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Abstract. In this paper, the performance of three machine learning methods for predicting short-term evolution and for repro-

ducing the long-term statistics of a multi-scale spatio-temporal Lorenz 96 system is examined. The methods are: echo state

network (a type of reservoir computing, RC-ESN), deep feed-forward artificial neural network (ANN), and recurrent neural

network with long short-term memory (RNN-LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting vari-

ables representing slow/large-scale (X), intermediate (Y ), and fast/small-scale (Z) processes. For training or testing, only X5

is available; Y and Z are never known or used. We show that RC-ESN substantially outperforms ANN and RNN-LSTM for

short-term prediction, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver’s time steps, equiv-

alent to several Lyapunov timescales. The RNN-LSTM outperforms ANN, and both methods show some prediction skills too.

Furthermore, even after losing the trajectory, data predicted by RC-ESN and RNN-LSTM have probability density functions

(PDFs) that closely match the true PDF, even at the tails. The PDF of the data predicted using ANN, however, deviates from10

the true PDF. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear

dynamical systems such as weather/climate are discussed.

1 Introduction

Various components of the Earth system involve multi-scale, multi-physics processes and high-dimensional chaotic dynamics.

These processes are often modeled using sets of strongly-coupled nonlinear partial differential equations (PDEs), which are15

solved numerically on supercomputers. As we aim to simulate such systems with increasing levels of fidelity, we need to

increase the numerical resolutions and/or incorporate more physical processes from a wide range of spatio-temporal scales into

the models. For example, in atmospheric modeling for predicting the weather and climate systems, we need to account for the

nonlinear interactions across the scales of cloud microphysics processes, gravity waves, convection, baroclinic waves, synoptic

eddies, and large-scale circulation, just to name a few, not to mention the fast/slow processes involved in feedbacks from the20

ocean, land, and cryosphere (Collins et al., 2006, 2011; Flato, 2011; Bauer et al., 2015; Jeevanjee et al., 2017).
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Solving the coupled systems of PDEs representing such multi-scale processes is computationally highly challenging for

many practical applications. As a result, to make the simulations feasible, a few strategies have been developed, which mainly

involve only solving for slow/large-scale variables and accounting for the fast/small-scale processes through surrogate models.

In weather/climate models, for example, semi-empirical physics-based parameterizations are often used to represent the effects25

of processes such as gravity waves and moist convection in the atmosphere or sub-mesoscale eddies in the ocean (Stevens and

Bony, 2013; Hourdin et al., 2017; Garcia et al., 2017; Jeevanjee et al., 2017; Schneider et al., 2017b; Chattopadhyay et al.,

2020b, a). A more advanced approach is “super-parameterization”, which for example, involves solving the PDEs of moist

convection on a high-resolution grid inside each grid point of large-scale atmospheric circulation, whose governing PDEs

(the Navier-Stokes equations) are solved on a coarse grid (Khairoutdinov and Randall, 2001). While computationally more30

expensive, super-parameterized climate models have been shown to outperform parameterized models in simulating some

aspects of climate variability and extremes (Benedict and Randall, 2009; Andersen and Kuang, 2012; Kooperman et al., 2018).

More recently, “inexact computing” has received attention from the weather/climate community. This approach involves

reducing the computational cost of each simulation by decreasing the precision of some of the less-critical calculations (Palem,

2014; Palmer, 2014), thus allowing the saved resources to be reinvested, for example, in more simulations (e.g., for probabilistic35

predictions) and/or higher resolutions for critical processes (Düben et al., 2014; Düben and Palmer, 2014; Thornes et al., 2017;

Hatfield et al., 2018). One type of inexact computing involves solving the PDEs of some of the processes with single- or

half-precision arithmetic, which requires less computing power and memory compared to the conventional double-precision

calculations (Palem, 2014; Düben et al., 2015; Leyffer et al., 2016).

In the past few years, the rapid algorithmic advances in machine learning (ML), and in particular data-driven modeling,40

have been explored for improving the simulation and prediction of nonlinear dynamical systems (Schneider et al., 2017a; Kutz,

2017; Gentine et al., 2018; Moosavi et al., 2018; Wu et al., 2019; Toms et al., 2019; Brunton and Kutz, 2019; Duraisamy

et al., 2019; Reichstein et al., 2019; Lim et al., 2019; Scher and Messori, 2019; Chattopadhyay et al., 2020c). One appeal

of the data-driven approach is that fast/accurate data-driven surrogate models that are trained on data of high-fidelity, can be

used to accelerate and/or improve the prediction and simulation of complex dynamical systems. Furthermore, for some poorly45

understood processes for which observational data are available (e.g., clouds), data-driven surrogate models built using such

data might potentially outperform physics-based surrogate models (Schneider et al., 2017a; Reichstein et al., 2019). Recent

studies have shown promising results in using ML to build data-driven parameterizations for modeling of some atmospheric and

oceanic processes (Rasp et al., 2018; Brenowitz and Bretherton, 2018; Gagne et al., 2020; O’Gorman and Dwyer, 2018; Bolton

and Zanna, 2019; Düeben and Bauer, 2018; Watson, 2019; Salehipour and Peltier, 2019). In the turbulence and dynamical50

systems communities, similarly encouraging outcomes have been reported (Ling et al., 2016; McDermott and Wikle, 2017;

Pathak et al., 2018a; Rudy et al., 2018; Vlachas et al., 2018; Mohan et al., 2019; Wu et al., 2019; Raissi et al., 2019; Zhu et al.,

2019; McDermott and Wikle, 2019) .

