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Abstract. For most statistical postprocessing schemes used to correct weather forecasts, changes to the forecast model induce

a considerable reforecasting effort. We present a new approach based on response theory to cope with slight model changes. In

this framework, the model change is seen as a perturbation of the original forecast model. The response theory allows us then

to evaluate the variation induced on the parameters involved in the statistical postprocessing, provided that the magnitude of

this perturbation is not too large. This approach is studied in the context of simple Ornstein-Uhlenbeck models, and then on a5

more realistic, yet simple, quasi-geostrophic model. The analytical results for the former case help to pose the problem, while

the application to the latter provide a proof-of-concept and assesses the potential performances of response theory in a chaotic

system. In both cases, the parameters of the statistical postprocessing used – an Error-in-Variables Model Output Statistics

(EVMOS) – are appropriately corrected when facing a model change. The potential application in an operational environment

is also discussed.10
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1 Introduction

A generic property of the atmospheric dynamics is its sensivity to initial conditions. This implies that probabilistic forecasts

will always be needed to adequately describe this behaviour (Wilks, 2011). Indeed, these methods represent a way to go

beyond the natural predictability barrier that the chaotic atmospheric models exhibit (Vannitsem, 2017). These forecasts are at

the same time subject to the impact of the presence of structural uncertainties, also known as model errors. Such errors degrade5

the forecasts as well, and their impact needs to be mitigated.

Statistical postprocessing methods are used to correct the operational predictions of the atmospheric models. An impor-

tant family of statistical techniques used to postprocess the forecasts are linear regression techniques, with possibly multi-

ple predictors (Glahn and Lowry, 1972; Vannitsem and Nicolis, 2008), also known as Model Output Statistics (MOS). This

rather simple but very efficient technique can be adapted to ensemble forecasts (e.g. Vannitsem (2009); Johnson and Bowler10

(2009); Glahn et al. (2009); Van Schaeybroeck and Vannitsem (2015)). One of the first approaches that was proposed is called

Error-in-Variable MOS (EVMOS) because it takes into account the presence of errors in both the observations and model

observables (Vannitsem, 2009).

Despite their simplicity, most postprocessing schemes depend on the availability of a database of past forecasts, that allows

one to “train” the regression algorithm by comparison with the observations database. Operational models are however subject15

to frequent evolution cycles, which are needed to improve their representation of the atmospheric processes. Therefore, there

is a continuous need to recompute forecasts starting from past initial conditions with the latest model version, to avoid a

degradation of the postprocessing schemes due to model change. Such recomputation of the past forecasts are called reforecasts,

and typically requires a huge data storage and management framework, as well as large computational resources (Hamill, 2018).

For instance, the European Center for Medium-range Weather Forecast (ECMWF) and the National Weather Service (NWS)20

both produce hundreds of reforecasts every week (Hamill et al., 2013).

A recent research has investigated non-homogeneous regression with time-adaptative training scheme, for which a trade-off

between large training data sets for stable estimates and the benefit of a shorter training period for faster adaptation to data

changes is considered (Lang et al., 2020). These results can help mitigate the impact of model change on postprocessing and

may call into question the need for reforecast systems. These systems do however help to better represent rare events, they25

increase the size of the training data sets and greatly improve sub-seasonal forecasts (Scheuerer and Hamill, 2015; Hamill,

2018), which can justify their prohibitive cost.

The present work investigates another research direction and considers a new technique to reduce the cost of adapting a

linear postprocessing scheme to a model change. This method relies on the response theory for dynamical systems (Ruelle,

2009) and assumes that the model variation can be written as analytical perturbations of the model tendencies. In this context,30

parameters variations as well as new terms in the tendencies are potential model changes.

In section 2, we start by introducing the Ruelle response theory that is used to adapt past postprocessing parameters to new

models. A didactical example of such adaptation is considered with simple Ornstein-Uhlenbeck models in section 3. It is used

to describe the methodology and the concept involved. We show that obtaining a new postprocessing scheme after a model
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change requires the computation of the response of the average of the involved predictors, seen as observables of the system. In

the simple case considered, exact analytical results for the response can be obtained at any order. The correction of the model

observables and the postprocessing parameters due to the model change only requires the response-theory corrections up to the

second order.

In section 4, a more complex case is considered with a toy model of atmospheric variability in the form of a 2-layer quasi-5

geostrophic model with an orography. We compute the linear response of the predictors of the postprocessing for two model

change experiments involving a modification of the friction and the horizontal temperature gradient of the model. The response

theory approach provides an efficient correction of the postprocessing scheme up to a lead time of 4 days, which matches the

lead-time window where the scheme’s correction is efficient.

In the last section, we discuss the implications that this new method could have on operational forecast postprocessing10

systems, as well as new research avenues to be explored.

2 Response theory

The systems used to produce the weather forecasts are typically non-linear dynamical systems whose time evolution is governed

by multi-dimensional ordinary differential equations:

ẏ = F (t,y). (1)15

The generic chaotic nature of these systems for some parameter values implies that they are sensitive to the initial data used to

produce the forecasts. For such chaotic dynamical systems, one can assume that a well-defined time-invariant measure exists,

and with which the averages are performed. However, the existence of such measures has been proved for systems that are

uniformly hyperbolic and they are called SRB measure (Young, 2002), but rigorous proofs for other systems are rather difficult

to obtain. A way to proceed is then to proceed as if physical systems were uniformly hyperbolic. This assumption is called20

the Gallavotti-Cohen hypothesis (Gallavotti and Cohen, 1995a, b). With this assumption, response theory has been succesfully

used in various weather and climate-related problems (Demaeyer and Vannitsem, 2018; Vissio and Lucarini, 2018; Lembo

et al., 2019; Bódai et al., 2020). Indeed, the systems used to produce weather forecasts are typically not uniformly hyperbolic,

but thanks to the aforementioned hypothesis, one can still use what will follow and compare with the results obtained with

experiments.1 It is the rationale behind the formal presentation of the linear response theory for general systems like (1) in25

Ruelle (1998a). Main concepts that will be used in this article are now introduced.

