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Simulation-based comparison of multivariate
ensemble post-processing methods

Response to Reviewer Comments

We thank the three reviewers for their positive assessment and their thoughtful comments which,
we believe, will strengthen the manuscript. Below we addressed each comment in turn. Our
replies are in italics. We also created a track-changes PDF for your convenience.

Kind regards,
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri
and Maximiliane Graeter

Reviewer 1

This paper reports the results of a comprehensive simulation study comparing different methods
for modeling spatial, temporal, and inter-variable correlations in statistically postprocessed en-
semble forecasts. With a number of new multivariate methods having been developed in recent
years, a study like this is of great interest as it allows readers to get an overview of the strengths
and limitations of the different approaches.

General comments:

1. With the goal of this paper being a comparison between different methods for multivariate
ensemble postprocessing, I feel that a more detailed discussion of the key features (e.g. optimal
sampling of the predictive distribution vs. random sampling, assumption of stationarity of the
copula structure vs. flow dependent copula structure, etc.) of the different methods should
be given (possibly in the form of a table). This could serve as a motivation for the different
simulation settings, which try to mimic situations where some of the assumptions are met while
others are not.

Thank you for this suggestion. We have added a table at the beginning of Section 2.2 where
we now compare several key features of the different multivariate post-processing methods. We
further refer to the related findings in Wilks (2015) (next comment) at the beginning of Section
2.2 and in the Discussion.

2. Related to 1., I feel that the role of ensemble size (which has a big impact on the representation
of the multivariate distribution) should be discussed a bit more. This seems relevant as for some
methods it is easy to generate an ensemble of any size while for others it is not. I’m not suggesting
that additional experiments should be per-formed, but a brief discussion of the findings in Wilks
(2015) could be useful in a context where strengths and limitations of different multivariate
postprocessing approaches are compared.

We agree that the role of ensemble size is important and warranted a more extensive discussion.
We have performed additional simulations for Settings 1 and 3 (Settings 1 and 2 in the revised
paper) with ensemble sizes between 5 and 100. For Setting 1, the results are largely as it can

1



−60

−40

−20

0

20

ENS EMOS−Q dECC ECC−S GCA SSh
Model

D
M

 te
st

 s
ta

tis
tic

Model ENS
EMOS−Q

dECC
ECC−S

GCA
SSh

Energy Score, µ0 = 2, σ0 = 1, ξ0 = −0.1, µ = 0, σ = 2, ξ = 0

−60

−40

−20

0

20

ENS EMOS−Q dECC ECC−S GCA SSh
Model

D
M

 te
st

 s
ta

tis
tic

Model ENS
EMOS−Q

dECC
ECC−S

GCA
SSh

Variogram Score, µ0 = 2, σ0 = 1, ξ0 = −0.1, µ = 0, σ = 2, ξ = 0

Figure R1: Effect of ensemble size in the GEV0 setting shown as grouped boxplots of ensemble
sizesm = 5, 20, 50, 100 (5 corresponds to lightest shade, 100 to darkest shade) for each
model, for the additional Scenario with (µ0, ξ0, σ0) = (2.0,−0.1, 1.0) and (µ, ξ, σ) =
(0.0, 0.0, 2.0), where ρ0 = 0.75 and ρ = 0.25.

be expected: The relative differences in terms of the ES between ECC-Q and ECC-S, and be-
tween ECC-Q and GCA become increasingly negligible with increasing ensemble size; likely due
to increasingly smaller intervals from which random quantiles are drawn. Further, SSh shows
improved predictive performance for larger numbers of ensemble members for ρ0 < ρ in case of
the ES, and for for ρ0 > ρ in case of the VS. This can likely be attributed to the corresponding
increase in sample sizes when determining the dependence templates, similar to the effects on
GCA. The relative performance of dECC is strongly effected by changes in m for large misspec-
ifications in the correlation parameters. A positive effect of larger numbers of members relative
to ECC-Q in terms of both scoring rules can be detected for ρ0 > ρ when σ < 1, and for ρ0 < ρ
when σ > 1. In both cases, the corresponding effects are negative, when the misspecification in
σ is reversed.

In Setting 2 (old Setting 3), in contrast to Setting 1, GCA seems to benefit most from an
increasing number of members, while SSh benefits only slightly in terms of the ES, and stronger
in terms of the VS. This is for example illustrated in Figure R1, which corresponds to the
additional scenario presented in Figure 5 in the main paper. As in Setting 1, ECC-S becomes
more similar in terms of the ES to the reference ECC-Q for increasing number of members.
However, this effect, is not (or not that strongly) observable for the VS, where the number of
members has nearly no effect on ECC-S.

We have added a paragraph to Sections 4.2.1 and 4.2.2 where the effect of ensemble size is
discussed shortly. Figures with additional results have been added to the Supplemental Material
in Sections 1.1 and 2.2 there. We are aware that displaying boxplots for several choices of m
within a single figure is not optimal since the underlying random samples within each panel
will necessarily differ across different values of m. Nonetheless, we believe that the differences
due to random sampling are negligible due to the application of DM tests and the consideration
of 100 repetitions of each simulation experiment. Therefore we chose the illustration added
to the Supplemental Material in Sections 1.1 and 2.2 because the effects of changes in m are
straightforward to compare.

3. Why has so much focus been given to simulation settings that are based on a time-independent
model for the simulated forecasts and observations? I would argue that this (time-independence)
is not a feature commonly encountered in applications, but with 3 out of 4 settings being
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time-independent, multivariate methods that assume a stationary copula structure could be
perceived as being more versatile than they really are. Agreed that setting 1 is a natural
starting point for such a comparison and that set-ting 3 is interesting because of the entirely
different nature of the marginal distributions(skewness, possibility of heavy tails, mixed discrete-
continuous distributions), but what do we learn from setting 2 that we cannot learn from 1 and
3? The main difference to 1 seems to be the poorer performance of GCA, but an explanation
for this is not given,and so the insights gained from this setting are limited.

We agree that the results of Setting 2 were overall very similar to those of Setting 1. Therefore, we
have removed Setting 2 from the paper and added a slightly adjusted version to the Supplemental
Material. The former Setting 2 is there denoted by Setting S1, and setup and results are now
discussed in Section 5 of the Supplemental Material. Accordingly, the paper has been adjusted
as follows:

• Setting 4 is now Setting 3, and Setting 3 is now Setting 2

• Sections 3.2 and 4.2.2 have been removed from the paper and added to the Supplemental
Material

• Figure 1 has been adjusted by removing results for Setting 2

• several references to Setting 2 in the text have been removed throughout

• A short paragraph referring to the additional setting (now in the Supplemental Material)
has been added to the end of Section 3.1.

Specific comments:

131-132: Please check if that statement is correct. In my recollection the selection of past
observations in Clark et al. (2004) was not random, but was based on the valid date of the
forecast

Thank you for pointing this out, you are of course correct. The description of SSh has been
corrected and information about the random selection of training cases has been added to Section
3.1 in step (S3).

293-297: I find setting 4 the most interesting, but I find the particular definitions of the model
parameters unnecessarily complicated. Specifically, I don’t get a good intuition of what kind of
time-varying correlations this model implies. Couldn’t one simply define

Σi,j = σρ|i−j|

as in the other settings, but now make ρ time-varying, e.g. via

ρ(t) = ρ0(1− a/2) + ρ0(a/2) sin

(
2πt

n

)
.

This model would be autoregressive with lag-1 correlations oscillating between ρ0 and ρ0(1−a),
and thus have a more intuitive interpretation.

Thank you for the suggestion of this alternative setting. We agree that this definition has a more
intuitive interpretation. However, we believe that the way in which ρ and ρ0 are defined does
not directly correspond to the situation we aimed to cover in Setting 4: Our goal was to mimic a
situation in which the covariance structure of both observations and ensemble varies over time,
with possible misspecifications of this structure in the ensemble. In the setup suggested above,
the covariance structure of the observations does not change over time. Therefore, non-time-
varying methods such as GCA and SSh which assume stationarity of the covariance structure are
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at an advantage in that they do not suffer from the (time-varying) misspecifications in the raw
ensemble. An exemplary illustration is given in Figure R2. Note that the rows show results for
different values of a. SSh here never performs worse that ECC-Q and all methods significantly
outperform ECC-Q in terms of the VS for almost all parameter values.

In order to provide a time-varying simulation with a possibly more intuitive interpretation, we
have added a variant of the setting suggested above to the paper. In this new Setting 3B, we set

Σ0
i,j(t) = ρ

|i−j|
0 (t), for i, j = 1, . . . , d, where the correlation parameter ρ0(t) varies over iterations

according to

ρ0(t) = ρ0 ·
(

1− a

2

)
+ ρ0 ·

(a
2

)
sin

(
2πt

n

)
for a ∈ (0, 1) for the observations, and similarly, Σi,j(t) = σρ|i−j|(t), for i, j = 1, . . . , d, where

ρ(t) = ρ ·
(

1− a

2

)
+ ρ ·

(a
2

)
sin

(
2πt

n

)
for the ensemble predictions. Correlations in both cases are autoregressive with lag-1 and oscil-
lated between ρ0 and ρ0(1− a), and ρ and ρ(1− a), respectively.

The description of Setting 3B was added to Section 3.3, results are discussed in Section 4.2.3,
and a corresponding figure has been added to that section. Results for additional simulation
parameters for Setting 3B are provided in the Supplemental Material.

260-264: I find this notation a bit confusing since previously the subscript/superscript ’O’
was used for observations and here the subscript ’0’ (which is hard to discern from ’O’ in the
NPG font) is used to denote the fraction of zero values. The notation is also inconsistent in
that in setting 3 ’x’ and ’y’ are used to denote forecasts and observations,in contrast to the
subscript/superscript ’O’ for observations in the other settings.

The subscript ’0’ (to denote zero values) has been changed to subscript ’z’. The subscripts ’x’
and ’y’ have been changed to match the subscript notation in the other sections.

323 ’... are identical to those of ECC-Q ...’: Is this really true for ECC-S? The way it is
described here, ECC-S seems to imply some level of randomization (albeit less than ECC-R),
so the sampling is not the same as for ECC-Q.

Thank you for spotting this. The univariate distributions of ECC-S will indeed not be identical to
those of ECC-Q. Comparing univariate results, we however found that the differences in terms of
predictive performance are only very minor and were not noticeable in plots. We have modified
the corresponding paragraph which now reads “ Note that for ECC-S and SSh differences in the
univariate forecast distributions compared to those of ECC-Q may arise from randomly sampling
the quantile levels in ECC-S and due to random fluctuations due to the 10 random repetitions
that were performed to account for simulation uncertainty of those methods. However, we found
the effects on the univariate results to be negligible and omit ECC-S, dECC and SSh from Figure
1.”

Fig. 2: I don’t think that this figure is really necessary. Why is the (univariate) performance of
ECC-Q compared to the raw ensemble relevant to the comparison of multi-variate postprocessing
approaches?

Figure 2 and the corresponding text paragraph have been removed.

354 ’... SSh never performs substantially worse ...’: Why would we expect otherwise?The only
drawback of SSh in the present context is the underlying assumption of time-invariance of the
correlation structure, which is not a drawback in a time-invariant simulation setting. If not
discussed before, this paragraph could be an opportunity to discuss this issue of time-invariant
vs time-varying correlations.

We have added a short discussion to the corresponding paragraph.
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Figure R2: Illustration similar to the figure for Setting 4 in the original main paper, but based
on the adapted simulation setting suggested by Reviewer 1.
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360: I wonder if ECC-S gives the better results for the wrong reason here. Maybe I am misun-
derstanding its key idea, but to me this is essentially a compromise between ECC-Q and ECC-R.
Is it possible that the small amount of randomization in ECC-S weakens the correlations, which
is beneficial for ρ > ρ0 and detrimental for ρ < ρ0? An argument against this hypothesis is that
the performance of ECC-S is not significantly different from ECC-Q when ρ = ρ0. I just cannot
think of any good reason why ECC-S would be better than ECC-Q. If the authors have any
explanation for these results I would encourage them to include those in the discussion of the
results.

Unfortunately, we are unable to provide a comprehensive explanation for these observations. As
will be argued in the response to Reviewer 2 below, drawing conclusions on specific aspects of the
multivariate methods or on the effect of single simulation parameters is difficult and is further
impeded by a lack of well-understood multivariate evaluation methods. One potential advantage
of the sampling scheme in ECC-S in comparison to the use of quantiles at fixed levels can become
apparent when considering corresponding EMOS-S and EMOS-Q variants. When evaluated in
terms of the VS, the random sampling in ECC-S may alleviate issues arising from over-estimated
correlations due to the use of the same quantile levels in EMOS-Q. However, it appears to not
be straightforward how these observations will be effected by applying ECC, and what the effects
of the 10 repetitions of each individual simulation experiments that were performed to account
for simulation uncertainty, would be.

Fig. 6: The caption should state that this is scenario B from setting 3

Fixed.

458 ’changes over iterations’: I would change this terminology and speak of ’time’ instead of
’iterations’, and be more specific about what changes/varies over time. Like-wise in 464-465 I
would clarify what you mean by ’structural change’

Changed as suggested.

Language and typos:

43: ... studies allow one to specifically tailor ...

Fixed.

135: sufficiently many

Fixed.

137: ’not directly straight forward’ sounds weird, I’d just say ’not straightforward’

Changed as suggested.

249: ... allows one to generate ...

Fixed.

375: ’can potentially be explained’ sounds weird, maybe better ’may be explained’

Changed as suggested.

388: I think you want to say ’In terms of ...’

Fixed.

443: Change to ’the other way round’ and ’In accordance with’

Changed as suggested.

445: Change to ’in contrast to’

Changed as suggested.
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Reviewer 2

In this paper, a comprehensive simulation study is implemented, comparing multiple multivariate
statistical post-processing methods which all combine standard univariate post-processing with
one of four techniques to reintroduce spatial, temporal or inter-variable dependencies. It is well-
written, an important contribution given the variety of techniques available and potentially very
useful to identify optimal operational post-processing strategies for varying types of data. Just
a few clarifications and changes are needed.

General comments:

I would have liked to have more focus (or at least comments) on the effect of ensemble size and
dimension. The here chosen ensemble of 50 members is at the upper limit of what is now oper-
ationally produced, with the majority far below this number. Of course it is important for the
study to have a sufficient number of data points so as to produce significant results, but it would
also be interesting to look at settings with a smaller number of ensemble members. Also,the
number of dimensions ranges from 4 to 5, which would correspond to looking at consistency
between a few weather variables, but would usually be too low for a setting where preserving
spatial or temporal features are important. I wonder if the findings would be different for smaller
ensembles or higher dimensions.

Thank you for this suggestion. Following a similar comment by Reviewer 1, we performed
additional simulations to assess the effects of ensemble size. Please see the response to Reviewer
1 for a discussion of the role of the number of ensemble members.

To study the effects of the number of dimensions, we performed additional simulations for
Setting 1 with dimensions between 2 and 50. Overall, the relative results are often not effected
too much by changes in the number of dimensions, in particular in terms of the energy score.
Somewhat more substantial differences can be observed in terms of the variogram score. In a
nutshell, GCA performs worse for higher dimensions, whereas ECC-S improves for larger values
of d. The relative differences to SSh (in favor of SSh) become more substantial with increasing d,
whereas the changes in relative performance of dECC show a strong dependency on the combined
misspecification of variance and correlation of the raw ensemble.

We have added a paragraph to Section 4.2.1. Additional figures with results for d = 2, 3, 10, 20, 30
and 50 have been added to the Supplemental Material (Section 1.2 there). See the response to the
corresponding comment by Reviewer 1 for a discussion of the display as multiple boxplots within
one figure. Performing additional simulations to investigate different choices of d for Setting 3
(which is Setting 2 in the revised manuscript) was impossible due to constraints regarding the
computational requirements, see also our comment below.