The objective of the current study is to make progress toward addressing the following question: Which AI-based data-

driven technique(s) can best predict the spatio-temporal evolution of a multi-scale chaotic system, when only the slow/large-55

scale variables are known (during training) and are of interest (to predict during testing)? We emphasize that unlike many
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other studies, our focus is not on reproducing long-term statistics of the underlying dynamical system (although that will be

examined too), but on predicting the short-term trajectory from a given initial condition. Furthermore, we emphasize that,

following the problem formulation introduced by Düeben and Bauer (2018), the system’s state-vector is only partially known

and the fast/small-scale variables are unknown even during training.60

Our objective is more clearly demonstrated using the canonical chaotic system that we will use as a testbed for the data-driven

methods, a multi-scale Lorenz 96 system:

dXk

dt
=Xk−1 (Xk+1−Xk−2) +F − hc

b
ΣjYj,k, (1)

dYj,k
dt

=−cbYj+1,k (Yj+2,k −Yj−1,k)− cYj,k +
hc

b
Xk −

he

d
ΣiZi,j,k, (2)

dZi,j,k

dt
= edZi−1,j,k (Zi+1,j,k −Zi−2,j,k)− geZi,j,k +

he

d
Yj,k. (3)65

This set of coupled nonlinear ODEs is a 3-tier extension of Lorenz’s original model Lorenz (1996) and has been proposed by

Thornes et al. (2017) as a fitting prototype for multi-scale chaotic variability of the weather/climate system and a useful testbed

for novel methods. In these equations, F = 20 is a large-scale forcing that makes the system highly chaotic; b= c= e= d=

g = 10 and h= 1 are tuned to produce appropriate spatio-temporal variability of the three variables (see below). The indices

are i, j,k = 1,2, . . .8, thus X has 8 elements while Y and Z have 64 and 512 elements, respectively. Figure 1 shows examples70

of the chaotic temporal evolution of X , Y , and Z obtained from directly solving Eqs. (1)-(3). The examples demonstrate that

X has large amplitudes and slow variability; Y has relatively small amplitudes, high-frequency variability, and intermittency;

and Z has small amplitudes and high-frequency variability. In the context of atmospheric circulation, the slow variable X

can represent the low-frequency variability of the large-scale circulation while the intermediate variable Y and fast variable

Z can represent synoptic/baroclinic eddies and small-scale convection, respectively. Similar analogies in the context of ocean75

circulation and various other natural or engineering systems can be found, making this multi-scale Lorenz 96 system a useful

prototype to focus on.

Our objective is to predict the spatio-temporal evolution of X(t) using a data-driven model that is trained on past obser-

vations of X(t) (Figure 2). In the conventional approach of solving Eqs. (1)-(3) numerically, the governing equations have to

be known, initial conditions for Y (t) and Z(t) have to be available, and the numerical resolution is dictated by the fast/small-80

scale variable Z, leading to high computational costs. In the fully data-driven approach that is our objective here, the governing

equations do not have to be known, Y (t) and Z(t) do not have to be observed at any time, and evolution of X(t) is predicted

just from knowledge of the past observations of X , leading to low computational costs. To successfully achieve this objective,

a data-driven method should be able to

1. Accurately predict the evolution of a chaotic system along a trajectory for some time,85

2. Account for the effects of Y (t) and Z(t) on the evolution of X(t).

Inspired by several recent studies (which will be discussed below), we have focused on evaluating the performance of three

ML techniques in accomplishing (1) and (2). These data-driven methods are
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Figure 1. Time evolution of (A) Xk at grid point k = 1, (B) Yj,1 at grid point j = 1, and (C) Zi,1,1 at grid point i= 1. The time series

show chaotic behavior in X , which has large amplitude and slow variability; Y , which has relatively small amplitudes, high frequency

variability, and intermittency; Z, which has small amplitudes and high frequency variability. The x-axis is in model time unit (MTU) which

is related to the time step of the numerical solver (∆t) and largest positive Lyapunov exponent (λmax) as 1 MTU = 200∆t≈ 4.5/λmax

(see section 2.1). Note that here we are presenting raw data, which have not been standardized for prediction/testing yet.

– RC-ESN: Echo state network (ESN), a specialized type of recurrent neural network (RNN), which belongs to the family

of reservoir computing (RC),90

– ANN: A deep feed-forward artificial neural network,

– RNN-LSTM: An RNN with long short-term memory (LSTM).

We have focused on these three methods because they have either shown promising performance in past studies (RC-ESN

and ANN), or they are considered state of the art in learning from sequential data (RNN-LSTM). There is a growing number of

studies focused on using machine learning techniques for data-driven modeling of chaotic and turbulent systems, for example95

to improve weather/climate modeling and prediction. Some of these studies have been referenced above. Below, we briefly

describe three sets of studies with closest relevance to our objective and approach. Pathak and co-workers (Pathak et al., 2018a,

2017; Lu et al., 2017; Fan et al., 2020) have recently shown promising results with RC-ESN for predicting short-term spatio-
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Figure 2. The conventional approach of solving the full governing equations numerically versus our data-driven approach for predicting the

spatio-temporal evolution of the slow/large-scale variable X . For the direct numerical solution, the governing equations have to be known

and the numerical resolution is dictated by the fast and small-scale variable Z, resulting in high computational costs. In the data-driven

approach, the governing equations do not have to be known, Y and Z do not have to be known, and evolution of X is predicted just from

knowing the past observations of X , leading to low computational costs.

temporal evolution (item 1) and in replicating attractors for the Lorenz 63 and Kuramoto-Sivashinsky equations. The objective

of our paper (items 1-2) and the employed multi-scale Lorenz 96 system are identical to that of Düeben and Bauer (2018), who100

reported their ANN to have some skills in data-driven prediction of the spatio-temporal evolution of X . Finally, Vlachas et al.

(2018) found an RNN-LSTM to have skills (though limited) for predicting the short-term spatio-temporal evolution (item 1) of

a number of chaotic toy models such as the original Lorenz 96 system. Here we aim to build on these pioneering studies and

examine, side by side, the performance of RC-ESN, ANN, and RNN-LSTM in achieving (1) and (2) for the chaotic multi-scale

Lorenz 96 system. We emphasize the need for such a side-by-side comparison that uses the exact same system as the testbed105

and metrics for assessing performance.

