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We thank the reviewer for their comments, and we have modified the manuscript
substantially based on the the reviewer’s suggestions. We provide detailed dis-
cussion in bold below each of the reviewer’s comments and the changes in the
manuscript are denoted in red.

Comment 1

1)Referee comment - The detection of dense sub-clusters by means of the Quick algo-
rithm is stressed several times throughout the manuscript as giving more robust results
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compared to spectral clustering. This however is not convincingly demonstrated in the
paper. In particular, it would be interesting to see how the detected dense subclusters
depend on the cut-off radius e in the network construction and on the two quasi-clique
parameters. While the cumulative clusters already differ significantly for two different
values of e (40% and 20% mesh size, Fig. 6/7), I assume that the dense sub-clusters
as shown in Figs. 8–11 would vary considerably depending on the three parameters in
the method. If a very small e is chosen, then I also expect that the results would differ
when the initial grid points are shifted. Also, how do the dense subclusters look like
when e is chosen larger than the mesh size? The results of corresponding numerical
studies (also for instantaneous clusters) should be presented in the paper.

2) Response - The purpose of this paper is to extract structures with higher den-
sity of interactions reflecting regions of strong mixing. Spectral clustering as in-
troduced in previous literature may fail to be consistent when applied at different
output times, because of the clustering algorithms used. It also returns clusters
of incomparable sizes, which leaves us no way to compare the degree of mixing
among the clusters mined. Our method on the other hand controls the density
of connections and hence all clusters mined belong to the same class. We have
carried out a study on the effects of varying ε on the cluster size. Increasing ε
relaxes the threshold criteria for particle interaction. Thus, at a certain time more
particles will be part of a cumulative cluster with increased ε. Let’s say cumu-
lative clusters with ε = 40% and ε = 60% be C40 and C60 respectively at a time
t = 50. Since the number of particles in the simulation is constant, C40 ⊂ C60 and
we have verified this. We found |C60| ∼ 12|C40|. The time complexity of ‘Quick’
scales exponentially with increase in size of cluster, average degree and nega-
tive γ, because it is an unsupervised learning algorithm with no a priori estimate.
If we focus on C40 in C60, the average degree of C60[C40] naturally increases. Now,
if we want to mine dense clusters from C60[C40], the minimum degree we set has
to be more than that we set for C40. Hence, the particles in dense clusters mined
from G(C40) will be a subset of the those mined from C60[C40].
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Shifting the particles is a good idea as well. The sensitivity analysis of the dense
clusters to initial particle position perturbation has been added in the revised
manuscript with the same ε as the base case (40%), because ε lower than that
doesn’t yield any comparable results anyways.
As an overall point, the idea of an ε value that is small but not too small is a
fairly common argument in continuum mechanics. Our point is not to argue for
a particular value and in an application driven setting (e.g. oil spill dispersal) the
value would have to be chosen on a case by case basis.

3)Author’s changes in manuscript - We have added a separate sub-section in the
manuscript describing the characteristics of the dense clusters. We have added one
figure showing dense clusters for ε = 60% and varying γ, one figure just showing the
effects of varying γ on our base case ε = 40%, and figures showing the effect of per-
turbation of the initial position of the particles. To understand the complete significance
of the figures, the corresponding parts of the revised manuscript needs to be read.

Comment 2

1) Referee comment - Adding to 1): When comparing Fig. 6 and 7 (p13) can any con-
clusions about the “perfect” thresholding distance ε be made?
2) Response- Theoretically, the lower the value of ε which can give us an under-
standing about the dense clusters, the better. However, since a spatial discretiza-
tion is used a practical lower bound (below which the numerical method cannot
provide information) must exist. For example, in our case ε = 20% is too small
to mine subclusters with a meaningful minimum degree. Therefore we must take
ε > 20%. But as soon as we find a satisfactory number of sub-clusters with den-
sity more than other regions, increasing ε is always guaranteed to include the
already identified regions. We realize this at ε = 40%. For practical purposes,
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it is actually necessary to find the ε and minimum degree which works for the
problem and provides some meaningful insight. Increasing ε more than neces-
sary increases the degree of vertices thereby increasing the time needed for the
computation exponentially. We agree that this introduces some subjectivity into
our methodology but at least this is done in a transparent way.

3)Author’s changes in manuscript - The above argument has been included in the
manuscript, new simulations supporting the argument have been added in the revised
manuscript and figures added mentioned in changes against comment 1.

Comment 3

1) Referee comment - The relation to other graph properties (e.g. as addressed on
p20, l4) is not explored at all. For instance, can the detected structures also be related
to a large node degree and/or a large local clustering coefficient? The manuscript
would greatly benefit from a corresponding numerical comparison.
2) Response- We have provided a comparison to local clustering coefficients
and node degree in the revised manuscript.

3)Author’s changes in manuscript - We have added a figure and provided comparison
to local clustering coefficients and node degree in the revised manuscript for the top 4
cumulative clusters at output time 50.

Comment 4

1) Referee comment - On p22 (l13) the authors write that “The striking similarities. . .
indicate that dense interaction and thereby mixing is a characteristic of coherent struc-
tures.” The dense subclusters appear to be located at the boundary of coherent vor-
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tices, but do not make up the entire boundary, which however may be specific to the
choice of parameters and initial conditions. The overall relevance of the detected small
structures for transport and mixing remains unclear to me as mixing here seems to be
very localized. Also, depending on the choice of parameters, the detected regions and
their interpretations may differ significantly (see also point (1) above).
2) Response- We have discussed choosing ε above. The minimum degree is
controlled by minimum size and γ. The greater the minimum degree, the bet-
ter the clusters represent localized mixing. Thus we choose as high a minimum
degree as we can, i.e. which gives us a satisfactory number of clusters in a
satisfactory amount of time. We are proposing to mimic localized mixing by par-
ticle interactions (following existing literature). A dense sub-cluster has more
particles interacting among each other, so more localized mixing might be tak-
ing place. As we noted above our methodology does not remove all subjectivity
from the problem, but the subjectivity present at least has a logical reason for
requiring the user to make a choice of ‘best’ ε.

3)Author’s changes in manuscript - Already mentioned against comment 1.

Comment 5

1) Referee comment - On p22 (l1) the authors write: “This helped us validate our
method for finding dense subclusters.” This statement refers to a comparison of cu-
mulative clusters plus sub clustering and instantaneous clusters. If both approaches
find the same regions here then it would be interesting for the reader which way is less
expensive and which way is more robust.
2) Response- For our specific example, the biggest instantaneous clusters are
always found near the boundary of the central vortex, which just acts as a partial
check on whether our dense clusters makes sense. Naturally mining the instan-
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taneous clusters is much cheaper than the dense quasi cliques.

3)Author’s changes in manuscript - Since the instantaneous clusters don’t contribute
much to the key idea of our work and in order to remove ambiguity the authors decide
to take it off the manuscript.

Comment 6

1) Referee comment - The clustering approach proposed in the manuscript has also
some relation to the concept of the trajectory encounter volume as introduced by Ryp-
ina, Pratt (NPG, 2017). The authors should refer to this work as well.
2) Response- this paper has been discussed in the revised text.

Comment 7

1) Referee comment - Section 2.3.1: The description of the Quick algorithm by Liu and
Wong (2008) is very technical. As the details are not referred to later in the text, the
authors should focus on the main idea of the algorithm and delegate the details to an
appendix.
2) Response- The technical description does not strike the authors as too long
and based on the second reviewer’s comments, it appears to be appreciated.
Thus we have decided to keep it in its original location.

3)Author’s changes in manuscript -No change.
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Comment 8

1) Referee comment - In Figure 5, I assume that with the given parameters, the clique
of size 4 could be extended by including the node right next to this subgraph (?).
2) Response- We have increased γ from 0.3 to 0.4, to avoid the anomaly.

Comment 9

1)Referee comment - Fig. 2/3: In general, an adjacency matrix only has only 1s on the
diagonal in the case of self-loops, which is not the case in this construction.
2) Response- The principal diagonal in the adjacency matrix illustration has
been replaced with 0s in the revised text.

3)Author’s changes in manuscript - We have added new illustrations with the above
changes.

Comment 10

1)Referee Comment - Figs. 2–4 can be merged into one.
2) Response- The corresponding change has been incorporated into the revised
manuscript.

Comment 11

1)Referee Comment - In the introduction many different methods for studying La-
grangian coherence are discussed, but corresponding references are missing.
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2) Response- The references for the methods probabilistic transfer operator, dy-
namic Laplace operator and the hierarchical coherent pairs have been added in
the revised manuscript.

Comment 12

1)Referee Comment - p12 (l18): A reference to Shi Malik (2000) for the normalized cut
problem is missing.

2) Response- Corresponding reference has been added in the revised text.

Comment 13

1)Referee Comment - p13 Fig. 6: A “transition from time 52 to 53 in Fig. 6” is mentioned
in the text, but there is no time frame 53 in Fig. 6. In the caption it says: “Cumulative
clusters . . . tracked at later times”. However, this would show the particles coloured
according to first time step but plotted at later times. From the idea of cluster merging
etc. I assume the clustering is performed individually for each of the plotted times.

2) Response- We are tracking the evolution of the clusters identified at time 50.

3)Author’s changes in manuscript - The caption in the corresponding figure has been
made clearer in the revised text.
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Comment 14

1)Referee Comment - In view of including further numerical studies, the authors should
consider condensing the presentation of some the current results that are demon-
strated in very much detail in Figs. 6-16.

2) Response- We removed the instantaneous clusters section and the second
cluster evolution for the spectral clusters i.e. Fig. 12 and Fig. 15 respectively in
the old manuscript.

Technical comments (typos, etc.)

