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Abstract. For most statistical post-processing
::::::::::::
postprocessing schemes used to correct weather forecasts, changes to the forecast

model induce a considerable reforcasting
::::::::::
reforecasting

:
effort. We present a new approach based on response theory to cope

with slight model change
:::::::
changes. In this framework, the model change is seen as a perturbation of the original forecast model.

The response theory allows
::
us

:
then to evaluate the variation induced on the averages

:::::::::
parameters involved in the statistical

post-processing
:::::::::::
postprocessing, provided that the magnitude of this perturbation is not too large. This approach is studied in the5

context of simple Ornstein-Uhlenbeck models, and then on a more realistic, yet simple, quasi-geostrophic model. The analytical

results for the former case allow for posing
:::
help

:::
to

::::
pose

:
the problem, while the application to the latter provide a proof-of-

concept of
:::
and

:::::::
assesses the potential performances of response theory in a chaotic system. In both cases, the parameters of the

statistical post-processing
::::::::::::
postprocessing

:
used – an Error-in-Variables Model Output Statistics (EVMOS) – are appropriately

corrected when facing a model change. The potential application in a more operational environment is also discussed.10
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1 Introduction

A generic property of the atmospheric dynamics is its sensivity to initial conditions. This implies that probabilistic forecasts

will always be needed to adequately describe this behaviour (Wilks, 2011). Indeed, these methods represent a way to go

beyond the natural predictability barrier that the chaotic atmospheric models exhibit (Vannitsem, 2017). These forecasts are at

the same time subject to the impact of the presence of structural uncertainties, also known as model errors. Such errors degrade5

the forecasts as well, and their impact needs to be mitigated.

Statistical post-processing
::::::::::::
postprocessing

:
methods are used to correct the operational predictions of the atmospheric models.

An important family of statistical techniques used to post-process
:::::::::
postprocess

:
the forecasts are linear regression techniques,

with possibly multiple predictors (Glahn and Lowry, 1972; Vannitsem and Nicolis, 2008), also known as Model Output Statis-

tics (MOS). This rather simple but very efficient technique can be adapted to ensemble forecasts (e.g. Vannitsem (2009); John-10

son and Bowler (2009); Glahn et al. (2009); Van Schaeybroeck and Vannitsem (2015)). One of the first approaches that was

proposed is called Error-in-Variable MOS (EVMOS) because it takes into account the presence of errors in the observations

and model observables (Vannitsem, 2009).

Despite their simplicity, most post-processing
:::::::::::
postprocessing

:
schemes depend on the availability of a database of past

forecasts, that allows one to “train” the regression algorithm by comparison with the observations database. These operational15

:::::::::
Operational

:
models are however subject to frequent evolution cycles, which are needed to improve their representation of the

atmospheric behaviours
::::::::
processes. Therefore, there is a continuous need to recompute past forecasts

:::::::
forecasts

:::::::
starting

:::::
from

:::
past

:::::
initial

:::::::::
conditions

:
with the latest model version, to avoid a degradation of the post-processing

::::::::::::
postprocessing

:
schemes due

to model change. Such recomputation of the past forecasts are called reforecasts, and typically requires a huge data storage

and management framework, as well as large computational resources (Hamill, 2018). For instance, the European Center for20

Medium-range Weather Forecast (ECMWF) and the National Weather Service (NWS) both produce hundreds of reforecasts

every week (Hamill et al., 2013).

Recent research have studied
:
A

::::::
recent

:::::::
research

:::
has

::::::::::
investigated

:
non-homogeneous regression with time-adaptative training

scheme, where a trade-off have to be considered between large training data sets for stable estimation
::::::::
estimates and the benefit

of shorter training periods to adjust more rapidly to changes in the data
:
a
::::::
shorter

:::::::
training

::::::
period

:::
for

:::::
faster

:::::::::
adaptation

::
to

::::
data25

::::::
changes

::
is
::::::::::

considered (Lang et al., 2020). These results can help mitigate the impact of model change on post-processing

::::::::::::
postprocessing and may call into question the need for reforecast systems. These systems do however help to better represent

rare events, they increase the size of the training data sets and greatly improve sub-seasonal forecasts (Scheuerer and Hamill,

2015; Hamill, 2018), which can justify their prohibitive cost.