2.1 Perturbations of dynamical systems

We shall assume for simplicity that the system (1) is autonomous and given by

ẏ = F (y). (2)
1We point the reader to recent articles dealing with the validity of the response theory for weakly hyperbolic systems and time series (Gottwald et al., 2016;

Wormell and Gottwald, 2018).
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In the general setting considered, let’s assume that any given probability measure converges to a unique invariant measure ρ

under the time evolution given by the Liouville equation of (2). This measure is used to compute the average of an arbitrary

observable A (a smooth function of the state y) of the system, which is given by

〈A〉y =

∫
ρ(dy)A(y) (3)

and assuming the ergodicity of the system, a time average of the observable A along a trajectory of the system on its attractor5

can be equivalently performed:

〈A〉y = lim
T→∞

1

T

T∫
0

dτ A(y(τ)) (4)

where y(τ) is a solution of Eq. (2). If a perturbation Ψ of the dynamical system is introduced in the original system at the time

τ = 0:

ẏ = F (y) + Ψ(y), (5)10

it induces a perturbation of the obervable’s average which at first order is given by2

δ〈A(τ)〉y =

∫
ρ(dy0)δA(fτ (y0)) =

∫
ρ(dy0)δy(τ)T ·∇fτ (y0)A (6)

where fτ is the flow the system (2) mapping an initial condition y0 to the system’s state at time τ : y(τ) = fτ (y0). δy is the

perturbation of the trajectory of the system induced by the perturbation Ψ. This formula gives the transient response to the

perturbation, and long time average of the integrand of (6) gives the stationary response to the perturbation, i.e. the sensibility15

δ〈A〉y of the system observables to the perturbation (Eyink et al., 2004; Wang, 2013). The higher-order corrections δk〈A(τ)〉y
can in principle be computed as well but are quite complicate to obtain for chaotic dynamical systems, see for instance Lucarini

(2009). We will show an analytically tractable case in Section 3.

2.2 The tangent linear model

The linear perturbation δy of the trajectories of (2) can be computed by introducing y+ δy in Eq. (5) to get at first order20

˙δy = ∇yF · δy+ Ψ(y) (7)

where y is the solution of system (2) and ∇yF is the Jacobian matrix evaluated along this solution. Therefore, both Eqs. (2)

and (7) have to be integrated simultaneously. In the weather forecasting context, this latter linearised equation is called the

tangent linear model of system (2) (Kalnay, 2003) plus the perturbation term Ψ. Without this latter term, it provides the

linearised time evolution of a perturbation δy superimposed to the initial conditions. Here, Eq. (7) is initialised with δy(0) = 025

and provides the linear “response” of the trajectory y(τ) to the perturbation Ψ. It is thus assumed that there is no interference

2When taking the gradient of a function A, the notation ∇yA means taking the gradient at the point y, i.e. evaluating ∇yA(y).
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due to initial condition errors in the perturbation problem. Note however that the effects on the trajectories of both the initial

conditions perturbation and the Ψ perturbation can be investigated through this equation by setting δy(0) 6= 0, altough we are

not aware of any study of the response to both type of perturbations together.

The tangent model provides thus the tool through which we will evaluate the impact of the model change on the average

used by statistical postprocessing schemes. In other words, the tangent model will allow us to take into account the information5

on the model change (viewed as a perturbation of the initial model) to modify the previous postprocessing scheme and adapt it

to the new model. The solution to Eq. (7) with δy(0) = 0 is given by

δy(τ) =

τ∫
0

dτ ′ M
(
τ − τ ′,fτ

′
(y0)

)
·Ψ
(
fτ
′
(y0)

)
, (8)

where M is the fundamental matrix of solutions of Eq. (7) (Gaspard, 2005; Nicolis, 2016):

M(τ,y) = ∇yf
τ (9)10

solution of the homogeneous equation Ṁ = ∇yF ·M. Using the chain rule, the response (6) is rewritten in term of the

perturbation alone:

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫
ρ(dy0) Ψ

(
fτ
′
(y0)

)T
·∇fτ′ (y0)

A(fτ (y0)) (10)

where the causality of the perturbation acting on the system and perturbing the averaged observable appears (Lucarini, 2008),

since τ ′ < τ . We will also use this alternative expression throughout the article. Note that when the initial perturbation δy(0) is15

not equal to 0, additional terms to Eqs. (8) and (10) will appear. These will not be addressed here but some hints can be found

in Nicolis et al. (2009) and Nicolis (2016).

2.3 Non-stationary response theory

The equation (6) gives the transient, non-stationary response to the perturbation, evaluated for averages computed with the

invariant measure. However, in this work, we need to evaluate response to perturbation for averages computed with non-20

stationary measures evolving in time. In that sense, it is a non-stationary response theory, done for arbitrary initial probability

density. As such, all the formula presented are valid if the measure being used is the measure at the time when the perturbation

is introduced (τ = 0), as shown in Appendix A. In this case, other usual formula obtained through substitution, for instance to

obtain an adjoint representation of (10), should be used with care since the measure is no longer invariant and an extra Jacobian

term appears in the integrand.25

We will thus also assume that the measures ρτ being used are absolutely continuous with respect to the Lebesgue measure. In

this case, we can write ρτ (dy) = ρτ (y)dy. We now present the problem of model change in the framework of postprocessing

and show on a simple stochastic model3 how response theory allows to tackle the issue.

3Response theory is also valid for stochastic models with a well-defined stationary measure, as shown by Lucarini (2009).
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3 A simple analytical example

In order to get a first impression of the impact of a model change on a postprocessing scheme, we consider two Ornstein-

Uhlenbeck processes representing the reality x(τ) and a model y(τ) of the reality. These processes obey the following equa-

tions:

ẋ(τ) = −λx x(τ) +Kx +Qx ξx(τ) (11)5

ẏ(τ) = −λy y(τ) +Ky +Qy ξy(τ) (12)

where ξx and ξy are Gaussian white noise processes such that

〈ξx(τ)〉= 〈ξy(τ)〉 = 0

〈ξx(τ) ξx(τ ′)〉 = δ(τ − τ ′)

〈ξy(τ) ξy(τ ′)〉 = δ(τ − τ ′)10

〈ξx(τ) ξy(τ ′)〉 = 0

These are therefore uncorrelated Ornstein-Uhlenbeck processes with noise amplitudes Qx and Qy .

We then consider a change Ψy of the model y(τ), possibly improving or degrading the forecast performances:15

˙̂y(τ) =−λy ŷ(τ) +Ky +Qy ξy(τ) + Ψy(τ) (13)

where

Ψy(τ) =−κ
(
δK + δQ ξy(τ)

)
(14)

with δK =Ky−Kx and δQ=Qy−Qx. It can represent, for example, a better parameterisation of subgrid-scale processes or

an increase of the model resolution. Note that the best correction is obtained if κ= 1.20

We have thus the reality x(τ) and two different models of it: y(τ) and ŷ(τ). We now want to evaluate the difference between

a postprocessing scheme constructed before the model change (with the past forecasts of the model y(τ)), and one constructed

after (with the past forecasts of model ŷ(τ)).