The structure of the paper is as follows: in section 2, the multi-scale Lorenz 96 system and the three ML methods are

discussed; results on how these methods predict the short-term spatio-temporal evolution of X and reproduce the long-term

statistics of X are presented in section 3; key findings and future work are discussed in section 4.
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2 Materials and Methods110

2.1 The multi-scale Lorenz 96 system

2.1.1 Numerical solution

We have used a 4th-order Runge-Kutta solver with time step ∆t= 0.005 to solve the system of Eqs. (1)-(3). The system has

been integrated for 100 million time steps to generate a large dataset for training, testing, and examination of the robustness

of the results. In the Results section, we often report time in terms of model time units (MTUs), where 1 MTU = 200∆t. In115

terms of Lyapunov timescale, 1 MTU in this system is ≈ 4.5/λmax (Thornes et al., 2017), where λmax is the largest positive

Lyapunov exponent. In terms of the e-folding decorrelation timescale (τ ) of the leading principal component (PC1) of X

(Khodkar et al., 2019), we estimate 1 MTU ≈ 6.9τPC1. Finally, as discussed in Thornes et al. (2017), 1 MTU in this system

corresponds to ≈ 3.75 Earth days in the real atmosphere.

2.1.2 Training and testing datasets120

To build the training and testing datasets from the numerical solution, we have sampled X ∈ <8 at every ∆t and then standard-

ized the data by subtracting the mean and dividing by the standard deviation. We have constructed a training set consisting of

N sequential samples and a testing set consisting of the next 2000 sequential samples from point N +1 to N +2000. We have

randomly chosen 100 such training/testing sets, each of length (N+2000)∆t starting from a random point and separated from

the next training/testing set by at least 2000∆t. There is never any overlap between the training and the testing sequences in125

any of the 100 training/testing sets.

2.2 Reservoir computing-echo state network (RC-ESN)

2.2.1 Architecture

The RC-ESN (Jaeger and Haas, 2004; Jaeger, 2007) is an RNN that has a reservoir with D neurons, which are sparsely

connected in an Erdős-Rényi graph configuration (see Figure 3). The connectivity of the reservoir neurons is represented by130

the adjacency matrix A of size D×D whose values are drawn from a uniform random distribution on the interval [−1,1]. The

adjacency matrix A is then normalized by its maximum eigenvalue (Λmax) and then further multiplied with a scalar (ρ≤ 1)

to build the Ã matrix. The state of the reservoir, representing the activations of its constituent neurons, is a vector r(t) ∈ <D.

The typical reservoir size used in this study is D = 5000 (but we have experimented with D as large as 20000, as discussed

later). The other two components of the RC-ESN are an input-to-reservoir layer with weight matrix Win, and a reservoir-to-135

output layer with weight matrix Wout. The inputs for training are N sequential samples of X(t) ∈ <8. At the beginning of

the training phase, A and Win are chosen randomly and are fixed; i.e., they do not change during training or testing and Ã is

calculated. During training, only the weights of the output-to-reservoir layer (Wout) are updated.
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Figure 3. A schematic of RC-ESN. D×D is the size of the adjacency matrix of the reservoir A. X(t) (−T ≤ t≤ 0) is the input during

training. Win and A are random matrices that are chosen at the beginning of training and fixed during training and testing. Only Wout is

computed during training. During testing (t > 0), X(t+ ∆t) is predicted from a given X(t) that is either known from the initial condition

or has been previously predicted.

Wout is the only trainable matrix in this network. This architecture yields a simple training process that has two key

advantages:140

– It does not suffer from the vanishing and the exploding gradient problem, which has been a major difficulty in training

RNNs, especially before the advent of LSTMs (Pascanu et al., 2013),

– Wout can be computed in one shot (see below), thus this algorithm is orders of magnitude faster than the backpropa-

gation through time (BPTT) algorithm (Goodfellow et al., 2016), which is used for training general RNNs and RNN-

LSTMs (see section 2.4).145

The equations governing the RC-ESN training process are as follows:

r(t+ ∆t) = tanh
(
Ãr(t) +WinX(t)

)
, (4)

Wout = arg min
Wout

||Woutr̃(t)−X(t)||+α||Wout||. (5)

Here ||·|| is theL2-norm of a vector and α is theL2 regularization (ridge regression) constant. Equation (4) maps the observable

X(t) ∈ <8 to the higher dimensional reservoir’s state r(t+ ∆t) ∈ <D (reminder: D is O(1000) for this problem). Note that150

Eq. (5) contains r̃(t) rather than r(t). As observed by Pathak et al. (2018a) for the Kuramoto-Sivashinsky equation, and

observed by us in this work, the columns of the matrix r̃ should be chosen as nonlinear combinations of the columns of the

reservoir state matrix r (each row of the matrix r is a snapshot r(t) of sizeD). For example, following Pathak et al. (2018a), we

compute r̃ as having the same even columns as r while its odd columns are the square of the odd columns of r (algorithm T1
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hereafter). As shown in Appendix A, we have found that a nonlinear transformation (between r and r̃) is essential for skillful155

predictions, while several other transformation algorithms yield similar results as T1. The choices of these transformations (T2

and T3, see Appendix A), although not based on a rigorous mathematical analysis, are inspired from the nature of the quadratic

nonlinearity that is present in Eqs. (1)-(3).

The prediction process is governed by:

X(t+ ∆t) = Woutr̃(t+ ∆t), (6)160

r̃(t+ ∆t) in Eq. (6) is computed by applying one of the T1, T2 or T3 algorithms on r(t+ ∆t), which itself is calculated via

Eq. (4) from X(t) that is either known from initial condition or has been previously predicted.

See (Jaeger and Haas, 2004; Jaeger, 2007; Lukoševičius and Jaeger, 2009; Gauthier, 2018) and references therein for further

discussions on RC-ESNs, and (Lu et al., 2017; Pathak et al., 2017; McDermott and Wikle, 2017; Pathak et al., 2018a, b; Zim-

mermann and Parlitz, 2018; Lu et al., 2018; McDermott and Wikle, 2019; Lim et al., 2019) for examples of recent applications165

to dynamical systems.