The present work investigates another research direction and considers a new technique to reduce the cost of adapting30

a linear post-processing
::::::::::::
postprocessing scheme to a model change. This method relies on the response theory for dynamical

systems (Ruelle, 2009) and assumes that the model variation can be written as analytical perturbations of the model tendencies.

In this context, parameters variations as well as new terms in the tendencies are potential model change
::::::
changes.
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In section 3
:
2, we start by considering

::::::::::
introducing

:::
the

::::::
Ruelle

:::::::
response

::::::
theory

::::
that

::
is
:::::
used

::
to

:::::
adapt

::::
past

:::::::::::::
postprocessing

:::::::::
parameters

::
to

::::
new

:::::::
models.

::
A

:::::::::
didactical

:::::::
example

::
of

:::::
such

:::::::::
adaptation

::
is

:::::::::
considered

::::
with

:
simple Ornstein-Uhlenbeck models

::
in

::::::
section

::
3.

::
It

::
is used to describe the methodology and the concept involved. We show that obtaining a new post-processing

::::::::::::
postprocessing scheme after a model change requires the computation of the response of the average of the involved predictors,

seen as observables of the system. In the simple case considered, exact analytical results for the response can be obtained at5

any order. The correction of the model observables and the post-processing
::::::::::::
postprocessing parameters due to the model change

only requires the response-theory corrections up to the second order.

In section 4, a more complex case is considered with a toy model of atmospheric variability in the form of a 2-layer quasi-

geostrophic model with an orography. We compute the linear response of the predictors of the post-processing
::::::::::::
postprocessing

for two model change experiments involving a modification of the friction and the horizontal temperature gradient of the model.10

The response theory approach provides an efficient correction of the post-processing
::::::::::::
postprocessing

:
scheme up to a lead time

of 3 days, which matches the lead-time window where the scheme’s correction is efficient.

In the last section, we discuss the implications that this new method could have on operational forecast post-processing

::::::::::::
postprocessing systems, as well as new research avenues to be explored.

2
::::::::
Response

:::::::
theory15

:::
The

:::::::
systems

::::
used

::
to

:::::::
produce

::
the

:::::::
weather

::::::::
forecasts

:::
are

:::::::
typically

:::::::::
non-linear

::::::::
dynamical

:::::::
systems

:::::
whose

::::
time

::::::::
evolution

::
is

::::::::
governed

::
by

:::::::::::::::
multi-dimensional

:::::::
ordinary

::::::::::
differential

:::::::::
equations:

ẏ = F (t,y).
::::::::::

(1)

:::
The

::::::
generic

:::::::
chaotic

:::::
nature

::
of

:::::
these

:::::::
systems

:::
for

::::
some

:::::::::
parameter

:::::
values

:::::::
implies

:::
that

::::
they

:::
are

::::::::
sensitive

::
to

:::
the

:::::
initial

::::
data

::::
used

::
to

::::::
produce

:::
the

:::::::::
forecasts.

:::
For

::::
such

::::::
chaotic

:::::::::
dynamical

::::::::
systems,

:::
one

:::
can

:::::::
assume

:::
that

::
a
::::::::::
well-defined

::::::::::::
time-invariant

:::::::
measure

::::::
exists,20

:::
and

::::
with

::::::
which

:::
the

:::::::
averages

:::
are

::::::::::
performed.

::::::::
However,

:::
the

::::::::
existence

:::
of

::::
such

::::::::
measures

:::
has

:::::
been

::::::
proved

:::
for

:::::::
systems

::::
that

:::
are

::::::::
uniformly

:::::::::
hyperbolic

:::
and

::::
they

:::
are

:::::
called

::::
SRB

:::::::
measure

::::::::::::
(Young, 2002)

:
,
:::
but

:::::::
rigorous

::::::
proofs

::
for

:::::
other

:::::::
systems

:::
are

:::::
rather

:::::::
difficult

::
to

::::::
obtain.

::
A

::::
way

::
to

:::::::
proceed

::
is

::::
then

::
to

:::::::
proceed

::
as

::
if
::::::::
physical

:::::::
systems

::::
were

:::::::::
uniformly

:::::::::
hyperbolic.