1)Referee Comment - p11 l18 23: missing {
âĂć p.3 l. 4: Hadjighasem et al . . .. “However, these principles only apply in the early
stages. . .”
should rather be something like: “only apply in finite time intervals. . .”
âĂć p.9 l. 1: “We find sub-clusters with a minimum size of. . .” rather say “We search
for subclusters with a minimum size of . . . throughout our analysis of the double jet
flow. . .”.
âĂć p17 l3 should rather be “Fig. 14 shows the temporal evolution of the spectral
sub-clusters of cluster 1 found at time 50.”
âĂć p21 l5 “. . .identify regions where the density of mixing is relatively higher than
other portions of the cumulative clusters.” What is the "density of mixing"?
âĂć p21 l6 “. . . involve the most mixing.” Rather say “strongest mixing.”

2) Response- All the above comments have been taken care of in the revised
manuscript.
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Fig. 1. Dense clusters with $\epsilon=60\%$ in cumulative clusters 1 and 2 at $t=50$.
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Fig. 2. Dense clusters with $\epsilon=40\%$ for varying $\gamma$ at $t=50$
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Fig. 3. Local clustering coefficient (top panel) and node degree (bottom panel) for the top four
cumulative clusters at output time $50$

C13

Fig. 4. Dense clusters with $\epsilon=40\%$ and particles on uniform rectangular grid.
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Fig. 5. Dense clusters with $\epsilon=40\%$ and particles on rectangular grid with perturba-
tions.
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Comments

1. In a paper based on simulations I would expect some critical discussion about
the influence of the numerics on the results. In the manuscript this is missing,
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although in principle the topic of mixing cannot be treated without considering
what happens near the resolution scales. I would ask the authors to add details
about it, like for instance a resolution study or more in-depth considerations on
the numerical tools that they are using, and how they can affect their results.

Response: A paragraph of discussion on numerics has been added to the
text. The spectral method used is close to optimal, for a fixed grid, and
along with the grid resolution tests we have carried out, this gives us con-
siderable confidence in the code. The more challenging issue, going for-
ward will be to consider 3D simulations.

2. Despite of the detailed theoretical description, most of the analysis of the results
is based on a qualitative assessment of the figures. Would it be possible to define
some quantitative diagnostics to support what the authors infer?

Response - A quantitative figure regarding the position of the dense clus-
ters has been added to the manuscript. Moreover, theoretical description
provided, is about the methods of community detection from a graph. We
use this technique to draw inference about characteristics of mixing from a
graph.

3. the style of citations should be improved. Not everything should go in brackets,
i.e. sometimes
citet should be used instead of
citep (assuming the authors used LaTeX for editing).

Response - Appropriate changes have been made in the text.

4. p.8, eq. (4): 1) do I understand correctly that gamma is in the interval between 0
and 1? If it is the case, please mention in the text.

Response - It has been mentioned in the revised text.

C2



Interactive comment on Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-
2019-6, 2019.

C3

Fig. 1. Displacement averaged over particles in dense clusters from clusters $1,2,3$ (DC 1,DC
2, DC 3) measured from positions at output time $50$ vs output time.
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Abstract. The Eulerian point of view is the traditional theoretical and numerical tool to describe fluid mechanics. Some modern

computational fluid dynamics codes allow for the efficient simulation of particles, in turn facilitating a Lagrangian description

of the flow. The existence and persistence of Lagrangian coherent structures in fluid flow has been a topic of considerable study.

Here we focus on the ability of Lagrangian methods to characterize mixing in geophysical flows. We study the instability of

a strongly non-linear double jet flow, initially in geostrophic balance, which forms quasi-coherent vortices when subjected to5

ageostrophic perturbations. Particle clustering techniques are applied to study the behaviour of the particles in the vicinity of

coherent vortices. Changes in inter–particle distance play a key role in establishing the patterns in particle trajectories. This

paper exploits graph theory in finding particle clusters and regions of dense interactions (also known as sub-clusters). The

methods discussed and results presented in this paper can be used to identify mixing in a flow and extract information about

particle behaviour in coherent structures from a Lagrangian point of view.10

1 Introduction

There are two different geometric approaches to fluid mechanics, the Eulerian and the Lagrangian approach. In the Eulerian

approach, field values are obtained on a spatial grid, for example from numerical simulation output. In the Lagrangian approach

measurement data is obtained following the fluid, as in the case of temperature measurements by a weather balloon. Many

naturally occurring flows are complex, three–dimensional and at least to some extent, turbulent. Such flows are characterized15

by a richness of vorticity and the rapid mixing of passive tracers as discussed in (Davidson, 2015), chapter 3. At the same

time, satellite imagery suggests large scale flows exhibit prominent coherent patterns, and this is theoretically supported by

the so-called inverse cascade of two dimensional turbulence in which energy moves to larger scales while enstrophy moves to

smaller scales (Davidson, 2015), chapter 10.

Even three dimensional turbulent flows are known to contain quasi-deterministic coherent structures (Hussain, 1983). Co-20

herent structures can be thought of as turbulent fluid masses having temporal correlation in vorticity over some spatial extent

(e.g. a shear layer in a flow). Fig.(1) shows the evolution of the enstrophy field of a two dimensional double jet initially in

geostrophic balance, subjected to ageostrophic perturbations. The evolution depicts the formation of vortices due to instability

of the geostrophic flow. Coherent structures like vortices and filaments, undergo frequent stretching and folding. The identi-

fication of coherent structures in turbulent flows gave the revolutionary notion in fluid mechanics that turbulent flows are not25
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Figure 1. The enstrophy field showing the evolution of the unstable double jet with time. The bright areas indicate regions of high enstrophy

which are found between the two jets at early times.

completely random but can contain orderly organized structures and these coherent structures in specific regions can influence

mixing, transport and other physically relevant features (Kline et al., 1967).

The study of coherent flow structures has received significant interest in the recent past. The existing methods for detecting

coherent behaviour mathematically are either geometric or probabilistic; (Allshouse and Peacock, 2015)
:::::::::::::::::::::::::
Allshouse and Peacock (2015)

discusses and compares the different methods. Geometric methods aim to find distinct boundaries between the coherent struc-5

tures, whereas probabilistic methods use the concept of sets with minimal dispersion moving in a flow to identify coher-

ent structures. (Padberg-Gehle and Schneide, 2017)
::::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017) in their Introduction, however, note

that existing methods for finding coherent structures require the full knowledge of the flow-field and the underlying dy-

namical system. This, in turn, requires high resolution trajectory data. This can be numerically expensive, as well as chal-

lenging to find in applications. (Hadjighasem et al., 2017)
::::::::::::::::::::
Hadjighasem et al. (2017), in their review of various Lagrangian10

techniques for finding coherent structures, say that the Lagrangian diagnostic scalar field methods are incapable of provid-
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ing a strict definition of coherent flow structures and are also not effective in establishing a precise mathematical connec-

tion between the geometric features and the flow structures. Such diagnostic methods include: Finite time Lyapunov ex-

ponents (FTLE), Finite-Size Lyapunov Exponent (FSLE), Mesochronic analysis, Trajectory length, Trajectory complexity

and Shape coherence. (Hadjighasem et al., 2017)
::::::::::::::::::::::
Hadjighasem et al. (2017) also describes the various methods of applying

mathematical coherence principles to locate coherent structures. However, these principles only apply in the early stages5

::
for

:::::
finite

:::::
time

:::::::
intervals

:::::
from

:::
the

:::::::::
beginning of the flow evolution, it is not guaranteed that the coherence principles com-

ply with observed coherent patterns at later times. Examples of mathematical coherence principles include transfer oper-

ator methods like the probabilistic transfer operator
::::::::::::::
(Froyland, 2013) and the dynamic Laplace operator

:::::::::::::
(Froyland, 2015).

These methods identify maximally coherent or minimally dispersive (not dispersive in the sense of wave theory) regions

over a finite time interval. Such regions are expected to minimally mix with the surrounding phase space and are named10

“almost-invariant sets" for autonomous systems and “coherent sets" for non-autonomous systems. A different mathematical

approach is the hierarchical coherent pairs method
::::::::::::::::::
(Froyland et al., 2010), which initially splits a given domain into a pair

of coherent sets using the transfer operator method, and then subsequently refines the coherent sets iteratively. This is ac-

complished using the probabilistic transfer operator. The iteration is carried out until a reference measure of the probability,

µ, falls below a user defined cut-off. A third category of mathematical approaches for finding coherent structures based on15

Lagrangian data is clustering. (Hadjighasem et al., 2017)
::::::::::::::::::::::
Hadjighasem et al. (2017) reviews the Fuzzy C-means clustering of

trajectories by (Froyland and Padberg-Gehle, 2015)
::::::::::::::::::::::::::::::
Froyland and Padberg-Gehle (2015) which uses the traditional fuzzy C-

means clustering to identify finite-time coherent structures and mixing in a flow. This method uses trajectories of Lagrangian

particles, over discrete time-intervals, and applies the Fuzzy C-means algorithm to locate coherent sets as clusters of tra-

jectories according to the dynamic distances between trajectories. Another similar method for locating coherent structures20

is the spectral clustering of trajectories as proposed by (Hadjighasem et al., 2016)
:::::::::::::::::::::
Hadjighasem et al. (2016) and implemented

by (Padberg-Gehle and Schneide, 2017). (Mancho et al., 2004)
:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017).