3.1 The postprocessing method25

We now consider a forecast situation where the model y is initialised at the time τ = 0 with a perfect observation of the real-

ity: y(0) = x(0) = x0. We use the Error-in-Variables Model Output Statistics (EVMOS) postprocessing scheme (Vannitsem,

2009) to correct the forecasts of the model y based on these initial conditions. In this context, given N past forecasts yn and

6



observations xn, the correction of the univariate EVMOS postprocessing of variable x from a new forecast y(τ) is provided by

the linear regression

yC(τ) = α(τ) +β(τ)y(τ) (15)

The coefficients α and β are obtained by minimising the functional

J(τ) =

N∑
n=1

[{α(τ) +β(τ)yn(τ)}−xn(τ)]
2

σ2
x(τ) +β2(τ)σ2

y(τ)
, (16)5

and are thus given by the equations:

α(τ) = 〈x(τ)〉−β(τ)〈y(τ)〉 (17)

β(τ) =

√
σ2
x(τ)

σ2
y(τ)

(18)

where

σ2
x(τ) =

〈(
x(τ)−〈x(τ)〉

)2〉
(19)10

σ2
y(τ) =

〈(
y(τ)−〈y(τ)〉

)2〉
(20)

The averages 〈·〉 are taken over an ensemble of past forecasts and observations. This approach has been developed to obtain a

correct climatological forecast calibration. It constitutes a simple setting in which the impact of model changes can be evalu-

ated and corrected. More sophisticated approaches can be evaluated in the future (other MOS schemes, ensemble MOS,. . . ).

15

Since we are dealing with simple analytical models here, we can compute the theoretical values of the coefficient α and

β with an infinite ensemble of past forecasts, and the averaged quantities involved in this computation are then given by the

averages of an infinite number of realisations of the Ornstein-Uhlenbeck processes, as if we had an infinite ensemble of past

forecasts.

3.2 Averaging the Ornstein-Uhlenbeck processes20

For the reality x and the model y, we directly get the averages (Gardiner, 2009)

〈x(τ)〉 = 〈x0〉e−λx τ +
Kx

λx

(
1− e−λx τ

)
(21)

σ2
x(τ) = σ2

x0
e−2λx τ +

Q2
x

2λx

(
1− e−2λxτ

)
(22)

and

〈y(τ)〉 = 〈x0〉e−λy τ +
Ky

λy

(
1− e−λy τ

)
(23)25

σ2
y(τ) = σ2

x0
e−2λy τ +

Q2
y

2λy

(
1− e−2λyτ

)
(24)
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where we note that the model is initialised with the same initial conditions as the reality:

〈y(0)〉= 〈x(0)〉= 〈x0〉 , σ2
y(0) = σ2

x(0) = σ2
x0

(25)

We get the postprocessing coefficients before the model change α(τ) and β(τ) by inserting these expressions in the equa-

tions (17) and (18).

Similarly, we get the same kind of results for the model ŷ, after the model change Ψy:5

〈ŷ(τ)〉 = 〈x0〉e−λy τ +
Ky −κδK

λy

(
1− e−λy τ

)
(26)

σ2
ŷ(τ) = σ2

x0
e−2λy τ +

(Qy −κδQ)2

2λy

(
1− e−2λyτ

)
(27)

and we also obtain the postprocessing coefficients after the model change α̂(τ) and β̂(τ) (see also the analysis in Vannitsem

(2011)). We can also compute the variation of the bias α:

α̂(τ)−α(τ) = δα(τ) = β(τ)〈y(τ)〉− β̂(τ)〈ŷ(τ)〉 (28)10

The ratio between the parameters β is given by

β̂(τ)

β(τ)
=

√
σ2
y(τ)

σ2
ŷ(τ)

(29)

For τ �max(1/λx,1/λy), we note that this ratio tends to

β̂(τ)

β(τ)
≈ 1

1−κδQ/Qy
(30)

and the difference between the biases α of the two models is approximatively given by:15

δα(τ)≈−β(τ)
Ky

λy

[
1−κδK/Ky

1−κδQ/Qy
− 1

]
. (31)

Let us now assume that the model change Ψy can be considered as a perturbation of the initial model y. Using response

theory, the averages 〈ŷ〉 and σ2
ŷ can be estimated using the initial model y instead of the perturbed model ŷ. In turn, these new

estimated averages give us the new postprocessing scheme coefficients α̂ and β̂. We now detail the results obtained by using

this method.20

3.3 Model Change and Response theory

After the model change, the forecasts are provided by the model ŷ and their time-evolution is given by Eq. (13). This model

can be seen as a perturbation of the model y by the term Ψy given by Eq. (14). In such case, given an observable A, its average

after the model change can then be related to its original average by

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ2〈A(τ)〉y + . . . (32)25
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where the averages on the right-hand side are taken over the forecasts of model y. Response theory allows us to obtain the

average over the model ŷ forecasts (the left-hand side) based solely on the average over the model y forecasts. The ŷ model

forecasts are therefore not required to estimate the new postprocessing scheme.

The observables depend on the lead time τ of the forecast, as do the parameters α and β which determine the postprocessing

correction for every lead time. This reflects the fact that the postprocessing problem is typically a non-stationary initial value5

problem, since the initial conditions of the model Eqs. (12) and (13) are typically not chosen on their respective model attractor,

but rather as observations4 of the reality (11). As a consequence, the model averages (32) relax toward the stationary response

in the long-time limit, and the stationary response theory (Ruelle, 2009; Wang, 2013) cannot provide us their short-time

relaxation behaviour. Instead, the Ruelle time-dependent response theory should be used (Ruelle, 1998a). It follows that, if the

perturbation (14) is small, then the first order is given by (see section 2):10

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dx0 ρ0(x0)
〈

Ψy(τ ′)∇fτ′ (x0)
A(fτ (x0))

〉
(33)

where ρ0 is the distribution of the initial conditions (observations) used to initialise the models. ∇x is the gradient evaluated

at the point x, and here it is the simple derivative. As indicated by Eq. (25), in the postprocessing framework, ρ0 is taken as

the stationary/invariant distribution of the reality. As shown in Appendix A, Eq. (33) can be obtained through a Kubo-type

perturbative expansion (Lucarini, 2008). We remark that this example deals with stochastic models, due to which we have to15

perform an additional averaging over the realisations of the stochastic processes, denoted here as 〈·〉 (Lucarini, 2012). Finally

the mapping fτ which appears in Eq. (33) is the stochastic flow:

fτ (x0) = x0 e
−λyτ +

τ∫
0

dτ ′ e−λy(τ−τ
′)
[
Qy ξy(τ ′) +Ky

]
. (34)

This maps an initial condition x0 of the model y to the state fτ (x0) of a realisation of this model at the later lead time τ .

The principle of causality is thus implicit in Eq. (33), which estimates the impact of the perturbation Ψy on the subsequent20

perturbed model time-evolution by developing around the unperturbed model y trajectories.