I find it very interesting that the performance of certain methods is sometimes very different
when ρ > ρ0 than in the opposite case. Do you have any explanation for this?

We believe that despite the (relative) simplicity of the chosen simulation setup, interpreting
differences in multivariate performance is challenging due to inter-connected contributions of
misspecifications in mean, variance and correlation structure and their effects on the (still) not
well understood multivariate proper scoring rules. We are thus unable to provide a comprehen-
sive explanation for the particular role of the correlation parameters ρ and ρ0. Some potential
explanations of differences in forecast performance may be given by observing that under certain
circumstances, modifying a raw ensemble prediction by artificially weakening correlations, for
example by randomly permuting ensemble member’s forecast vectors, may unexpectedly improve
predictive performance. This was for example observed in Schefzik (2017), and is likely an issue
of underdispersed univariate forecast distributions that improve by the changes on the univari-
ate forecast distributions imposed by the modifications of the correlation structure. However, to
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assess the effects of different sources of misspecifications in further detail, additional multivari-
ate verification techniques such as multivariate rank histograms should accompany the analysis.
While such additional studies are beyond the scope of the paper, they represent an interesting
starting point for future research.

Specific comments

1. Line 71 and Line 153: The correlation matrix here is not necessarily the identity matrix, so I
don’t think it is a standard normal distribution.

Fixed.

2. Line 74: I would mention here that m is the number of ensemble members

Added.

3. Section 2.2: There is a mixture of x and X used to define samples and ensemble forecasts,
but I was confused why this distinction is made within the notation, it seems inconsistent.

Throughout the description of the methods, we used x to denote univariate quantities in the
individual dimensions. X in bold print is used to represent vector-valued quantities, and X in
normal print is used to for components thereof. A sentence has been added at the beginning of
Section 2.2 to clarify this.

4. Lines 184-186: For the other settings it is mentioned to which weather variables these settings
could apply. It would be nice to add something like this to Setting 1, as well.

A corresponding sentence has been added to the beginning of Section 3.1.

5. Line 242: The notation in this setting is different from the others and this is con-fusing. Here,
the forecasts and observations are marked with x and y, whereas the other settings use o/0 to
mark the observations.

The notation has been changed accordingly, see also our answer to Reviewer 1.

6. Line 276: Is there a specific reason, why d is 4 in this setting and 5 in the others?

The limitation to d = 4 was mainly due to computational requirements and numerical stability
issues caused by the NORTARA package for R used to generate the multivariate ensemble predictions
and observations. A sentence has been added in the paper.

7. Lines 292-293: Some of the matrices are in bold face, some are not.

Fixed. Additional minor corrections to the description of Setting 4 (now Setting 3A) are detailed
under “Further changes”.

8. Figure 1: I am a bit surprised to see that GCA is performing that much worse as compared
to the other post-processing methods (in a univariate sense). There are even cases where the
performance is equal or possibly worse than for the raw ensemble. Do you have an idea why
that could be?

In particular when compared to ECC-Q and related methods, we believe that this is mostly an
issue of sampling. As discussed in Section 4.1, the univariate quantile forecasts of ECC-Q are
(close to) optimal in terms of the CRPS, but the random samples from the predictive distributions
obtained in GCA are not (see next comment). We have modified the corresponding sentence to
make this more clear. Cases where performance is worse than the raw ensemble are very rare
and likely arise when simulation parameters of the ensemble forecasts are close to these of the
observations.
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9. Lines 328-330: Can you explain a bit further what you mean by “optimal in the terms of the
CRPS”?

When the CRPS is used for evaluating a forecast distribution represented by a finite simulated
sample, the sample is implicitly interpreted as a set of quantiles from the underlying forecast
distribution at levels i−0.5

m , i = 1, . . . ,m. Viewed differently, this implies that utilizing quantiles
(at these levels) when generating a univariate sample from a forecast distribution will result
in a lower expected CRPS than drawing samples at random. Even though the levels at which
quantiles are obtained are not identical to the optimal quantile levels, the differences will be small
for m = 50. Details on the mathematical background can be found in the referenced paper by
Bröcker (2012). We hope that this becomes more clear with the modifications made to this part
of the paper mentioned in the response to the preceding comment.

10. Lines 334-335: Naturally, scenario D has the smallest improvement compared to the others.
Does that also mean that the scenarios are on the same absolute skill level after post-processing?

We did not further investigate univariate performance since we removed this paragraph following
a suggestion of Reviewer 1.

11. Footnote 4: In my opinion it would be clearer if you refer to ECC-Q as EMOS-Q in this
section as well.

We have modified the corresponding paragraph. Together with the new table comparing key
features of multivariate post-processing methods (see comment by Reviewer 1), we hope that this
sufficiently clarifies terminology.

12. Lines 415-430: Can you refer to the figures in the appendix that show these results by
number?

References to the corresponding sections of the Supplemental Material have been added.

13. Line 446: “the VS might be better able to account..” This is confirming a known result,
therefore “might” is a bit unsuitable.

Changed as suggested.

Technical corrections

1. Line 327: I would move the sentence beginning ”Note that” to footnote 4, as it directly relates
to the changes in the marginal distributions mentioned there.

The corresponding paragraph has been modified following comments from Reviewer 1, and the
footnote has been removed.

2. Line 356: I find this sentence a bit confusing. Should there be a comma before “the less
information”?

We have modified the sentence and added a comma as suggested.

3. Line 386: Missing comma before “where”

Fixed.

4. Lines 415 and 441: I would add “parameter” after “observation location”.

Changed as suggested.
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Reviewer 3 (Zied Ben Bouallègue)

This paper present results of an intercomparison study. Different multivariate ensemble post-
processing methods are compared using toy-model simulations. The focus is on empirical cop-
ula methods that are generally applied as a second post-processing step,after univariate post-
processing step, in order to provide coherent multivariate structure to ensemble calibrated fore-
casts.
As the reviewer is the developer of one of the methods compared here, he prefers to make himself
know. There exists no conflict of interest (stricto sensu) but potential cognitive biases from the
reviewer side when scrutinizing the results. The paper is clear, well structured, and well written.
However, the choice regarding the selection of illustrations is not sufficiently motivated to my
opinion. This choice is important because it drives the discussion and the main conclusion of
the study. A 3-point argument is developed below to explain this criticism.

You claim in the conclusion (L462/463) that the 4 simulation settings aim to mimic different
situations and challenges occurring in practical situations. However, the link with practical
situations is sometimes weak or missing. In particular, it would be interesting to link misspecifi-
cation definitions with practical examples. What sigma > 1 and sigma < 1 mean, and similarly
what does rho > rho0 and rho < rho0 mean and “look like” in practice? In which situations
should one expect to encounter these types of misspecification? Which type of misspecification
situations are the most common in practice? Are combinations of misspecified elements more
common than others (sigma < 0 and rho < rho0 for example)?

Once the link to the applications is clarified, illustrations could be chosen consistently. Result
material is abundant, so one selection criterion could be to focus on the main misspecification
encountered in practical situations. For example, you use sigma equals 1 to illustrate results
in Setting 2. Does that often occur in practice? One could rather illustrate Setting 2 with
sigma¡1. Similarly, for Setting 3, scenario B is used for illustration purposes. It corresponds to
the case where the ensemble forecasts have a heavier right tails and slightly higher point mass
at zero than the observations. Does that often occur in practice? No justification for the use of
this scenario as reference is provided. Scenario A (the ensemble comes from a distribution with
smaller spread)or Scenario C (the observation distribution has a much heavier right tail) seem
to be more likely to be faced in practice.

Thank you for this helpful comment which sparked ample discussion between the authors about
how to best diagnose and transfer misspecifications of real-world ensemble prediction system to
the simulation settings.

From our experience with most standard surface weather variables, one would expect that the
univariate ensemble predictions are typically underdispersive (σ < 1), and exhibit a bias (ε 6= 0).
Often, biases and dispersion errors will of course vary over time, and may be vastly different
for different variables or geographical locations. The choice of the correlation parameters ρ, ρ0
naturally hinges on the chosen correlation function for the simulation setting. In practice, this
would likely correspond to an over-simplification of true correlations. In an attempt to diagnose
realistic correlation parameters in the context of Setting 1, we have estimated correlation pa-
rameters for 2-day ahead ECMWF ensemble predictions of 00UTC temperatures at observation
stations in Germany based on the 10-year dataset used in Rasp and Lerch (2018), as follows:
For a randomly selected station, we choose the 13th, 26th, 38th, 50th closest station. If there are
no substantial differences in altitude, we determine the empirical correlation among the observa-
tions at those 5 stations, as well as the correlation among each ensemble member’s forecasts at
those stations. Next, the differences between the estimated correlation in the ensemble members
and the observation are computed for all 50 members. In addition, we determine the parameters
ρ, ρ0 from the exponential correlation function model assumed in the paper by numerical opti-
mization. The procedure described above is repeated 100 times. Figure R3 shows differences in
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the empirical correlation, with histograms summarizing results over all 50 members and 100 rep-
etitions. The differences in correlation are almost identical for all close stations, suggesting that
the assumption of a fixed parameter ρ and ρ0 seems reasonable. Further, a similar conclusion
can be obtained from Figure R4 which shows differences in the estimated correlation parameter
of the exponential correlation model. Both figures suggest that correlations in the observations
are over-estimated by the ensemble. Realistic settings thus probably relate best to simulation set-
tings where ρ > ρ0, but the values chosen in the paper (with differences of at least 0.15) appear
to lead to possibly be too large differences (at least when compared to 2-day ahead temperature
predictions over Germany).

In deciding on parameters for the simulation settings, we have mainly sought to cover a com-
plete range of possible misspecifications rather than mirroring the situation in practice, in order
to provide a more complete view of the performance of the multivariate post-processing methods.
We have extended the discussion on the realism (or lack thereof) of the simulation settings in the
Discussion, and have incorporated some of the arguments made above. Further, realistic values
of the simulation parameters of Setting 1 that can be expected in practical applications are now
discussed towards the end of Section 3.1. Setting 2 has been removed following the suggestion
of Reviewer 1. Concerning the interpretation of the chosen scenarios in (former) Setting 3, for
example Scenario B considers a situation where the forecast distribution estimates the amount of
zero precipitation correctly, but otherwise the probability for obtaining a value smaller or equal
to a fixed precipitation amount x computed from the forecast distribution is always smaller than
the corresponding probability computed from the distribution of the observation, see the right
panel in Figure R5. In combination, these two features may not occur very often in practice,
since one would expect that underforecasting smaller precipitation amounts should come along
with an underestimation of zero precipitation. See the left panel in Figure R5, showing fitted
CDFs to a sample of observed precipitation values and corresponding forecasts of an individual
ensemble member at a specific station in Germany based on real precipitation and ECMWF en-
semble forecast data. Since a considerable number of scenarios with respect to the actual values
of µ, σ and ξ is conceivable in practice, depending on the climatological circumstances, further
investigations based on real data are required to provide additional insights. Furthermore, the in-
terplay between the 3 GEV0 parameters is specifically complex in the sense that all 3 parameters
have a joint influence on the location and dispersion properties, so that simple misspecifications
in mean and variance might correspond to various (different) sets of parameter combinations.
However, we agree that a more detailed investigation of theoretical and practical properties of
the GEV0 distribution is a highly interesting starting point for future research.

Your conclusion points to the robustness of the SSh method and so you encourage post-processing
practitioners to consider this method as their first choice. Based on the results presented in the
manuscript and the ones in the supplemental material document, one could draw the opposite
recommendation. First choice methods are available for different types of misspecification and
so one could encourage to apply SSh only when the misspecification is unknown or difficult to
identify. Specific recommendations would read:

1. If the ensemble is underdispersive and the ensemble correlation is too weak, d-ECC is the
best option, both in terms of ES and VS.

2. If the ensemble is underdispersive and the ensemble correlation is too strong, ECC-S is
the best option in terms of VS and one of the best options in terms of ES.

3. If the ensemble is overdispersive and the ensemble correlation is too strong, d-ECC is the
best option, both in terms of ES and VS.

4. If the ensemble is overdispersive and the ensemble correlation is too weak, GCA is the
best option in terms of VS, but is less performant in terms of ES. GCA proves to work
well even when the overdispersiveness error characteristic is relaxed.
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Figure R3: Differences in empirical correlation of observations and ensemble members at a set
of 5 close stations based on the dataset of Rasp and Lerch (2018).
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Figure R4: Differences in estimated correlation of observations and ensemble members according
to the exponential correlation function model assumed in the simulation settings at
a set of 5 close stations based on the dataset of Rasp and Lerch (2018).
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Figure R5: Cumulative distribution functions of GEV0. The fit parameters in the left panel
are µ0 = −1.0698, ξ0 = 0.2700, σ0 = 1.9906 for the observation (red line) and µ =
0.1887, ξ = 0.4063, σ = 1.5890 for the forecast (blue line). The fit parameters in
the right panel are µ0 = 0, ξ0 = −0.1, σ0 = 1 for the observation (red line) and
µ = 0, ξ = 0, σ = 2 for the forecast (blue line).

5. Otherwise consider using SSh, in particular when the correlation structures in theforecasts
and observations are very dissimilar.

This is valid for all types of distributions (so all types of weather variables). Are these conclusions
still valid in case of time varying misspecification? Verification results are missing to conclude
here. Therefore, the authors are encouraged to investigate various sigmas in Setting 4 in order
to collect evidences, and could draw conclusions accordingly

Thank you for these suggestions. We agree that the conclusions may benefit from a more detailed
discussion of situations where the different methods show advantages or disadvantages across
settings.

With the changes and additional results in the paper and Supplemental Material following the
comments by Reviewer 1 (Setting 2 was removed; Setting 4 (now Setting 3A) is accompanied
by another variant, Setting 3B; and additional simulations with varying numbers of ensemble
members and dimensions), we believe that it is difficult to arrive at general conclusions of this
form that would be valid for all types of distributions and settings. In particular, the effects of
misspecifications of the individual simulation parameters may be very different in, for example,
the multivariate Gaussian distribution in Setting 1 and the censored GEV variant in Setting 3
(now Setting 2). In particular for the new time-varying setting, some of the results regarding the
relative performance of dECC and ECC-S, respectively, differ somewhat from the recommenda-
tions summarized above. With Setting 1 in mind, realistic parameter choices to mimic properties
of real-world dataset likely represent settings where σ < 1 and ρ > ρ0. As you pointed out, these
settings may favor ECC-S over ECC-Q.

We have modified the discussion in Section 5 to provide more detailed suggestions and con-
clusions regarding the overall performance of the methods.
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Further changes

• An error in the specification of the mean vector of the observation in Setting 4 (now Setting
3A) has been corrected: We had set ε0 to 0, but not specifically mentioned this.

• Figure 1 summarizing the univariate results for Settings 1, 2 and 4 (now 1, 3A and 3B)
has been updated to reflect the changes in the numbers of the considered settings.

• The helpful and constructive comments by all reviewers are now acknowledged.

• The bibliography has been updated. In particular, we have added the references Wilks
(2015) and Vannitsem et al. (2020). The references Thorarinsdottir and Gneiting (2010)
and Hemri and Klein (2017) were moved from the paper to the Supplemental Material as
they only occurred in context with Setting 2 (now Setting S1 in the Supplemental Material).
Further, we have updated the information for Lang et al. (2019) which is now Lang et al.
(2020).

• Besides the changes mentioned above, we have made minor changes to various formula-
tions.

Changes to the Supplemental Material

In light of the modifications made to the paper described above, the Supplemental Material has
been changed as follows.

• A table of contents was added.

• Results for additional numbers of members (Settings 1 and 3, now Settings 1 and 2) and
dimensions (Setting 1) were added.

• Settings 3 and 4 were re-named to Settings 2 and 3A, respectively.

• Additional simulation results for the new Setting 3B were added.