2.2.2 Training and Prediction

During training (−T ≤ t≤ 0), Win and A are initialized with random numbers, which stay fixed during the training (and

testing) process, The state matrix r is initialized to 0. For all the experiments conducted in this study, we have empirically

found that the value of ρ= 0.1 to yield the best results in our experiments. We have further found that between 0.05≤ ρ≤ 0.7,170

the prediction horizon of RC-ESN is not sensitive to ρ, see Appendix B. Then the state matrix r is computed using Eq. (4) for

the training set, and Wout is computed using Eq. (5). During prediction (i.e., testing) corresponding to t > 0, the computed

Wout is used to march forward in time (Eqs. (6)) while as mentioned earlier, r(t) keeps getting updated using the predicted

X(t) (Eq. (4)). A non-linear transformation is used to compute r̃(t) from r(t) before using Eq. (6).

Our RC-ESN architecture and training/prediction procedure are similar to the ones used in (Pathak et al., 2018a). There is no175

overfitting in the training phase because the final training and testing accuracies are the same. Our code is developed in Python

and is made publicly available (see Code and data availability).

2.3 Feed-forward artificial neural network (ANN)

2.3.1 Architecture

We have developed a deep ANN that has the same architecture as the one used in Düeben and Bauer (2018) (which they180

employed to conduct prediction on the same multi-scale Lorenz 96 studied here). The ANN has 4 hidden layers with 100

neurons each, and 8 neurons in the input and output layers (Figure 4). It should be noted that unlike RC-ESN (and RNN-LSTM),

this ANN is stateless, i.e., there is no hidden variable such as r(t) that tracks temporal evolution. Furthermore, unlike RC-ESN,

for which the input and output are X(t) and X(t+ ∆t), following Düeben and Bauer (2018), the ANN’s inputs/outputs are

chosen to be pairs of X(t)train and ∆X(t)train =X(t+ ∆t)train−X(t)train (Figure 4). During prediction, using X(t)test185
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Figure 4. A schematic of ANN, which has 4 hidden layers each with 100 neurons, and an input and an output layer each with 8 neurons

(for better illustration only few neurons from each layer are shown). Training is performed on pairs of X(t)train and ∆X(t)train, and the

weights in each layer are learned through the backpropagation algorithm. During testing (i.e., prediction) ∆X(t)test is predicted for a given

X(t)test that is already predicted or is known from initial condition. Knowing X(t)test, ∆X(t)test, and ∆X(t−∆t)test, X(t+ ∆t)test

is then computed using Adams-Bashforth integration scheme.

that is known from initial condition or previously calculated, ∆X(t)test is predicted. X(t+ ∆t)test is then computed via

Adams-Bashforth integration scheme

X(t+ ∆t)test =X(t)test +
1

2

[
3∆X(t)test−∆X(t−∆t)test

]
. (7)

More details on the ANN architecture has been reported in Appendix C.

2.3.2 Training and Prediction190

Training is performed on N pairs of sequential (X(t)train,∆X(t)train) from the training set. During training, the weights of

the network are computed using backpropagation optimized by the stochastic gradient descent algorithm. During prediction, as

mentioned above, ∆X(t)test is predicted from X(t)test that is known from initial condition or has been previously predicted,

and X(t+ ∆t)test is then calculated using Eq. (7).

Our ANN architecture and training/prediction procedure are similar to the ones used in Düeben and Bauer (2018) (we have195

optimized, by trial and error, the hyperparameters for this particular network). There is no overfitting in the training phase

because the final training and testing accuracies are the same. Our code is developed in Keras and is made publicly available

(see Code and data availability).
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2.4 Recurrent neural network with long short-term memory (RNN-LSTM)

2.4.1 Architecture200

The RNN-LSTM (Hochreiter and Schmidhuber, 1997) is a deep learning algorithm most suited for prediction of sequential

data such as time series, and has received a lot of attention in recent years (Goodfellow et al., 2016). Variants of RNN-LSTMs

are the best performing models for time series modeling in areas such as stock pricing (Chen et al., 2015), supply chain

(Carbonneau et al., 2008), natural language processing (Cho et al., 2014), and speech recognition (Graves et al., 2013). A

major improvement over regular RNNs, which have issues with the vanishing and the exploding gradients (Pascanu et al.,205

2013), LSTMs have become the state-of-the-art approach for training RNNs in the deep learning community. Unlike regular

RNNs, the RNN-LSTMs have gates that control the information flow into the neural network from previous time steps of the

time series. The RNN-LSTM used here, like the RC-ESN but unlike the ANN, is stateful (i.e., actively maintains state). Our

RNN-LSTM has 50 hidden layers in each RNN-LSTM cell. More details on our RNN-LSTM are presented in Appendix D.

RNN-LSTMs have many tunable parameters and are trained with the expensive BPTT algorithm (Goodfellow et al., 2016).210

2.4.2 Training and Prediction

The input to the RNN-LSTM is a time-delay-embedded matrix ofX(t) with embedding dimension q (also known as lookback)

(Kim et al., 1999). An extensive hyperparameter optimization (by trial and error) is performed to find the optimal value of q for

which the network has the largest prediction horizon (exploroing q = 1− 22, we found q = 3 to yield the best performance).

The RNN-LSTM predicts X(t+ ∆t) from the previous q time steps of X(t). This is in contrast with RC-ESN, which only215

uses X(t) and reservoir state r(t) to predict X(t+ ∆t), and ANN, which only uses X(t) and no state to predict X(t+ ∆t)

(via predicting ∆X(t)). The weights of the LSTM layers are determined during the training process (see Appendix D). During

testing, X(t+∆t) is predicted using the past q observables [X(t− (q− 1)∆t) . . .X(t−∆t),X(t)] that are either known from

initial condition or have been previously predicted. We have found the best results with a stateless LSTM (which means that

the state of the LSTM gets refreshed during the beginning of each batch during training, see Appendix D) that outperforms a220

stateful LSTM (where the states gets carried over to the next batch during training).

The architecture of our RNN-LSTM is similar to the one used in Vlachas et al. (2018). There is no overfitting in the training

phase because the final training and testing accuracies are the same. Our code is developed in Keras and is made publicly

available (see Code and data availability).

