, where Φ denotes the CDF of the standard normal distribution. In a third step,

z(l) =
(
F

(l)
θ

)−1

(u(l)) is derived for l = 1, . . . ,d, where
(
F

(l)
θ

)−1

is the inverse of F (l)
θ . The correlation matrix R∗ is

chosen in a such a way that the z(l) have the desired target correlation matrix R. Naturally, the specification of R∗ is

the most involved part of this procedure. Here, we use the retrospective approximation algorithm implemented in the

R package NORTARA (Su, 2014). The NORTARA package infrequently produced error and warnings, which were not250

present for alternative starting values of the random number generator. Following the previous simulation settings the

target correlation matrix R is chosen as Ri,j = ρ|i−j| for −1< ρ < 1 and i, j = 1, . . . ,d.

(S2) To separately post-process the univariate ensemble forecasts we employ the EMOS method for quantitative precipitation

based on the left-censored GEV distribution proposed by Scheuerer (2014). To that end we assume −0.278< ξ < 0.5,

such that the mean ν and the variance of the non-censored GEV distribution exist, and255

ν =

µ+σ Γ(1−ξ)−1
ξ , ξ 6= 0

µ+σγ, ξ = 0
,

where Γ denotes the gamma function and γ is the Euler-Mascheroni constant. See Appendix A for comments on mean

and variance of the left-censored GEV. Following Scheuerer (2014), the parameters (ν,σ,ξ) are linked to the ensemble

predictions via

g(X
(l)
1 , . . . ,X(l)

m ) =
(
a0 + a1X̄

(l) + a2X̄
(l)
z , b0 + b1MD(l)

X , ξ
)
.

Here, X̄(l) and X̄(l)
z are the arithmetic mean and the fraction of zero values of the ensemble predictions X(l)

1 , . . . ,X
(l)
m ,

respectively, while MD(l)
X denotes the mean absolute difference of the ensemble predictions, i.e.,

MD(l)
X =

1

m2

m∑
i=1

m∑
j=1

∣∣∣X(l)
i −X

(l)
j

∣∣∣ .
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The shape parameter ξ is not linked to the ensemble predictions, but is estimated along with the EMOS coefficients a0,

a1, a2 and b0, b1. As in Scheuerer (2014), the link function refers to the parameter ν instead of µ, since it is argued that

for fixed ν an increase in σ can be interpreted more naturally as an increase in uncertainty. An implementation in R is

available in the ensembleMOS package (Yuen et al., 2018). For our simulation, this package was not directly invoked,260

but the respective functions were used as a template. As described in Section 2.1, univariate post-processing is applied

independently in each dimension l = 1, . . . ,d. The EMOS coefficients are estimated as described above over the training

set consisting of the ninit initial iterations, and are then used to produce out of sample forecasts for the ntest iterations in

the test set.

(S3) Identical to (S3) of Setting 1, except for GCA, where we proceed differently to account for the point mass at zero. The265

latent standard Gaussian observations ỹ(l)
k are generated by ỹ(l)

k = Φ−1(u), where u is a randomly chosen value in the

interval (0,F
(l)
θ (0)) in case y(l)

k = 0 and u= F
(l)
θ (y

(l)
k ) in case y(l)

k > 0.

µ0 ξ0 σ0 µ ξ σ

A 0.0 -0.1 1.0 1.0 0.0 0.2

B 0.0 -0.1 1.0 0.0 0.0 2.0

C 1.0 0.3 1.0 0.0 0.0 2.0

D 0.0 0.0 1.0 0.0 0.0 1.0

Table 2. Different simulation scenarios for Setting 2.

The multivariate censored extreme value setting is implemented for d= 4 and four different scenarios summarized in Table

2. The choice of dimension is motivated by the fact that preliminary analyses had revealed a heavy increase of computation time

and numerical problems for values of d greater than 4. In each scenario the GEV0 distribution parameters for the observations270

are chosen according to (µ0, ξ0,σ0), while the parameters for the ensemble predictions are chosen according to (µ,ξ,σ). In

both cases, the correlation matrix R from above is invoked with different choices of ρ0 and ρ from the set {0.25,0.5,0.75}
giving a total of 4× 9 = 36 scenarios. Note that according to Scheuerer (2014) there is a positive probability for zero to occur

when either ξ ≤ 0 or ξ > 0 and µ < σ/ξ. The scenarios from Table 2 are chosen in such a way that either one of these two

conditions is met.275

The scenarios from Table 2 were not chosen to mimic real life situations in the first place, but to emulate pronounced

differences in distributions and account for a variety of misspecification types. In future research a more detailed and data

based study of the properties of the GEV0 in ensemble postprocessing of precipitation is planned, which might give further

insight into the correspondence (and interplay) of the GEV0 parameters to typically occurring situations for precipitation.
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3.3 Setting 3: Multivariate Gaussian distribution with changes over time280

In the preceding simulation settings, the misspecifications of the ensemble forecasts were kept constant over the iterations

t= 1, . . . ,n within the simulation experiments. However, forecast errors of real-world ensemble predictions often exhibit sys-

tematic changes over time, for example due to seasonal effects or differences in flow-dependent predictability due to variations

of large scale atmospheric conditions. Here, we modify the multivariate Gaussian simulation setting from Section 3.1 to in-

troduce changes in the mean, variance and covariance structure of the multivariate distributions of observations and ensemble285

forecasts. In analogy to practical applications of multivariate post-processing, the ensemble predictions and observations may

be interpreted as multivariate in terms of location or prediction horizon, with changes of the misspecification properties over

time.