• Description and results of the simulation setting based on a multivariate truncated Gaus-
sian distribution (Setting 2 in the original submission) were moved to the Supplemental
Material where they are accompanied by simulation results for additional parameter choices
that were present in the Supplemental Material of the original submission.

14



Lerch, Baran, Moeller, Gross, Schefzik, Hemri, Graeter

Simulation-based comparison of multivariate ensemble
post-processing methods
Sebastian Lerch1, Sándor Baran2, Annette Möller3, Jürgen Groß4, Roman Schefzik5, Stephan Hemri6,
and Maximiliane Graeter1

1Karlsruhe Institute of Technology, Karlsruhe, Germany
2University of Debrecen, Debrecen, Hungary
3Technical University of Clausthal, Clausthal, Germany
4University of Hildesheim, Hildesheim, Germany
5German Cancer Research Center (DKFZ), Heidelberg, Germany
6Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland

Correspondence: Sebastian Lerch (Sebastian.Lerch@kit.edu)

Abstract. Many practical applications of statistical post-processing methods for ensemble weather forecasts require to accu-

rately model spatial, temporal and inter-variable dependencies. Over the past years, a variety of approaches has been proposed

to address this need. We provide a comprehensive review and comparison of state of the art methods for multivariate ensemble

post-processing. We focus on generally applicable two-step approaches where ensemble predictions are first post-processed5

separately in each margin, and multivariate dependencies are restored via copula functions in a second step. The comparisons

are based on simulation studies tailored to mimic challenges occurring in practical applications and allow to readily interpret

the effects of different types of misspecifications in the mean, variance and covariance structure of the ensemble forecasts on

the performance of the post-processing methods. Overall, we find that the Schaake shuffle provides a compelling benchmark

that is difficult to outperform, whereas the forecast quality of parametric copula approaches and variants of ensemble copula10

coupling strongly depend on the misspecifications at hand.

Copyright statement. TEXT

1 Introduction

Despite continued improvements ensemble weather forecasts often exhibit systematic errors that require correction via statis-

tical post-processing methods. Such calibration approaches have been developed for a wealth of weather variables and specific15

applications. The employed statistical techniques include parametric distributional regression models (Gneiting et al., 2005;

Raftery et al., 2005) as well as nonparametric approaches (Taillardat et al., 2016) and semi-parametric methods based on mod-

ern machine learning techniques (Rasp and Lerch, 2018). We refer to Vannitsem et al. (2018)
::::::::::::::::::::::::
Vannitsem et al. (2018, 2020) for

a general overview and review.
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While much of the developments have been focused on univariate methods, many practical applications require to accu-20

rately capture spatial, temporal or inter-variable dependencies (Schefzik et al., 2013). Important examples include hydrological

applications (Scheuerer et al., 2017), air traffic management (Chaloulos and Lygeros, 2007) and energy forecasting (Pinson

and Messner, 2018). Such dependencies are present in the raw ensemble predictions, but are lost if standard univariate post-

processing methods are applied separately in each margin.

Over the past years, a variety of multivariate post-processing methods has been proposed, see Schefzik and Möller (2018)25

for a recent overview. Those can roughly be categorized into two groups of approaches. The first strategy aims to directly

model the joint distribution by fitting a specific multivariate probability distribution. This approach is mostly used in low-

dimensional settings, or if a specific structure can be chosen for the application at hand. Examples include multivariate models

for temperatures across space (Feldmann et al., 2015), for wind vectors (Schuhen et al., 2012; Lang et al., 2019), and joint

models for temperature and wind speed (Baran and Möller, 2015, 2017).30

The second group of approaches proceeds in a two-step strategy. In a first step, univariate post-processing methods are

applied independently in all dimensions, and samples are generated from the obtained probability distributions. In a second

step, the multivariate dependencies are restored by re-arranging the univariate sample values with respect to the rank order

structure of a specific multivariate dependence template. Mathematically, this corresponds to the application of a (parametric

or non-parametric) copula. Examples include ensemble copula coupling (Schefzik et al., 2013), the Schaake shuffle (Clark35

et al., 2004) and the Gaussian copula approach (Möller et al., 2013).1

Here, we focus on this second strategy which is more generally applicable in cases where no specific assumptions on the

parametric structure can be made, or where the dimensionality of the forecasting problem is too high to be handled by fully

parametric methods. The overarching goal of this paper is to provide a systematic comparison of state of the art methods for

multivariate ensemble post-processing. In particular, our comparative evaluation includes recently proposed extensions of the40

popular ensemble copula coupling approach (Hu et al., 2016; Ben Bouallègue et al., 2016). We propose four
::::
three simulation

settings which are tailored to mimic different situations and challenges that arise in applications of post-processing methods.

In contrast to case studies based on real-world datasets, simulation studies allow
:::
one

:
to specifically tailor the multivariate

properties of the ensemble forecasts and observations, and to readily interpret the effects of different types of misspecifications

on the forecast performance of the various post-processing methods. Simulation studies have been frequently applied to analyze45

model properties, and to compare modeling approaches and verification tools in the context of statistical post-processing, see,

e.g., Williams et al. (2014); Thorarinsdottir et al. (2016); Wilks (2017); Allen et al. (2019).

The remainder is organized as follows. Univariate and multivariate post-processing methods are introduced in Section 2.

Section 3 provides descriptions of the four
::::
three simulation settings, with results discussed in Section 4. The paper closes with a

discussion in Section 5. Technical details on specific probability distributions and multivariate evaluation methods are deferred50

1An alternative post-processing approach that allows to preserve multivariate dependencies is the member-by-member method proposed by Van Schaey-

broeck and Vannitsem (2015). Schefzik (2017) demonstrates that member-by-member post-processing can be interpreted as a specific variant of ensemble

copula coupling, and can thus be seen as belonging to this group of methods.
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to the Appendix. Figures with additional
:::::::::
Additional results are available in the Supplementary Material. R (R Core Team, 2019)

code with replication material and implementations of all methods is available from https://github.com/slerch/multiv_pp.

2 Post-processing of ensemble forecasts

We focus on multivariate ensemble post-processing approaches which are based on a combination of univariate post-processing

models with copulas. The general two-step strategy of these methods is to first apply univariate post-processing to the ensemble55

forecasts for each margin (i.e., weather variable, location, and prediction horizon) separately. Then, in a second step, a suitably

chosen copula is applied to the univariately post-processed forecasts in order to obtain the desired multivariate post-processing

taking account of dependence patterns.

A copula is a multivariate cumulative distribution function (CDF) with standard uniform univariate marginal distributions

(Nelsen, 2006). The underlying theoretical background of the above procedure is given by Sklar’s theorem (Sklar, 1959),60

which states that a multivariate CDF H (this is what we desire) can be decomposed into a copula function C modeling the

dependence structures (this is what needs to be specified) and its marginal univariate CDFs F1, . . . ,Fd (this is what is obtained

by the univariate post-processing) as follows:

H(x1, . . . ,xd) = C(F1(x1), . . . ,Fd(xd))

for x1, . . . ,xd ∈ R. In the approaches considered here, the copula C is chosen to be either the non-parametric empirical copula65

induced by a pre-specified dependence template (in the ensemble copula coupling method and variants thereof as well as in

the Schaake shuffle), or the parametric Gaussian copula (in the Gaussian copula approach, GCA). A Gaussian copula is a

particularly convenient parametric model, as apart from the marginal distributions it only requires estimation of the correlation

matrix of the multivariate distribution. Under a Gaussian copula the multivariate CDF H takes the form

H(x1, . . . ,xd |Σ) = Φd
(
Φ−1(F1(x1)), . . . ,Φ−1(Fd(xd)) |Σ

)
, (1)70

with Φd( · |Σ) denoting the CDF of a d-dimensional standard normal distribution with mean zero and correlation matrix Σ,

and Φ−1 denoting the quantile function of the univariate standard normal distribution.

To describe the considered methods in more detail in what follows, let X1, . . . ,Xm ∈ Rd denote unprocessed ensemble

forecasts
::::
from

::
m

::::::::
members, where Xi := (X

(1)
i , . . . ,X

(d)
i ) for i= 1, . . . ,m, and let y := (y(1), . . . ,y(d)) ∈ Rd be the corre-

sponding verifying observation. We will use l = 1, . . . ,d to denote a multi-index summarizing
:::
that

::::
may

:::::::::
summarize

:
a fixed75

weather variable, location, and prediction horizon
::
in

:::::::
practical

::::::::::
applications

::
to
:::::::::
real-world

:::::::
datasets.

2.1 Step 1: Univariate post-processing

In a first step, univariate post-processing methods are applied to each margin l = 1, . . . ,d separately. Prominent state-of-the-

art univariate post-processing approaches include Bayesian model averaging (Raftery et al., 2005) and ensemble model output

statistics (EMOS; Gneiting et al., 2005). In the EMOS approach, which is employed throughout this paper, a non-homogeneous80

3

https://github.com/slerch/multiv_pp


distributional regression model

y(l)|X(l)
1 , . . . ,X(l)

m ∼ F
(l)
θ (y(l)|θ(l))

is fitted, where F (l)
θ is a suitably chosen parametric distribution with parameters θ(l) := g(X

(l)
1 , . . . ,X

(l)
m ) that depend on the

unprocessed ensemble forecast through a link function g(·).

The choice of F (l)
θ is in practice mainly determined by the weather variable being considered in the margin l. For instance,85

when F (l)
θ can be assumed to be Gaussian with mean µ and variance σ2, such as for temperature or pressure, one may set

F
(l)
θ =N (µ,σ2), where (µ,σ2) := (a0 + a1X̄,b0 + b1S

2) = g(X
(l)
1 , . . . ,X(l)

m ) (2)

if the ensemble members are exchangeable, with X̄ and S2 denoting the empirical mean and variance of the ensemble predic-

tions X(l)
1 , . . . ,X

(l)
m , respectively. The coefficients a0,a1, b0 and b1 are then derived via suitable estimation techniques using

training data consisting of past ensemble forecasts and observations (Gneiting et al., 2005).90

2.2 Step 2: Incorporating dependence structures using copulas to obtain multivariate post-processing

When applying univariate post-processing for each margin separately, multivariate (i.e. inter-variable, spatial and/or temporal)

dependencies across the margins are lost. These dependencies are restored in a second step. Here, we consider five differ-

ent approaches to do so.
::
An

::::::::
overview

::
of

::::::::
selected

:::
key

:::::::
features

::
is

::::::::
provided

::
in

:::::
Table

::
1.
::::
For

::::::
further

:::::::::
discussion

::
of

::::::::::
advantages

:::
and

::::::::::::
shortcomings,

::
as

:::::
well

::
as

:::::::::::
comparisons

::
of

:::::::
subsets

::
of

::::::
theses

::::::::
methods

::::
see,

::::
e.g.,

::::::::::::::::::::::::::::::
Schefzik et al. (2013); Wilks (2015) .

:::
In95

::
the

:::::::::
following

:::
we

::::
use

:
z
:::

to
::::::
denote

:::::::::
univariate

::::::::
quantities

::
in
::::

the
:::::::::
individual

::::::::::
dimensions.

::
Z

:::
in

::::
bold

:::::
print

::
is

::::
used

:::
to

::::::::
represent

:::::::::::
vector-valued

:::::::::
quantities,

:::
and

::
Z

::
in

::::::
normal

:::::
print

:
is
:::::
used

::
to

::
for

:::::::::::
components

::::::
thereof.

:

Assumption of independence (EMOS-Q)

Instead of modeling the desired dependencies in any way, omitting the second step corresponds to assuming independence

across the margins. To that end, a univariate sample x̂(l)
1 , . . . , x̂

(l)
m is generated in each margin by drawing from the post-100

processed forecast distribution F (l)
θ , l = 1, . . . ,d. The univariate samples are then simply combined into a corresponding vector.

Following Schefzik et al. (2013), we use equidistant quantiles of F (l)
θ at levels 1

m+1 , . . . ,
m
m+1 to generate the sample, and denote

this approach by EMOS-Q.

Ensemble copula coupling (ECC)

The basic ensemble copula coupling (ECC) approach proposed by Schefzik et al. (2013) proceeds as follows:105

1. A sample x̂(l)
1 , . . . , x̂

(l)
m , where we assume x̂(l)

1 ≤ ·· · ≤ x̂
(l)
m to simplify notation, of the same size m as the unprocessed

ensemble is drawn from each post-processed predictive marginal distribution F (l)
θ , l = 1, . . . ,d.

2. The sampled values are rearranged in the rank order structure of the raw ensemble, i.e., the permutation σl of the set

{1, . . . ,m} defined by σl(i) = rank(X
(l)
i ), with possible ties resolved at random, is applied to the post-processed sample
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Table 1.
::::::::
Overview

:
of
:::::::

selected
:::
key

::::::::::
characteristics

::
of
:::
the

:::::::::
multivariate

::::::::::::
post-processing

::::::
methods

:::::::::
considered

::
in

:::
this

::::
paper.

:

::::::
Method ::::::::

Dependence

::::::
template

::::::::::::
Flow-dependent

:::::
copula

:::::::
structure

:::
Size

::
of

:::::::
resulting

:::::::::
multivariate

:::::::
ensemble ::::::::

Univariate

::::::
sampling

:

::::::
Involves

::::::::
randomness

:

::::::
EMOS-Q

:

::::::
assumes

::::::::::
independence :

-
::::::
arbitrary

::::::::
equidistant

::
no

::::::
ECC-R

::
raw

::::::::
ensemble

::
yes

::
m

::::::
random

::
yes

::::::::
(sampling)

:

::::::
ECC-Q

::
raw

::::::::
ensemble

::
yes

::
m

::::::::
equidistant

::
no

::::::
ECC-S

::
raw

::::::::
ensemble

::
yes

::
m

::::::
stratified

::
yes

::::::::
(sampling)

:

::::
dECC

:

:::
raw

:::::::
ensemble &

:::::
forecast

:::::
errors ::

yes
::
m

::::::::
equidistant

::
no

::
SSh

: :::::::::
observations

: ::
no

::::::
arbitrary

::::::::
equidistant :::

yes
:::::::
(selection

::
of

:::::
training

:::::
cases)

:

::::
GCA

:::::::::
observations

: ::
no

::::::
arbitrary

::::::
random

::
yes

::::::::
(sampling)

:

from the first step in order to obtain the final ECC ensemble X̃(l)
1 , . . . , X̃

(l)
m via110

X̃
(l)
i = x̂

(l)
σl(i)

,

where i= 1, . . . ,m and l = 1, . . . ,d.

Depending on the specific sampling procedure in step 1, we here distinguish the following different ECC variants:

– ECC-R: The sample x̂(l)
1 , . . . , x̂

(l)
m is randomly drawn from F

(l)
θ (and subsequently arranged in ascending order).

– ECC-Q: The sample is constructed using equidistant quantiles of F (l)
θ at levels 1

m+1 , . . . ,
m
m+1 :115

x̂
(l)
1 := (F

(l)
θ )−1

(
1

m+ 1

)
, . . . , x̂(l)

m := (F
(l)
θ )−1

(
m

m+ 1

)
.

– ECC-S (Hu et al., 2016): First, random numbers u1, . . . ,um, where ui ∼ U( i−1
m , im ] for i= 1, . . . ,m, are drawn, with

U(a,b] denoting the uniform distribution on the interval (a,b]. Then, x̂(l)
i is set to the quantile of F (l)

θ at level ui:

x̂
(l)
1 := (F

(l)
θ )−1(u1), . . . , x̂(l)

m := (F
(l)
θ )−1(um).
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Besides the above sampling schemes, Schefzik et al. (2013) propose an alternative transformation approach referred to as120

ECC-T. This variant is in particular appealing for theoretical considerations, as it provides a link between the ECC notion

and member-by-member post-processing approaches (Schefzik, 2017). However, as it may involve additional modeling steps,

ECC-T is not as generic as the other schemes and thus not explicitly considered in this paper
::::
here.