3 Results225

3.1 Short-term prediction: Comparison of the RC-ESN, ANN, and RNN-LSTM performances

The short-term prediction skills of the three ML methods for the same training/testing sets are compared in Figure 5. Given

the chaotic nature of the system, the performance of the methods depends on the initial condition from which the prediction
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Figure 5. Comparison of the short-term forecast skills among the three ML methods. The lines show truth (black), RC-ESN (red), ANN

(blue), and RNN-LSTM (cyan). (A) and (B) show examples (differing in initial condition) for which RC-ESN yields the longest and shortest

prediction horizons, respectively. Vertical dashed lines show the approximate prediction horizon of RC-ESN. (C) Relative L2 error averaged

over 100 randomly chosen initial conditions e(t) (see Eq. (8)). The dashed horizontal line marks e= 0.3. Time is in MTU, where 1 MTU =

200∆t≈ 4.5/λmax. Training size is N = 500000. ρ= 0.1 is used here.

is conducted. To give the readers a comprehensive view of the performance of these methods, Figures 5(A) and (B) show

examples of the predicted trajectories (for one element of X(t)) versus the true trajectory for two specific initial conditions230

(from the 100 initial conditions we used): the one for which RC-ESN shows the best performance (Figure 5(A)), and the one

for which RC-ESN shows the worst performance (Figure 5(B)).

For the initial condition in Figure 5(A), RC-ESN accurately predicts the time series for over 2.3 MTU, which is equivalent to

460∆t and over 10.35 Lyapunov timescales. Closer examination shows that the RC-RSN prediction follows the true trajectory

well even up to ≈ 4 MTU. The RNN-LSTM has the next best prediction performance (up to around 0.9 MTU or 180∆t).235
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The prediction from ANN is around 0.6 MTU or 120∆t. For the example in Figure 5(B), all methods have shorter prediction

horizons, but RC-ESN still has the best performance (accurate prediction up to ≈ 0.7 MTU), followed by ANN and RNN-

LSTM with similar prediction accuracies (≈ 0.3 MTU). Searching through all 100 initial conditions, the best prediction with

RNN-LSTM is up to ≈ 1.7 MTU (equivalent to 340∆t), and the best prediction with ANN is up to ≈ 1.2 MTU (equivalent to

240∆t),240

To compare the results over all 100 randomly chosen initial conditions, we have defined an averaged relative L2 error

between the true and predicted trajectories

e(t) =

[
||Xtrue(t)−Xpred(t)||
〈||Xtrue(t)||〉

]
. (8)

Here [·] and 〈·〉 indicate, respectively, averaging over 100 initial conditions and over 2000∆t. To be clear,Xtrue(t) refers to the

data at time t obtained from the numerical solution while Xpred(t) refers to the predicted value at t using one of the machine245

learning methods. Figure 5(C) compares e(t) for the three methods. It is clear that RC-ESN significantly outperforms ANN and

RNN-LSTM for short-term prediction in this multi-scale chaotic testbed. Figure 6 shows an example of the spatio-temporal

evolution of Xpred (from RC-ESN), Xtrue, and their difference, which further demonstrates the capabilities of RC-ESN for

short-term spatio-temporal prediction.

3.2 Short-term prediction: Scaling of RC-ESN and ANN performance with training sizeN250

How the performance of ML techniques scales with the size of the training set is of significant practical importance, as the

amount of available data is often limited in many problems. Given that currently there is no theoretical understanding of such

scaling for these ML techniques, we have empirically examined how the quality of short-term predictions scales with N . We

have conducted the scaling analysis forN = 104 toN = 2×106 for the three methods. Two metrics for the quality of prediction

are used: the prediction horizon, defined as when the averaged L2 error e(t) reaches 0.3, and the prediction error E, defined as255

the average of e(t) between 0− 0.5 MTU:

E =
1

100∆t

i=100∑
i=0

e(i∆t). (9)

Figure 7(A) shows that for all methods, the prediction horizon increases monotonically, but nonlinearly, as we increase N .

The prediction horizons of RC-ESN and ANN appear to saturate after N = 106, although the RC-ESN has a more complex

step-like scaling curve that needs further examination in future studies. The prediction horizon of RC-ESN exceeds that of260

ANN by factors ranging from 3 (for high N ) to 9 (for low N ). In the case of RNN-LSTM, the factor ranges from 1.2 (for high

N ) to 2 (for low N ). Figure 7(B) shows that for all methods, the average error E decreases as N increases (as expected), most

notably for ANN when N is small.

Overall, compared to both RNN-LSTM and ANN, the prediction horizon and accuracy of RC-ESN have a weaker depen-

dence on the size of the training set, which is a significant advantage for RC-ESN when the dataset available for training is265

short, which is common in many practical problems.
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Figure 6. Performance of RC-ESN for short-term spatio-temporal prediction. We remind the readers that only the slow/large-scale variable

X has been used during training/testing, and the fast/small-scale variables Y and Z have not been used at any point during training or testing.

RC-ESN has substantial forecast skills, providing accurate predictions up to ≈ 2 MTU, which is around 400∆t or 9 Lyapunov timescales.

N = 500000, algorithm T2, D = 5000, and ρ= 0.1 are used.

3.3 Short-term prediction: Scaling of RC-ESN performance with reservoir sizeD

Given the superior performance of RC-ESN for short-term prediction, here we focus on one concern with this method: the

need for large reservoirs, which can be computationally demanding. This issue has been suggested as a potential disadvantage

of ESNs versus LSTMs for training RNNs (Jaeger, 2007). Aside from the observations here that RC-ESN significantly outper-270

forms RNN-LSTM for short-term predictions, the problem of reservoir size can be tackled in at least two ways. First, Pathak

et al. (2018a) have proposed, and shown the effectiveness of, using a set of parallelized reservoirs, which allowed for easily

dealing with high-dimensional chaotic toy models.