::::::::::::::::::
Mancho et al. (2004) dis-

cusses algorithms to compute hyperbolic trajectories from data sets on oceanographic flows and how to locate their stable

and unstable manifolds. (Mendoza and Mancho, 2010)
::::::::::::::::::::::::
Mendoza and Mancho (2010) also discusses how phase portraits ob-

tained using Lagrangian descriptors can provide a representation of the interconnected features of the underlying dynami-25

cal system. (Rose et al., 2015)
::::::::::::::
Rose et al. (2015) uses a coupled implementation of a mix of Eulerian and Lagrangian models

for simulating the full life cycles of fish species anchovy and sardine in the California Current Systems. The Lagrangian

model used is an individual fish based model which tracks each fish of every species. (Padberg-Gehle and Schneide, 2017)

:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017) used a generalized graph Laplacian eigenvalue problem to extract coherent sets from sev-

eral fabricated examples (e.g. Bickley jet) as well as measured data. The authors also highlighted regions of strong mixing in30

flow, using local network measures like node degree and the local clustering coefficient. These local network measures provide

information for each Lagrangian particle.

Inspired by these, we wish to extract regions of dense mixing in flow using a graph theoretic network approach and compare

the results with those obtained from spectral clustering. We also wish to use an evolving simulation for which coherent regions

evolve dynamically through stretching and folding and are not known a priori.
::::::::::::::::::::
Rypina and Pratt (2017)

:
’s

::::::::
trajectory

:::::::::
encounter35
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::::::
volume

::::
idea

::
is

::::::
similar

::
to

:::
our

:::::::::::
methodology,

:::
but

:::
the

::::::
volume

::
in
::::::
which

:::::::
particles

:::
are

:::::::::::
pre-identified

::
is

::::::
chosen

:::::
based

::
on

:::::::
features

::::
that

::
are

::::::::
assumed

::
to

::
be

:::::::
already

::::::
present

::
in

:::
the

::::
flow

::::
(i.e.

::::::
eddies).

:::::::::
Moreover,

:::
the

:::::::
authors

::::
state

:::
that

:::
the

:::::::
method

:::::
breaks

:::::
down

:::
for

::::::
sparse

::::
grids

:::::
since

:
it
::
is
:::::::::
dependent

:::
on

:::::
being

::::
able

::
to

:::::
define

:::
an

:::::::
effective

::::::
density

:::
of

::::::::
particles.

:::::::
Detailed

::::::::::
comparison

::::
with

:::
our

:::::::
method

:::
are

:::
thus

:::
left

:::
to

:::::
future

:::::
work.

From an Eulerian point of view, mixing can be characterized by studying the advection-diffusion equation for a passive5

tracer θ (Salmon, 1998),

∂θ

∂t
+ v · ∇θ = κ∇2θ (1)

where v is the fluid velocity and κ is the diffusion coefficient. Mixing and stirring depends on the gradient of θ and the hence

the extent of mixing and stirring in a given domain for a given flow can be measured by the spatial variability index

C =
1

2

∫ ∫
∇θ.·∇θdx. (2)10

Taking the time derivative of C, and following the simplification procedure in (Salmon, 1998), we obtain,

dC

dt
=

∫ ∫
[(v.∇θ)∇2θ−κ(∇2θ)2]dx (3)

Fundamentally, mixing is a result of molecular diffusion, and hence the diffusive (second) term in equation 3 represents the

effect of mixing, while the first term containing the gradient of θ represents the effect of stirring. This implies that an initial

high value of ∇θ will promote mixing and hence diffusion, which in turn will to lead to a decrease in ∇θ. This can also be15

verified from a dynamical systems point of view. (Prants, 2014)
:::::::::::
Prants (2014) in his review paper describes mixing as follows.

Let us consider the basin A with a circulation where there is a domain B with a dye occupying at t = 0 the volume V (B0). Let

us consider a domain C in A. The volume of the dye in the domain C at time t is V (Bt∩C), and its concentration in C is

given by the ratio V (Bt ∩C)/V (C). Full mixing is defined in the sense that in the course of time, for any domain C ∈A, the

concentration of the dye is the same as in every other region in A. However, calculating the true three-dimensional Eulerian20

flow field, and the distribution of θ, for an actual geophysical flow (e.g. a hurricane) is an impossible task. This is due to the

immense range of scales that typifies naturally occurring fluid motions. If one considers a hurricane, active scales range from

hundreds of kilometers to sub millimeter scales. Many models in geophysical fluid dynamics thus focus on representing the

coherent scales of motion. In such cases the fundamentally three dimensional motions that would carry out efficient mixing are

filtered out during the theoretical derivation of the governing equations. A Lagrangian approach to mixing, based on particle25

proximity, may thus be more profitable. This is because it allows for an idealized representation of the three-dimensional

turbulence that is ignored by the governing equations .

(Klimenko, 2009)
::::::::::::::
Klimenko (2009) provides an example of this approach to describe mixing. His idea is stochastic, where

each particle has a deterministic component of motion governed by the known flow field and a random walk component. The

particles are assigned scalar properties which can change due to mixing. The random walk component depends on the joint30

probability distribution of the particle as functions of position and the scalar properties. In his equation (36) the author defines

the intensity of mixing between two particles as proportional to the distance between the particles in physical space. Inspired
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by (Klimenko, 2009), we use a numerically inexpensive version of this idea, by loosely saying that, there is some non-zero

probability of mixing with exchange of properties taking place between two particles that approach below a given threshold

and a qualitative measure of mixing is given by interaction among particles. Interaction once occurred, is counted as a unit of

mixing and our hypothesis says that, if we have three particles, say, A, B and C, and if particle A interacts with particle B and

if particle B interacts with particle C, then indirectly, particle A has interacted with particle C, to some extent. We then extend5

this idea to the assumption that a region comprising of a higher number of interacting particles corresponds to one with higher

probabilities of mixing. The technical details are discussed in section [2.3].

The remaining parts of the paper are structured in the following manner. Section [2] discuses the methods used in our work

including the governing equations and description of the numerical code used to solve them. This is followed by the methods

for clustering particles (section 2.2), identifying regions of mixing (section 2.3) and the methods for spectral clustering (section10

2.4). Section [3] presents a detailed discussion of the results obtained by implementing each of the methods above and also

draws relevant comparisons as needed. The final section [4] concludes the work and highlights the major findings.

2 Methods

2.1 Governing Equations and Numerical Methods

We consider the shallow water equations on the f–plane (Kundu et al. (2008))
::::::::::::::::
(Kundu et al., 2008). All simulations are carried15

out with a code developed in house using CUDA, called CUDA Shallow Water and Particles (cuSWAP), which provides

numerical solutions to the Shallow Water equations. CUDA is a C/C++ based parallel computing platform developed by

NVIDIA to harness the computational power of GPUs (Nickolls et al., 2008). We choose to solve these equations using spectral

methods to take advantage of the cuFFT library (Nvidia, 2010). This code solves the governing equations in a doubly periodic

domain with variable topography. The IO
::
I/O

:
is handled using NETCDF. The time-stepping scheme is a low-memory Huen’s20

Method (Ascher and Petzold, 1998). This code also has a Lagrangian attribute which performs particle tracking using cubic

interpolation and symplectic Euler time-stepping (Mickens, 2000). Additionally this code dynamically calculates and outputs

neighbours of a particle based on inter-particle distance. This data represents particle interactions and is used to construct

adjacency matrices relevant to our work as described in section [2.2].

The shallow water equations, written out in the form amenable to numerical solution with an FFT-based method, express the25

conservation of mass

∂η

∂t
+(H + η)

(
∂u

∂x
+
∂v

∂y

)
+u

(
∂H

∂x
+
∂η

∂x

)
+ v

(
∂H

∂y
+
∂η

∂y

)
= 0,

and the conservation of linear momentum,

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
− fv =−g ∂η

∂x
,

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ fu=−g ∂η

∂y
,30
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where η(x,y, t) is the perturbation height field, H(x,y) is the bottom topography (taken as constant throughout the present

work), (u(x,y, t),v(x,y, t)) are the velocity field, f is the rotation rate taken as constant (i.e. the f–plane), and g is the accel-

eration due to gravity. The pressure field is hydrostatic.

The initial conditions consist of a geostrophically balanced jet and an ageostrophic perturbation with a radially symmetric

form. The exact functional form of the perturbation was not found to be important for triggering the instability of the jet. The5

functional form of the initial conditions is given by,

u(x,y,0) = 2ga0
tanh(y)

cosh2(y)

v(x,y,0) = 0

η(x,y,0) = a0

(
1

cosh2(y)
+

1

cosh8(
√
x2 + y2/2)

)

where a0 = 0.1H0. The two relevant dimensionless numbers are the Froude number and Rossby number,10

Fr =
U√
gH
≈ 0.17,

Ro=
U

fL
≈ 0.3775,

Results will be reported in dimensionless form. The simulation is thus carried out in a square domain with side dimension

10. The resolution used is 2048× 2048 and the number of particles tracked is 400× 400, initially distributed uniformly in a

grid pattern. The resolution is fine enough to represent both the primary, vortex generating instability, and the filaments formed15

from the interaction between vortices.
::
We

::::
have

::::::
carried

:::
out

::
a

::::::
number

::
of

:::::::::
resolution

::::::
checks

:::
and

::::::
indeed

::
the

:::::::::::
2048× 2048

::::
grid

::::
over

:::::::
resolves

:::
the

::::::
relevant

:::::::::::
phenomena.

::
A

:::::
factor

::
of

::::
four

::::::::
decrease

:::::
leaves

:::
the

::::::
results

:::::::::
essentially

::::::::::
unchanged.

:::::
While

::::::
mixing

::
is
::
a
:::::
small

::::
scale

:::::::::::
phenomenon,

::
it

::
is

:::
not

:::::::
believed

:::
the

:::::
results

:::::::
reported

::::::
below

::
are

:::::::
affected

:::
by

:::
the

::::::::
numerical

::::::::::::
discretization.

::::::::
Moreover,

:::
on

:
a
::::
grid

::
of

::::
fixed

::::
side,

:::
the

:::::::
spectral

::::::
method

:::::::::
employed

::
is

::::
very

::::
close

::
to

:::
the

:::::::
optimal

::::::::
numerical

:::::::
method

::::::::
available.