Evaluating Eq. (33) and its stochastic integrals (Gardiner, 2009) gives us the variation of the averages 〈y(τ)〉 and 〈y(τ)2〉 to

the perturbation Ψy:

δ〈y(τ)〉y = −κ
τ∫

0

dτ ′δK e−λy(τ−τ
′) =− κ

λy
δK

(
1− e−λyτ

)
(35)

δ〈y(τ)2〉y = −2κδK

τ∫
0

dτ ′
[
〈x0〉e−λy(2τ−τ

′) +
Ky

λy
e−λy(τ−τ

′)
(
1− e−λyτ

)]
− 2κδQQy

τ∫
0

dτ ′ e−2λy(τ−τ
′)25

= −2κ
δK

λy
〈y(τ)〉

(
1− e−λyτ

)
− κ

λy
δQQy

(
1− e−2λyτ

)
(36)

4Here we consider that the observation are perfectly assimilated in the models, and that there is no observation errors. However in operational setups, such

errors are of course to be taken into account.
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Rearranging these two terms, we also get the following expression for the variation of the variance (24):

δσ2
y(τ) =− κ

λy
δQQy

(
1− e−2λyτ

)
− κ2

λ2y
δK2

(
1− e−λyτ

)2
(37)

Note that the variation (35) corresponds to the exact difference between the average of the two models 〈ŷ(τ)〉− 〈y(τ)〉. On

the other hand the variation given by Eq. (37) lacks the term of order κ2 involving δQ that appears in the exact difference

σ2
ŷ(τ)−σ2

y(τ) given by Eqs. (24) and (27). Instead, another term of order κ2 and involving δK is present, indicating that5

higher-order terms of response theory need to be considered to correct it (Ruelle, 1998b). The second-order term is given by

the expression5 (Lucarini, 2012):

δ2〈A(τ)〉y =

τ∫
0

dτ ′
τ∫

τ ′

dτ ′′
∫

dyρ0(x0)
〈

Ψy(τ ′)∇fτ′ (x0)
Ψy(τ ′′)∇fτ′′ (x0)

A(fτ (x0))
〉
. (38)

Applying this to the first moment of the y models directly yields

δ2〈y(τ)〉y = 0. (39)10

On the other hand, integrating the stochastic integrals present in this expression for the moment 〈y(τ)2〉 gives

δ2〈y(τ)2〉y =
κ2 δK2

λ2y

(
1− e−λyτ

)2
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
(40)

which corrects the κ2δK2 term in Eq. (37) and makes the response theory up to order 2 exactly match the difference σ2
ŷ(τ)−

σ2
y(τ), for every lead time τ . In fact, the subsequent orders of the response vanish due to the linearity of the simple Ornstein-

Uhlenbeck models, which enables us to truncate the response Kubo-like expansion to the second order. Finally, this shows that15

the (non-stationary) response theory can be used to estimate the postprocessing parameters after the model change based on the

forecasts of the initial model. Indeed, instead of the averages 〈ŷ(τ)〉 and 〈σ2
ŷ(τ)〉, the approximate averages 〈y(τ)〉+ δ〈y(τ)〉y

and σ2
y(τ) + δσ2

y(τ) + δ2σ2
y(τ) can be used to compute α̂ and β̂. We emphasise that the second order contribution had to be

considered in order to obtain the exact result. Nevertheless, the difference between the first and the second order response is

of order κ2, which implies that for a small perturbation (model change), the first order will generally be a sufficiently good20

approximation. A more detailed derivation of the results obtained in this section can be found in the supplementary material.

In order to investigate this research avenue on a case closer to those encountered in reality, we will now consider the

application of postprocessing and response theory to a low-order atmospheric model displaying chaos.

4 Application to a low-order atmospheric model

A 2-layer quasi-geostrophic atmospheric system on a β-plane with an orography is considered (Charney and Straus, 1980;25

Reinhold and Pierrehumbert, 1982). This spectral model possesses well-identified large-scale flow regimes, such as zonal

5This expression is equivalent to the second term of Eq. (1) in Lucarini (2012) upon a time transformation. It can also be obtained by computing explicitly

the second order perturbation of the average in Eq. (A14) in Appendix A.
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and blocked regimes. The horizontal adimensionalised coordinates are denoted x and y, the model’s domain being defined by

(0≤ x≤ 2π
n ,0≤ y ≤ π), with n= 2Ly/Lx the aspect ratio between its meridional and zonal extents Ly and Lx. The two main

fields of this model are the 500 hPa pressure anomaly and temperature, which are proportional to the barotropic streamfunction

ψ(x,y) and the baroclinic streamfunction θ(x,y), respectively. Both fields are defined in a zonally periodic channel with

no-flux boundary conditions in the meridional direction (∂ · /∂x≡ 0 at y = 0,π). The fields are expanded in Fourier modes5

respecting these boundary conditions:

F1(x,y) =
√

2 cos(y),

F2(x,y) = 2 cos(nx) sin(y),

F3(x,y) = 2 sin(nx) sin(y),

F4(x,y) =
√

2 cos(2y),10

...

such that

∇2Fi(x,y) =−a2iFi(x,y) (41)

with eigenvalues a21 = 1, a22 = a23 = 1 +n2, a24 = 4, . . . . We have thus the following decomposition

ψ(x,y) =

na∑
i=1

ψiFi(x,y) (42)15

θ(x,y) =

na∑
i=1

θiFi(x,y). (43)

where na is the number of modes of the spectral expansion. The partial differential equations controlling the time evolution of

the fields ψ(x,y) and θ(x,y) can then be projected on the Fourier modes to finally give a set of ordinary differential equations

for the coefficients ψi and θi:

ẋ= F (x) , x= (ψ1, . . . ,ψna
,θ1, . . . ,θna

) (44)20

that can be solved with usual numerical integrators. All variables are adimensionalised. The ordinary differential equations of

the model are detailed in Appendix B.

In the version proposed by Reinhold and Pierrehumbert using the 10 first modes, beyond a certain value of the zonal tem-

perature gradient, the system displays chaos and makes transitions between the blocked and zonal flow regimes embedded in

its global attractor. Here, we use their main adimensionalised parameters values: the friction at the interface between the two25

layers kd = 0.1, the friction at the bottom surface k′d = 0.01, and the aspect ratio of the domain n= 1.3. The β-plane lies at

mid-latitude (50°) and the Coriolis parameter f0 is set accordingly.

In the present work, the parameter hd, the Newtonian cooling coefficient is fixed to 0.3 instead of the value found in Reinhold

and Pierrehumbert (which is hd = 0.045). Two additional fields have to be specified on the domain: θ?(x,y), the radiative
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Figure 1. Dynamics of reference system and model 0 of the postprocessing experiment with modification of the friction coefficient (see

Table 1), for: (a) time evolution of the variable θ1, (b) time evolution of the variable ψ2.

equilibrium temperature field, and h(x,y), the topographic height field. These fields can be decomposed by projecting them

onto the eigenfunctions of the Laplacian as before. The corresponding coefficients θ?i and hi then allow for writing these fields

as sums of weighted eigenfunctions:

θ?(x,y) =

na∑
i=1

θ?i Fi(x,y) (45)

h(x,y) =

na∑
i=1

hiFi(x,y). (46)5

In the present case, we consider that the only non-zero coefficients are θ?1 = 0.2 and h2 = 0.4, meaning that the radiative equi-

librium profile is given by the zonally varying function
√

2 cos(y) and the orography is made of a mountain and a valley shaped

by the function 2 cos(nx) sin(y). Again, the value of the temperature gradient θ?1 is larger than the one chosen in Reinhold

and Pierrehumbert (which is θ?1 = 0.1) to increase the chaotic variability in the system. Trajectories of variables θ1 and ψ2 are

depicted in Fig. 1, for the reference system (reality) and a model version (model 0) for which the friction coefficient has been10

slightly modified.