(S1) For iterations t= 1, . . . ,n, independent samples of observations and ensemble forecasts are generated as follows:

– observation: y ∼Nd(µ0,Σ
0), where µ0 = sin

(
2πt
n

)
+ (0, . . . ,0)T ∈ Rd. To obtain the correlation matrix Σ0, let290

Ri,j = ρ
|i−j|
0 + sin

(
2πt
n

)
, for i, j = 1, . . . ,d and S0 =RRT . The covariance matrix S0 is scaled into the corre-

sponding correlation matrix Σ0 using the R function cov2cor().

– ensemble forecasts: X1, . . . ,Xm
iid∼Nd(µ,Σ), where µ= sin

(
2πt
n

)
+ (ε, . . . , ε)T ∈ Rd. To obtain the correlation

matrix Σ we proceed as for the observations, however, we set Ri,j = ρ|i−j|+ sin
(

2πt
n

)
, for i, j = 1, . . . ,d (i.e., ρ0

is replaced by ρ).295

In contrast to Setting 1, the misspecifications in the mean and correlation structure now include a periodic component.

The above setup will be denoted by Setting 3A.

Following a suggestion from an anonymous reviewer, we further consider a variant which we refer to as Setting 3B. For

iterations t= 1, . . . ,n we generate independent samples of observations and ensemble forecasts as follows:

– observation: y ∼Nd(µ0,Σ
0(t)), where µ0 = (0, . . . ,0)T ∈ Rd. To obtain a correlation matrix Σ(t) that varies300

over iterations we set Σ0
i,j(t) = ρ

|i−j|
0 (t), for i, j = 1, . . . ,d, where the correlation parameter ρ0(t) varies over

iterations according to

ρ0(t) = ρ0 ·
(

1− a

2

)
+ ρ0 ·

(a
2

)
sin

(
2πt

n

)
for a ∈ (0,1). The lag-1 correlations thus oscillate between ρ0 and ρ0 · (1− a).

– ensemble forecasts: X1, . . . ,Xm
iid∼Nd(µ,Σ(t)), where µ= (ε, . . . , ε)T ∈ Rd. Similar to the observations, we set305

Σi,j(t) = σρ|i−j|(t), for i, j = 1, . . . ,d, where

ρ(t) = ρ ·
(

1− a

2

)
+ ρ ·

(a
2

)
sin

(
2πt

n

)
,

with a from above. The correlations for the ensemble member forecasts thus oscillate between ρ and ρ · (1− a)
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Settings 3A and 3B differ in the variations of the mean and covariance structure over time. For both, we proceed as

follows.310

(S2) As in Setting 1, we employ the standard Gaussian EMOS model (2). However, to account for the changes over iterations

we now utilize a rolling window consisting of pairs of ensemble forecasts and observations from the 100 iterations

preceding t as training set to obtain estimates of the EMOS coefficients. See Lang et al. (2020) for a detailed discussion

of alternative approaches to incorporate time dependence in the estimation of post-processing models.

(S3) The application of the multivariate post-processing methods is identical to the approach taken in Setting 1. Note that we315

deliberately follow the naive standard implementations (see Section 2.2) here to highlight some potential issues of the

Schaake shuffle in this context.

Setting 3A is implemented for d= 5, ε= 1 and all combinations of ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}. For Setting 3B, we

investigate separate sets of low (ρ0 = 0.25), medium (ρ0 = 0.5) and high (ρ0 = 0.75) true correlation, with corresponding

choices of ρ with low (ρ ∈ {0.2,0.25,0.3}), medium (ρ ∈ {0.4,0.45,0.5,0.55,0.6}) and high (ρ ∈ {0.7,0.75,0.8}) values,320

respectively. Further, values of d= 5, ε= 1,σ ∈ {0.5,1,5} and a ∈ {0.2,0.5,0.7} are considered for each of these sets. As

before simulation experiments are repeated 100 times for each of the parameter combinations.

4 Results

In the following, we focus on comparisons of the relative predictive performance of the different multivariate post-processing

methods and apply proper scoring rules for forecast evaluation. In particular, we use the energy score (ES; Gneiting et al., 2008)325

and variogram score of order 1 (VS; Scheuerer and Hamill, 2015) to evaluate multivariate forecast performance. Diebold-

Mariano (DM; Diebold and Mariano, 1995) tests are applied to assess the statistical significance of the score differences

between models. Details on forecast evaluation based on proper scoring rules and DM tests are provided in Appendix B. Note

that proper scoring rules are often used in the form of skill scores to investigate relative improvements in predictive performance

in the meteorological literature. Here, we instead follow suggestions of Ziel and Berk (2019) who argue that the use of DM330

tests is of crucial importance to appropriately discriminate between multivariate models.