::::::
Indeed

:
a
:::
far

:::::
more

::::::
serious

:::::::
question

:::::
down

:::
the

:::
line

::
is
::::
how

:::
to

:::::::
represent

:::
the

:::::::::
transition

::::
from

:::::
large

:::::
scale,

:::::
nearly

::::::::::::::
two-dimensional

:::::
flow

::
to

:::::::::::::::
three-dimensional20

::::
flow;

:
a
:::::::
change

:::
that

::::::
would

::::::
require

:
a
:::::::::::
fundamental

::::::
change

::
in

:::
the

:::::::
software

:::::
used.

2.2 Clustering particles

Clustering the particles in a flow means we group the particles based on some form of particle behaviour we wish to identify.

In this paper we target the phenomenon of mixing in a flow by measuring instances of particle-particle proximity below a

threshold. The inter-particle interactions we employ fall under the category of binary classification, i.e. two particles have either25

interacted or they have not. We set a threshold inter-particle distance ε such that at some given time, if the distance between any

two particles becomes less than ε, those two particles will be said to have interacted with each other at that time. For mixing,

it is natural to demand that the value of ε is less than grid spacing (though note that (Padberg-Gehle and Schneide, 2017)

:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017) in fact demand ε to be greater than the grid spacing for spectral clustering). Thus, for
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every time step we search for particles which are within a radial distance of ε from every particle. A natural mathematical way

to represent this information is to build a matrix. These matrices are known as adjacency matrices which are symmetric square

matrices with dimensions (number of particles2). Each row in an adjacency matrix corresponds to a particle and the columns

correspond to all the particles this particle may interact with. If particle ’i’ is said to have interacted with particle ’j’, then the

adjacency matrix, an initially zero matrix, will have 1 in cells (i, j) and (j, i). Fig. (2) demonstrates a tutorial example of how5

to construct an adjacency matrix from particle interactions. There are two ways in which we create an adjacency matrix in our

work:

– Cumulative adjacency matrix: One interaction between two particles in the entire time span will yield a permanent 1 in

the corresponding cells of the particles in the matrix.

– Instantaneous adjacency matrix: One interaction between two particles at a particular time will yield a temporary 1 in10

the corresponding cells of the particles in the matrix. This type of matrix is refreshed every output time and new 1s and

0s are registered for the new output time.

Before we describe how we cluster these particles based on their interactions, we quickly introduce graphs from discrete

mathematics. A graph is a structure which has a set of objects and some objects may be related to each other in some way. The

objects are called nodes, and if two nodes are related to each other in some way, they are connected by an edge. Mathematically,15

a graph is represented in the form of an ordered pair G= (V,E) where V is a set of vertices or nodes and E is set of edges

which consists of two element subsets of V . An adjacency matrix can be converted into a graph with the particles forming the

nodes and the interactions forming the edges. Looking at Fig.2
:
a, we construct a corresponding graph shown in Fig.??

::
2b

a) Adjacency matrix of four particles. b) Graph corresponding to part (a)

A graph formed from an adjacency matrix of particle interactions, can be used to cluster the particles by finding connected20

components in a graph. To
:::
We

:
demonstrate this concept , we add two more nodes to the graph in Fig.??. The way they are

added is shown in Fig.??.
:::
2c. It is seen that the graph can be visually split into two partsas marked by the ellipses. These are

two separate, connected components in our imaginary graph. The connected components in a graph can be mined by using a

standard depth first search algorithm. We carry out this procedure on the graph in our problem using MATLAB . The different

connected components in the graph form the different clusters. In regards to our earlier point of mixing we see that each cluster25

has particles that have interacted with at least another particle inside the cluster and thus odds are high that some mixing may

be happening among particles within these clusters. This gives us a level one classification of particles which will later help us

track down regions of mixing.

Graph split into its connected components.

2.3 Mining dense sub-clusters from a cluster30

Until this point, clusters have been based on inter-particle interactions. Though, these clusters tell us about which particles in-

teracted, they do not tell us anything about the degree or intensity of interaction. We want to find regions in the flow where there

are higher intensities of mutual interactions among particles compared to rest of the flow. We consider a cumulative cluster,
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Figure 2. a) Idealized Lagrangian paths of four
::
six

:
particles showing where they have interacted along the course of their paths. b) Adjacency

matrix
:::
and

::::
graph

:
corresponding to the particle interactions shown in part (a)

::
c)

:::::
Graph

:::
split

::::
into

::
its

::::::::
connected

:::::::::
components

::
d)

::
A

::::::::
connected

::::
graph

::::::::::
symbolizing

:
a
:::::
scaled

:::::
down

::::::
version

::
of

:
a
:::::::::

cumulative
::::::
cluster;

:::
The

:::::
black

:::::
dotted

:::::
circles

::::::
denote

:::
the

:::::::
dense-sub

::::::
graphs

:::
for

::
an

:::::::
arbitrary

:::::::::::
min_size= 3

:::
and

::::::
γ = 0.4

which is a connected graph and use the pruning algorithm Quick described by (Liu and Wong, 2008)
::::::::::::::::::
Liu and Wong (2008) to

look for dense sub-clusters within this cluster.

A connected graph symbolizing a scaled down version of a cumulative cluster; The black dotted circles denote the dense-sub

graphs for an arbitrary min_size= 3 and γ = 0.3

A clique is a graph whose nodes are all connected to each other, hence a clique is 100% dense. The minimum degree of a5

graph is the minimum number of neighbors that a node has in the graph. Let the minimum degree be denoted by degmin and
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N be the size of the graph. A γ-quasi clique is a graph which satisfies:

degmin >= γ[N − 1] (4)

:::::
where

::::::::
γ ∈ (0,1)

:
. The density of a sub-graph is based on the following parameters:

– The density parameter γ, such that (4) is satisfied.

– Minimum size of a subgraph. The algorithm will only look for solutions whose sizes are greater than or equal to the5

specified minimum size parameter, min_size.

All subgraphs mined, hence, have a minimum degree greater than or equal to γ(min_size− 1). These two parameters drive

how many minimum particles we want from a dense sub-cluster to have interacted with a particle in the same dense sub-cluster.

We find
:::::
search

::
for sub-clusters

:::::::::
throughout

::
the

:::::
entire

::::
flow with a minimum size of 20 and γ = 0.25, so that the minimum degree

is at-least 5.
:
5
::
at

::::::
t= 50. There are cases where subsets of a bigger γ-quasi clique are also γ-quasi cliques. The algorithm Quick10

makes sure that it mines only the maximal γ-quasi cliques for a specified γ. The algorithm is described in the next subsection.

Fig. (??)
::
2d

:
shows an example of how dense sub-clusters are mined. The connected graph in Fig. (??)

::
2d can be a considered

as a small illustration of an actual cumulative cluster of particles. For an arbitrary γ = 0.3
::::::
γ = 0.4 and minimum size of the

sub-graphs equal to 3, the algorithm shows that the nodes inside the dotted black circles are dense sub-graphs inside the graph.

In the context of Lagrangian fluid mechanics, interactions among particles in these sub-clusters are much denser than other15

regions in the flow.

2.3.1 Description of the Quick algorithm

We will now introduce graph theoretic terminology that we will be required in the following section. This work is based on

(Liu and Wong, 2008).

A graph G is an ordered pair of sets (V,E), where V is a set of vertices and E is a set of edges joining the vertices.20

Neighbours of a vertex v in G are denoted by NG(v) which are the nodes adjacent to v in G.

The degree of a vertex v in G, denoted by degG(v), is the number of neighbours of v, |NG(v)|.
The distance between two vertices u and v in G, denoted by distG(u,v), is the number of edges on the shortest path from u

to v.

For a vertex v in V , NG
k (v) = {u|distG(u,v)≤ k} denote the k-nearest neighbours of v.25

The diameter of a graph G, denoted by diam(G) is defined as maxu,v∈V distG(u,v).

For any vertex set {X|X ⊂ V }, cand_exts(X) represents the set which contains vertices that can be used to extend the set

X in order to form a γ-quasi clique.

For a vertex u in a vertex set X , indegX(u) represents the number of neighbours of u in X and exdegX(u) represents the

number of neighbours of u in the set cand_exts(X).30

The minimal degree of vertices in X , denoted by degmin(X), is min{indegX(v)+ exdegX(v)|v ∈X}.
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It follows from the definition of a γ-quasi clique that the maximal number of vertices in cand_exts(X) that can be added

to X concurrently, is less than UminX = bdegmin(X)/γc+1− |X|.
In another case where, vertex u ∈X and indegX(u)< dγ(|X| − 1)e, it becomes apparent that at-least some vertices must

be added to X so it can be extended to form a γ-quasi clique. This lower bound is denoted by LminX . Let indegmin(X) =

min{indegX(v)|v ∈X}, then LXmin is defined as min{t|indegmin(X)+ t≥ dγ(|X|+ t− 1)e5

Quick uses several effective pruning techniques to eliminate vertices from cand_exts(X) of a vertex setX . Valid extensions

are added toX , to check if the new vertex set (X∪cand_exts(X)) satisfies the γ-quasi clique criterion. The following pruning

techniques form an essential part of Quick algorithm. The proof of the Lemmas used by these techniques can be found in (Liu

and Wong, 2008).

V Depending on γ, we find a k such that vertices not in
⋂
v∈XN

G
k (v) are removed from cand_exts(X). This is called10

pruning based on diameter.

V We use the Cocain algorithm (Zeng et al., 2006) to eliminate all such vertices u from cand_exts(X) who satisfy

indegX(u)+ exdegX(u)< dγ(|X|+ exdegX(u))e. This is because, neither such a vertex u nor any of its neighbours

in cand_exts(X), if added, will satisfy the γ-quasi clique criterion.