These parameter changes induce slight modifications of the dynamics. In particular the system possesses two distinct weather

regimes, depicted in Fig. 2(a) and (b): one characterised by a zonal circulation (see Fig. 2(c)), and another characterised by

a blocking situation (see Fig. 2(d)). In the former case, the variables ψ2 and ψ3 characterising the strength of the meridional

anomalies are small, while in the latter case they are large, indicating indeed a blocking situation. This is different from15
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Parameter description

Experiment
Newtonian cooling modification Friction coefficient modification

Symbol

System
Reality Model 0 Model 1 Model 0 Model 1

Newtonian cooling coefficient hd 0.3 0.33 0.315 0.3

Atm. layers friction kd 0.1 0.1 0.12 0.11

Bottom layer friction k′d 0.01

Domain aspect ratio n 1.3

Meridional temperature gradient θ?1 0.2

Mountain ridge altitude h2 0.4

Table 1. The main parameters used and modified in the experiments. Model 0 and model 1 are respectively the forecast model of the reality

before and after the model change.

the situation considered in Reinhold and Pierrehumbert (1982), where two different blocking regimes coexist with the zonal

regime.

4.1 Postprocessing experiments

The model described above with 10 modes (na = 10) is used and two different postprocessing experiments are performed, one

involving the Newtonian cooling parameter hd and another involving the friction parameter kd between the two atmospheric5

layers. The parameter values detailed above correspond to the long-term reference (i.e. the reality). A first model is defined

(model 0) which is a copy of the 2-layer quasi-geostrophic model defining the reality, but the parameters hd or kd are slightly

changed, i.e. the model error of the forecasting system lies in either the Newtonian cooling or the friction parameter. Then, as

in Section 3, a model change is imposed, leading to another forecasting model (model 1) that can either improve or degrade

the model error by a factor κ. The parameter variations involved in these experiments are detailed in Table 1. Without loss of10

generality, we consider model changes that improve the representation of reality, in the sense that the amplitude of the model

errors in model 1 is smaller than in model 0. The effect of the model change is depicted in Figs. 3 and 4 for the friction

parameter experiment. These figures display the mean and the standard deviation of the model forecasts and observations

coming from the reference forecasts, as a function of the lead time τ . We have used a set of one million trajectories of each

system to compute these averages.15

In the framework of the EVMOS postprocessing scheme, the predictors and the predictands are the same nominal variable

and no other predictors are used. In both experiments considered, the postprocessing parameters α and β of the EVMOS for

model 0, as well as α̂ and β̂ for model 1, are computed. The main objective here is then to estimate the difference between the

former and the latter using Ruelle response theory. The approach in a multivariate setting is presented below.
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Figure 2. Attractors for the experiment with modification of the friction coefficient: (a) Two-dimensional isodensity of the attractors estimated

with a Gaussian kernel density estimator for the variables ψ2 and ψ3, (b) two-dimensional scatter plot of the attractors for the variables ψ2

and ψ3. The attractors of the reality and model 0 are qualitatively similar, with two different parts which are indicated by ellipses. The blue

and red crosses correspond respectively to equilibrium points of the reference model (the reality) and of the model 0, respectively. The dashed

ellipse corresponds on average to a zonal circulation depicted on panel (c). The dashed-dotted ellipse corresponds on average to a blocking

situation depicted in panel (d). In both panels (c) and (d), the underlying colour map denotes the orography on the domain, and the contours

the geopotential height anomaly at 500 hPa.
14
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Figure 3. Behaviour of the averages as a function of the lead time τ in the reality and the forecast models before (left panel) and after

(right panel) the model change, for the experiment with modification of the friction coefficient (see Table 1). The variable considered is the

temperature meridional gradient θ1. The solid lines denote the mean while the shaded areas denote the one standard deviation interval.

4.2 Model change, Response theory and the Tangent Linear model

Let us consider again the response theory described in section 3.3, but in the general multivariate deterministic case described

in section 2. In the postprocessing framework, models 0 and 1 evolve in time from a set of initial conditions taken outside of

their respective attractors. Response formulae found in Ruelle’s work have to be adapted to take this into account. One therefore

has to consider the density of initial conditions as the measure. For a system with a time-independent perturbation Ψ(ŷ),5

˙̂y = F (ŷ) + Ψ(ŷ) = F̂ (ŷ), (47)

an observable A with average 〈A(τ)〉y at the lead time τ for the system

ẏ = F (y) (48)

has a first order response of

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ)T ·∇fτ (y0)A (49)10

where fτ is the flow of the unperturbed system (48), ρ0 is the distribution of initial conditions, and δy(τ) is the solution of

the equation ẏ+ ˙δy = F̂ (y+δy) which can be approximated at first order by the following linear inhomogeneous differential
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Figure 4. Same as Figure 3, but for the variable ψ3 of the streamfunction ψ.

equation

˙δy = ∇yF · δy+ Ψ(y). (50)

where y(τ) is solution of the unperturbed equation (48) with initial condition y(0) = y0 and we see that the systems (48)

and (50) have to be integrated simultaneously (Gaspard, 2005). The homogeneous part of Eq. (50) is the well-known tangent

linear model of the system and here it has to be solved with an additional boundary term which is the perturbation itself.5

Equation (49) is derived in Appendix A, and can be computed in the same way as the averages depicted in Figs. 3 and 4, by

averaging over multiple initial conditions of the reference system. Since we initialise the unperturbed (model 0) and perturbed

systems (model 1) with the same initial conditions, the initial state of the tangent model (50) is δy(0) = 0. Therefore we do

not estimate the impact of the observation or assimilation errors, but rather the direct impact of the model errors viewed as

time-independent perturbations. The formulation of the problem and Eq. (50) can be adapted to take these errors into account,10

as described for instance by Nicolis (2016).