While our focus here is on multivariate performance, we briefly demonstrate that the univariate post-processing models

applied in the different simulation settings usually work as intended.

4.1 Univariate performance

The univariate predictive performance of the raw ensemble forecasts in terms of the CRPS is improved by the application335

of univariate post-processing methods across all parameter choices in all simulation settings. The magnitude of the relative

improvements by post-processing depends on the chosen simulation parameters, exemplary results are shown in Figure 1. The

results for Setting 2 are omitted as they vary more and strongly depend on the simulation parameters.
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Figure 1. Summaries of DM test statistic values based on the CRPS. ECC-Q forecasts are used as reference model such that positive values of

the test statistic indicate improvements over ECC-Q and negative values indicate deterioration of forecast skill. Boxplots summarize results

from multiple parameter combinations for the simulation settings, with potential restrictions on the simulation parameters indicated in the

plot title. For example, boxplots in the first panel summarize simulation results from all parameter combinations of Setting 1 (and the 100

Monte Carlo repetitions each) subject to ε= 1. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the

null hypothesis of equal predictive performance at a level of 0.05.

ECC-Q does not change the marginal distributions, the univariate forecasts are thus identical to solely applying univariate

post-processing methods in the margins separately, without accounting for dependencies. We will later refer to this as EMOS-340

Q. Note that for ECC-S and SSh differences in the univariate forecast distributions compared to those of ECC-Q may arise

from randomly sampling the quantile levels in ECC-S and due to random fluctuations due to the 10 random repetitions that

were performed to account for simulation uncertainty of those methods. However, we found the effects on the univariate results

to be negligible and omit ECC-S, dECC and SSh from Figure 1.

For the simulation parameter values summarized there, univariate post-processing works as intended with statistically signif-345

icant improvements over the raw ensemble forecasts. Note that for GCA the univariate marginal distributions are modified due

to the transformation step in (4). While the quantile forecasts of ECC-Q are close to optimal in terms of the CRPS (Bröcker,

2012) the (randomly sampled) univariate GCA forecasts do not possess this property, resulting in worse univariate performance

compared to all other methods.

4.2 Multivariate performance350

We now compare the multivariate performance of the different post-processing approaches presented in Section 2.2. Multivari-

ate forecasts obtained by only applying the univariate post-processing methods without accounting for dependencies (denoted

by EMOS-Q) as well as the raw ensemble predictions (ENS) are usually significantly worse and will be omitted in most com-

parisons below unless indicated otherwise. Additional figures with results for all parameter combinations in all settings are

provided in the Supplementary Material.355

14



4.2.1 Setting 1: Multivariate Gaussian distribution

The tuning parameter ε governing the bias in the mean vector of the ensemble forecasts only has very limited effects on the

relative performance of the multivariate post-processing methods. To retain focus we restrict our attention to ε= 1. Figure 2

shows results in terms of the ES for two different choices of σ, using multivariate forecasts of ECC-Q as reference method. For

visual clarity, we omit parameter combinations where either ρ ∈ {0.1,0.9} or ρ0 ∈ {0.1,0.9}. Corresponding results are avail-360

able in the Supplementary Material. Note that the relative forecast performance of all approaches except for dECC generally

does not depend on σ. We thus proceed to discuss the remaining approaches first, and dECC last.

If the correlation structure of the unprocessed ensemble forecasts is correctly specified (i.e., ρ= ρ0), no significant dif-

ferences can be detected between ECC-Q, ECC-S and SSh. In contrast, GCA (and dECC for larger values of σ) perform

substantially worse. The worse performance of GCA might be due to the larger forecast errors in the univariate margins, see365

Section 4.1.

In the cases with misspecifications in the correlation structure (i.e., ρ 6= ρ0), larger differences can be detected among all

methods. Notably, SSh never performs substantially worse than ECC-Q and is always among the best performing approaches.

This is not surprising as the only drawback of SSh in the present context and under the chosen implementation details is

the underlying assumption of time-invariance of the correlation structure, which will be revisited in Setting 3. The larger the370

absolute difference between ρ and ρ0, the greater the improvement of SSh relative to ECC-Q. This is due to the fact that it

becomes more and more beneficial to learn the dependence template from past observations rather than the raw ensemble,

the less information the ensemble provides about the true dependence structure. GCA also tends to outperform ECC-Q if

the differences between ρ and ρ0 are large, however, GCA always performs worse than SSh and shows significantly worse

performance than ECC-Q if the misspecifications in the ensemble are not too large (i.e., if ρ and ρ0 are equal or similar).375

The relative performance of ECC-S depends on the ordering of ρ and ρ0. If ρ > ρ0, ECC-S significantly outperforms ECC-Q,

however, if ρ < ρ0 significant ES differences in favor of ECC-Q can be detected. For dECC, the performance further depends

on the misspecification of the variance structure in the marginal distributions. If ρ > ρ0, the DM test statistic values move from

positive (improvement over ECC-Q) to negative (deterioration compared to ECC-Q) values for increasing σ. By contrast, if