V We set an upper boundUx based onUminX , such that,UX =max{t|
∑
v∈X indeg

X(v)+
∑

1≤i≤t indeg
X(vi)≥ |X|dγ(|X|+15

t− 1)e,1≤ t≤ UminX }, where vi are vertices in cand_exts(X) sorted in descending order of their indegX value.

If vertex u ∈ cand_exts(X) and indegX(u)+UX − 1< dγ(|X|+UX − 1)e, such a vertex u can be pruned from

cand_exts(X). Otherwise, if u ∈X and indegX(u)+UX < dγ(|X|+UX − 1)e, then γ-quasi cliques cannot be gen-

erated by extending X .

V We set a lower boundLX based onLminX , such that,LX =min{t|
∑
v∈X indeg

X(v)+
∑

1≤i≤t indeg
X(vi)≥ |X|dγ(|X|+20

t−1)e,LminX ≤ t≤ n}, if such t exists, else Lx = |cand_exts(X)|+1. If vertex u ∈ cand_exts(X) and indegX(u)+

exdegX(u)< dγ(|X|+LX−1)e, such a vertex u can be pruned from cand_exts(X). Otherwise, if u ∈X and indegX(u)+

exdegX(u)< dγ(|X|+LX−1)e, then γ-quasi cliques cannot be generated by extendingX . Before performing the above

checks, we also check if LX > UX , and if true there is no need to extend X further.

V In a vertex set X , if we have a vertex v ∈X such that indegX(v)+exdegX(v) = dγ(|X|+LX −1)e, then v is called a25

critical vertex ofX . IfG(Y ) is a γ-quasi-clique and v is a critical vertex, we have {u|(u,v) ∈ E∧u ∈ cand_exts(X)} ⊆
Y . Hence, whenever we encounter a critical vertex in our vertex set X , we instantly add it’s neighbours present in

cand_exts(X) to X .

V We are mining exclusively maximal γ-quasi-cliques and it can be proved that if u is a vertex in cand_exts(X) such that

indegX(u)≥ dγ|X|e and if for any v ∈X such that (u,v) /∈ E, we have indegX(v)≥ dγ|X|e, then for any vertex set30

Y such thatG(Y ) is a γ-quasi-clique and Y ⊆ (X∪(cand_exts(X)∩NG(u)∩(
⋂
v∈X∧(u,v)/∈EN

G(v)))), G(Y) cannot

be a maximal γ-quasi-clique. So we use CX(u) = (cand_exts(X)∩NG(u)∩ (
⋂
v∈X∧(u,v)/∈EN

G(v))) to denote the
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vertices covered by u and u is called the cover vertex of X . We find u such that it maximizes CX(u), put the vertices in

CX(u) at the end of cand_exts(X) and then use the vertices in cand_exts(X)−CX(u) to extend X.

2.4 Spectral Clustering

:::::::
Spectral

::::::::
clustering

::
is

:::::
based

:::
on

:::
the

::::::::::
normalized

:::
cut

:::::::
criterion

:::
of

::::::
solving

::
a

:::::
graph

:::::::::::
segmentation

:::::::
problem

:::::::::::::::::::
(Shi and Malik, 2000)

:
. Here we explore a different method of sub-clustering a cumulative cluster that does not require the threshold spacing ε5

to be greater than the grid spacing. Once we identify a cumulative cluster, we extract the portion of the adjacency matrix

corresponding to particles exclusively within it. Let’s suppose we name this adjacency matrix A. We find the degree matrix,

D which is a diagonal matrix with Dii = di, where di is the degree of the node xi, i.e., Dii =
∑n
j=1Aij , the number of

neighbours of node i. The non-normalized graph Laplacian is given by L=D−A, and the normalized graph Laplacian is given

by L= In−D−
1
2AD−

1
2 . The eigenvalues of L are real and non-negative and are in the order 0 = λ1 ≤ λ2 ≤ λ3 ≤ ...≤ λn.10

The second smallest eigenvalue λ2 is called the algebraic connectivity (Fiedler, 1973) of a graph and can only be non-zero if the

graph is connected. We expect that to be true in our case as the cumulative cluster corresponds to a connected graph. Spectral

clustering is expected to help find coherent structures in fluid transport, which in lay-man’s terms mean
:::::
means particles whose

trajectories stay close to each other or interact more often. The mathematics in this section is the outcome of solving a balanced

cut problem in a network (Hadjighasem et al., 2016). So the idea is if λ2 is the only eigenvalue close to zero then the graph is15

nearly decoupled into two communities. Similarly if all λi, i= 2,3, ...k for some k < n are close to zero and there is a spectral

gap between λk and λk+1, then the cluster is nearly separated into k communities. The corresponding eigenvectors carry

information about the division of these particles. Hence, we capture these eigenvectors, performing a dimensional reduction on

our data, and apply unsupervised clustering on them. We employ the standard k-means clustering algorithm (Lloyd, 1982) on

the reduced data to identify the different communities. Since we are already in a cumulative cluster, and the further clustering20

is supposed to reveal the coherent structures in the flow, we expect to find the regions with a comparatively higher intensity of

interaction. However, since we use k-means clustering, we do not expect it to identify precise locations of solely high intensity

interactions because k-means will produce communities whose union is exhaustive.

3 Results

3.1 Cumulative clusters25

Fig.(3) shows the different cumulative clusters, found at time 50− 58 in the simulation, in different colors. By this time the

double jet has undergone instability and coherent vortices, as well as vorticity filaments, are formed Fig.(1d). As explained ear-

lier, cumulative clusters are formed by particle-particle interactions that occur up to a particular time. The threshold separation

ε for interaction between two particles is 40% of the grid spacing in this case. We can see in this figure how different clusters

merge during their evolutions. An example for this is the transition from time 52 to 53
::
54

:
in Fig.(3), where the green and30

magenta clusters merge into one magenta cluster. Two clusters merge into one when a particle from one cluster interacts with

a particle from another cluster. A question that follows is “Can new clusters take the place of old clusters when they merge?"
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The answer is yes, we can easily show the forming
::::::::
formation of new clusters having size of the same order. We create another

figure, Fig(4), which is identical to Fig.(3), except for the threshold interaction distance ε set to equal 20% of the initial spatial

grid spacing now. Comparing Fig.(3) and Fig.(4), we see that the clusters in the later are smaller than those in the first. This is

obvious because fewer particles interact with a threshold distance equal to 20% of the grid spacing. In particular, particles in

the clusters shown in Fig.(4) interact more strongly than those in Fig.(3), and hence the clusters do not evolve the same way in5

the two cases. Specifically the clusters in the smaller 20% case, do not change size or merge, and their paths are more or less

periodic moving around the coherent vortex.

Figure 3. Cumulative clusters found
:::::::
identified at time 50 with threshold distance for interaction, ε= 40% of initial separation of particles

on uniform rectangular grid and
::::
their

:::::::
evolution tracked at later time steps

:::
(52,

::
54

:::
and

:::
58). Changing colors notify

:::::
denote

::
the

:
merging of two

clusters when particles from two clusters interact.
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Figure 4. Cumulative clusters found at time 50 with threshold distance for interaction ε= 20%, of initial separation of particles on uniform

rectangular grid and tracked at later time steps
:::
(52,

:::
54

:::
and

:::
58).

:::::::
Changing

:::::
colors

::::::
denote

::
the

:::::::
merging

::
of

:::
two

::::::
clusters

::::
when

:::::::
particles

::::
from

:::
two

:::::
clusters

:::::::
interact.

3.2 Dense sub-clusters

Fig(5) shows the four largest cumulative clusters with ε= 40% of the grid spacing, found at time 50 (particles in black) and

also plots the dense subclusters mined from within these clusters (particles in blue). We number these clusters as cluster 1,

2, 3 and 4 in descending order of their sizes. Recalling the graph theoretic terminology from section 2.3.1, we know each of

these subclusters is a graph with a minimum degree of 5. Dense subclusters locate the regions in a cluster where there are5

many interactions among particles, significantly more than regions which are not blue. In simpler words these are places where

particle interactions are at their peak.
:::::::
Particles

::
in

:
a
:::::
dense

:::::::
cluster,

::
if

::::
from

:::::::
sources

::::
with

::::::
varying

::::::::::
properties,

:::
are

::
an

:::::::
example

:::
of

:::::::
localized

:::::::
mixing.

:::::
Else,

:
if
::::
they

:::
are

:::::
from

:::
the

:::::
same

::::::
source,

:::
the

::::::::
properties

:::
of

:::
that

::::::
source

::::::
remain

:::::::::
preserved

::
in

:::
that

:::::
dense

:::::::
cluster.

::::::
Mining

:::::::
γ−quasi

::::::
cliques

::
is
::::
thus

::::::
useful

::
for

::::::::
studying

:::
the

::::
traits

::
of

:::::::
mixing

::::::
specific

::
to

::
a
:::::::
problem. Interestingly, the blue regions in
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this figure have many similarities with the clusters in Fig(4), which represents the stronger interactions. This tells us that the

regions of stronger interactions are not very different from the regions of denser interactions in our double-jet flow.
::
In

::::::
Fig.(6)

:
,

::
we

:::::
show

:::
the

::::
local

:::::::::
clustering

:::::::::
co-efficient

:::
and

:::
the

:::::
node

:::::
degree

:::
for

:::
the

:::
top

::::
four

:::::::::
cumulative

:::::::
clusters

::
at

:::::
output

::::
time

:::
50.