Dual ensemble copula coupling (dECC)

Dual ECC (dECC) is an extension of ECC which aims at combining the structure of the unprocessed ensemble with a compo-125

nent accounting for the forecast error autocorrelation structure (Ben Bouallègue et al., 2016), proceeding as follows:

1. ECC-Q is applied in order to obtain re-ordered ensemble forecasts X̃1, . . . ,X̃m, with X̃i := (X̃
(1)
i , . . . , X̃

(d)
i ) for i=

1, . . . ,m.

2. A transformation based on an estimate of the error autocorrelation Σ̂e is applied to the bias-corrected post-processed

forecast in order to obtain correction terms c1, . . . ,cm. Precisely, ci := (Σ̂e)
1
2 · (X̃i−Xi) for i= 1, . . . ,m.130

3. An adjusted ensemble X̆1, . . . ,X̆m is derived via X̆i := Xi + ci. for i= 1, . . . ,m.

4. ECC-Q is applied again, but now performing the re-ordering with respect to the rank order structure of the adjusted

ensemble from step 3 used as a modified dependence template.

Schaake shuffle (SSh)

The Schaake shuffle (SSh) proceeds as ECC-Q, but re-orders the sampled values in the rank order structure of m randomly135

determined past observations (Clark et al., 2004) and not with respect to the unprocessed ensemble forecasts. For a better

comparison with (d)ECC, the size of the SSh ensemble is restricted to equal that of the unprocessed ensemble here. However, in

principle, the SSh ensemble may have an arbitrary size, provided that sufficiently enough
::::
many past observations are available

to build the dependence template. Extensions of the SSh that select past observations based on similarity are available (Schefzik,

2016; Scheuerer et al., 2017), but not explicitly considered here as their implementation is not directly straightforward and may140

involve additional modelling choices specific to the situation at hand.

The reordering-based methods considered thus far can be interpreted as non-parametric, empirical copula approaches. In

particular, in the setting of Sklar’s theorem, C is taken to be the empirical copula induced by the corresponding dependence

template, i.e., the unprocessed ensemble forecasts in case of ECC, the adjusted ensemble in case of dECC, and the past

observations in case of the SSh.145

Gaussian copula approach (GCA)

By contrast, in the Gaussian copula approach (GCA) proposed by Pinson and Girard (2012) and Möller et al. (2013), the copula

C is taken to be the parametric Gaussian copula. GCA can be traced back to similar ideas from earlier work in spatial statistics

(e.g., Berrocal et al., 2008) and proceeds as follows:
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1. A set of past observations y1, . . . ,yK , with yk = (y
(1)
k , . . . ,y

(d)
k ), is transformed into latent standard Gaussian observa-150

tions ỹ1, . . . , ỹK by setting

ỹ
(l)
k = Φ−1

(
F

(l)
θ (y

(l)
k )
)

(3)

for k = 1, . . . ,K and l = 1, . . . ,d, where Φ−1 is the inverse of the CDF of the univariate standard normal distribution and

F
(l)
θ is the marginal distribution obtained by univariate post-processing. The index k = 1, . . . ,K here refers to a training

set of past observations.155

2. An empirical (or parametric) (d× d) correlation matrix Σ̂ of the d-dimensional standard normal distribution in (1) is

estimated from ỹ1, . . . , ỹK .

3. Multivariate random samples Z1, . . . ,Zm ∼Nd(0,Σ̂) are drawn, where Nd(0,Σ̂) denotes a d-dimensional normal dis-

tribution with mean vector 0 := (0, . . . ,0) and estimated correlation matrix Σ̂ from Step 2, and Zi := (Z
(1)
i , . . . ,Z

(d)
i )

for i= 1, . . . ,m.160

4. The final GCA post-processed ensemble forecast X∗1, . . . ,X
∗
m, with X∗i := (X

∗(1)
i , . . . ,X

∗(d)
i ) for i= 1, . . . ,m is ob-

tained via

X
∗(l)
i :=

(
F

(l)
θ

)−1(
Φ(Z

(l)
i )
)

(4)

for i= 1, . . . ,m and l = 1, . . . ,d, with Φ denoting the CDF of the univariate standard normal distribution.
:::::
While

:::
the

::::
size

::
of

:::
the

:::::::
resulting

::::::::
ensemble

::::
may

::
in

::::::::
principle

::
be

::::::::
arbitrary,

::
it

:
is
::::
here

:::
set

::
to

:::
the

::::
size

::
m

::
of

:::
the

:::
raw

:::::::::
ensemble.

:
165

3 Simulation settings

We consider several simulation settings to highlight different aspects and provide a broad comparison of the effects of potential

misspecifications of the ensemble predictions on the performance of the various multivariate post-processing methods. The

general setup of all simulation settings is as follows.

An initial training set of pairs of simulated ensemble forecasts and observations of size ninit is generated. Post-processed170

forecasts are then computed and evaluated over a test set of size ntest. Therefore, n := ninit +ntest iterations are performed in

total for all simulation settings. In the following, we set m= 50,ninit = 500,ntest = 1000 throughout.

To describe the individual settings in more detail, we here begin by first identifying the general structure of the steps that

are performed in all settings. For each iteration t in both training and test set (i.e., t= 1, . . . ,n), multivariate forecasts and

observations are generated:175

(S1) Generate multivariate observations and ensemble forecasts.

For all iterations t in the test set (i.e., t= ninit + 1, . . . ,n), the following steps are carried out:
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(S2) Apply univariate post-processing separately in each dimension.2

(S3) Apply multivariate post-processing methods.

(S4) Compute univariate and multivariate measures of forecast performance on the test set.180

Unless indicated otherwise all simulation draws are independent across iterations. To simplify notation we will thus typically

omit the simulation iteration index t in the following.

To quantify simulation uncertainty, the above procedure is repeated 100 times for each tuning parameter combination in each

setting. In the interest of brevity, we omit ECC-R which did show substantially worse results in initial tests (see also Schefzik

et al., 2013). In the following, the individual simulation settings are described in detail, and specific implementation choices185

are discussed.

3.1 Setting 1: Multivariate Gaussian distribution

As starting point we first consider a simulation model where observations and ensemble forecasts are drawn from multivariate

Gaussian distributions.3
::::
This

::::::
setting

:::
may

:::
for

:::::::
example

:::::
apply

::
in

:::
the

::::
case

::
of

::::::::::
temperature

:::::::
forecasts

::
at

:::::::
multiple

::::::::
locations

:::::::::
considered

::::::::::::
simultaneously.

:
The simplicity of this model allows to readily interpret misspecifications in the mean, variance and covariance190

structures.

(S1) For iterations t= 1, . . . ,n, independent and identically distributed samples of observations and ensemble forecasts are

generated as follows:

– observation: y ∼Nd(µ0,Σ
0), where µ0 = (0, . . . ,0) ∈ Rd, and Σ0

i,j = ρ
|i−j|
0 , for i, j = 1, . . . ,d.

– ensemble forecasts: X1, . . . ,Xm
iid∼Nd(µ,Σ), where µ= (ε, . . . , ε) ∈ Rd, and Σi,j = σρ|i−j|, for i, j = 1, . . . ,d.195

The parameters ε and σ introduce a bias and a misspecified variance in the marginal distributions of the ensemble

forecasts. These systematic errors are kept constant across dimensions 1, . . . ,d. The parameters ρ0 and ρ control the

autoregressive structure of the correlation matrix of the observations and ensemble forecasts. Setting ρ0 6= ρ introduces

misspecifications of the correlation structure of the ensemble forecasts.

(S2) As described in Section 2.1, univariate post-processing is applied independently in each dimension 1, . . . ,d. Here, we200

employ the standard Gaussian EMOS model (2) proposed by Gneiting et al. (2005). The EMOS coefficients a0,a1, b0, b1

are estimated by minimizing the mean continuous ranked probability score (CRPS, see Appendix B) over the training

set consisting of the ninit initial iterations, and are then used to produce out of sample forecasts for the ntest iterations in

the test set.
2With the exception of Setting 4

:
3, the estimation of univariate post-processing models utilizes the initial training set only. Setting 4

:
3 covers the possibly

more realistic case of variations across repetitions of the experiment.
3Wilks (2017) considers a similar setting in the context of multivariate calibration assessment which we here extend towards multivariate ensemble post-

processing.

8



(S3) Next, the multivariate post-processing methods described in Section 2.2 are applied. Implementation details for the205

individual methods are as follows.

– For dECC, the estimate of the error autocorrelation Σ̂e is obtained from the ninit initial training iterations to compute

the required correction terms for the test set.

– To obtain the dependence template for SSh,m past observations are randomly selected from all iterations preceding

the current iteration t.210

– The correlation matrix Σ required for GCA is estimated by the empirical correlation matrix based on all iterations

preceding the current iteration t.

– The verification results for all methods that require random sampling (ECC-S, SSh, GCA) are averaged over 10

independent repetitions for each iteration t= ninit + 1, . . . ,n in the test set.

The multivariate Gaussian setting is implemented for d= 5 and all combinations of ε ∈ {0,1,3},σ2 ∈ {0.5,1,2,5}, and215

ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}. As indicated above, the simulation experiment is repeated 100 times for each of the 300

parameter combinations.

3.2 Setting 2: Multivariate truncated Gaussian distribution

Setting 1 can be generalized by replacing the multivariate Gaussian distribution by a multivariate truncated Gaussian distribution

N d
a,b(µ,Σ), where a and b are the vectors of lower and upper truncation points, respectively. In univariate settings this220

distribution plays important role in wind speed modelling (Thorarinsdottir and Gneiting, 2010) or in
:
If
:::
the

::::::
setting

::::
from

::::::
above

:
is
::::::::::
interpreted

::
as

:
a
:::::::::::

multivariate
:::::
model

:::
for

:::::::::::
temperatures

::
at

::::::::
multiple

::::::::
locations,

:::::::::::
observations

::::
from

:::
the

::::::
extant

:::::::
literature

:::
on

:
post-

processing of hydrological forecasts (Hemri and Klein, 2017) . Compared to Setting 1, here misspecifications in location vector

µ and /or scale matrix Σ result in more complex deviations in mean vectors and covariance matrices.
::::::
suggest

::::
that

::::::::
typically,

:::::
values

::
of

:::::
σ < 1

::::
and

::::::
ρ > ρ0 :::::

would
:::
be

:::::::
expected

::
in

:::::::::
real-world

:::::::
datasets.

:
225

For iterations t= 1, . . . ,n, independent and identically distributed samples of observations y and ensemble forecasts X1, . . . ,Xm

are generated fromN d
a,b(µ0,Σ

0) andN d
a,b(µ,Σ), respectively, where Σ0 and Σ are defined as in Setting 1,µ0 = (µ0, . . . ,µ0) ∈ Rd

andµ= (µ, . . . ,µ) ∈ Rd. Univariate post-processing is based on the truncated normal EMOS model of Hemri and Klein (2017) ,

where the EMOS coefficients are calculated by optimizing the mean CRPS over the training set consisting of the ninit initial

iterations. Similar to230

:
A
::::::
variant

:::
of Setting 1 , the obtained EMOS models are used to produce out of sample forecasts for the ntest iterations in the

test set. Identical to (S3) of Setting
:::::
based

::
on

::
a

::::::::::
multivariate

::::::::
truncated

::::::::
Gaussian

:::::::::
distribution

::::
has

::::
also

::::
been

:::::::::::
investigated.

:::::
Apart

::::
from

:
a
:::::::
slightly

:::::
worse

:::::::::::
performance

::
of

::::::
GCA,

:::
the

::::::
results

:::
are

::::::
similar

::
to

:::::
those

::
of

::::::
Setting

:
1. For simplicity, we consider a lower

truncation at 0 only, i.e., a= (0, . . . ,0)
:::
We

::::
thus

::::
refer

::
to

::::::
Section

::
5

::
of

:::
the

:::::::::::
Supplemental

:::::::
Material

::::::
where

:::::
details

:::
on

:::
the

:::::::::
simulation

:::::
setting

:
and b= (∞, . . . ,∞). The truncated Gaussian setting is implemented for d= 5 and all combinations of235

µ0 ∈ {2,3}, µ ∈ {2,3,5}, ρ0 ∈ {0.25,0.5,0.75}, ρ ∈ {0.1,0.25,0.5,0.75,0.9}, σ ∈ {0.25,0.5,1,3,5} ,
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resulting in 450 experiments which are repeated 100 times each
:::::
results

:::
are

::::::::
provided.

3.2 Setting 3
:
2: Multivariate censored extreme value distribution

To investigate alternative marginal distributions employed in post-processing applications, we further consider a simulation

setting based on a censored version of the generalized extreme value (GEV) distribution. The GEV distribution was introduced240

by Jenkinson (1955) among others, combining three different types of extreme value distributions. It has been widely used

for modelling extremal climatological events such as flood peaks (e.g., Morrison and Smith, 2002) or extreme precipitation

(e.g., Feng et al., 2007). In the context of post-processing, GEV distributions have for example been applied for modeling

wind speed in Lerch and Thorarinsdottir (2013). Here, we consider multivariate observations and forecasts with marginal

distributions given by a left-censored version of the GEV distribution which was proposed by Scheuerer (2014) in the context245

of post-processing ensemble forecasts of precipitation amounts.

(S1) For iterations t= 1, . . . ,n samples of observations and ensemble forecasts are generated as follows. For l = 1, . . . ,d, the

marginal distributions are GEV distributions left-censored at 0,

F
(l)
θ = GEV0(µ,σ,ξ),

where the distribution parameters µ (location), σ (scale) and ξ (shape) are identical across dimensions l = 1, . . . ,d. De-250

tails on the left-censored GEV distribution are provided in Appendix A. Misspecifications of the marginal ensemble pre-

dictions are obtained by choosing different GEV parameters for observations (µy,σy, ξy) and forecasts (µx,σx, ξx)
:::::::::
(µ0,σ0, ξ0)

:::
and

::::::::
forecasts

:::::::
(µ,σ,ξ). Combined misspecifications of the three parameters result in more complex deviations of mean

and variance (on the univariate level) especially compared to Setting 1, but also compared to Setting 2.
:
1.
:
Typically there

is a joint influence of the GEV parameters on mean and dispersion properties of the distribution. In order to exploit the255

complex behavior a variety of parameter combinations for observations and ensemble forecasts were considered.

To generate multivariate observations y = (y(1), . . . ,y(d)) and ensemble predictions Xi = (X
(1)
i , . . . ,X

(d)
i ), i= 1, . . . ,m,

the so-called NORTA (normal to anything) approach is chosen, see Cario and Nelson (1997); Chen (2001). This method

allows
:::
one to generate realizations of a random vector z = (z(1), . . . ,z(d)) with specified marginal distribution functions

F
(l)
θ , l = 1, . . . ,d, and a given correlation matrix R= (Corr(z(k),z(l)))dk,l=1.260

::::::::::::::::::::::
R= (Corr(z(k),z(l)))dk,l=1.

:
The NORTA procedure consists of three steps. In a first step a vector v = (v(1), . . . ,v(d))

is generated from Nd(0,R∗) ::::::::
Nd(0,R∗):for a correlation matrix R∗

:::
R∗. In a second step, u(l) = Φ(v(l)) is computed,

where Φ denotes the CDF of the standard normal distribution. In a third step, z(l) =
(
F

(l)
θ

)−1

(u(l)) is derived for

l = 1, . . . ,d, where
(
F

(l)
θ

)−1

is the inverse of F (l)
θ . The correlation matrix R∗

::
R∗

:
is chosen in a such a way that the z(l)

have the desired target correlation matrix R
:
R. Naturally, the specification of R∗

:::
R∗

:
is the most involved part of this265

procedure. Here, we use the retrospective approximation algorithm implemented in the R package NORTARA (Su, 2014).