ρ < ρ0 the values of the test statistic instead change from negative to positive for increasing σ. The differences are mostly380

statistically significant, and indicate the largest relative improvements among all methods in cases of the largest possible

differences between ρ and ρ0. However, note that for some of those parameter combinations with small ρ and large ρ0, even

EMOS-Q can outperform ECC-Q and ECC-S. In these situations, the raw ensemble forecasts contain very little information

about the dependence structure and the ES can be improved by assuming independence instead of learning the dependence

template from the ensemble.385

Results in terms of the VS are shown in Figure 3. Most of the conclusions from the results in terms of the ES extend directly

to comparisons based on the VS. SSh consistently remains among the best performing methods and provides significant im-

provements over ECC-Q unless ρ= ρ0, however, alternative approaches here outperform SSh more often. Notably, the relative

performance of GCA is consistently better in terms of the VS than in terms of the ES. For example, the differences between
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Figure 2. Summaries of DM test statistic values based on the ES for Setting 1 with ε= 1, and σ = 0.5 (top), and σ =
√
5 (bottom). ECC-Q

forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative values

indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual experiment. The

horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive performance at a

level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified (ρ= ρ0) are surrounded

by black boxes.
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Figure 3. As Figure 2, but summarizing results in terms of the VS.
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GCA and SSh appear to generally be negligible and GCA does not perform worse than ECC-Q for any of the simulation pa-390

rameter combinations. These differences between the results for GCA in terms of ES and VS may be explained by the greater

sensitivity of the VS to misspecifications in the correlation structure, whereas the ES shows a stronger dependence on the mean

vector.

For ECC-S and dECC, the general dependence on values of ρ, ρ0 and σ (for dECC) is similar to the results for the ES, but

the magnitude of both positive as well as negative differences to all other methods is increased. For example, it is now possible395

to find parameter combinations where either ECC-S or dECC (or both) substantially outperform both GCA and SSh.

The role of ensemble sizem

To assess the effect of the ensemble size m on the results additional simulations have been performed with the simulation

parameters from Figure 2, but ensemble sizes between 5 and 100. Corresponding figures are provided in the Supplemental

Material. Overall, the relative ranking of the different methods is only very rarely effected by changes in the ensemble size.400

The relative differences in terms of the ES between ECC-Q and ECC-S, and between ECC-Q and GCA become increasingly

negligible with increasing ensemble size. Further, SSh shows improved predictive performance for larger numbers of ensemble

members for ρ0 < ρ in case of the ES, and for ρ0 > ρ in case of the VS. The relative performance of dECC is strongly effected

by changes in m for large misspecifications in the correlation parameters. A positive effect of larger numbers of members

relative to ECC-Q in terms of both scoring rules can be detected for ρ0 > ρ when σ < 1, and for ρ0 < ρ when σ > 1. In both405

cases, the corresponding effects are negative if the misspecification in σ is reversed.

The role of dimension d

Additional simulations were further performed with dimensions d between 2 and 50 and the simulation parameters from above.

In the interest of brevity, we refer to the Supplemental Material for corresponding figures. In terms of the ES, the results for

ECC-S are largely not effected by changes in dimension, whereas the relative performance of ECC-S improves with increasing410

d and minor improvements over ECC-Q can be detected even for correctly specified correlation parameters for high dimensions.

For GCA, a marked deterioration of relative skill can be observed in terms of the ES, which can likely be attributed to sampling

effects discussed above. In terms of the VS, GCA partly shows the best relative performance among all methods for dimensions

between 10 and 20, and performs worse in higher dimensions. The relative differences in predictive performance in favor of

SSh are more pronounced in larger dimensions, in particular in cases with large misspecification of the correlation parameters.415

Changes of the relative performance of dECC in terms of both scoring rules for increasing numbers of dimensions are similar

to those observed for increasing numbers of ensemble members.

4.2.2 Setting 2: Multivariate censored GEV distributions

The four considered scenarios in Table 2 constitute different types of deviation of the ensemble from the observation properties.

Results for Scenario B are given below in Figure 4, while the corresponding figures for Scenarios A, C, and D can be found420
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in Section 2.1 of the Supplement. As the GEV0 distribution yields extreme outliers much more frequently than the Gaussian

distribution in Setting 1, all figures (here and in the Supplemental Material) show only those values that are within 1.5×
interquartile range, so that the overall comparison of the boxplots does not suffer from single extreme outliers.

– In Scenario B the location is correctly specified, but scale and shape are misspecified such that ensemble forecasts have

both larger scale and shape, resulting in a heavier right tail and slightly higher point masses at zero. This scenario is taken425

as a reference among the four considered ones and shown in Figure 4. Additional figures with results for the remaining

scenarios are provided in the Supplemental Material. Multivariate post-processing improves considerably upon the raw

ensemble. ECC-Q is outperformed by SSh and GCA only when the absolute difference between ρ0 and ρ becomes larger.

As before, this is likely caused by the use of past observations to determine the dependence template by GCA and SSh

which proves beneficial in comparison to ECC-Q in cases of a highly incorrect correlation structure in the ensemble. For430

correctly specified correlations (panels on the main diagonal in Figure 4), the relative performance of the methods does

not depend on the actual value of correlation.