::::::::::
Comparing

::::
with

::::::
Fig.(5),

::
it

::
is

:::
not

::::::::
surprising

:::
to

:::
find

::::
that

:::::
some

:::::::
particles

::::
from

:::
the

::::::
dense

::::::::::
sub-clusters

::::
have

::::
large

:::::
node

::::::
degree

:::
and

:::::::::
clustering

::::::::::
co-efficient,

:::::::
meaning

:::
that

::::
they

:::::
have

:::::::
potential

::
to

:::::
form

::::
local

:::::::
clusters.5

Fig.(7), (8) and (9) show the temporal evolution of cumulative clusters 1, 2 and 3 respectively and the temporal evolution

of the particles in the dense-clusters. Fig.(8) is different from Fig.(7) and Fig (9) in the sense that some particles forming the

dense sub-clusters in this figure appear to split from other particles in the dense subgroups. This means that particles from

these regions of dense interactions move out of their more or less periodic paths and mix with particles in other regions of the

flow.
:::
We

:::::::
measure

:::
the

:::::::::::
displacement

::
of

:::
the

:::::::
particles

::
in

:::::
dense

:::::::
clusters

:::::
within

:::::::
clusters

:::
1,2

:::
and

::
3

::::
from

::::
their

::::::::
positions

::
at

:::::
t= 50

::::
and10

:::
plot

:::::
them

::
vs

::::::
output

:::::
times

::
in

:::::::
Fig.(10)

:
.
:
It
::
is
::::
seen

:::
the

:::::
paths

:::
are

:::::::
periodic

:::::
with

:::::::::
decreasing

::::::::
amplitude

:::
but

:::::
same

:::::
mean

:::
for

:::::::
clusters

:
1
:::
and

:::
2,

:::::::
meaning

::::
that

:::
the

::::
mean

:::::::
position

:::
of

:::
the

:::::::
particles

::::::
slowly

::::::
spirals

::::::
toward

:::
the

:::::
centre

::
of

:::
the

::::::
vortex.

::::
For

:::
the

::::::
second

::::::
cluster

::
as

:::::::::
mentioned

::::::
earlier,

:::
the

:::::
mean

:::::::::::
displacement

::::::::
increases

::::::::
implying

::::
that

:::::
some

::
of

:::
the

::::::::
particles

::::
have

:::::::
escaped

:::::
from

::::
their

:::::::
original

::::::
vortex. In this particular case, it can be said that since these particles undergo dense and also strong interactions they can share

physical properties with other particles in the dense clusters
:::
this

::
is

::
an

:::::::::
indication

:::
that

:::::
these

:::::::
particles

::::
that

::::
have

:::::::::
undergone

:::::
dense15

:::
and

:::::
strong

::::::::::
interactions

::::
have

:::::::::
exchanged

:::::::
physical

:::::::::
properties

::::::
among

:::::::::
themselves, and when they move out of their periodic paths

to mix with other particles they interact again and transfer some of their properties to the new regions.
::::::
outside

::::::::
particles

::
in

:::
the

::::
flow,

::::
there

::
is
::
a

::::::
chance

:::
that

::::
they

:::::::
transfer

::::
their

::::::::
properties

::
in
::::
this

::::::
foreign

::::
part

::
of

:::
the

::::
flow

::
by

::::::::::
interaction.

3.3 Instantaneous clusters

Fig.(??) shows the temporal behaviour of several of20

3.3
::::::::::::

Characteristics
:::
of

:::::
dense

:::::::::::
sub-clusters

::
In

:::
this

::::::
section

:::
we

::::::
explore

::
a
:::
few

::::::::::::
characteristics

::
of

:::
the

:::::
dense

::::::::::::
sub-clustering

:::::::::
technique.

:::
The

:::
run

:::::
time

::
of the largest instantaneous

clusters found at output time 50. The instantaneous clusters at time 50 seem to be aligned along the boundary of the central

vortex, showing that a large group of mutually interacting particles is concentrated in this region. Instead of finding new

clustersat later times, we track the position of these clustersthrough later times, because this way we check what happens to25

the highly interactive particles at time 50. It turns out that
:::::
Quick

::::::::
algorithm

:::::::
depends

::
on

:::
the

:::::::
number

::
of

:::::::
vertices

::
V

::
in

:::
the

::::::
graph,

::
the

:::::::
average

::::::
degree

::
d
::
of

:::
the

::::::::
vertices,

:::
the

::::::::
minimum

::::::
degree

:::::::::
threshold

::
γ,

:::
the

::::
size

::
of

:::::
quasi

::::::
cliques

:::::::
present

:::
and

::::
the

::::::
number

:::
of

::::
quasi

::::::
cliques

:::::::
present.

::::
The

::::
data

::::::
mining

:::::::
problem

::
in

:::
this

:::::::
context

::::::
doesn’t

::::
have

::
an

::
a
:::::
priori

::::::::
estimate.

:::::
Hence

:::
the

::::
user

:::
has

:::
no

::::::
control

:::
over

::::
the

:::
size

::::
and

:::
the

::::::
number

:::
of

::::
quasi

:::::::
cliques

:::::::
present.

::::::::::::::::::
Liu and Wong (2008)

:::::
studies

:::
the

::::::
effect

::
of

::::::::
changing

:::::::::
parameters

:::
on

:::
the

:::
run

::::
time

::
of

:::
the

:::::::::
algorithm.

:::
The

::::::::
run-time, these clusters keep moving around inside the central vortex. This means,

:::
trun::::::

varies30

:::::::::::
exponentially

::::
w.r.t

:::
the

:::::::::
parameters

::
as

::::::::::::::::::::::
trun ∼ 10kvV 10kdd10−kγγ

:::
for

:::::
some

::::::::
constants

::::::::
kv,kd,kγ:::::::::

depending
::
on

:::
the

::::::
graph.
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Figure 5. Top four (1 being the largest) cumulative clusters (black) with their dense sub clusters (blue) found at time 50. Spatially separated

blue regions are distinct sub clusters with each of them having a minimum degree of 5 within themselves and hence called dense.

:::
We

::::
wish

::
to

:::::
report

:::
the

:::::
effects

:::
of

:::::::
changing

::
ε

:::
and

::::
how

::
to

::::::::
determine

::::
‘the’

:
ε
:::
for

:
a
::::::::
problem.

:::
For

:::
the

:::::::::
double-jet

:::::::
problem,

:::::::::
increasing

:
ε
::::::::
increases

:::
the

:::
size

::
of

:::
the

::::::::::
cumulative

::::::
clusters

:::::::::::
considerably

:::::
when

::::::::
compared

::
at
::
a
::::
fixed

::::::
output

::::
time.

:::
An

:::::::
increase

:::
in

:::
the

:::
size

::
of

::
a

:::::
cluster

::::::::
increases

:::
the

::::::::::::
computational

::::::::::
complexity

::
for

::::::
Quick

::
to

::::
mine

:::
the

:::::::::::
quasi-cliques

::::::::::::
exponentially.

:::
Let

::
N

:::
be the already highly

interactive particles undergo more interactions with particles
:::
total

:::::::
number

::
of

::::::::
particles,

:::
and

::
let

::::
C40:::

and
::::
C60::::::

denote
::
the

::::::::
particles

::
in

:::
the

::::::
biggest

::::::::::
cumulative

::::::
clusters

:::
for

::::::::
ε= 40%

::::
and

:::::::
ε= 60%

:::::::::::
respectively.

:::::
Since

:::
N

::
is

:::::
fixed,

::::::::::
C40 ⊂ C60.

::
To

:::::
avoid

:::::::::
excessive5

:::::::::::
computational

:::::
time

:::
and

::
to

:::::
draw

::::::::::
comparisons

:::
on

:::
the

::::
same

:::::::
grounds

:::
we

::::
look

::
at
:::
the

:::::::
induced

::::::::
subgraph

:::::::::
C60[C40]. :::

The
:::::::
density

::
of

::::::::::
connections

::
in

::::::::
C60[C40] ::

is
::::
more

::::
than

:::::
C40,

::::::::::
specifically,

:::
the

:::::::
average

:::::
degree

:::
of

:::::
nodes

::::
rise

::
to

:::
8.1

::::
from

::::
5.0.

::::::
Again,

::
to

::::::::
compare

:::
sets

::
of

:::
the

:::::
same

:::::
class,

:::
we

:::::::
propose,

:::::::::::::::::::::::

γ(min_size−1)
average_degree = constant.

::::
Thus

:::::::::
parameter

:::::::::
min_size

:
is
::::

kept
::::::::
constant

:::
and

::
γ

::
is

::::::::
increased

::::
from

::::
0.25

::
to

::::
0.4.

::::::::
However,

::::::::
changing

:
ε
:::::::::
essentially

:::::::
changes

:::
the

:::::::
network

::::
and

:::
the

::::::::::
connections

::
do

:::
not

:::::
scale

:::::::
linearly.

::
In

::::::::
Fig.(11),

::
we

:::::
look

::
at

:::::
dense

:::::::
clusters

::
in
::::::::::

cumulative
:::::::
clusters

::
1

:::
and

::
2
::::
with

:::::::::
ε= 60%.

:::
The

::::
top

:::
left

::::::
panel,

::::::
shows

:::
that

::::
the

:::::
dense

:::::::
clusters10

:::::
mined

::::
with

:::::::
γ = 0.4

:::
and

:::::::
ε= 60%

:::
are

::
a
:::::
subset

::
of

:::::
those

::::
with

::::::::
γ = 0.25

:::
and

::::::::
ε= 40%.

::::
The

::::::::
remaining

::::::::
particles in the same region
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Figure 6.
::::
Local

::::::::
clustering

::::::::
coefficient

:::
(top

:::::
panel)

:::
and

::::
node

:::::
degree

:::::::
(bottom

:::::
panel)

::
for

:::
the

:::
top

:::
four

::::::::
cumulative

::::::
clusters

::
at

:::::
output

::::
time

::
50

implying higher chances of mixing in the region. Not surprisingly, we draw the same inference from Fig. 7, corroborating the

authenticity of our algorithm mining regions of dense mixing
:::::::
ε= 60%

:::::::
clusters

:::::
cannot

:::::
meet

:::
the

:::::
tighter

::::::::
threshold

:::::::
criteria

::
of

:::
the

:::::::
ε= 40%

::::
case.