Second, Figure 8 shows that E rapidly declines by a factor of around 3 as D is increased from 500 to 5000, decreases

slightly as D is further doubled to 10000, and then barely changes as D is doubled again to 20000. Training the RC-ESN with275

D = 20000 versus D = 5000 comes with a higher computational cost (16 GB memory and ≈ 6 CPU hours for D = 5000 and
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Figure 7. Comparison of the short-term prediction quality for RC-ESN (blue circles), RNN-LSTM (black stars), and ANN (red squared) as

the size of the training set N is changed from N = 104 to N = 2× 106. (A) Prediction horizon (when e(t) reaches 0.3). (B) Average error

E (see Eq. (9)). The hyperparameters in each method are optimized for each N .

64 GB memory and ≈ 18 CPU hours for D = 20000), while little improvement in accuracy is gained. Thus, concepts from

inexact computing can be used to choose D such that precision is traded for large savings in computational resources, which

can be then reinvested into more simulations, higher resolutions for critical processes etc. (Palem, 2014; Palmer, 2014; Düben

and Palmer, 2014; Leyffer et al., 2016; Thornes et al., 2017).280

3.4 Long-term statistics: Comparison of RC-ESN, ANN, and RNN-LSTM performance

All the data-driven predictions discussed earlier eventually diverge from the true trajectory (as would even predictions using the

numerical solver). Still, it is interesting to examine whether the freely predicted spatio-temporal data have the same long-term

statistical properties as the actual dynamical system (i.e., Eqs. (1)-(3)). Reproducing the actual dynamical system’s long-term

statistics (sometimes refer to as the system’s climate) using a data-driven method can be significantly useful. In some problems,285

a surrogate model does not need to predict the evolution of a specific trajectory, but only the long-term statistics of a system.

Furthermore, synthetic long datasets produced using an inexpensive data-driven method (trained on a shorter real dataset) can

be used to examine the system’s probability density functions (PDFs), including its tails, which are important for studying the

statistics of rare/extreme events.

By examining return maps, Pathak et al. (2017) have already shown that RC-ESNs can reproduce the long-term statistics290

of the Lorenz 63 and Kuramoto-Sivashinsky equations (Jaeger and Haas (2004) and Pathak et al. (2017) have also shown

that RC-ESNs can be used to accurately estimate a chaotic system’s Lyapunov spectrum). Here, we focus on comparing the

performance of RC-ESN, ANN, and RNN-LSTM in reproducing the system’s long-term statistics by
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Figure 8. For RC-ESN: scaling of average prediction error between 0− 0.5 MTU (E, Eq. (9)) with reservoir size D. N = 500000 is used.

– Examining the estimated PDFs and in particular their tails,

– Investigating whether the quality of the estimated PDFs degrades with time, which can negate the usefulness of long295

synthetic datasets.

Figure 9 compares the estimated PDFs obtained using the three ML methods. The data predicted using RC-ESN and RNN-

LSTM are found to have PDFs closely matching the true PDF, even at the tails. Deviations at the tails of the PDF predicted by

these methods from the true PDF are comparable to the deviations of the PDFs obtained from true data using the same number

of samples. The ANN-predicted data have reasonable PDFs between ±2 standard deviations, but the tails have substantial300

deviations from those of the true PDFs. All predicted PDFs are robust and do not differ much (except near the end of the tails)

among the quartiles.

The results show that RC-ESN and RNN-LSTM can accurately reproduce the system’s long-term statistics, and can robustly

produce long synthetic datasets with PDFs that are close to the PDF of the true data even near the tails. The ability of ANN to

accomplish these tasks is limited.305

4 Discussion

By examining the true and predicted trajectories (Figures 5-6) and the prediction errors and horizons (Figure 7), we have

shown that RC-ESN substantially outperforms ANN and RNN-LSTM in predicting the short-term evolution of a multi-scale

Lorenz 96 chaotic system (Eqs. (1)-(3)). Additionally, RC-ESN and RNN-LSTM both work well in reproducing the long-term

statistics of this system (Figure 9). We emphasize that following the problem formulation of Düeben and Bauer (2018), and310
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Figure 9. Estimated probability density functions (PDFs) of long datasets freely predicted by using RC-ESN (red), ANN (blue), and RNN-

LSTM (cyan) compared to the true PDF (dashed black). RC-ESN, ANN, and RNN-LSTM are first trained with N = 500000, and then

predict, from an initial condition, for 4× 106∆t. The panels Q1 −Q4 correspond to the equally divided quartiles of 106 predicted samples.

PDFs are approximated using kernel density estimation (Epanechnikov, 1969). The green lines show the estimated PDFs from different sets

of 106 samples that are obtained from numerical solution of Eqs. (1)-(3). Small differences between the green lines show the uncertainties in

estimating the tails from 106 samples. The dashed black lines show the true PDF estimated from 107 samples from numerical solution. Note

that the presented PDFs are for standardized data.

unlike most other studies, only part of the multi-scale state-vector (the slow/large-scale variable X) has been available for

training the data-driven model and has been of interest for testing. This problem design is more relevant to many practical

problems but is more challenging as it requires the data-driven model to not only predict the evolution of X based on its past

observations, but also to account for the effects of the intermediate and fast/small-scale variables Y and Z on X .

We have also found that the prediction horizon of RC-ESN, and even more so its prediction accuracy, to weakly depend315

on the size of the training set (Figure 7). This is an important property, as in many practical problems the data available for

training are limited. Furthermore, the prediction error of RC-ESN is shown to have an asymptotic behavior for large reservoir

sizes, which suggests that reasonable accuracy can be achieved with moderate reservoir sizes. Note that the skillful predictions
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with RC-ESN in Figures 5-6 have been obtained with a moderate-sized training set (N = 500000) and reservoir (D = 5000).

Figures 7 and 8 suggest that slightly better results could have been obtained using largerN andD, although such improvements320

come at a higher computational cost during training.