– In Scenario A the observation location parameter is shifted from 0 to a positive value for the ensemble, the observation

scale is larger, and shape smaller than in the ensemble. Therefore, the ensemble forecasts come from a distribution with

smaller spread than the observations, which is also centered away from zero and has lower point mass at 0. In comparison435

to Scenario B there are more outliers, especially for ECC-S. In case of correctly specified correlations, the performance

of the methods also does not depend on the actual value of correlation as in Scenario B. Notably, EMOS-Q here performs

mostly similar to the ensemble, while in the other 3 scenarios it typically performs worse than the ensemble if ρ > ρ0.

– In Scenario C the observation location is larger, the scale smaller, and the shape larger than in the ensemble distribution.

This results in an observation distribution with a much more heavy right tail and a much larger point mass at 0 compared440

to the ensemble distribution. Here, post-processing models frequently offers no or only slight improvements over the

raw ensemble. While ECC-Q does not always outperform the raw ensemble forecasts, SSh still shows improved forecast

performance. As in the other scenarios, in case of correctly specified correlations, the performance of the methods does

not depend on the actual value of correlation.

– In Scenario D all univariate distribution parameters are correctly specified. Therefore, the main differences in perfor-445

mance are imposed by the different misspecifications of the correlation structure. The main difference compared to the

other scenarios is given by the markedly worse effects of not accounting for multivariate dependencies during post-

processing (EMOS-Q).

In general, the methods perform differently across the four scenarios, but for most situations multivariate post-processing

improves upon univariate post-processing without accounting for dependencies. Furthermore, SSh reveals a good performance450

in all four scenarios when ρ0 differs considerably from ρ. The performance of SSh has a tendency to improve further when

the observation correlation is larger than the ensemble correlation. Within each of the four scenarios, the performance of

the methods is nearly identical in cases where the correlation is correctly specified. In other words, as long as the ensemble
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Figure 4. Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for Setting 2, scenario B from Table 2, based on

m= 50 ensemble members. ECC-Q forecasts are used as reference model such that positive values of the test statistic indicate improvements

over ECC-Q and negative values indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of

each individual experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of

equal predictive performance at a level of 0.05.

20



●

●

●

●

●

−30

−20

−10

0

10

ENS EMOS−Q dECC ECC−S GCA SSh
Model

D
M

 te
st

 s
ta

tis
tic

Model ENS
EMOS−Q

dECC
ECC−S

GCA
SSh

ES, m = 50, µ = 2, σ = 1, ξ = −0.1, µ0 = 0, σ0 = 2, ξ0 = 0

●

●

●

●

●

●

●

●

−40

−20

0

20

ENS EMOS−Q dECC ECC−S GCA SSh
Model

D
M

 te
st

 s
ta

tis
tic

Model ENS
EMOS−Q

dECC
ECC−S

GCA
SSh

VS, m = 50, µ = 2, σ = 1, ξ = −0.1, µ0 = 0, σ0 = 2, ξ0 = 0

Figure 5. As Figure 4, but based on ES and VS for (µ0, ξ0,σ0) = (2.0,−0.1,1.0) and (µ,ξ,σ) = (0.0,0.0,2.0), where ρ0 = 0.75 and

ρ= 0.25, and ensemble size m= 50

forecasts correctly represent the correlation of the observations, the actual value of the correlation does not have an impact on

the performance of a multivariate post-processing method. Above described observations can be found both in terms of the ES455

and the VS.

In addition to the scenarios from Table 2, further scenario variations were considered for ρ0 = 0.75 and ρ= 0.25, that is

for the case where ensemble correlation is too low compared to the observations. Figure 5 shows the situation where the

observation location parameter is larger, the scale smaller, but the shape also smaller than in the ensemble forecasts. This

contrasts the situation in Scenario C. While in C the observations were heavier tailed with higher point mass at 0, here it is the460

other way round (the ensemble distribution is heavier tailed with higher point mass at 0). In accordance with Scenarios A, B,

C (where there are parameter misspecifications in the ensemble compared to the observations), EMOS-Q performs better than

the raw ensemble and also better than dECC (as in B and C), while SSh and GCA perform best. However, in contrast to results

in terms of the ES, GCA exhibits an even better performance compared to the other models in terms of the VS. This indicates

that the VS is better able to account for the correctly specified (or by post-processing improved) correlation structure than the465

ES.