In what follows, we will numerically integrate Eq. (50) to evaluate the response on the average due to the perturbation

induced by the model change. This will in turn, as in Section 3, enables us to compute the postprocessing parameters for the

new model.
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4.3 Main results

For each of the two experiments detailed in Table 1, we start by obtaining one million observations of the reality that will be

used to initialise the forecast models. For each observation, this is done by starting the model x (the reference) with a random

initial condition and running it for a very long time (100000 nondimensionalised time units) to achieve convergence to its

global attractor. Once the observations have been obtained, we run the reference model, model 0 and model 1 over 200 time5

units (corresponding to roughly 22 days) to obtain the reality and the forecasts. The systems have been integrated using the

fourth-order Runge-Kutta integration scheme with a time-step of 0.1 time unit corresponding to 16.15 minutes. The averaging

over the one million trajectories of the reality and of the forecasts at each lead time is used to compute the postprocessing

coefficients α and β of the EVMOS by using formulas (17) and (18). For each predictand, the corresponding model variable is

used as the unique predictor.10

The response-theory approximations of the averages of the model ŷ (model 1) averages are obtained by integrating the lin-

earised equations of model 0 along its trajectories with the perturbation Ψ as inhomogeneous term. This is done by integrating

Eq. (50) over a lead time of 200 time units with a zero initial condition, using the same integration scheme as before. It gives

us the integrand of Eq. (49) for each trajectory, and the integral is then approximated as the average of this integrand over

the whole set of trajectories. The result of this integration and averaging is shown in Figs. 5 and 6 for the first and second15

moment of the variable θ1. The results for other variables are available in the supplementary material. The black curve shows

the moments of model 0 with the addition of their linear response δ〈θ1〉 and δ〈θ21〉 to the perturbation Ψ. This curve agrees well

with the green curves of the model 1 moments up to a lead time of 4-5 days, showing the efficiency of response theory. Note

that in contrast with the calculation of the averages shown in Figs. 3 and 4 and computed with one million trajectories, we have

here considered a limited subset of 10000 trajectories of model 0 and its tangent to compute the corrections to these averages.20

The correction of the moments of model 1 are accurate until 4 days for both experiments. After this critical lead time, obtaining

a good accuracy requires a huge increase in the number of forecasts and tangent model integrations to perform the averaging.

This problem is well-known (Nicolis, 2003; Eyink et al., 2004) and is due to the appearance of fat-tails in the distribution of

the perturbations δy in the integrand of Eq. (49). As it can be seen in Fig. 7 for the perturbations on θ1, the problem worsens

with the increase of the lead time: initially the distributions are near-Gaussian and fat-tails appears progressively. Therefore,25

the number of samples of δy needed to converge to the correct mean up to a certain precision increases exponentially as the

lead time increases. This problem has consequences on the method used to perform the average. Indeed, to avoid rare and

unrealistic extreme responses of the system located far in the tails of the distributions, outliers above a certain threshold (set to

3 nondimensional units) have been removed from the averaging.

The moments obtained by the response theory approach are used to compute new EVMOS postprocessing α and β coeffi-30

cients, thanks to the formulas (17) and (18). These corrected coefficients for variable θ1 are shown in Fig. 8 for the experiment

with modification of the Newtonian cooling coefficient and in the panels (c) and (d) of Fig. 11 for the experiment with modi-

fication of the friction coefficient. In Figs. 9 and 10, we compare the performances of the four postprocessing schemes hence

obtained: the postprocessing of model 0 (red curves) and 1 (green curves) obtained by averaging over their trajectories (fore-
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casts), and the postprocessing of model 1 obtained with the past model 0 forecasts (green “+” crosses) and with the response

theory approach (black “×” crosses). In the panel (a) of these figures, the mean square error (MSE) between the trajectories of

the models and the reference trajectories is displayed by solid curves, while the MSE between both models correction and the

reference is depicted by dash-dotted curves. The EVMOS postprocessing is able to partly correct the forecasts, reducing the

MSE until a lead time of the order of a few times the model’s Lyapunov time (the inverse of the leading Lyapunov exponent).5

After that, the MSE curves of the postprocessed and uncorrected forecasts converge toward a plateau corresponding to twice

the variance of the reference solution (Vannitsem, 2009). Here, the statistical postprocessing corrections are indeed efficient

until lead times of 4-5 days, with a skill of the corrections decreasing with the lead time. Thus the EVMOS schemes become

not better than the original models after roughly 4 days. Note also that even if the model change is small, the postprocessing

using the past forecasts of model 0 (green “+” crosses) completely fails to correct model 1 forecasts, highlighting the need for10

an adaptation of the postprocessing to the model change. In contrast, the adaptation with the response-theory method (black

“×” crosses) produces valid corrections until 4 days ahead. In the panels (b) and (c) of Figs. 9 and 10, the mean and variance

of the corrected forecasts are compared with those of the original models. Again, the corrections obtained with response theory

are efficient until 4 days for the postprocessing schemes.

In conclusion, the correction of model 1 using the response-theory EVMOS matches almost perfectly the score of the “exact”15

EVMOS obtained with the forecasts of model 1 (dash-dotted green curve), up to a 4 days lead time. After that lead time, the

errors due to the fat-tails in the response of the first moments of the statistics induce errors in the variance needed to compute

the α and β coefficients (see Eqs. (17) and (18)). These coefficients therefore degrade sharply after 4 days, as shown by the

solid black curve in Fig. 8 and in Fig. 11(c) and (d). This in turn induces a degradation of the response theory postprocessing

scheme. Nevertheless, this limitation of response theory is not a concern here, since after a lead time of 4 days, the EVMOS20

skill improvement vanishes anyway.

5 Discussion and Conclusions

Statistical postprocessing techniques used to correct numerical weather predictions (NWP) require substantial past forecast and

observation databases. In the case of a model change, which frequently occurs during the normal life cycle of an operational

forecast model, one has to reforecast the entire database of past forecasts (Hagedorn et al., 2008; Hamill et al., 2008) to update25

the postprocessing coefficients and parameters. In the present work, we proposed a new methodology based on response theory

to produce these new coefficients without having to reforecast. Instead, the database of past forecasts is reused to perform

integrations in the tangent space of the model. It allows to obtain the new postprocessing coefficients as modifications of the

older ones. These new coefficients were shown to be accurate enough within the lead time range for which the postprocessing

corrections improve the forecast.30

Figure 11 summarises the main results of this work, with the quasi-geostrophic system described in Section 4, but using

a different number m of trajectories of model 0 and its tangent model to compute the response-theory corrections. It shows
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Figure 5. Corrections of the moments of θ1 from model 0 to model 1 using the response theory formula (49), for the experiment with

modification of the friction coefficient.
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Figure 6. Corrections of the moments of θ1 from model 0 to model 1 using the response theory formula (49), for the experiment with

modification of the Newtonian cooling coefficient.
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Figure 8. Coefficients α and β of the postprocessing schemes of variable θ1 and their correction using the response theory, for the experiment

with modification of the Newtonian cooling coefficient.

that up to a lead time of 2 days, good postprocessing scheme coefficients are obtained even with a mere 20 integrations in the

tangent space.