The order we have found for the performance of the three machine learning methods (RC-ESN > RNN-LSTM > ANN) is

different from the order of complexity of these methods in terms of the number of trainable parameters (RC-ESN < ANN <

RNN-LSTM). But the order of performance is aligned with the order in terms of the learnable function space, ANN < RC-

ESN and RNN-LSTM, as the latter methods are both RNNs and thus Turing complete, while ANN is a state-less feed-forward325

network and thus not Turing complete (Siegelmann and Sontag, 1992). Turing completeness of RNNs, in theory, enables RNNs

to compute any function or implement any algorithm. Furthermore, state augmentation of ANN is not possible because it has

no state. Whether the superior predictive performance of RC-ESN (especially over RNN-LSTM) is due to its explicit state

representation, which is updated at every time step both during training and testing, or lower likelihood of overfitting due to

the order-of-magnitude smaller number of trainable parameters, remains to be seen. Also whether we have not fully harnessed330

the power of RNN-LSTMs (see below) is unclear at this point, particularly because a complete theoretical understanding of

how/why these methods work (or do not work) is currently lacking. That said, there have been some progress in understanding

the RC-ESNs, in particular by modeling the network itself as a dynamical system (Yildiz et al., 2012; Gauthier, 2018). Such

efforts, for example those aimed at understanding the echo states that are learned in the RC-ESN’s reservoir, might benefit

from recent advances in dynamical systems theory, e.g., for analyzing nonlinear spatio-temporal data (Mezić, 2005; Tu et al.,335

2014; Williams et al., 2015; Arbabi and Mezic, 2017; Giannakis et al., 2017; Khodkar and Hassanzadeh, 2018).

An important next step in our work is to determine how generalizable our findings are. This investigation is important for the

following two reasons. First, here we have only studied one system, a specially designed version of the Lorenz 96 system. The

performance of these methods should be examined in a hierarchy of chaotic dynamical systems and high-dimensional turbulent

flows. That said, our findings are overall consistent with the recently reported performance of these methods applied to chaotic340

toy models. It has been demonstrated that RC-ESN can predict, for several Lyapunov timescales, the spatio-temporal evolution,

and can reproduce the climate of the Lorenz 63 and Kuramoto-Sivashinsky chaotic systems (Pathak et al., 2018a, 2017; Lu

et al., 2017). Here, we have shown that RC-ESN performs similarly well even when only the slow/large-scale component of the

multi-scale state-vector is known. Our results with ANN are consistent with those of Düeben and Bauer (2018), who showed

examples of trajectories predicted accurately up to 1 MTU with a large training set (N = 2× 106) using ANN for the same345

Lorenz 96 system (see their Fig. 1). While RNN-LSTM is considered state-of-the-art for sequential data modeling, and has

worked well for a number of applications involving time series, to the best of our knowledge, simple RNN-LSTMs, such as

the one used here, have not been very successful when applied to chaotic dynamical systems.Vlachas et al. (2018) found some

prediction skills using RNN-LSTM applied to the original Lorenz 96 system, which does not have the multi-scale coupling

(see their Fig. 5).350

Second, we have only used a simple RNN-LSTM. There are other variants of this architecture and more advanced deep

learning RNNs that might potentially yield better results. For our simple RNN-LSTM, we have extensively explored optimiza-

tion of hyperparameters and tried various formulations of the problem, e.g., predict ∆X(t) with or without updating the state
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of the LSTM. We have found that such variants do not lead to better results, consistent with the findings of Vlachas et al.

(2018). Our preliminary explorations with more advanced variants of RNN-LSTM, e.g., seq2seq and encoder-decoder LSTM355

(Sutskever et al., 2014), have not resulted in any improvement either. However, just as the skillful predictions of RC-ESN

and ANN hinge on one key step (nonlinear transformation for the former and predicting ∆X for the latter), it is possible that

changing/adding one step leads to major improvements in RNN-LSTM. It is worth mentioning that similar nonlinear transfor-

mation of the state in LSTMs is not straightforward due to their more complex architecture, see Appendix D. We have shared

our codes publicly to help others explore such changes to our RNN-LSTM. Furthermore, there are other more sophisticated360

RNNs that we have not yet explored. For example, Yu et al. (2017) have introduced a tensor-train RNN that outperformed a

simple RNN-LSTM in predicting the temporal evolution of the Lorenz 63 chaotic system. Mohan et al. (2019) showed that a

compressed convolutional LSTM performs well in capturing the long-term statistics of a turbulent flow. The performance of

more advanced deep learning RNNs should be examined and compared, side by side, with the performance of RC-ESNs and

ANNs in future studies. The multi-scale Lorenz 96 system provides a suitable starting point for such comparisons.365

The results of our work show the promise of ML methods such as RC-ESNs (and to some extent RNN-LSTM) for data-

driven modeling of chaotic dynamical systems, which has broad applications in geosciences, e.g., in weather/climate modeling.

Practical and fundamental issues such as interpretability, scalability to higher dimensional systems (Pathak et al., 2018a),

presence of measurement noise in the training data and initial conditions (Rudy et al., 2018), non-stationarity of the time

series, and dealing with data that have two or three spatial dimensions (e.g., through integration with convolutional neural370

networks, CNN-LSTM (Xingjian et al., 2015) and CNN-ESN (Ma et al., 2017) should be studied in future work.

Here we have focused on a fully data-driven approach, as opposed to the conventional approach of direct numerical solutions

(Figure 2). In practice, for example for large-scale, multi-physics, multi-scale dynamical systems such as weather and climate

models, it is likely that a hybrid framework yields the best performance. In such a framework, depending on the application and

the spatio-temporal scales of the physical processes involved (Thornes et al., 2017; Chantry et al., 2019), some of the equations375

could be solved numerically with double precision, some could be solved numerically with lower precisions, and some could

be approximated with a surrogate model learned via a data-driven approach, such as the ones studied in this paper.