The role of ensemble sizem

To assess the effect of the ensemble size m additional simulations have been performed for each of the four scenarios in Table

2 with ensemble sizes between 5 and 100. Corresponding comparative figures comparing ensemble sizes m= 5,20,50,100

for the Scenarios A, B, C, D are provided in Section 2.2 of the Supplemental Material. Overall, the size of the ensemble only470

has a minor effect on the relative performance of the multivariate methods apart from GCA, which strongly benefits from

an increasing number of members across all four scenarios, specifically with regard to ES. This improvement is likely due

to the sampling issues discussed above and is less pronounced in terms of the VS. As in Setting 1 the relative differences
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between ECC-Q and ECC-S in terms of the ES become increasingly negligible with increasing ensemble size in all considered

scenarios (especially for ρ0 = ρ). This phenomenon is also less pronounced for the VS. On the contrary to the methods using475

the dependence information, the performance of EMOS-Q (not accounting for dependence) compared to ECC-Q becomes

increasingly worse for increasing number of members when measured by ES. For VS, the influence of the number of members

on EMOS-Q is only small. Interestingly, the difference in performance of the raw ensemble for an increasing number of

members is negligible in case the misspecification is only minor and ES is considered. In case there is no misspecification

(Scenario D), the raw ensemble can slightly benefit from an increasing number of members. Similar to the effect for ECC-480

Q, when measuring performance with VS, the effect on the raw ensemble is negligible. Further, it can be observed that the

difference of the results between varying numbers of members is smallest for ρ0 = ρ.

4.2.3 Setting 3: Multivariate Gaussian distribution with changes over iterations

Figure 6 shows results in terms of ES and VS for Setting 3A. We again only show results for ρ,ρ0 ∈ {0.25,0.5,0.75} and refer

to the Supplementary Material for further results. The most notable differences compared to Setting 1 are that the different485

ECC variants here significantly outperform GCA and SSh not only for ensemble forecasts with correctly specified correlation

structure, but also for small deviations of ρ from ρ0. Significant ES differences in favor of SSh are only obtained for large

absolute differences of ρ and ρ0. Similar observations hold for GCA which, however, generally exhibits worse performance

compared to SSh. The ES differences among the ECC variants are only minor and usually not statistically significant.

Similar conclusions apply for the VS, however, GCA generally performs better than SSh, and ECC-S provides significantly490

worse forecasts compared to the other ECC variants for ρ < ρ0.

Results for Setting 3B are shown in Figure 7. Note that the columns here show different values of ρ and the row refers to

a specific value of a. Similar to Setting 3A, we observe that in terms of the ES, dECC and ECC-S do not show significant

differences in performance compared to ECC-Q, whereas GCA and SSh here perform worse for all parameter combinations. In

terms of the VS, also GCA now performs worse than ECC-Q for all correlation parameters, whereas significantly negative and495

positive differences of ECC-S and dECC compared to ECC-Q can be detected for ρ < ρ0 and ρ > ρ0, respectively. Additional

results for varying values of σ and a, and sets of low or medium correlations are provided in the Supplemental Material. The

results generally do not depend on the choice of σ. Results for low and medium correlation parameter values are characterized

by less substantial differences between the methods. In particular, it is only rarely possible to detect significant differences

when comparing ECC-Q and SSh, and GCA only performs significantly worse in terms of the ES. Further, there exist more500

parameter combinations with improvements by ECC-S and dECC. However, note that due to the setup of Setting 3B, the

variations over time in both observations and ensemble predictions will be much smaller than for high correlation parameter

values. Within a fixed set of correlation parameters, the relative differences between the methods become more pronounced

with increasing values of a.

Note that the main focus in both variants of Setting 3 was to demonstrate that in (potentially more realistic) settings with505

changes over time, naive implementations of the Schaake shuffle can perform worse than ECC variants. However, similarity-
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Figure 6. Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for Setting 3A with ε= 1 and σ = 1. ECC-Q

forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative values

indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual experiment. The

horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive performance at a

level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified (ρ= ρ0) are surrounded

by black boxes.
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Figure 7. Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for Setting 3B for σ = 1 and high values of

ρ,ρ0. ECC-Q forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q and

negative values indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual

experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive

performance at a level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified

(ρ= ρ0) are surrounded by black boxes.

based implementations of the Schaake shuffle (Schefzik, 2016; Scheuerer et al., 2017) are available and may be able to alleviate

this issue.

5 Discussion and conclusion

State of the art methods for multivariate ensemble post-processing were compared in simulation settings which aimed to510

mimic different situations and challenges occurring in practical applications. Across all settings, the Schaake shuffle consti-

tutes a powerful benchmark method that proves difficult to outperform, except for naive implementations in the presence of

structural change (for example, time-varying correlation structures considered in Setting 3). By contrast to SSh, the Gaussian

copula approach typically only provides improvements over variants of ensemble copula coupling if the parametric assump-

tion of a Gaussian copula is satisfied or if forecast performance is evaluated with the variogram score. Results in terms of the515

CRPS further highlight an additional potential disadvantage in that the univariate forecast errors are larger compared to the

competitors.
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Not surprisingly, variants of ensemble copula coupling typically perform the better the more informative the ensemble

forecasts are about the true multivariate dependence structure. A particular advantage compared to standard implementations

of SSh and GCA illustrated in Setting 3 may be given by the ability to account for flow-dependent differences in the multivariate520

dependence structure if those are (at least approximately) present in the ensemble predictions, but not in a randomly selected

subset of past observations.

There is no consistently best method across all simulation settings and potential misspecifications among the different ECC

variants investigated here (ECC-Q, ECC-S and dECC). ECC-Q provides a reasonable benchmark model and will rarely yield

the worst forecasts among all ECC variants. Significant improvements over ECC-Q may be obtained by ECC-S and dECC525

in specific situations, including specific combinations of ensemble size and dimension. For example, dECC sometimes works

well for underdispersive ensembles where the correlation is too low, whereas ECC-S may work better if the ensemble is

underdispersive and the correlation is too strong. However, the results will strongly depend on the exact misspecification of the

variance-covariance structure of the ensemble as well as the performance measure chosen for multivariate evaluation.