Note however that in the context of this conceptual model, good estimates of the postprocessing coefficients α and β can be

obtained by simply using a small set of reforecasts. It is indeed enough to directly integrate the updated model 1, given by the

non-linear equation (47), with only 20 trajectories. So the response theory approach in the present case cannot really compete5

with the simple reforecasting method. How this can be improved in an operational context is an important question that should

be addressed in the future. For instance, we can use a simplified tangent linear model to reduce the computational burden, as

often used in data assimilation (Bonavita et al., 2017). This approach could also be implemented for short-range forecasts, say

from 1 to 3 days.

The response-theory is efficient because the model changes are assumed to be small in comparison with the original pa-10

rameterisation of the models. The method cannot improve a postprocessing scheme, but it can efficiently adapt it to a new

model version. As such, the success of this method also depends on the quality of the past postprocessing scheme. There are

situations where linear response theory is known to fail, but statistical tests which allow to identify its breakdown have been

derived in Gottwald et al. (2016) and in Wormell and Gottwald (2018). In addition, the approach presented here applies only

for models for which a tangent model is available. The model change itself has to be provided as an analytic function, which15

can in some circumstances limit the applicability of the approach.

To test this approach, we have focused on the EVMOS statistical postprocessing method, but other methods could be con-

sidered as well. The only requirement is that the outcome of the minimisation of the cost function uses averages of the systems

being considered. For instance, member-by-member methods that correct both the mean square errors and the spread of the
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Figure 9. Performance of the corrections on the variable θ1 for the experiment with the modification of the friction coefficient. (a) Mean

square error (MSE) evolution between the different forecasts and their correction, and the reality. (b) Mean of the different trajectories

(reality, model 0 and 1) and corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.
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Figure 10. Performance of the corrections on the variable θ1 for the experiment with the modification of the Newtonian cooling coefficient. (a)

Mean square error (MSE) evolution between the different forecasts and their correction, and the reality. (b) Mean of the different trajectories

(reality, model 0 and 1) and corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.
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Figure 11. Comparison of the efficiency of the response theory correction for different numbers m of trajectories used to average Eq. (49),

for the experiment of varying the friction coefficient: (a) Mean square error with reality, (b) Absolute difference between the response theory

correction and the correction based on the forecast of model 1, (c) and (d) Postprocessing coefficients α and β. On panels (b), (c) and (d), the

higher (100000) and the lower (20) numbers are depicted respectively by a solid black line and a dashed red line. The other cases in-between

are depicted by dotted lines.
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ensemble while preserving the spatial correlation (Van Schaeybroeck and Vannitsem, 2015) could be considered. These meth-

ods generally use the covariance between the model forecasts and the observations as ingredient. Response theory can also be

applied here since this covariance can be written as an average. This will be investigated in a future work, together with the

applicability of the approach to parameters of probability distributions, as often used in meteorology (Vannitsem et al., 2018).

The impact of initial condition errors has not been addressed here, since the purpose was to demonstrate the applicability5

of the approach in a perfectly controlled environment. The main limiting issue of response theory in the present context is

the presence of fat tails in the distribution of the perturbations δy in the tangent model. This implies that beyond a certain

lead time, typically 2-3 days for the synoptic scale, the number of trajectories of the tangent model needed for the averages to

converge increases exponentially. This renders the approach impractical at lead times beyond 2-3 days. This is a well-known

problem, which is typically due to the trajectories passing close to the stable manifolds structuring the dynamics of chaotic10

systems (Eyink et al., 2004), generating an extreme response of the system to the perturbations Ψ. This is possibly due to the

exacerbated sensitivity of these manifolds to the perturbation of the system. We see two possibilities to overcome this issue in

the case where a long lead-time correction is needed.

– First, as suggested by Eyink et al. (2004), the problem should be studied in other systems. It might be resolved by itself

in other systems. Indeed, in very large atmospheric systems, the encounter of such manifolds might become more rare.15

This could be related to the chaotic hypothesis (Gallavotti and Cohen, 1995a, b) which states that large systems can be

considered to behave like Axiom-a hyperbolic systems for the physical quantities of interest, and thus Ruelle response

theory (Ruelle, 2009) might get better as the dimensionality of a system increases. This hypothesis would be interesting

to test in current state-of-the-art NWP systems.

– Secondly, another avenue would be to adapt the techniques based on the Covariant Lyapunov vectors (CLVs) or on20

unstable periodic orbits (UPOs) to non-stationary dynamics. These techniques were recently introduced (Wang, 2013;

Ni and Wang, 2017; Ni, 2019; Lasagna, 2019; Lasagna et al., 2019) to deal with stationary responses of chaotic systems,

i.e. the response of a system that lies on its attractor.

The CLVs methods mentioned focus on finding an adjoint representation (Eyink et al., 2004) of the response, while in the

present work the approach is based on forward integrations (direct method). The adjoint representation allows to change25

easily the perturbation function Ψ for a fixed observable A, while the direct method enables to consider different observables

while keeping the perturbation function fixed. The adjoint representation, however, requires one to integrate the tangent model

backward in time. Therefore, its accuracy depends on the absolute value of the smallest Lyapunov exponent of the system,

which might render its results less good than the direct forward representation.

In conclusion, the response-theory approach developed here is an effective method to deal with the problem of the impact30

of model change on the postprocessing scheme. Its main advantage is to be computed on the past model version and does not

require reforecasts of the full model. Its operational implementation, however, is still an open question that should be addressed

in the future.
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Code availability. The quasi-geostrophic model used is called QGS and was obtained by adapting the Python code of the MAOOAM

ocean-atmosphere model (De Cruz et al., 2016), following the model description in Cehelsky and Tung (1987). It was recently released on

Zenodo (Demaeyer and De Cruz, 2020) and is also available at https://github.com/Climdyn/qgs. The additional notebooks computing the

response to model changes and generating the figures are also provided as supplementary material. They have been released on Zenodo as

well (Demaeyer, 2020), and are available at https://github.com/jodemaey/Postprocessing_and_response_theory_notebooks.5

Appendix A: Non-stationary response theory

We consider a perturbed autonomous dynamical system

˙̂y = F (ŷ) + Ψ(ŷ) = F̂ (ŷ) (A1)

with a prescribed distribution of initial conditions ρ0. For the unperturbed system

ẏ = F (y), (A2)10

an observable A has the average at time τ

〈A(τ)〉y =

∫
dy0 ρ0(y0)A(fτ (y0)) =

∫
dyρτ (y)A(y) (A3)

where fτ is the flow of the unperturbed system (A2) and where ρτ is the distribution obtained by propagating the initial

distribution ρ0 with the Liouville equation (Gaspard, 2005). In this section, the variation of this average due to the presence of

the perturbation is evaluated,15

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ2〈A(τ)〉y + . . . (A4)