::::
The

::::::
bottom

:::
left

:::::
panel,

::::::
shows

:::
the

:::::
results

:::::
with

:::::::
γ = 0.3.

:::::::
Relaxing

:::
the

::::::::
minimum

::::::
degree

:::::::
criteria,

:::::
yields

:::::
more

:::::
dense

:::::::
clusters,

:::
but

:::::
some

::
of

::::
them

::::
like

:::::
those

::
at

:::
the

::::::
bottom

:::
of

:::
the

:::::
vortex

::::::
belong

::
to
::

a
:::::::
different

:::::
class.

:::::
This

::
is

:::::::
because

::::::
γ = 0.3

:::::::
doesn’t

::::
scale

:::::::
properly

::::
with

::::::::
ε= 60%.

:::::
This

::::
helps

:::
us

:::::::::
understand

:::
the

::::::::
scenarios

::
of

:::::::::
increasing

:
ε
::::::
further

:::
i.e.

:::::::
scaling

::
up

::
γ

::
to

:::::
make

::::
sure

:::
we5

::::::
remain

::::::::
consistent

::::
with

:::
our

:::::
dense

:::::::
clusters.

::::::::::
Otherwise,

:::
we

::
are

::::
just

::::::
mining

:::::::
densely

::::::::
connected

::::::
graphs

:::::::
without

:::::::
physical

::::::::
meaning,

:::
and

:::::
taking

::
a
::::
very

::::
long

::::::::::::
computational

::::
time

::
to

::
do

:::
so.

::::
The

:::
top

:::
and

::::::
bottom

::::
right

::::::
panels

::
in

:::
the

:::::
figure

:::::
show

:::
the

::::
same

::::::
results

:::
but

:::
for

:::::::::
cumulative

::::::
cluster

:
2
::::::::
obtained

::::
with

::::::::
ε= 60%.

:
It
::
is

:::::::::
interesting

::
to

:::::::
observe

::
in

:::
this

::::
case

::::
that

::::::::
improper

::::::
scaling

::
of

::
γ

:::::
might

::::
lead

::
to

::
re

:::::::::
positioning

::
of

:::::
some

::
of

:::
the

::::::::
maximal

:::::
quasi

::::::
cliques

:::
e.g.

:::
the

:::::
dense

::::::
cluster

::::::::
particles

::::::
present

::
in

:::
the

:::
left

::::::
vortex

::
of

:::
the

:::::::
γ = 0.4

::::
case

::
are

::::::
absent

:::::
from

::
the

:::::::
γ = 0.3

:::::
case.

::::
This

::
is

::::::
because

::::::::
relaxing

:::
the

::::::::
threshold

::::::
criteria

::::::
caused

:::
the

::::::::::::
corresponding

:::::
dense

::::::
cluster

::
to

:::
get10

:::::
bigger

:::
and

:::::::
exclude

:::::
some

::
of

::
its

::::::::
previous

::::::::
residents.

:::
We

:::
also

:::::::::
performed

:::::
dense

::::::
cluster

:::::::
analysis

::
on

::::::::
ε= 20%,

::::::
where

::
the

::::::::::
cumulative
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Figure 7. Multiple time images of cumulative cluster 1 (black) with its dense sub clusters (blue). Blue ’o’s at later times represent particles

that were parts of a dense sub cluster at time 50.

::::::
clusters

:::
are

:::
so

:::::
small

:::
that

::::::
almost

:::
all

::
of

:::::
them

::::::
belong

::
to

:::
the

:::::
dense

:::::::
clusters.

:::::::
Hence,

:::
we

::::::
suggest

::::
that

:::
the

:::::
ideal

:
ε
::
be

:::::
kept

::::::
around

:::
half

::
of

:::
the

::::
grid

::::::
spacing

::::
and

:::
the

::::
ideal

::
γ

::
as

::::
high

::
as

::::::::
sufficient

::
to

:::::
obtain

::::::::::
satisfactory

:::::::
quantity

::::
and

::::::
quality

::
of

:::
the

:::::
dense

::::::
clusters

::
in

::
a

:::::::::
reasonable

:::::::::::
computational

:::::
time.

::::
This

:::::::
requires

:::::
some

:::::::
intuition

:::
on

::
the

::::
part

::
of

:::
the

::::
user,

:::
but

:::::
leads

::
to

:::
the

::::
most

::::::
robust

::::::
results.

:

::::::::
Increasing

:::::::::
min_size

::::::
would

::::::
simply

::::::::
eliminate

::
the

::::::
dense

::::::
clusters

::::::
which

::
no

::::::
longer

::::
meet

:::
the

::::::::
necessary

:::::::
criteria.

::::::::
However,

::
it

::
is

::::::::
important

::
to

::::
note

::::
that

:
it
::
is
:::::::::
necessary

::
to

:::::
tweak

:::
the

:::::::::
min_size

:::::::::
parameter

:::
for

:::::::
different

::::::::::
cumulative

::::::
clusters

:::
for

::::
best

::::::
results.

::::
We5

::::
show

::::::
results

::
of

:::::::
varying

:
γ
:::::::
keeping

:::::::::
min_size

:::::::
constant

::
in

::::::::
Fig.(12).

:::::::::
Increasing

:
γ
:::::::
beyond

:::
0.4

::::::
doesn’t

:::::
yield

:::
any

:::::
dense

:::::::
clusters

::
in

:::
this

::::
case.

::::
The

::::::
results

:::::::::
themselves

:::
are

::::
quite

::::::::
intuitive

:::
and

:::::::::::::
self-explanatory.
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Figure 8. Multiple time images of cumulative cluster 2 (black) with its dense sub clusters (blue). Blue ’o’s at later times represent particles

that were parts of a dense sub cluster at time 50.

:::
We

:::::
tested

::
to

::::
what

::::::
extent

:::
our

:::::
dense

:::::::
clusters

:::
are

:::::::
sensitive

:::
to

:::::::::::
perturbations

::
of

:::::
initial

:::::::
particle

::::::::::
distribution.

:::::::
Fig.(13)

::::::
shows

:::
the

:::::::
evolution

:::
of

::
the

:::::
dense

:::::::
clusters

::::
with

::::::::
uniformly

::::::::::
distributed,

::::::
random

:::::::::::
perturbations

::
to

:::
the

:::::
initial

:::::::
position

::
of

:::
the

:::::::
particles.

:::::
These

::::
had

:
a
::::::::
maximum

::::::
extent

::
of

::::
15%

::
of

:::
the

::::
grid

::::::
spacing

::
in
:::::
each

:::::::
direction

:::
and

::::::::
ε= 40%

::
in

:::
this

:::::
case.

:::
The

::::::::
resulting

:::::
dense

::::::
clusters

::::
and

::::
their

:::::::
evolution

:::
are

::::::
shown

::
in

:::::::
Fig.(14).

::::::::::
Comparing

::::
these

::::
two

::::::
figures,

:::
we

:::
see

:::
that

:::::::::
perturbing

:::
the

::::::
particle

::::::::
positions

:::::::
changes

:::
the

:::::::
network

:::
and

:::
the

:::::::
location

::
of

:::
the

:::::
dense

:::::::
clusters,

:::::
which

::
is

::::::::
somewhat

::::::
trivial.

::::::::
However,

::::::::::
considering

:::
that

::::
this

::::
study

::
is
::::::
purely

::::::::::
Lagrangian,

:::
the5

:::::
dense

::::::
clusters

:::::
from

:::
the

::::::::
perturbed

::::
case

::::::::::
consistently

:::::::
convey

::::::::::
qualitatively

::::::::::
unchanged

::::::::::
information

:::::
about

::::::
regions

:::
of

:::::::::
potentially

:::::
dense

:::::::
localized

:::::::
mixing

::::
(e.g.

:::
the

:::
ring

:::
of

:::::
dense

:::::::::
subclusters

::::::
around

:::
the

::::::
central

::::::
vortex

:::::
which

:::
can

:::
be

:::::
traced

:::::::::
backwards

:::
in

::::
time

::
to

::
the

::::::
flanks

::
of

:::
the

:::::::::::::
geostorphically

:::::::
balanced

::::
jet).
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Figure 9. Multiple time images of cumulative cluster 3 (black) with its dense sub clusters(blue). Blue ’o’s at later times represent particles

that were parts of a dense sub cluster at time 50.

3.4 Spectral Clusters

In this sub-section we show the results of spectral clustering described in section 2.4. Fig.(15) shows the different spectral

sub-clusters that this algorithm splits the largest cumulative cluster (cluster 1) into. Fig.(16) shows the
:::::::
temporal evolution of

the spectral clusters
:
of

::::::
cluster

::
1 found at time 50. Giving a quick recap, the spectral clustering technique is responsible for

dividing the set of particles into k communities, k being 5 in the results shown. A spectral sub-cluster is expected to have5

more inter-particle interactions inside itself than outside because the clustering is applied on the adjacency matrix of particle

interactions. However, the clusters found here
:::
The

:::::::
spectral

::::::::::
sub-clusters

:
are exhaustive and therefore

:::::
hence unlike the dense
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Figure 10.
::::::::::
Displacement

:::::::
averaged

:::
over

:::::::
particles

::
in

::::
dense

::::::
clusters

::::
from

::::::
clusters

:::::
1,2,3

:::
(DC

::::
1,DC

::
2,

:::
DC

::
3)

:::::::
measured

::::
from

:::::::
positions

::
at

:::::
output

:::
time

:::
50

::
vs

:::::
output

::::
time.

sub-clusters, all the spectral sub-clusters
::
of

:::::
them are not equivalently rich in particles with high degrees of interaction. This

can be seen from Fig.(16) where most of the particles in the sub-clusters of cluster 1 stay within the central vortex, while some

others take different paths over the course of the flow’s evolution. This can be explained by our hypothesis that the paths of

the densely interactive particles in cluster 1 tend to stay nearly periodic with time. Examining Fig.(15), we realize that the

spatial distribution of these clusters share similarities to some extent with the dense sub-clusters from the last sub-section,5

especially around the coherent central vortex. This validates that these coherent structures are home to all the blue regions

around the central vortex in Fig.(7) representing dense interactions and thereby strong mixing. However, it is clear that the

graph theoretic method is more robust in finding specific regions of mixing as compared to the spectral clustering method .