In light of the presented results it seems to be generally advisable to first test the Schaake shuffle along with ECC-Q. If530

structural assumptions on specific misspecifications of the ensemble predictions seem appropriate, extensions by other variants

of ECC or GCA might provide improvements. However, it should be noted that the results for real-world ensemble prediction

systems may be influenced by many additional factors, and may differ when considering station-based or grid-based post-

processing methods. The computational costs of all presented methods are not only negligible in comparison to the generation

of the raw ensemble forecasts, but also compared to the univariate post-processing as no numerical optimization is required.535

It may thus be generally advisable to compare multiple multivariate post-processing methods for the specific dataset and

application at hand.

The simulation settings considered here provide several avenues for further generalization and analysis. For example, a

comparison of forecast quality in terms of multivariate calibration (Thorarinsdottir et al., 2016; Wilks, 2017) is left for future

work. Further, the autoregressive structure of the correlations across dimensions may be extended towards more complex540

correlation functions, see, e.g., Thorarinsdottir et al. (2016, Section 4.2). While we only considered multivariate methods

based on a two step procedure combining univariate post-processing and dependence modeling via copulas, an extension of the

comparison to parametric approaches along the lines of Feldmann et al. (2015) and Baran and Möller (2015) present another

starting point for future work. Note that within the specific choices for Setting 1, the spatial EMOS approach of Feldmann et al.

(2015) can be seen as a special case of GCA.545

We have limited our investigation to simulation studies only as those settings allow to readily assess the effects of different

types of misspecifications of the various multivariate properties of ensemble forecasts and observations, and may thus help to

guide implementations of multivariate post-processing. Further, they are able to provide a more complete picture of the effects

of different types of misspecifications on the performance of the different methods than those that may be observed in practical

applications. Nonetheless, an important aspect for future work is to complement the comparison of multivariate post-processing550

methods by studies based on real-world datasets of ensemble forecasts and observations, extending existing comparisons of

subsets of the methods considered here (e.g., Schefzik et al., 2013; Wilks, 2015). However, the variety of application scenarios,
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methods and implementation choices likely requires large-scale efforts, ideally based on standardized benchmark datasets. A

possible intermediate step might be given by the use of simulated datasets obtained via stochastic weather generators (see, e.g.,

Wilks and Wilby, 1999) which may provide arbitrarily large datasets with possibly more realistic properties than the simple555

settings considered here.

A different perspective on the results presented here concerns the evaluation of multivariate probabilistic forecasts. In recent

work Ziel and Berk (2019) argue that the use of Diebold-Mariano tests is of crucial importance for appropriately assessing

the discrimination ability of multivariate proper scoring rules and find that the ES might not have as bad discrimination ability

as indicated by earlier research. The simulation settings and comparisons of multivariate post-processing methods considered560

here may be seen as additional simulation studies for assessing the discrimination ability of multivariate proper scoring rules.

In particular, the results in Section 4 are in line with the findings of Ziel and Berk (2019) in that the ES does not exhibit inferior

discrimination ability compared to the VS. Nonetheless, the ranking of the different multivariate post-processing methods

strongly depends on the proper scoring rule used for evaluation, and further research on multivariate verification is required to

address open questions, improve mathematical understanding and guide model comparisons in applied work.565

Code availability. R code with implementations of all simulation settings as well as code to reproduce the results presented here and in the

Supplemental Material is available from https://github.com/slerch/multiv_pp.

Appendix A: Details on the left-censored generalized extreme value (GEV) distribution

When the GEV distribution is left-censored at zero, its cumulative distribution function can be written as

F (y) =

e
−t(y), y ≥ 0

0, y < 0
, where t(y) =


(
1 + ξ

(
y−µ
σ

))−1/ξ
, ξ 6= 0

e−(y−µ)/σ, ξ = 0

for y ∈Y, where Y = [µ−σ/ξ,∞) when ξ > 0, Y = (−∞,∞) when ξ = 0 and Y = (−∞,µ−σ/ξ] when ξ < 0. This de-

scribes a three-parameter distribution family, where µ ∈ R, σ > 0, and ξ ∈ R are location, scale, and shape of the non-censored570

GEV distribution, respectively.

Expectation and variance

Let Y be a random variable distributed according to GEV and censored at zero to the left. From the law of total expectation

E(g(Y )) = P (Y = 0)E(g(Y )|Y = 0) +P (Y > 0)E(g(Y )|Y > 0) ,

where the second term in the sum is given by

E(g(Y )1{Y >0}) =

∞∫
0

g(y)fY (y)dy .
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Here, 1 denotes the indicator function, g is any function of Y such that g(Y ) is a random variable, and fY is the probability

density function (PDF) of the non-censored GEV. By noting that E(Y |Y = 0) = E(Y 2|Y = 0) = 0, expectation and variance

of the left-censored GEV can be computed from the two integrals
∫∞

0
yfY (y)dy and

∫∞
0
y2fY (y)dy, the former existing575

when ξ < 1 and the latter existing when ξ < 0.5. Both integrals are not derived analytically here, but evaluated by numerical

integration. In contrast to the non-censored GEV distribution, the variance of the left-censored version also depends on the

parameter µ, since different choices of µ lead to different left-censored CDFs which are not merely distinguished by location.