In other words, we compute the average of A in system (A1)

〈A(τ)〉ŷ =

∫
dy0 ρ0(y0)A(f̂τ (y0)) (A5)

as a perturbation of the average (A3) in the unperturbed system (A2). Here, f̂τ is the flow of the perturbed system (A1). In

the following, we will derive these corrections thanks to a Kubo-type perturbative expansion (Lucarini, 2008) that amounts20

to constructing a Dyson series in the interaction picture framework where the perturbation is seen as an interaction Hamil-

tonian (Wouters and Lucarini, 2012). We start by considering the time evolution of the observable A in the system (A1):

d

dτ
A
(
f̂τ (y0)

)
= (L0 +L1)A

(
f̂τ (y0)

)
(A6)

with the operators25  L0A(y) = F (y)T ·∇yA

L1A(y) = Ψ(y)T ·∇yA
(A7)
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and define an interaction observable as

AI(τ,y0) = Π0(−τ)A
(
f̂τ (y0)

)
(A8)

with Π0(τ) = exp(L0 τ). It is easy to show that the interaction observable satisfies the differential equation:

d

dτ
AI(τ,y0) = LI(τ)AI(τ,y0) (A9)

with the interaction operator LI(τ) = Π0(−τ)L1 Π0(τ). The solution to this equation is5

AI(τ,y0) =AI(0,y0) +

τ∫
0

ds1LI(s1)AI(s1,y0) =A(y0) +

τ∫
0

ds1LI(s1)AI(s1,y0) (A10)

which can be rewritten as

A
(
f̂τ (y0)

)
= Π0(τ)A(y0) +

τ∫
0

ds1 Π0(τ − s1)L1 Π0(s1)AI(s1,y0). (A11)

Iteratively replacing the interaction observable by the formula (A10) finally leads to the Dyson series:

A
(
f̂τ (y0)

)
= Π0(τ)A(y0) +

τ∫
0

ds1 Π0(τ − s1)L1 Π0(s1)A(y0)10

+

τ∫
0

ds1

s1∫
0

ds2 Π0(τ − s1)L1 Π0(s1− s2)L1 Π0(s2)A(y0) + . . . (A12)

Using the definitions (A3) and (A5), as well as the fact that

g (fτ (y0)) = Π0(τ)g(y0) (A13)

for any smooth function g, we get finally a formula for the perturbations in Eq. (A4):

〈A(τ)〉ŷ = 〈A(τ)〉y +

τ∫
0

ds1

∫
dy0 ρ0(y0)Π0(τ − s1)L1 Π0(s1)A(y0) + . . . (A14)15

We will now focus on the first term of this expansion, but the subsequent orders of the response can be treated alike. We thus

have

δ〈A(τ)〉y =

τ∫
0

ds1

∫
dy0 ρ0(y0)Ψ

(
fτ−s1(y0)

)T ·∇fτ−s1 (y0)A(fτ (y0)) (A15)

which with the change of variable s1→ t− τ ′ can be rewritten as

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·∇fτ′ (y0)

A(fτ (y0)) (A16)20
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and then

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·
(
∂fτ (y0)

∂fτ ′(y0)

)T

·∇fτ (y0)A (A17)

=

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·M

(
τ − τ ′,fτ

′
(y0)

)T
·∇fτ (y0)A (A18)

M is the fundamental matrix (Gaspard, 2005; Nicolis, 2016) of the homogeneous part of the linear differential equation

˙δy = ∇yF · δy+ Ψ(y) (A19)5

where y is solution of Eq. (A2) with initial condition y0, and we have the definition

M(t,y) =
∂f t(y)

∂y
. (A20)

Equation (A19) is the linearised approximation of equation (A1):

ẏ+ ˙δy = F (y+ δy) + Ψ(y+ δy) (A21)

that provides a tool to estimate Eq. (A18). Indeed, since the solution of Eq. (A19) can be written as10

δy(τ) =

τ∫
0

dτ ′M
(
τ − τ ′,fτ

′
(y0)

)
·Ψ
(
fτ
′
(y0)

)
, (A22)

we can write the first order variation of the average of the observable A in term of these solutions:

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ)T ·∇fτ (y0)A (A23)

The interpretation of this equation is that the averaging of an observable over the trajectories of the linear approximation (A21)

of the perturbation equation (A1) provides the first order response of the observable. It is the main ingredient used to compute15

the new postprocessing scheme in the present work. It is explained in detail in Sections 3.3 and 4.2.
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Appendix B: The quasi-geostrophic model equations

The ordinary differential equations of the model are given by

ψ̇i = −a−1i,i
na∑

j,m=1

bi,j,m (ψj ψm + θj θm)−
a−1i,i
2

na∑
j,m=1

gi,j,mhm (ψj − θj)

−βa−1i,i
na∑
j=1

ci,j ψj −
kd
2

(ψi− θi) (B1)

θ̇i = −a−1i,i
na∑

j,m=1

bi,j,m (ψj θm + θj ψm) +
a−1i,i
2

na∑
j,m=1

gi,j,mhm (ψj − θj)5

−βa−1i,i
na∑
j=1

ci,j θj +
kd
2

(ψi− θi)− 2k′d θi + a−1i,i ωi (B2)

θ̇i = −
na∑

j,m=1

gi,j,mψj θm +
σ

2
ωi +hd (θ∗i − θi) (B3)

where nondimensional parameters values and description can be found in Table 1 and section 4. β is the meridional gradient

of Coriolis parameter which has the nondimensional value 0.21 at 50 degrees of latitude (Reinhold and Pierrehumbert, 1982;

Cehelsky and Tung, 1987). The vertical velocity ωi can be eliminated, leading to equations (B2) and (B3) being reduced to10

a single equation for θi. The parameter σ is the nondimensional static stability of the atmosphere set typically to 0.2. The

coefficients ai,j , gi,j,m, bi,j,m and ci,j are the inner products of the Fourier modes Fi defined in section 4:

ai,j =
n

2π2

π∫
0

2π/n∫
0

Fi(x,y)∇2Fj(x,y)dxdy =−δij a2i (B4)

gi,j,m =
n

2π2

π∫
0

2π/n∫
0

Fi(x,y)J (Fj(x,y),Fm(x,y)) dxdy (B5)

bi,j,m =
n

2π2

π∫
0

2π/n∫
0

Fi(x,y)J
(
Fj(x,y),∇2Fm(x,y)

)
dxdy (B6)15

ci,j =
n

2π2

π∫
0

2π/n∫
0

Fi(x,y)
∂

∂x
Fj(x,y)dxdy (B7)

where the coefficients ai are given by Eq. (41) and where J is the Jacobian present in the advection terms:

J(S,G) =
∂S

∂x

∂G

∂y
− ∂S

∂y

∂G

∂x
. (B8)
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