The NORTARA package infrequently produced error and warnings, which were not present for alternative starting values

of the random number generator.
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Following the previous simulation settings the target correlation matrix R is chosen as

Ri,j = ρ|i−j|270

::::::::::
Ri,j = ρ|i−j|

:
for −1< ρ < 1 and i, j = 1, . . . ,d.

(S2) To separately post-process the univariate ensemble forecasts we employ the EMOS method for quantitative precipitation

based on the left-censored GEV distribution proposed by Scheuerer (2014). To that end we assume −0.278< ξ < 0.5,

in which case
::::
such

::::
that the mean ν and the variance of the non-censored GEV

:::::::::
distribution

:
exist, and

ν =

µ+σ Γ(1−ξ)−1
ξ , ξ 6= 0

µ+σγ, ξ = 0
,275

where Γ denotes the gamma function and γ is the Euler-Mascheroni constant. See Appendix A for comments on mean

and variance of the left-censored GEV. Following Scheuerer (2014), the parameters (ν,σ,ξ) are linked to the ensemble

predictions via

g(X
(l)
1 , . . . ,X(l)

m ) =

(
a0 + a1X̄

(l) + a2X̄0z
(l), b0 + b1MD(l)

X , ξ

)
.

Here, X̄(l) and X̄(l)
0 ::::
X̄

(l)
z are the arithmetic mean and the fraction of zero values of the ensemble predictionsX(l)

1 , . . . ,X
(l)
m ,

respectively, while MD(l)
X denotes the mean absolute difference of the ensemble predictions, i.e.,

MD(l)
X =

1

m2

m∑
i=1

m∑
j=1

∣∣∣X(l)
i −X

(l)
j

∣∣∣ .
The shape parameter ξ is not linked to the ensemble predictions, but is estimated along with the EMOS coefficients a0,

a1, a2 and b0, b1. As in Scheuerer (2014), the link function refers to the parameter ν instead of µ, since it is argued that

for fixed ν an increase in σ can be interpreted more naturally as an increase in uncertainty.

An implementation in R is available in the ensembleMOS package (Yuen et al., 2018). For our simulation, this package

was not directly invoked, but the respective functions were used as a template. As described in Section 2.1, univariate280

post-processing is applied independently in each dimension l = 1, . . . ,d. The EMOS coefficients are estimated as de-

scribed above over the training set consisting of the ninit initial iterations, and are then used to produce out of sample

forecasts for the ntest iterations in the test set.

(S3) Identical to (S3) of Setting 1, except for GCA, where we proceed differently to account for the point mass at zero. The

latent standard Gaussian observations ỹ(l)
k are generated by ỹ(l)

k = Φ−1(u), where u is a randomly chosen value in the285

interval (0,F
(l)
θ (0)) in case y(l)

k = 0 and u= F
(l)
θ (y

(l)
k ) in case y(l)

k > 0.

The multivariate censored extreme value setting is implemented for d= 4 and four different scenarios summarized in Table

2.
:::
The

::::::
choice

::
of

::::::::
dimension

::
is
:::::::::
motivated

::
by

:::
the

:::
fact

::::
that

:::::::::
preliminary

:::::::
analyses

::::
had

:::::::
revealed

:
a
:::::
heavy

:::::::
increase

::
of

:::::::::::
computation

::::
time

:::
and

::::::::
numerical

::::::::
problems

:::
for

::::::
values

::
of

:
d
:::::::
greater

:::
than

::
4.
:
In each scenario the GEV0 distribution parameters for the observations
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µy ::
µ0 ξy::

ξ0 σy ::
σ0 µx :

µ ξx:
ξ
:

σx :
σ

A 0.0 -0.1 1.0 1.0 0.0 0.2

B 0.0 -0.1 1.0 0.0 0.0 2.0

C 1.0 0.3 1.0 0.0 0.0 2.0

D 0.0 0.0 1.0 0.0 0.0 1.0

Table 2. Different simulation scenarios for Setting 3.
:
2.

are chosen according to (µy, ξy,σy)
:::::::::
(µ0, ξ0,σ0), while the parameters for the ensemble predictions are chosen according to290

(µx, ξx,σx)
:::::::
(µ,ξ,σ). In both cases, the correlation matrix R

::
R from above is invoked with different choices of ρy and ρx ::

ρ0

:::
and

:
ρ
:
from the set {0.25,0.5,0.75} giving a total of 4× 9 = 36 scenarios.

Note that according to Scheuerer (2014) there is a positive probability for zero to occur when either ξ ≤ 0 or ξ > 0 and

µ < σ/ξ. The scenarios from Table 2 are chosen in such a way that either one of these two conditions is met.

:::
The

::::::::
scenarios

:::::
from

:::::
Table

::
2
:::::
were

:::
not

::::::
chosen

::
to
::::::

mimic
::::

real
::::
life

::::::::
situations

::
in

:::
the

::::
first

::::::
place,

:::
but

::
to
::::::::

emulate
::::::::::
pronounced295

:::::::::
differences

::
in

:::::::::::
distributions

:::
and

:::::::
account

:::
for

::
a
::::::
variety

::
of

::::::::::::::
misspecification

::::::
types.

::
In

:::::
future

::::::::
research

:
a
:::::
more

:::::::
detailed

::::
and

::::
data

:::::
based

:::::
study

::
of

:::
the

:::::::::
properties

::
of

:::
the

::::::
GEV0 ::

in
::::::::
ensemble

::::::::::::
postprocessing

:::
of

::::::::::
precipitation

::
is
::::::::

planned,
:::::
which

::::::
might

::::
give

::::::
further

:::::
insight

::::
into

:::
the

:::::::::::::
correspondence

::::
(and

::::::::
interplay)

:::
of

::
the

::::::
GEV0:::::::::

parameters
::
to

::::::::
typically

::::::::
occurring

::::::::
situations

:::
for

:::::::::::
precipitation.

:

3.3 Setting 4
:
3: Multivariate Gaussian distribution with changes over iterations

::::
time

In the preceding simulation settings, the misspecifications of the ensemble forecasts were kept constant over the iterations300

t= 1, . . . ,n within the simulation experiments. However, forecast errors of real-world ensemble predictions often exhibit sys-

tematic changes over time, for example due to seasonal effects or differences in flow-dependent predictability due to variations

of large scale atmospheric conditions. Here, we modify the multivariate Gaussian simulation setting from Section 3.1 to in-

troduce changes in the mean, variance and covariance structure of the multivariate distributions of observations and ensemble

forecasts. In analogy to practical applications of multivariate post-processing, the ensemble predictions and observations may305

be interpreted as multivariate in terms of location or prediction horizon, with changes of the misspecification properties over

time.

(S1) For iterations t= 1, . . . ,n, independent samples of observations and ensemble forecasts are generated as follows:

– observation: y ∼Nd(µ0,Σ
0), where µ0 = sin

(
2πt
n

)
+ (ε0, . . . , ε0)T ∈ Rd

::::::::::::::::::::::::::::
µ0 = sin

(
2πt
n

)
+ (0, . . . ,0)T ∈ Rd. To

obtain the correlation matrix Σ0, let Ri,j = ρ
|i−j|
0 +sin

(
2πt
n

)
, for i, j = 1, . . . ,d and S0 =RRT .

::::::::::
S0 =RRT . The310

covariance matrix S0 :::
S0 is scaled into the corresponding correlation matrix Σ0 using the R function cov2cor().

– ensemble forecasts: X1, . . . ,Xm
iid∼Nd(µ,Σ), where µ= sin

(
2πt
n

)
+ (ε, . . . , ε)T ∈ Rd. To obtain the correlation

matrix Σ we proceed as for the observations, however, we set Ri,j = ρ|i−j|+ sin
(

2πt
n

)
, for i, j = 1, . . . ,d (i.e., ρ0

is replaced by ρ).
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In contrast to Setting 1, the misspecifications in the mean and correlation structure now include a periodic component.315

:::
The

:::::
above

:::::
setup

::::
will

::
be

:::::::
denoted

::
by

:::::::
Setting

:::
3A.

::::::::
Following

::
a

:::::::::
suggestion

::::
from

::
an

::::::::::
anonymous

::::::::
reviewer,

:::
we

::::::
further

:::::::
consider

:
a
::::::
variant

::::::
which

::
we

:::::
refer

::
to

::
as

::::::
Setting

:::
3B.

::::
For

:::::::
iterations

::::::::::
t= 1, . . . ,n

:::
we

:::::::
generate

:::::::::::
independent

:::::::
samples

::
of

::::::::::
observations

::::
and

::::::::
ensemble

:::::::
forecasts

::
as
:::::::
follows:

:

–
::::::::::
observation:

:::::::::::::::::
y ∼Nd(µ0,Σ

0(t)),
::::::
where

:::::::::::::::::::
µ0 = (0, . . . ,0)T ∈ Rd.

:::
To

::::::
obtain

:
a
::::::::::
correlation

::::::
matrix

::::
Σ(t)

::::
that

:::::
varies

:::
over

:::::::::
iterations

:::
we

:::
set

::::::::::::::::
Σ0
i,j(t) = ρ

|i−j|
0 (t),

:::
for

::::::::::::
i, j = 1, . . . ,d,

::::::
where

:::
the

::::::::::
correlation

:::::::::
parameter

:::::
ρ0(t)

:::::
varies

::::
over320

:::::::
iterations

:::::::::
according

::
to

ρ0(t) = ρ0 ·
(

1− a

2

)
+ ρ0 ·

(a
2

)
sin

(
2πt

n

)
:::::::::::::::::::::::::::::::::::

::
for

:::::::::
a ∈ (0,1).

::::
The

::::
lag-1

::::::::::
correlations

::::
thus

:::::::
oscillate

:::::::
between

:::
ρ0 :::

and
::::::::::
ρ0 · (1− a).

:

–
::::::::
ensemble

::::::::
forecasts:

:::::::::::::::::::::::
X1, . . . ,Xm

iid∼Nd(µ,Σ(t)),
::::::

where
::::::::::::::::::
µ= (ε, . . . , ε)T ∈ Rd.

::::::
Similar

::
to
:::

the
::::::::::::

observations,
:::
we

::
set

:::::::::::::::::
Σi,j(t) = σρ|i−j|(t),

:::
for

:::::::::::
i, j = 1, . . . ,d,

::::::
where325

ρ(t) = ρ ·
(

1− a

2

)
+ ρ ·

(a
2

)
sin

(
2πt

n

)
,

:::::::::::::::::::::::::::::::::

::::
with

:
a
:::::
from

:::::
above.

::::
The

::::::::::
correlations

:::
for

:::
the

::::::::
ensemble

:::::::
member

:::::::
forecasts

::::
thus

:::::::
oscillate

:::::::
between

::
ρ
:::
and

:::::::::
ρ · (1− a)

::::::
Settings

::::
3A

:::
and

:::
3B

:::::
differ

:::
in

:::
the

::::::::
variations

:::
of

:::
the

:::::
mean

:::
and

::::::::::
covariance

:::::::
structure

::::
over

:::::
time.

::::
For

::::
both,

:::
we

:::::::
proceed

:::
as

::::::
follows.

:

(S2) As in Setting 1, we employ the standard Gaussian EMOS model (2). However, to account for the changes over iterations330

we now utilize a rolling window consisting of pairs of ensemble forecasts and observations from the 100 iterations

preceding t as training set to obtain estimates of the EMOS coefficients. See Lang et al. (2020) for a detailed discussion

of alternative approaches to incorporate time dependence in the estimation of post-processing models.

(S3) The application of the multivariate post-processing methods is identical to the approach taken in Setting 1. Note that we

deliberately follow the naive standard implementations (see Section 2.2) here to highlight some potential issues of the335

Schaake shuffle in this context.

The above setting
::::::
Setting

:::
3A is implemented for d= 5, ε= 1,σ2 = 1

:::::::::
d= 5, ε= 1

:
and all combinations of ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}.

As before the simulation experiment is
:::
For

::::::
Setting

::::
3B,

::
we

:::::::::
investigate

:::::::
separate

::::
sets

::
of

:::
low

:::::::::::
(ρ0 = 0.25),

:::::::
medium

::::::::
(ρ0 = 0.5)

::::
and

::::
high

:::::::::
(ρ0 = 0.75)

::::
true

:::::::::
correlation,

::::
with

::::::::::::
corresponding

::::::
choices

::
of

::
ρ

::::
with

:::
low

::::::::::::::::::
(ρ ∈ {0.2,0.25,0.3}),

:::::::
medium

:::::::::::::::::::::::::
(ρ ∈ {0.4,0.45,0.5,0.55,0.6})

:::
and

::::
high

::::::::::::::::::
(ρ ∈ {0.7,0.75,0.8})

::::::
values,

::::::::::
respectively.

:::::::
Further,

::::::
values

::
of

:::::::::::::::::::::::
d= 5, ε= 1,σ ∈ {0.5,1,5}

:::
and

::::::::::::::::
a ∈ {0.2,0.5,0.7}

:::
are340

:::::::::
considered

::
for

:::::
each

::
of

::::
these

::::
sets.

:::
As

::::::
before

:::::::::
simulation

::::::::::
experiments

:::
are repeated 100 times for each of the parameter combina-

tions.
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Figure 1. Summaries of DM test statistic values based on the CRPS. ECC-Q forecasts are used as reference model such that positive

values of the test statistic indicate improvements over ECC-Q and negative value indicated
::::

values
::::::
indicate

:
deterioration of forecast skill.

Boxplots summarize results of from multiple parameter combinations for the simulation settings, with
:::::::
potential restrictions on the simulation

parameters indicated in the plot title. For example, boxplots in the first panel summarize simulation results from all parameter combinations

of Setting 1 (and the 100 Monte Carlo repetitions each) subject to ε= 1. The horizontal gray stripe indicates the acceptance region of the

two-sided DM test under the null hypothesis of equal predictive performance at a level of 0.05.

4 Results

In the following, we focus on comparisons of the relative predictive performance of the different multivariate post-processing

methods and apply proper scoring rules for forecast evaluation. In particular, we use the energy score (ES; Gneiting et al., 2008)345

and variogram score of order 1 (VS; Scheuerer and Hamill, 2015) to evaluate multivariate forecast performance. Diebold-

Mariano (DM; Diebold and Mariano, 1995) tests are applied to assess the statistical significance of the score differences

between models. Details on forecast evaluation based on proper scoring rules and DM tests are provided in Appendix B. Note

that proper scoring rules are often used in the form of skill scores to investigate relative improvements in predictive performance

in the meteorological literature. Here, we instead follow suggestions of Ziel and Berk (2019) who argue that the use of DM350

tests is of crucial importance to appropriately discriminate between multivariate models.

While our focus here is on multivariate performance, we briefly demonstrate that the univariate post-processing models

applied in the different simulation settings usually work as intended.

4.1 Univariate performance

The univariate predictive performance of the raw ensemble forecasts in terms of the CRPS is improved by the application355

of univariate post-processing methods across all parameter choices in all simulation settings. The magnitude of the relative

improvements by post-processing depends on the chosen simulation parameters, exemplary results are shown in Figure 1. Note

that
::::
The

:::::
results

:::
for

::::::
Setting

::
2
:::
are

::::::
omitted

:::
as

:::
they

::::
vary

:::::
more

:::
and

::::::::
strongly

::::::
depend

::
on

:::
the

:::::::::
simulation

::::::::::
parameters.
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::::::
ECC-Q

::::
does

:::
not

:::::::
change

:::
the

:::::::
marginal

:::::::::::
distributions,

:::
the

:::::::::
univariate

::::::::
forecasts

:::
are

::::
thus

:::::::
identical

::
to

::::::
solely

:::::::
applying

:::::::::
univariate

:::::::::::::
post-processing

:::::::
methods

::
in

:::
the

::::::
margins

:::::::::
separately,

:::::::
without

:::::::::
accounting

:::
for

:::::::::::
dependencies.