Therefore µ is a location parameter for the non-censored GEV, but not for the left-censored version.

Appendix B: Evaluating probabilistic forecasts580

B1 Proper scoring rules

The comparative evaluation of probabilistic forecasts is usually based on proper scoring rules. A proper scoring rule is a

function

S : F ×Ω→ R,

which assigns a numerical score S(F,y) to a pair of a forecast distribution F ∈ F and a realizing observation y ∈ Ω. Here, F585

denotes a class of probability distributions supported on Ω. The forecast distribution F may come in the form of a predictive

CDF, PDF, or a discrete sample as in the case of ensemble predictions. A scoring rule is called proper if

EGS(G,Y )≤ EGS(F,Y )

for all F,G ∈ F , and strictly proper if equality holds only if F =G. See Gneiting and Raftery (2007) for a review of proper

scoring rules from a statistical perspective.590

The most popular example of a univariate (i.e., Ω⊂ R) proper scoring rule in the environmental sciences is given by the

continuous ranked probability score (CRPS),

CRPS(F,y) =

∫
Ω

(F (z)−1{z ≥ y})2 dz.

Over the past years a growing interest in multivariate proper scoring rules accompanies the proliferation of multivariate

probabilistic forecasting methods in applications across disciplines. The definition of proper scoring rules from above straight-595

forwardly extends towards multivariate settings (i.e., Ω⊂ Rd). A variety of multivariate proper scoring rules has been proposed

over the past years, usually focused on cases where multivariate probabilistic forecasts are given as samples from the forecast

distributions.

To introduce multivariate scoring rules let y = (y(1), . . . ,y(d)) ∈ Ω⊂ Rd, and let F denote a forecast distribution on Rd given

bym discrete samples X1, . . . ,Xm from F with Xi = (X
(1)
i , . . . ,X

(d)
i ) ∈ Rd, i= 1, . . . ,m. Important examples of multivariate600
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proper scoring rules include the energy score (ES; Gneiting et al., 2008),

ES(F,y) =
1

m

m∑
i=1

‖Xi−y‖− 1

2m2

m∑
i=1

m∑
j=1

‖Xi−Xj‖,

where ‖ · ‖ is the Euclidean norm on Rd, and the variogram score of order p (VSp; Scheuerer and Hamill, 2015),

VSp(F,y) =

d∑
i=1

d∑
j=1

wi,j

(∣∣∣y(i)− y(j)
∣∣∣p− 1

m

m∑
k=1

∣∣∣X(i)
k −X

(j)
k

∣∣∣p)2

.

Here, wi,j is a non-negative weight that allows to emphasize or down-weight pairs of component combinations, and p is605

the order of the variogram score. Following suggestions of Scheuerer and Hamill (2015), we considered p= 0.5 and p= 1.

As none of the simulations settings indicated any substantial differences, we set p= 1 throughout and denote VS1(F,y) by

VS(F,y). Since the generic multivariate structure of the simulation settings does not impose any meaningful structure in pairs

of components we focus on the unweighted versions of the variogram score. Several weighting schemes have been tested, but

did not lead to any substantially different conclusions.610

We utilize implementations provided in the R package scoringRules (Jordan et al., 2019) to compute univariate and

multivariate scoring rules for forecast evaluation and post-processing model estimation.

B2 Diebold-Mariano tests

Statistical tests of equal predictive performance are frequently used to assess the statistical significance of observed score

differences between models. We focus on Diebold-Mariano (DM; Diebold and Mariano, 1995) tests which are widely used in615

the econometric literature due to their ability to account for temporal dependencies. For applications in the context of post-

processing, see, e.g., Baran and Lerch (2016).

For a (univariate or multivariate) proper scoring rule S and sets of two competing probabilistic forecasts Fi and Gi, i=

1, . . . ,ntest over a test set, the test statistic of the DM test is given by

TDM
ntest

=
√
ntest

S(F,y)−S(G,y)

σ̂
, (B1)620

where S(F,y) = 1
ntest

∑ntest
i=1S(Fi,yi) and S(G,y) = 1

ntest

∑ntest
i=1S(Gi,yi) denote the mean score values of F and G over the

test set of size ntest, respectively. In (B1), σ̂ denotes an estimator of the asymptotic standard deviation of the sequence of score

differences of F and G. Positive values of TDM
ntest

indicate a superior performance of G, whereas negative values indicate a

superior performance of F .

Under standard regularity assumptions and the null hypothesis of equal predictive performance, TDM
ntest

asymptotically follows625

a standard normal distribution which allows to assess the statistical significance of differences in predictive performance. We

utilize implementations of DM tests provided in the R package forecast (Hyndman and Khandakar, 2008).
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