:::::
This

:::::::::
assumption

::
is
::::::
called

::
the

:::::::::::::::
Gallavotti-Cohen

:::::::::
hypothesis

::::::::::::::::::::::::::
(Gallavotti and Cohen, 1995a, b)

:
.
:::
The

:::::::
systems

::::
used

::
to

:::::::
produce

:::::::
weather

:::::::
forecasts

:::
are

::::::::
typically

:::
not

::::::::
uniformly

:::::::::
hyperbolic,

:::
but

::::::
thanks

::
to

:::
the

:::::::::::::
aforementioned

:::::::::
hypothesis,

::::
one

:::
can

:::
still

::::
use

::::
what

:::
will

::::::
follow

:::
and

::::::::
compare

::::
with

:::
the25

:::::
results

::::::::
obtained

::::
with

:::::::::::
experiments.1

:
It
::
is

:::
the

::::::::
rationale

::::::
behind

:::
the

::::::
formal

::::::::::
presentation

::
of

:::
the

:::::
linear

::::::::
response

:::::
theory

:::
for

:::::::
general

::::::
systems

::::
like

:::
(1)

::
in

:::::::::::::
Ruelle (1998a).

:::
We

::::
now

::::::
follow

::::
this

::::::::::
presentation

::
to

:::::::::
introduce

:::
the

::::
main

::::::::
concepts

:::
that

::::
will

:::
be

::::
used

::
in

::::
this

:::::
article.

:

2.1
:::::::::::

Perturbations
:::
of

:::::::::
dynamical

:::::::
systems

1
::
We

:::::
point

:::
the

:::::
reader

:::
to

:::::
recent

::::::
articles

::::::
dealing

::::
with

:::
the

::::::
validity

:::
of

:::
the

:::::::
response

:::::
theory

::::
for

:::::
weakly

:::::::::
hyperbolic

::::::
systems

::::
and

::::
time

::::
series

::::::::::::::::::::::::::::::::::
(Gottwald et al., 2016; Wormell and Gottwald, 2018).
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::::::
Without

::::
loss

::
of

:::::::::
generality,

:::
we

::::
shall

:::::::
assume

::
for

:::::::::
simplicity

:::
that

:::
the

::::::
system

:::
(1)

::
is

::::::::::
autonomous

::::
and

:::::
given

::
by

:

ẏ = F (y).
::::::::

(2)

::
In

:::
the

::::::
general

::::::
setting

::::::::::
considered,

::::
let’s

::::::
assume

::::
that

:::
any

:::::
given

::::::::::
probability

:::::::
measure

:::::::::
converges

::
to

:
a
::::::
unique

::::::::
invariant

:::::::
measure

::
ρ

:::::
under

:::
the

::::
time

::::::::
evolution

:::::
given

::
by

:::
the

::::::::
Liouville

::::::::
equation

::
of

:::
(2).

:::::
This

:::::::
measure

::
is

::::
used

::
to

::::::::
compute

:::
the

:::::::
average

::
of

::
an

::::::::
arbitrary

:::::::::
observable

::
A

::
(a

::::::
smooth

:::::::
function

::
of

:::
the

::::
state

:::
y)

::
of

:::
the

:::::::
system,

:::::
which

::
is

:::::
given

::
by

:
5

〈A〉y =

∫
ρ(dy)A(y)

::::::::::::::::::

(3)

:::
and

::::::::
assuming

:::
the

:::::::::
ergodicity

::
of

:::
the

::::::
system,

::
a
::::
time

::::::
average

:::
of

:::
the

:::::::::
observable

::
A

:::::
along

:
a
::::::::
trajectory

:::
of

:::
the

::::::
system

::
on

:::
its

:::::::
attractor

:::
can

::
be

::::::::::
equivalently

::::::::::
performed:

〈A〉y = lim
T→∞

1

T

T∫
0

dτ A(y(τ))

:::::::::::::::::::::::::

(4)

:::::
where

::::
y(τ)

::
is

:
a
:::::::
solution

::
of

::::
Eq.

:::
(2).