:::
We

::::
will

::::
later

::::
refer

::
to

:::
this

::
as

:::::::::
EMOS-Q.360

::::
Note

:::
that

:::
for

:
ECC-S , dECC and SSh are omitted as

:::
and

::::
SSh

:::::::::
differences

::
in

:
the univariate forecast distributions are identical

::::::::
compared

:
to those of ECC-Q , subject

:::
may

:::::
arise

::::
from

:::::::::
randomly

::::::::
sampling

:::
the

:::::::
quantile

:::::
levels

::
in
:::::::

ECC-S
:::
and

::::
due to random

fluctuations due to the 10 random repetitions that were performed to account for simulation uncertainty of those methods. 4

::::::::
However,

::
we

::::::
found

:::
the

:::::
effects

:::
on

:::
the

::::::::
univariate

::::::
results

::
to

::
be

:::::::::
negligible

:::
and

::::
omit

:::::::
ECC-S,

:::::
dECC

::::
and

::::
SSh

::::
from

::::::
Figure

::
1.

For the simulation parameter values summarized there, univariate post-processing works as intended with statistically signif-365

icant improvements over the raw ensemble forecasts. Note that for GCA the univariate marginal distributions are modified due

to the transformation step in (4). While the quantile forecasts of ECC-Q are
::::
close

::
to

:
optimal in terms of the CRPS (Bröcker,

2012) the
::::::::
(randomly

::::::::
sampled) univariate GCA forecasts do not possess this property, resulting in worse univariate performance

compared to all other methods.

To give an impression of the univariate performance of raw ensemble forecasts compared to post-processing for Setting 3, the370

four scenarios from Table 2 are considered and CRPS skill scores for the raw ensemble are computed with ECC-Q as reference

model, see Figure ??. Negative skill score values indicate an improvement of ECC-Q over the raw ensemble, while positive

values indicate the contrary. Scenario D exhibits the smallest level of improvement, which is to expected, since scenario D

reflects a situation where raw ensemble forecasts stem from the same distribution as the observations.

CRPS skill score of raw ensemble with ECC-Q as reference model for the four different scenarios considered in Setting 3.375

The boxplots summarize results over 100 repetitions of each individual experiment.

4.2 Multivariate performance

We now compare the multivariate performance of the different post-processing approaches presented in Section 2.2. Multivari-

ate forecasts obtained by only applying the univariate post-processing methods without accounting for dependencies (denoted

by EMOS-Q) as well as the raw ensemble predictions (ENS) are usually significantly worse and will be omitted in most com-380

parisons below unless indicated otherwise. Additional figures with results for all parameter combinations in all settings are

provided in the Supplementary Material.

4.2.1 Setting 1: Multivariate Gaussian distribution

The tuning parameter ε governing the bias in the mean vector of the ensemble forecasts only has very limited effects on the

relative performance of the multivariate post-processing methods. To retain focus we restrict our attention to ε= 1. Figure 2385

shows results in terms of the ES for two different choices of σ, using multivariate forecasts of ECC-Q as reference method. For

visual clarity, we omit parameter combinations where either ρ ∈ {0.1,0.9} or ρ0 ∈ {0.1,0.9}. Corresponding results are avail-

able in the Supplementary Material. Note that the relative forecast performance of all approaches except for dECC generally

does not depend on σ, we
:
.
:::
We thus proceed to discuss the remaining approaches first, and dECC last.

4In fact, ECC-Q does not change the marginal distributions, the univariate forecasts are thus identical to solely applying univariate post-processing methods

in the margins separately, without accounting for dependencies. We will later refer to this as EMOS-Q.
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Figure 2. Summaries of DM test statistic values based on the ES for Setting 1 with ε= 1, and σ = 0.5 (top), and σ =
√
5 (bottom). ECC-Q

forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative value

indicated
:::::
values

::::::
indicate

:
deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual

experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive

performance at a level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified

(ρ= ρ0) are surrounded by black boxes.
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Figure 3. As Figure 2, but summarizing results in terms of the VS.
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If the correlation structure of the unprocessed ensemble forecasts is correctly specified (i.e., ρ= ρ0), no significant dif-390

ferences can be detected between ECC-Q, ECC-S and SSh. In contrast, GCA (and dECC for larger values of σ) perform

substantially worse. The worse performance of GCA might be due to the larger forecast errors in the univariate margins, see

Section 4.1.

In the cases with misspecifications in the correlation structure (i.e., ρ 6= ρ0), larger differences can be detected among all

methods. Notably, SSh never performs substantially worse than ECC-Q and is always among the best performing approaches.395

::::
This

::
is

:::
not

:::::::::
surprising

::
as

:::
the

:::::
only

::::::::
drawback

::
of

::::
SSh

:::
in

:::
the

::::::
present

:::::::
context

::::
and

:::::
under

:::
the

::::::
chosen

::::::::::::::
implementation

::::::
details

::
is

::
the

::::::::::
underlying

:::::::::
assumption

:::
of

:::::::::::::
time-invariance

::
of

:::
the

:::::::::
correlation

::::::::
structure,

::::::
which

:::
will

:::
be

:::::::
revisited

::
in
:::::::

Setting
::
3. The larger the

absolute difference between ρ and ρ0, the greater the improvement of SSh relative to ECC-Qas
:
.
::::
This

::
is

:::
due

::
to
::::

the
:::
fact

::::
that

it becomes more and more beneficial to learn the dependence template from past observations rather than the raw ensemble
:
,

the less information the ensemble provides about the true dependence structure. GCA also tends to outperform ECC-Q if400

the differences between ρ and ρ0 are large, however, GCA always performs worse than SSh and shows significantly worse

performance than ECC-Q if the misspecifications in the ensemble are not too large (i.e., if ρ and ρ0 are equal or similar).

The relative performance of ECC-S depends on the ordering of ρ and ρ0. If ρ > ρ0, ECC-S significantly outperforms ECC-Q,

however, if ρ < ρ0 significant ES differences in favor of ECC-Q can be detected. For dECC, the performance further depends

on the misspecification of the variance structure in the marginal distributions. If ρ > ρ0, the DM test statistic values move from405

positive (improvement over ECC-Q) to negative (deterioration compared to ECC-Q) values for increasing σ. By contrast, if

ρ < ρ0 the values of the test statistic instead change from negative to positive for increasing σ. The differences are mostly

statistically significant, and indicate the largest relative improvements among all methods in cases of the largest possible

differences between ρ and ρ0. However, note that for some of those parameter combinations with small ρ and large ρ0, even

EMOS-Q can outperform ECC-Q and ECC-S. In these situations, the raw ensemble forecasts contain very little information410

about the dependence structure and the ES can be improved by assuming independence instead of learning the dependence

template from the ensemble.

Results in terms of the VS are shown in Figure 3. Most of the conclusions from the results in terms of the ES extend directly

to comparisons based on the VS. SSh consistently remains among the best performing methods and provides significant im-

provements over ECC-Q unless ρ= ρ0, however, alternative approaches here outperform SSh more often. Notably, the relative415

performance of GCA is consistently better in terms of the VS than in terms of the ES. For example, the differences between

GCA and SSh appear to generally be negligible and GCA does not perform worse than ECC-Q for any of the simulation param-

eter combinations. These differences between the results for GCA in terms of ES and VS can potentially
::::
may be explained by

the greater sensitivity of the VS to misspecifications in the correlation structure, whereas the ES shows a stronger dependence

on the mean vector.420

For ECC-S and dECC, the general dependence on values of ρ, ρ0 and σ (for dECC) is similar to the results for the ES, but

the magnitude of both positive as well as negative differences to all other methods is increased. For example, it is now possible

to find parameter combinations where either ECC-S or dECC (or both) substantially outperform both GCA and SSh.
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4.2.2 Setting 2: Multivariate truncated Gaussian distributions

Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for Setting 2 with ε= 3,µ0 = 2, and σ = 1.425

ECC-Q forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q

and negative value indicated deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of

each individual experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null

hypothesis of equal predictive performance at a level of 0.05. Simulation parameter choices where the correlation structure of

the raw ensemble is correctly specified (ρ= ρ0) are surrounded by black boxes.430

Figure ?? summarizes results for Setting 2 in terms of the ES (top) and the VS (bottom). In the interest of brevity, we only

show results for σ = 1

:::
The

::::
role

::
of

:::::::::
ensemble

:::
size

:::
m

::
To

::::::
assess

:::
the

:::::
effect

::
of

:::
the

:::::::::
ensemble

::::
size

::
m

:::
on

:::
the

::::::
results

::::::::
additional

::::::::::
simulations

:::::
have

::::
been

:::::::::
performed

::::
with

::::
the

:::::::::
simulation

:::::::::
parameters

::::
from

::::::
Figure

::
2,

:::
but

:::::::
ensemble

:::::
sizes

:::::::
between

:
5
:
and ρ,ρ0 ∈ {0.25,0.5,0.75}, but discuss the effect of misspecifications435

of the variance below. Corresponding plots
:::
100.

:::::::::::::
Corresponding

::::::
figures are provided in the Supplemental Material.

Overall, SSh consistently provides significant improvements over ECC-Q except for settings in which the correlation

structure of the ensemble is correctly specified (ρ= ρ0) where no significant differences can be detected
::::::
Overall,

:::
the

:::::::
relative

::::::
ranking

::
of

:::
the

::::::::
different

:::::::
methods

::
is

::::
only

::::
very

:::::
rarely

:::::::
effected

::
by

:::::::
changes

::
in
:::
the

::::::::
ensemble

::::
size. The relative differences in favor

of SSh are increased for larger absolute differences of ρ and ρ0. While these findings are in line with the results from Setting440

1 and hold for both ES and VS, the relative performance of GCA is now somewhat different from before. In particular terms

::::
terms

:::
of

:::
the

:::
ES

:::::::
between

::::::
ECC-Q

::::
and

:::::::
ECC-S,

:::
and

:::::::
between

:::::::
ECC-Q

:::
and

:::::
GCA

:::::::
become

::::::::::
increasingly

:::::::::
negligible

::::
with

:::::::::
increasing

::::::::
ensemble

::::
size.

:::::::
Further,

::::
SSh

:::::
shows

::::::::
improved

:::::::::
predictive

:::::::::::
performance

::
for

::::::
larger

:::::::
numbers

::
of
:::::::::

ensemble
::::::::
members

:::
for

::::::
ρ0 < ρ

::
in

:::
case

:
of the ES, GCA here performs worse for many parameter settings. In particular, GCA is significantly worse than ECC-Q

if ρ= ρ0, and does not offer any improvements over ECC-Q if ρ and ρ0 are not too different. By contrast, in terms
:::
and

:::
for445

:::::
ρ0 > ρ

:::
in

::::
case of the VSGCA shows much better performance and outperforms ECC-Q in almost all cases. Even for cases

where ρ= ρ0, no significant differences
:
.
:::
The

:::::::
relative

:::::::::::
performance

::
of

::::::
dECC

::
is

:::::::
strongly

:::::::
effected

::
by

::::::::
changes

::
in

::
m

:::
for

:::::
large

::::::::::::::
misspecifications

::
in

:::
the

:::::::::
correlation

::::::::::
parameters.

::
A

:::::::
positive

:::::
effect

::
of

:::::
larger

:::::::
numbers

:::
of

:::::::
members

:::::::
relative

::
to

::::::
ECC-Q

:
in terms of

VS
::::
both

::::::
scoring

:::::
rules

:
can be detected .

As before, the results for ECC-S and dECC strongly depend on the misspecification of the correlation structure. Further, the450

results now additionally vary with the variance misspecification parameter
::
for

::::::
ρ0 > ρ

:::::
when

:::::
σ < 1,

::::
and

::
for

::::::
ρ0 < ρ

:::::
when

::::::
σ > 1.

::
In

::::
both

:::::
cases,

:::
the

::::::::::::
corresponding

::::::
effects

:::
are

:::::::
negative

:
if
:::
the

::::::::::::::
misspecification

::
in σ also for ECC-S

::
is

:::::::
reversed.

:

:::
The

::::
role

::
of

::::::::::
dimension

:
d

:::::::::
Additional

:::::::::
simulations

:::::
were

:::::
further

:::::::::
performed

::::
with

::::::::::
dimensions

:
d
:::::::
between

::
2

:::
and

::
50

::::
and

:::
the

:::::::::
simulation

:::::::::
parameters

::::
from

::::::
above.

::
In

:::
the

::::::
interest

::
of

:::::::
brevity,

:::
we

::::
refer

::
to
:::

the
::::::::::::

Supplemental
:::::::
Material

:::
for

::::::::::::
corresponding

::::::
figures. In terms of the ES,

::
the

::::::
results

:::
for455
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ECC-S provides
::
are

::::::
largely

:::
not

:::::::
effected

:::
by

:::::::
changes

::
in

:::::::::
dimension,

:::::::
whereas

:::
the

:::::::
relative

::::::::::
performance

::
of
:::::::

ECC-S
::::::::
improves

::::
with

::::::::
increasing

::
d
:::
and

::::::
minor improvements over ECC-Q for ρ > ρ0 and similar forecast quality for ρ≤ ρ0. However, the forecast

quality deteriorates for larger values of σ and the ECC-S forecasts are significantly worse than those of ECC-Q, even for cases

where ρ= ρ0:::
can

::
be

::::::::
detected

::::
even

:::
for

::::::::
correctly

::::::::
specified

:::::::::
correlation

::::::::::
parameters

:::
for

::::
high

::::::::::
dimensions.

::::
For

:::::
GCA,

::
a
:::::::
marked

::::::::::
deterioration

::
of

:::::::
relative

::::
skill

:::
can

:::
be

:::::::
observed

:::
in

:::::
terms

::
of

:::
the

:::
ES,

::::::
which

:::
can

:::::
likely

::
be

:::::::::
attributed

::
to

::::::::
sampling

::::::
effects

::::::::
discussed460

:::::
above. In terms of the VS, ECC-S also provides significant improvements over ECC-Q for ρ > ρ0 and even provides the best

forecasts among all models, but shows significantly worse performance for ρ < ρ0 across all values of σ.

The results for dECC are similar for ES and VS. For both scoring rules and ρ < ρ0, the values of the DM test statistics

move from positive (improvement over ECC-Q) to negative (deterioration compared to ECC-Q) values with increasing σ. For

ρ > ρ0, they instead change from negative to positive values. While improvements over ECC-Q can be observed for cases with465

a correctly specified correlation structure of the ensemble (ρ= ρ0) and σ = 1, dECC performs worse than ECC-Q for those

cases if σ 6= 1
:::::
GCA

:::::
partly

::::::
shows

:::
the

::::
best

::::::
relative

:::::::::::
performance

::::::
among

:::
all

:::::::
methods

::::
for

:::::::::
dimensions

::::::::
between

::
10

::::
and

:::
20,

::::
and

:::::::
performs

:::::
worse

:::
in

:::::
higher

::::::::::
dimensions.

::::
The

::::::
relative

::::::::::
differences

::
in

::::::::
predictive

:::::::::::
performance

::
in

::::
favor

:::
of

:::
SSh

:::
are

:::::
more

::::::::::
pronounced

::
in

:::::
larger

::::::::::
dimensions,

::
in

::::::::
particular

:::
in

::::
cases

:::::
with

::::
large

::::::::::::::
misspecification

::
of

:::
the

:::::::::
correlation

::::::::::
parameters.

::::::::
Changes

::
of

:::
the

:::::::
relative

::::::::::
performance

::
of

::::::
dECC

::
in

:::::
terms

::
of

:::::
both

::::::
scoring

:::::
rules

::
for

:::::::::
increasing

::::::::
numbers

::
of

::::::::::
dimensions

:::
are

::::::
similar

::
to

:::::
those

::::::::
observed

:::
for470

::::::::
increasing

::::::::
numbers

::
of

::::::::
ensemble

::::::::
members.

4.2.2 Setting 3
:
2: Multivariate censored GEV distributions

The four considered scenarios in Table 2 constitute different types of deviation of the ensemble from the observation properties.