Appendix A: More details on RC-ESN

Here we show a comparison of RC-ESN forecast skills with nonlinear transformation algorithms T1 (Pathak et al., 2018a), T2

and T3, and without any transformation between r and r̃. The three algorithms are (for i= 1,2,3 . . .N and j = 1,2,3 . . .D)380

Algorithm T1

r̃i,j = ri,j × ri,j if j is odd

r̃i,j = ri,j if j is even

385
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Figure A1. Comparison of RC-ESN forecast skills with nonlinear transformation algorithms T1, T2, and T3 (cyan, green, and blue lines,

respectively) and without any transformation (red line). Black line shows the truth. (A) Prediction from one initial condition, (B) Relative

L2-norm error averaged over 100 initial condition e(t) (Eq. (8)). Time is in MTU where 1 MTU = 200∆t≈ 4.5/λmax.

Algorithm T2

r̃i,j = ri,j−1× ri,j−2 if j > 1 is odd

r̃i,j = ri,j if j is 1 or even

Algorithm T3390

r̃i,j = ri,j−1× ri,j+1 if j > 1 is odd

r̃i,j = ri,j if j is 1 or even

Figure A1(A) shows an example of short-term predictions from an initial condition using T1, T2, T3, and no transformation,

everything else kept the same. It is clear that the nonlinear transformation is essential for skillful predictions, as the prediction395

obtained without transformation diverges from the truth before 0.25 MTU. The three nonlinear transformation algorithms

yield similar results, with accurate predictions for more than 2 MTU. Figure A1(B), which shows the relative prediction error

averaged over 100 initial conditions, further confirms this point.

Why the nonlinear transformation is needed, and the best/optimal choice for the transformation (if it exists) should be studied

in future work. We highlight that the nonlinear transformation resembles basis function expansion, which is commonly used to400

capture nonlinearity in linear regression models (Bishop, 2006).

19



Appendix B: Dependence of RC-ESN’s prediction horizon on ρ

We have conducted an extensive experimental analysis of the dependence of RC-ESN’s prediction horizon on the value of ρ

and found ρ= 0.1 to produce the best prediction horizon for any sample size N and reservoir size D for this system. Table B1405

shows part of the results obtained from the experiments with N = 500000 and N = 106, and with D = 5000 over 100 initial

conditions. While ρ= 0.1 yields the best results, we see that the prediction horizon is barely sensitive to the choice of ρ within

a wide range and similar overall prediction horizons are obtained for 0.05≤ ρ≤ 0.7.

Table B1. Prediction horizon (MTU) over 100 initial conditions for an RC-ESN with samples sizes of N = 106 and N = 500000, and

D = 5000 for different ranges of ρ.

ρ 0.01− 0.04 0.05− 0.09 0.10 0.20 0.30 0.40 0.40− 0.70 0.70− 0.90

N = 106 1.01 1.18 1.30 1.28 1.26 1.20 1.19 0.83

N = 500000 0.84 0.92 1.10 1.02 1.02 1.02 1.02 0.77

Appendix C: More details on ANN

The ANN used in this study (and the one that yields the best performance) is similar to that of Düeben and Bauer (2018).410

The ANN has four hidden layers each of which has 100 neurons with a tanh activation function. The input to the ANN has 8

neurons which takes (X(t))test as the input and outputs (∆X(t))test which is also a 8-neuron layer. The obtained (∆X(t))test

output during test is then used in an Adam-Bashforth integration scheme to obtain (X(t+ ∆t))test. We found that a simpler

Euler scheme yields similar results. However, we found that training/testing on pairs of X(t) and X(t+ ∆t) (that was used

for RC-ESN) leads to no prediction skill with ANN, and that following the procedure used in Düeben and Bauer (2018) is415

essential for skillful predictions. We speculate that this might be due to the stateless nature of the ANN. By relatingX(t) to the

change in X(t) at the next time step, rather than the raw value X(t+ ∆t), this ANN training architecture implicitly contains

a reference to the previous time step. While the ANN itself is stateless, this particular training approach essentially encodes a

first-order temporal dependence between successive states.

Note that our approach here is the same as the global ANN of Düeben and Bauer (2018). We also tried their local ANN420

approach, but consistent with their findings for the Lorenz system, found better performance with the global approach (results

not reported for brevity).

The ANN is trained with a stochastic gradient descent algorithm with a learning rate of 0.001 with a batch size of 100 and

mean absolute error as loss function (mean squared error also gives similar performance).
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Appendix D: More details on RNN-LSTM425

The governing equations for RNN-LSTM are:

gf (t) = σf (Wf [h(t− 1), I(t)] + bf ) , (D1)

gi(t) = σf (Wi [h(t− 1), I(t)] + bi) , (D2)

C̃(t) = tanh(Wc [h(t− 1), I(t)] + bh) , (D3)

C(t) = gf (t)C(t− 1) + gi(t)C̃(t), (D4)430

go(t) = σh (Wh [h(t− 1), I(t)] + bh) , (D5)

h(t) = go(t)tanh(C(t)) , (D6)

Φ(t) = Wohh(t), (D7)

X(t+ ∆t)≈ Φ(t). (D8)

σf is the softmax activation function; gf (t), gi(t), and go(t) ∈ <dh×(dh+di) are the forget gate, input gate, and output gate435

respectively. dh is the dimension of the hidden layers (chosen as 50 in our study) and di is the dimension of the input (8× q).

bf , bi, and bh are the biases in the forget gate, input gate, and the hidden layers. I(t) ∈ <di is the input, which is a column

of a time-delay-embedded matrix of X(t). This matrix has the dimension of (8× q)×N . h(t) ∈ <dh is the hidden state and

C(t) ∈ <dh is the cell state (the states track the temporal evolution). The weights Wo, Wi, Wf , Wc, and Woh are learned

through the BPTT algorithm (Goodfellow et al., 2016) using an ADAM optimizer (Kingma and Ba, 2014). Φ(t) is the output440

from the RNN-LSTM.

The LSTM used in this study is a stateless LSTM, wherein the two hidden states (C and h) are refreshed at the beginning of

each batch during training (this is not the same as the stateless ANN, where there is no hidden state at all). Here, the training

sequences in each batch are shuffled randomly, leading to an unbiased gradient estimator in the stochastic gradient descent

algorithm (Meng et al., 2019).445

Code and data availability. All data and codes can be accessed at https://github.com/ashesh6810/RCESN_spatio_temporal.
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