:::::::
Spectral

::::::::
clustering

:::::
relies

::
on

:::::::
k-means

:::::::::
clustering

:::
and

:::::
hence

::
is

::::::
highly

:::::::
sensitive

::
to

::::::
change

::
in

::::
data

::::::::::
distribution

:::
e.g.

:::::::
different

::::::
output

::::
times

:::
or

::::
small

::::::::::::
perturbations

::
to

:::::
initial

::::::
particle

:::::::::::
distribution.

:::::::
Spectral

::::::::
clustering

::::
also

::::::
returns

::::::::::
sub-clusters

::
of

::::::::::::
incomparable

:::::
sizes,10

::::::
leaving

::
us

:::
no

::::
way

::
to

::::::::
compare

:::
the

::::::
degree

::
of

::::::
mixing

::::::
among

:::
the

::::::::::
sub-clusters

:::::::
mined.

:::
The

:::::
dense

::::::::::::
sub-clustering

:::::::
method

:::
on

:::
the

::::
other

::::
hand

:::::::
controls

:::
the

:::::::
density

::
of

::::::::::
connections

:::
and

:::::
hence

:::
all

::::::::::
sub-clusters

:::::
mined

::::::
belong

::
to
:::
the

:::::
same

::::
class

:::
of

::::::
mixing.

:
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Figure 11. Multiple time images of top few instantaneous
:::::
Dense clusters found at time 50. Once found, particles

:::
with

:::::::
ε= 60%

:
in these

::::::::
cumulative clusters are tracked through later time steps

:
1

:::
and

:
2
::
at

:::::
t= 50.
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Figure 12.
:::::
Dense

::::::
clusters

:::
with

:::::::
ε= 40%

:::
for

::::::
varying

:
γ
::
at

:::::
t= 50

Spectral clusters in cluster 2 found at time 50 and shown at other times.

We also show the spectral clusters in cluster 2 identified at time 50 in Fig.(??) and look at the behaviour of the particles at

different times. Comparing with Fig.(8), we see that the particles in the dense clusters show a lot of similarity with the particles

in the spectral sub-clusters, especially in the way they deviate from their initial paths and mix into other regions of the flow.

4 Conclusions5

In this paper we have outlined a Lagrangian-particle based technique to gain insight into mixing in non-linear geophysical

flows. Our literature survey showed that clustering of particles based on inter-particle distances has been used to characterize

mixing from a Lagrangian point of view. Local network measures like node degree and the local clustering coefficient of a

particle, employed by previous researchers e.g. (Padberg-Gehle and Schneide, 2017), gives an idea about the number of other

particles a chosen particle has interacted with, or ‘neighbours’. We have taken this approach one step further, by finding sub-10

clusters representing regions of dense interactions. The findings of our work can be partly summarized by Fig.(17). In this
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Figure 13.
:::::
Dense

::::::
clusters

:::
with

:::::::
ε= 40%

:::
and

:::::::
particles

::
on

::::::
uniform

:::::::::
rectangular

::::
grid.
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Figure 14.
:::::
Dense

::::::
clusters

:::
with

:::::::
ε= 40%

:::
and

:::::::
particles

::
on

:::::::::
rectangular

:::
grid

::::
with

::::::::::
perturbations.
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Figure 15. Spectral clusters found at multiple times from within cluster 1.

figure we examine the output time 80, at which the double jet has broken up into a number of quasi-coherent vortices, as

well as filaments of vorticity. The enstrophy field, scaled by its maximum, is shown shaded in the Figure, with green dots

superimposed to show particles from a few of the largest cumulative clusters. This gives us an indication of particles that

have passed through regions where mixing has taken place. The algorithm Quick is used to identify subclusters of particles

with dense mutual interactions (i.e. strongest mixing). These particles are plotted in blue. These particles, and their path history,5

identify regions where the density
::::::
degree of mixing is relatively higher (regulated by a density parameter γ) than other portions

of the cumulative clusters. In summary, this figure tells us that the outskirts of the large, coherent vortices involve the most

:::::::
strongest mixing. The vorticity filaments away from the quasi-coherent vortices are marked as belonging to regions of mixing,
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Figure 16. Spectral clusters in cluster 1 found at time 50 and tracked forward and backward

but not the strongest mixing. The subclustering method thus provides a way to gain further detail on mixing intensity from a

Lagrangian point of view.

We have compared our results with the coherent structures identified by spectral clustering. Spectral clustering shows that

the location of the coherent structures is around the vortices, but fails to point out the regions of strong mixing. As discussed in

section [2.4], the method of finding dense clusters is more precise and robust. We have also computed instantaneous clusters,5

which as opposed to the cumulative clusters represent regions of interaction for each output time. Instantaneous clusters proved

useful in showing that they do not change their paths much during the course of the flow evolution and keep interacting with

particles in the same region multiple times, implying dense mixing. This helped us validate our method for finding dense

subclusters.

Summarizing the major findings in our work, we have seen that the size of cumulative clusters depend
::::::
depends

:
on the thresh-10

old interaction distance ε. In fact previous works like (Padberg-Gehle and Schneide, 2017)
:::::::::::::::::::::::::::::
Padberg-Gehle and Schneide (2017)

have only used values of ε larger than the grid spacing, in order to make the entire graph connected and then apply techniques

like spectral clustering to extract coherent sets. Our approach, has allowed us to regulate
::
set

:
ε

:
to

:::
be

:
smaller than the grid

spacing
:::
(i.e.

::
to

:::::::
demand

:::::::
stronger

::::::::::
interactions

:::
as

:
a
:::::
proxy

:::
for

:::::
more

:::::::
mixing) and observe the differences .

::
in

::::::
cluster

::::::::
structure.
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Figure 17. Enstrophy field with particles at output time 80. The green dots represent particles from the three largest cumulative clusters and

the blue regions represent particles having dense interactions within these cumulative clusters.

We have inferred that, cluster merging is possible beyond a threshold ε. Decreasing ε less than the threshold corresponds to

stronger interactions and hence stronger mixing. Regions of strong and dense mixing show a lot of similarity, which mostly

are concentrated along the outskirts of the quasi-coherent vortices
:::
that

:::::::
develop

::::::::::::
spontaneously

::
in

:::
the

:::::::::
simulation, implying that

coherent behavior can involve
:::::
induce

:
a lot of mixing as demonstrated in Fig.(17). The highly interactive particles from the

dense subclusters
:::::::::
sub-clusters

:
usually stay as a part of their original coherent vortex. However, interesting dynamics seem to5

be
:::
are present when some of these particles deviate out of their usual

:::::
typical

:
paths and mix with other regions in the flow as

discussed in section [2.3]. Even
::::::
Indeed, results from spectral clustering show that some particles showing coherent behaviour

may become incoherent over time. The striking similarities between the behaviour of the coherent spectral clusters and the

dense subclusters indicate that dense interactionand thereby mixing ,
::::
and

::::::
thereby

:::::::
inferred

:::::::
mixing,

:
is a characteristic of co-

herent structures.
::
A

:::::
study

::
of

:::
the

::::::
effects

::
of

::::::::
parameter

::::::::
variation

:::
on

:::
the

:::::
dense

::::::::::::
sub-clustering

::::::::
technique

:::::::
showed

:::
that

:
ε
::::::
should

:::
be10

::::::
chosen

:::::::::
sufficiently

:::::
small

::
to

:::::::
produce

:
a
::::::::::
satisfactory

::::::
amount

::
of
::::::::::
information

:::::::
content

:::::
about

:::
the

::::::
regions

::
of

:::::::
mixing.

:::
The

:::::::
smaller

:::
the

::::::::
minimum

::::::
degree

::
of

:::::::::
interaction,

:::
the

:::::::
stronger

:::
the

:::::::
mixing

:::::::::
represented

:::
by

:::
the

:::::
mined

:::::::
regions.

::::
The

::::::::
minimum

::::::
degree

::
is

:::::::::
controlled

::
by

:::::::::
parameters

:::::::::
min_size

:::
and

:::
γ,

:::::
where

:::::::::
min_size

::
is

:::::
really

:
a
::::::
choice

::
of

:::
the

::::
user

:::::
based

::
on

:::
the

::::::::::
application

:::
and

::
γ
:::
can

:::
be

:::::
tuned

::
to

::
hit

:::
the

:::::::
optimal

::::::::
minimum

::::::
degree

:::::
value.

::::
The

::::::::
technique

::::
thus

:::::::
requires

::::
some

::::::
tuning

::::
from

:::
the

:::::
user.
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Future work divides into algorithmic improvements and applications. On the algorithmic side, we would like to automate the

selection of search parameters (γ and min_size) in Quick, based on the adjacency matrix. A GPU-based implementation of

the Shallow Water Equation solver, the Lagrangian particle tracking and dynamic calculation of the inter-particle interactions

will also be presented in a future manuscript. On the application side, the central future challenge is how to appropriately think

of particles, and hence Lagrangian based mixing ideas, in more complex models. For example should particles migrate across5

isopycnal layer boundaries in multi-layer models?
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