::::::
Results

:::
for

:::::::
Scenario

::
B
:::
are

:::::
given

::::::
below

::
in

::::::
Figure

::
4,

:::::
while

:::
the

::::::::::::
corresponding

::::::
figures

:::
for

::::::::
Scenarios

:::
A,

::
C,

::::
and

::
D

:::
can

::
be

::::::
found

::
in

::::::
Section

:::
2.1

::
of

:::
the

:::::::::::
Supplement.

:::
As

:::
the

::::::
GEV0 :::::::::

distribution
::::::
yields

:::::::
extreme

::::::
outliers

:::::
much

:::::
more

:::::::::
frequently

::::
than

:::
the

::::::::
Gaussian475

:::::::::
distribution

::
in
:::::::

Setting
::
1,

:::
all

::::::
figures

:::::
(here

::::
and

::
in

:::
the

::::::::::::
Supplemental

::::::::
Material)

:::::
show

::::
only

:::::
those

::::::
values

::::
that

:::
are

::::::
within

:::::
1.5×

::::::::::
interquartile

:::::
range,

::
so

::::
that

:::
the

::::::
overall

::::::::::
comparison

::
of

:::
the

:::::::
boxplots

::::
does

:::
not

::::::
suffer

::::
from

:::::
single

:::::::
extreme

:::::::
outliers.

:

– In Scenario B the location is correctly specified, but scale and shape are misspecified such that ensemble forecasts have

both larger scale and shape, resulting in a heavier right tail and slightly higher point masses at zero. This scenario is taken

as a reference among the four considered ones and shown in Figure 4. Additional figures with results for the remaining480

scenarios are provided in the Supplemental Material. Multivariate post-processing improves considerably upon the raw

ensemble. ECC-Q is outperformed by SSh and GCA only when the absolute difference between ρy and ρx :
ρ0::::

and
::
ρ

becomes larger. As before, this is likely caused by the use of past observations to determine the dependence template by

GCA and SSh which proves beneficial in comparison to ECC-Q in cases of a highly incorrect correlation structure in the

ensemble. For correctly specified correlations (panels on the main diagonal in Figure 4), the relative performance of the485

methods does not depend on the actual value of correlation.

– In Scenario A the observation location
::::::::
parameter is shifted from 0 to a positive value for the ensemble, the observation

scale is larger, and shape smaller than in the ensemble. Therefore, the ensemble forecasts come from a distribution
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Figure 4. Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for setting
:::::
Setting

::
2,
:::::::
scenario B from Table 2

:
,

::::
based

::
on

:::::::
m= 50

:::::::
ensemble

:::::::
members. ECC-Q forecasts are used as reference model such that positive values of the test statistic indicate

improvements over ECC-Q and negative value indicated
::::
values

::::::
indicate

:
deterioration of forecast skill. Boxplots summarize results of the 100

Monte Carlo repetitions of each individual experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test

under the null hypothesis of equal predictive performance at a level of 0.05.
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with smaller spread than the observations, which is also centered away from zero and has lower point mass at 0. In

comparison to Scenario B there are more outliers, especially for ECC-S. In case of correctly specified correlations, the490

performance of the methods also does not depend on the actual value of correlation as in Scenario B. Notably, EMOS-

Q here performs mostly similar to the ensemble, while in the other 3 scenarios it typically performs worse than the

ensemble if ρx > ρy::::::
ρ > ρ0.

– In Scenario C the observation location is larger, the scale smaller, and the shape larger than in the ensemble distribution.

This results in an observation distribution with a much more heavy right tail and a much larger point mass at 0 compared495

to the ensemble distribution. Here, post-processing models frequently offers no or only slight improvements over the

raw ensemble. While ECC-Q does not always outperform the raw ensemble forecasts, SSh still shows improved forecast

performance. As in the other scenarios, in case of correctly specified correlations, the performance of the methods does

not depend on the actual value of correlation.

– In Scenario D all univariate distribution parameters are correctly specified. Therefore, the main differences in perfor-500

mance are imposed by the different misspecifications of the correlation structure. The main difference compared to the

other scenarios is given by the markedly worse effects of not accounting for multivariate dependencies during post-

processing (EMOS-Q).

In general, the methods perform differently across the four scenarios, but for most situations multivariate post-processing

improves upon univariate post-processing without accounting for dependencies. Furthermore, SSh reveals a good performance505

in all four scenarios when ρy :
ρ0:

differs considerably from ρx:ρ. The performance of SSh has a tendency to improve further

when the observation correlation is larger than the ensemble correlation. Within each of the four scenarios, the performance

of the methods is nearly identical in cases where the correlation is correctly specified. In other words, as long as the ensemble

forecasts correctly represent the correlation of the observations, the actual value of the correlation does not have an impact on

the performance of a multivariate post-processing method. Above described observations can be found both in terms of the ES510

, as well as
:::
and

:
the VS.

In addition to the scenarios from Table 2, further scenario variations were considered for ρy = 0.75 and ρx = 0.25
::::::::
ρ0 = 0.75

:::
and

::::::::
ρ= 0.25, that is for the case where ensemble correlation is too low compared to the observations. Figure 5 shows the

situation where the observation location
::::::::
parameter is larger, the scale smaller, but the shape also smaller than in the ensemble

forecasts. This contrasts the situation in Scenario C. While in C the observations were heavier tailed with higher point mass at 0,515

here it is the other way around
::::
round

:
(the ensemble distribution is heavier tailed with higher point mass at 0). In accordance to

::::
with Scenarios A, B, C (where there are parameter misspecifications in the ensemble compared to the observations), EMOS-Q

performs better than the raw ensemble and also better than dECC (as in B and C), while SSh and GCA perform best. However,

by
::
in

:
contrast to results in terms of the ES, GCA exhibits an even better performance compared to the other models in terms of

the VS. This indicates that the VS might be
:
is better able to account for the correctly specified (or by post-processing improved)520

correlation structure than the ES.
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Figure 5. As Figure 4, but based on ES and VS for (µy, ξy,σy) = (2.0,−0.1,1.0)
::::::::::::::::::::::
(µ0, ξ0,σ0) = (2.0,−0.1,1.0)

:
and

(µx, ξx,σx) = (0.0,0.0,2.0)
::::::::::::::::::
(µ,ξ,σ) = (0.0,0.0,2.0), where ρy = 0.75

:::::::
ρ0 = 0.75

:
and ρx = 0.25

:::::::
ρ= 0.25,

:::
and

::::::::
ensemble

:::
size

:::::::
m= 50

:::
The

::::
role

::
of

:::::::::
ensemble

:::
size

:::
m

::
To

:::::
assess

:::
the

:::::
effect

:::
of

::
the

:::::::::
ensemble

:::
size

::
m

:::::::::
additional

::::::::::
simulations

::::
have

::::
been

:::::::::
performed

:::
for

::::
each

::
of

:::
the

::::
four

::::::::
scenarios

::
in

:::::
Table

:
2
::::
with

::::::::
ensemble

:::::
sizes

:::::::
between

::
5
:::
and

:::::
100.

::::::::::::
Corresponding

:::::::::::
comparative

::::::
figures

:::::::::
comparing

::::::::
ensemble

:::::
sizes

:::::::::::::::
m= 5,20,50,100

::
for

:::
the

:::::::::
Scenarios

::
A,

::
B,

:::
C,

::
D

:::
are

:::::::
provided

:::
in

::::::
Section

:::
2.2

::
of

:::
the

::::::::::::
Supplemental

::::::::
Material.

:::::::
Overall,

:::
the

:::
size

:::
of

:::
the

::::::::
ensemble

::::
only525

:::
has

:
a
::::::
minor

:::::
effect

:::
on

:::
the

::::::
relative

:::::::::::
performance

:::
of

:::
the

::::::::::
multivariate

::::::::
methods

::::
apart

:::::
from

:::::
GCA,

::::::
which

:::::::
strongly

:::::::
benefits

:::::
from

::
an

:::::::::
increasing

:::::::
number

::
of

::::::::
members

::::::
across

::
all

::::
four

:::::::::
scenarios,

::::::::::
specifically

::::
with

::::::
regard

::
to

:::
ES.

:::::
This

:::::::::::
improvement

::
is

:::::
likely

::::
due

::
to

:::
the

::::::::
sampling

:::::
issues

:::::::::
discussed

:::::
above

::::
and

::
is

:::
less

::::::::::
pronounced

:::
in

:::::
terms

::
of

:::
the

::::
VS.

:::
As

::
in

:::::::
Setting

:
1
::::

the
::::::
relative

::::::::::
differences

:::::::
between

::::::
ECC-Q

:::
and

:::::::
ECC-S

::
in

:::::
terms

::
of

:::
the

::
ES

:::::::
become

::::::::::
increasingly

:::::::::
negligible

::::
with

::::::::
increasing

:::::::::
ensemble

:::
size

::
in

:::
all

:::::::::
considered

:::::::
scenarios

::::::::::
(especially

:::
for

:::::::
ρ0 = ρ).

::::
This

:::::::::::
phenomenon

:
is
::::

also
::::
less

::::::::::
pronounced

:::
for

:::
the

:::
VS.

:::
On

:::
the

:::::::
contrary

:::
to

:::
the

:::::::
methods

:::::
using530

::
the

:::::::::::
dependence

::::::::::
information,

:::
the

:::::::::::
performance

:::
of

::::::::
EMOS-Q

::::
(not

::::::::::
accounting

:::
for

::::::::::
dependence)

:::::::::
compared

::
to

:::::::
ECC-Q

::::::::
becomes

::::::::::
increasingly

:::::
worse

:::
for

::::::::
increasing

:::::::
number

::
of

::::::::
members

:::::
when

::::::::
measured

::
by

::::
ES.

:::
For

:::
VS,

:::
the

::::::::
influence

::
of

:::
the

:::::::
number

::
of

::::::::
members

::
on

::::::::
EMOS-Q

:::
is

::::
only

:::::
small.

::::::::::::
Interestingly,

:::
the

:::::::::
difference

::
in

:::::::::::
performance

::
of

::::
the

:::
raw

:::::::::
ensemble

:::
for

::
an

:::::::::
increasing

:::::::
number

:::
of

:::::::
members

::
is
:::::::::

negligible
::
in

::::
case

:::
the

::::::::::::::
misspecification

::
is
::::
only

::::::
minor

:::
and

:::
ES

::
is
::::::::::

considered.
:::
In

::::
case

::::
there

::
is
:::

no
::::::::::::::
misspecification

::::::::
(Scenario

:::
D),

:::
the

:::
raw

::::::::
ensemble

::::
can

::::::
slightly

::::::
benefit

:::::
from

::
an

:::::::::
increasing

:::::::
number

::
of

::::::::
members.

:::::::
Similar

::
to

:::
the

:::::
effect

:::
for

:::::::
ECC-Q,535

::::
when

:::::::::
measuring

:::::::::::
performance

:::::
with

::::
VS,

:::
the

:::::
effect

:::
on

:::
the

::::
raw

::::::::
ensemble

::
is
::::::::::

negligible.
:::::::
Further,

::
it

:::
can

:::
be

::::::::
observed

:::
that

::::
the

::::::::
difference

::
of

:::
the

::::::
results

:::::::
between

:::::::
varying

:::::::
numbers

::
of

::::::::
members

::
is

:::::::
smallest

:::
for

::::::
ρ0 = ρ.

:

4.2.3 Setting 4
:
3: Multivariate Gaussian distribution with changes over iterations

Figure ??
:
6
:
shows results in terms of ES and VS

::
for

::::::
Setting

:::
3A. We again only show results for ρ,ρ0 ∈ {0.25,0.5,0.75} and

refer to the Supplementary Material for further results. The most notable differences compared to Setting 1 are that the different540
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Figure 6. Summaries of DM test statistic values based on the ES (top) and the VS (bottom) for Setting 4
::
3A

:
with ε= 1 and σ = 1. ECC-Q

forecasts are used as reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative value

indicated
:::::
values

::::::
indicate

:
deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual

experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive

performance at a level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified

(ρ= ρ0) are surrounded by black boxes.
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Figure 7.
::::::::
Summaries

::
of

:::
DM

:::
test

::::::
statistic

::::::
values

::::
based

:::
on

::
the

:::
ES

::::
(top)

:::
and

:::
the

:::
VS

:::::::
(bottom)

:::
for

:::::
Setting

:::
3B

:::
for

:::::
σ = 1

:::
and

::::
high

:::::
values

::
of

::::
ρ,ρ0.

::::::
ECC-Q

:::::::
forecasts

:::
are

::::
used

::
as

:::::::
reference

:::::
model

::::
such

:::
that

::::::
positive

::::::
values

::
of

::
the

::::
test

::::::
statistic

::::::
indicate

:::::::::::
improvements

::::
over

::::::
ECC-Q

:::
and

::::::
negative

:::::
values

::::::
indicate

::::::::::
deterioration

::
of
:::::::

forecast
::::
skill.

:::::::
Boxplots

::::::::
summarize

::::::
results

::
of

:::
the

:::
100

:::::
Monte

:::::
Carlo

::::::::
repetitions

::
of

::::
each

::::::::
individual

:::::::::
experiment.

:::
The

:::::::
horizontal

::::
gray

::::
stripe

:::::::
indicates

:::
the

::::::::
acceptance

:::::
region

::
of

:::
the

:::::::
two-sided

::::
DM

::
test

:::::
under

:::
the

:::
null

::::::::
hypothesis

::
of

::::
equal

::::::::
predictive

:::::::::
performance

::
at

::
a

::::
level

::
of

::::
0.05.

:::::::::
Simulation

:::::::
parameter

:::::::
choices

:::::
where

::
the

:::::::::
correlation

:::::::
structure

::
of

:::
the

:::
raw

::::::::
ensemble

::
is

:::::::
correctly

:::::::
specified

::::::
(ρ= ρ0)

:::
are

::::::::
surrounded

:::
by

::::
black

:::::
boxes.

:

ECC variants here significantly outperform GCA and SSh not only for ensemble forecasts with correctly specified correlation

structure, but also for small deviations of ρ from ρ0. Significant ES differences in favor of SSh are only obtained for large

absolute differences of ρ and ρ0. Similar observations hold for GCA which, however, generally exhibits worse performance

compared to SSh. The ES differences among the ECC variants are only minor and usually not statistically significant.

Similar conclusions apply for the VS, however, GCA generally performs better than SSh, and ECC-S provides significantly545

worse forecasts compared to the other ECC variants for ρ < ρ0.

::::::
Results

:::
for

::::::
Setting

:::
3B

:::
are

::::::
shown

::
in

::::::
Figure

::
7.

::::
Note

::::
that

:::
the

:::::::
columns

::::
here

:::::
show

::::::::
different

:::::
values

:::
of

:
ρ
::::
and

:::
the

:::
row

::::::
refers

::
to

:
a
:::::::
specific

:::::
value

::
of

::
a.

:::::::
Similar

::
to

::::::
Setting

::::
3A,

:::
we

:::::::
observe

:::
that

:::
in

:::::
terms

::
of

:::
the

::::
ES,

:::::
dECC

::::
and

::::::
ECC-S

:::
do

:::
not

:::::
show

:::::::::
significant

:::::::::
differences

::
in

::::::::::
performance

:::::::::
compared

::
to

:::::::
ECC-Q,

:::::::
whereas

::::
GCA

::::
and

:::
SSh

::::
here

:::::::
perform

:::::
worse

:::
for

::
all

:::::::::
parameter

::::::::::::
combinations.

::
In

::::
terms

:::
of

:::
the

:::
VS,

::::
also

::::
GCA

::::
now

::::::::
performs

:::::
worse

::::
than

:::::::
ECC-Q

::
for

:::
all

:::::::::
correlation

::::::::::
parameters,

:::::::
whereas

::::::::::
significantly

:::::::
negative

::::
and550

::::::
positive

::::::::::
differences

::
of

::::::
ECC-S

:::
and

::::::
dECC

::::::::
compared

::
to

:::::::
ECC-Q

:::
can

::
be

::::::::
detected

::
for

::::::
ρ < ρ0::::

and
::::::
ρ > ρ0,

:::::::::::
respectively.

:::::::::
Additional

:::::
results

:::
for

:::::::
varying

:::::
values

:::
of

:
σ
::::
and

::
a,

:::
and

::::
sets

::
of

::::
low

::
or

:::::::
medium

::::::::::
correlations

:::
are

::::::::
provided

::
in

:::
the

:::::::::::
Supplemental

::::::::
Material.

::::
The

:::::
results

::::::::
generally

:::
do

:::
not

::::::
depend

::
on

:::
the

::::::
choice

::
of

::
σ.

:::::::
Results

:::
for

:::
low

:::
and

:::::::
medium

::::::::::
correlation

::::::::
parameter

::::::
values

:::
are

:::::::::::
characterized
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::
by

::::
less

:::::::::
substantial

:::::::::
differences

::::::::
between

:::
the

::::::::
methods.

::
In

:::::::::
particular,

::
it

::
is

::::
only

:::::
rarely

::::::::
possible

::
to

:::::
detect

:::::::::
significant

::::::::::
differences

::::
when

:::::::::
comparing

:::::::
ECC-Q

::::
and

::::
SSh,

:::
and

:::::
GCA

::::
only

::::::::
performs

:::::::::::
significantly

:::::
worse

::
in

:::::
terms

:::
of

:::
the

:::
ES.

:::::::
Further,

:::::
there

::::
exist

:::::
more555

::::::::
parameter

::::::::::::
combinations

::::
with

::::::::::::
improvements

:::
by

::::::
ECC-S

::::
and

::::::
dECC.

::::::::
However,

::::
note

::::
that

::::
due

::
to

:::
the

:::::
setup

:::
of

::::::
Setting

::::
3B,

:::
the

::::::::
variations

::::
over

::::
time

::
in

::::
both

:::::::::::
observations

:::
and

:::::::::
ensemble

:::::::::
predictions

::::
will

::
be

:::::
much

:::::::
smaller

::::
than

:::
for

::::
high

:::::::::
correlation

:::::::::
parameter

::::::
values.

::::::
Within

:
a
:::::
fixed

:::
set

::
of

:::::::::
correlation

::::::::::
parameters,

:::
the

:::::::
relative

:::::::::
differences

::::::::
between

:::
the

:::::::
methods

:::::::
become

:::::
more

::::::::::
pronounced

::::
with

::::::::
increasing

::::::
values

::
of

::
a.

:

Note that the main focus here
:
in
:::::

both
::::::
variants

:::
of

::::::
Setting

::
3 was to demonstrate that in (potentially more realistic) settings560

with changes over iterations
::::
time, naive implementations of the Schaake shuffle can perform worse than ECC variants. However,

similarity-based implementations of the Schaake shuffle (Schefzik, 2016; Scheuerer et al., 2017) are available and may be able

to alleviate this issue.

5 Discussion and conclusion

State of the art methods for multivariate ensemble post-processing were compared in four simulation settings which aimed to565

mimic different situations and challenges occurring in practical applications. Across all settings, the Schaake shuffle consti-

tutes a powerful benchmark method that proves difficult to outperform, except for naive implementations in the presence of

structural change
:::
(for

::::::::
example,

:::::::::::
time-varying

:::::::::
correlation

::::::::
structures

::::::::::
considered

::
in

::::::
Setting

::
3). By contrast to SSh, the Gaussian

copula approach typically only provides improvements over variants of ensemble copula coupling if the parametric assump-

tion of a Gaussian copula is satisfied or if forecast performance is evaluated with the variogram score. Results in terms of the570

CRPS further highlight an additional potential disadvantage in that the univariate forecast errors are larger compared to the

competitors.

Not surprisingly, variants of ensemble copula coupling typically perform the better the more informative the ensemble

forecasts are about the true multivariate dependence structure. A particular advantage compared to standard implementations of

SSh and GCA illustrated in Setting 4
:
3 may be given by the ability to account for flow-dependent differences in the multivariate575

dependence structure if those are
::
(at

::::
least

:::::::::::::
approximately)

:
present in the ensemble predictions, but not in a randomly selected

subset of past observations.

There is no consistently best method across all simulation settings and potential misspecifications among the different ECC

variants investigated here (ECC-Q, ECC-S and dECC). ECC-Q provides a reasonable benchmark model and will rarely yield

the worst forecasts among all ECC variants. Significant improvements over ECC-Q may be obtained by ECC-S and dECC ,580

however
:
in

:::::::
specific

::::::::
situations,

::::::::
including

:::::::
specific

:::::::::::
combinations

::
of

::::::::
ensemble

::::
size

:::
and

::::::::::
dimension.

:::
For

:::::::
example,

::::::
dECC

:::::::::
sometimes

:::::
works

::::
well

:::
for

:::::::::::::
underdispersive

:::::::::
ensembles

:::::
where

:::
the

::::::::::
correlation

::
is

:::
too

::::
low,

:::::::
whereas

::::::
ECC-S

::::
may

:::::
work

:::::
better

::
if

:::
the

::::::::
ensemble

:
is
:::::::::::::
underdispersive

::::
and

:::
the

:::::::::
correlation

::
is

:::
too

::::::
strong.

::::::::
However, the results will strongly depend on the exact misspecification of

the variance-covariance structure of the ensemble as well as the performance measure chosen for multivariate evaluation.

In light of the presented results it seems to be generally advisable to first test the Schaake shuffle along with ECC-Q. If585

structural assumptions on specific misspecifications of the ensemble predictions seem appropriate, extensions by other variants
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of ECC or GCA might provide improvements. However, it should be noted that the results for real-world ensemble prediction

systems may be influenced by many additional factors, and may differ when considering station-based or grid-based post-

processing methods. The computational costs of all presented methods are not only negligible in comparison to the generation

of the raw ensemble forecasts, but also compared to the univariate post-processing as no numerical optimization is required.590

It may thus be generally advisable to compare multiple multivariate post-processing methods for the specific dataset and

application at hand.

The simulation settings considered here provide several avenues for further generalization and analysis. For example, a

detailed investigation of the effect of the dimension d and a comparison of forecast quality in terms of multivariate calibration

(Thorarinsdottir et al., 2016; Wilks, 2017) is left for future work. Further, the autoregressive structure of the correlations across595

dimensions may be extended towards more complex correlation functions, see, e.g., Thorarinsdottir et al. (2016, Section 4.2).

While we only considered multivariate methods based on a two step procedure combining univariate post-processing and

dependence modeling via copulas, an extension of the comparison to parametric approaches along the lines of Feldmann et al.

(2015) and Baran and Möller (2015) present another starting point for future work. Note that within the specific choices for

Setting 1, the spatial EMOS approach of Feldmann et al. (2015) can be seen as a special case of GCA.600

We have limited our investigation to simulation studies only as those settings allow to readily assess the effects of different

types of misspecifications of the various multivariate properties of ensemble forecasts and observations, and may thus help to

guide implementations of multivariate post-processing. An
:::::::
Further,

::::
they

:::
are

::::
able

::
to

:::::::
provide

:
a
:::::

more
::::::::
complete

::::::
picture

:::
of

:::
the

:::::
effects

:::
of

:::::::
different

:::::
types

::
of

:::::::::::::::
misspecifications

::
on

:::
the

:::::::::::
performance

:::
of

:::
the

:::::::
different

::::::::
methods

::::
than

:::::
those

:::
that

::::
may

:::
be

::::::::
observed

::
in

:::::::
practical

:::::::::::
applications.

:::::::::::
Nonetheless,

::
an

:
important aspect for future work is to complement the comparison of multivariate605

post-processing methods by studies based on real-world datasets of ensemble forecasts and observations,
:::::::::
extending

:::::::
existing

::::::::::
comparisons

:::
of

::::::
subsets

:::
of

:::
the

:::::::
methods

::::::::::
considered

::::
here

::::::::::::::::::::::::::::::::::
(e.g., Schefzik et al., 2013; Wilks, 2015) . However, the variety of

application scenarios, methods and implementation choices likely requires large-scale efforts, ideally based on standardized

benchmark datasets. A possible intermediate step might be given by the use of simulated datasets obtained via stochastic

weather generators (see, e.g., Wilks and Wilby, 1999) which may provide arbitrarily large datasets with possibly more realistic610

properties than the simple settings considered here.

A different perspective on the results presented here concerns the evaluation of multivariate probabilistic forecasts. In recent

work Ziel and Berk (2019) argue that the use of Diebold-Mariano tests is of crucial importance for appropriately assessing

the discrimination ability of multivariate proper scoring rules and find that the ES might not have as bad discrimination ability

as indicated by earlier research. The simulation settings and comparisons of multivariate post-processing methods considered615

here may be seen as additional simulation studies for assessing the discrimination ability of multivariate proper scoring rules.

In particular, the results in Section 4 are in line with the findings of Ziel and Berk (2019) in that the ES does not exhibit inferior

discrimination ability compared to the VS. Nonetheless, the ranking of the different multivariate post-processing methods

strongly depends on the proper scoring rule used for evaluation, and further research on multivariate verification is required to

address open questions, improve mathematical understanding and guide model comparisons in applied work.620
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Code availability. R code with implementations of all simulation settings as well as code to reproduce the results presented here and in the

Supplemental Material is available from https://github.com/slerch/multiv_pp.

Appendix A: Details on the left-censored generalized extreme value
::::::
(GEV) distribution

When the GEV distribution is left-censored at zero, its cumulative distribution function can be written as

F (y) =

e
−t(y), y ≥ 0

0, y < 0
, where t(y) =


(
1 + ξ

(
y−µ
σ

))−1/ξ
, ξ 6= 0

e−(y−µ)/σ, ξ = 0

for y ∈Y, where Y = [µ−σ/ξ,∞) when ξ > 0, Y = (−∞,∞) when ξ = 0 and Y = (−∞,µ−σ/ξ] when ξ < 0. This de-

scribes a three-parameter distribution family, where µ ∈ R, σ > 0, and ξ ∈ R are location, scale, and shape of the non-censored625

GEV distribution, respectively.

Expectation and variance

Let Y be a random variable distributed according to GEV and censored at zero to the left. From the law of total expectation

E(g(Y )) = P (Y = 0)E(g(Y )|Y = 0) +P (Y > 0)E(g(Y )|Y > 0) ,

where the second term in the sum is given by

E(g(Y )1{Y >0}) =

∞∫
0

g(y)fY (y)dy .

Here, 1 denotes the indicator function, g is any function of Y such that g(Y ) is a random variable, and fY is the probability

density function (PDF) of the non-censored GEV. By noting that E(Y |Y = 0) = E(Y 2|Y = 0) = 0, expectation and variance

of the left-censored GEV can be computed from the two integrals
∫∞

0
yfY (y)dy and

∫∞
0
y2fY (y)dy, the former existing630

when ξ < 1 and the latter existing when ξ < 0.5. Both integrals are not derived analytically here, but evaluated by numerical

integration. In contrast to the non-censored GEV distribution, the variance of the left-censored version also depends on the

parameter µ, since different choices of µ lead to different left-censored CDFs which are not merely distinguished by location.

Therefore µ is a location parameter for the non-censored GEV, but not for the left-censored version.

Appendix B: Evaluating probabilistic forecasts635

B1 Proper scoring rules

The comparative evaluation of probabilistic forecasts is usually based on proper scoring rules. A proper scoring rule is a

function

S : F×Ω
:::
→ R,
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which assigns a numerical score S(F,y) to a pair of a forecast distribution F ∈ F and a realizing observation y ∈ Ω. Here, F640

denotes a class of probability distributions supported on Ω. The forecast distribution F may come in the form of a predictive

CDF, PDF, or a discrete sample as in the case of ensemble predictions. A scoring rule is called proper if

EGS(G,Y )≤ EGS(F,Y )

for all F,G ∈ F , and strictly proper if equality holds only if F =G. See Gneiting and Raftery (2007) for a review of proper

scoring rules from a statistical perspective.645

The most popular example of a univariate (i.e., Ω⊂ R) proper scoring rule in the environmental sciences is given by the

continuous ranked probability score (CRPS),

CRPS(F,y) =

∫
Ω

(F (z)−1{z ≥ y})2 dz.

Over the past years a growing interest in multivariate proper scoring rules accompanies the proliferation of multivariate

probabilistic forecasting methods in applications across disciplines. The definition of proper scoring rules from above straight-650

forwardly extends towards multivariate settings (i.e., Ω⊂ Rd). A variety of multivariate proper scoring rules has been proposed

over the past years, usually focused on cases where multivariate probabilistic forecasts are given as samples from the forecast

distributions.

To introduce multivariate scoring rules let y = (y(1), . . . ,y(d)) ∈ Ω⊂ Rd, and let F denote a forecast distribution on Rd

given through
::
by m discrete samples X1, . . . ,Xm from F with Xi = (X

(1)
i , . . . ,X

(d)
i ) ∈ Rd, i= 1, . . . ,m. Important examples655

of multivariate proper scoring rules include the energy score (ES; Gneiting et al., 2008),

ES(F,y) =
1

m

m∑
i=1

‖Xi−y‖− 1

2m2

m∑
i=1

m∑
j=1

‖Xi−Xj‖,

where ‖ · ‖ is the Euclidean norm on Rd, and the variogram score of order p (VSp; Scheuerer and Hamill, 2015),

VSp(F,y) =

d∑
i=1

d∑
j=1

wi,j

(∣∣∣y(i)− y(j)
∣∣∣p− 1

m

m∑
k=1

∣∣∣X(i)
k −X

(j)
k

∣∣∣p)2

.

Here, wi,j is a non-negative weight that allows to emphasize or down-weight pairs of component combinations, and p is660

the order of the variogram score. Following suggestions of Scheuerer and Hamill (2015), we considered p= 0.5 and p= 1.

As none of the simulations settings indicated any substantial differences, we set p= 1 throughout and denote VS1(F,y) by

VS(F,y). Since the generic multivariate structure of the simulation settings does not impose any meaningful structure in pairs

of components we focus on the unweighted versions of the variogram score. Several weighting schemes have been tested, but

did not lead to any substantially different conclusions.665

We utilize implementations provided in the R package scoringRules (Jordan et al., 2019) to compute univariate and

multivariate scoring rules for forecast evaluation and post-processing model estimation.
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B2 Diebold-Mariano tests

Statistical tests of equal predictive performance are frequently used to assess the statistical significance of observed score

differences between models. We focus on Diebold-Mariano (DM; Diebold and Mariano, 1995) tests which are widely used in670

the econometric literature due to their ability to account for temporal dependencies. For applications in the context of post-

processing, see, e.g., Baran and Lerch (2016).

For a (univariate or multivariate) proper scoring rule S
::
S and sets of two competing probabilistic forecasts Fi and Gi,

i= 1, . . . ,ntest over a test set, the test statistic of the DM test is given by

TDM
ntest

=
√
ntest

S(F,y)−S(G,y)

σ̂
, (B1)675

where S(F,y) = 1
ntest

∑ntest
i=1S(Fi,yi) and S(G,y) = 1

ntest

∑ntest
i=1S(Gi,yi) denote the mean score values of F and G over the

test set of size ntest, respectively. In (B1), σ̂ denotes an estimator of the asymptotic standard deviation of the sequence of

score differences of F and G. Positive values of TDM
ntest

indicate a superior performance of G, whereas negative values indicated

::::::
indicate

:
a superior performance of F .

Under standard regularity assumptions and the null hypothesis of equal predictive performance, TDM
ntest

asymptotically follows680

a standard normal distribution which allows to assess the statistical significance of differences in predictive performance. We

utilize implementations of DM tests provided in the R package forecast (Hyndman and Khandakar, 2008).
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