::
If

:
a
::::::::::
perturbation

:::
Ψ

::
of

:::
the

::::::::
dynamical

::::::
system

::
is
:::::::::
introduced

::
in

:::
the

:::::::
original

::::::
system

::
at

:::
the

::::
time10

:::::
τ = 0:

:

ẏ = F (y) + Ψ(y),
:::::::::::::::

(5)

:
it
:::::::
induces

:
a
::::::::::
perturbation

:::
of

::
the

::::::::::
obervable’s

:::::::
average

:::::
which

::
at

::::
first

::::
order

::
is
:::::
given

:::
by2

δ〈A(τ)〉y =

∫
ρ(dy0)δA(fτ (y0)) =

∫
ρ(dy0)δy(τ)T ·∇fτ (y0)A

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

:::::
where

:::
fτ

::
is

:::
the

:::::
flow

:::
the

::::::
system

:::
(2)

::::::::
mapping

:::
an

:::::
initial

::::::::
condition

:::
y0:::

to
:::
the

::::::::
system’s

::::
state

::
at

::::
time

:::
τ :

::::::::::::::
y(τ) = fτ (y0).

:::
δy15

:
is
:::
the

:::::::::::
perturbation

::
of

:::
the

:::::::::
trajectory

::
of

:::
the

::::::
system

:::::::
induced

:::
by

:::
the

::::::::::
perturbation

:::
Ψ.

:::::
This

:::::::
formula

::::
gives

::::
the

:::::::
transient

::::::::
response

::
to

:::
the

:::::::::::
perturbation,

:::
and

:::::
long

::::
time

:::::::
average

::
of

:::
the

::::::::
integrand

:::
of

:::
(6)

:::::
gives

:::
the

::::::::
stationary

::::::::
response

::
to

:::
the

:::::::::::
perturbation,

::::
i.e.

:::
the

::::::::
sensibility

::::::
δ〈A〉y ::

of
:::
the

::::::
system

::::::::::
observables

::
to

:::
the

::::::::::
perturbation

:::::::::::::::::::::::::::
(Eyink et al., 2004; Wang, 2013).

::::
The

::::::::::
higher-order

::::::::::
corrections

:::::::::
δk〈A(τ)〉y :::

can
::
in
::::::::

principle
:::
be

::::::::
computed

:::
as

::::
well

:::
but

:::
are

:::::
quite

:::::::::
complicate

:::
to

:::::
obtain

:::
for

:::::::
chaotic

:::::::::
dynamical

:::::::
systems,

::::
see

:::
for

:::::::
instance

:::::::::::::
Lucarini (2009).

:::
We

::::
will

:::::
show

::
an

::::::::::
analytically

:::::::
tractable

::::
case

::
in

:::::::
Section

::
3.20

2.2
:::

The
:::::::
tangent

:::::
linear

::::::
model

:::
The

:::::
linear

::::::::::
perturbation

:::
δy

::
of
:::
the

::::::::::
trajectories

::
of

:::
(2)

:::
can

::
be

:::::::::
computed

::
by

::::::::::
introducing

::::::
y+ δy

::
in

::::
Eq.

::
(5)

::
to
:::
get

::
at
::::
first

:::::
order

˙δy = ∇yF · δy+ Ψ(y)
:::::::::::::::::::

(7)

2
::::
When

::::
taking

::
the

::::::
gradient

::
of

:
a
::::::
function

::
A,

::
the

::::::
notation

::::
∇yA:::::

means
::::
taking

::
the

::::::
gradient

::
at

::
the

::::
point

:
y,
:::

i.e.
:::::::
evaluating

:::::::
∇yA(y).
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:::::
where

::
y

::
is

:::
the

:::::::
solution

::
of

::::::
system

:::
(2)

:::
and

:::::
∇yF::

is
:::
the

::::::::
Jacobian

::::::
matrix

::::::::
evaluated

:::::
along

:::
this

::::::::
solution.

:::::::::
Therefore,

::::
both

::::
Eqs.

:::
(2)

:::
and

:::
(7)

::::
have

::
to
:::

be
:::::::::
integrated

:::::::::::::
simultaneously.

::
In

:::
the

:::::::
weather

::::::::::
forecasting

:::::::
context,

:::
this

:::::
latter

:::::::::
linearised

:::::::
equation

::
is
::::::
called

:::
the

::::::
tangent

:::::
linear

::::::
model

::
of
:::::::

system
:::
(2)

:::::::::::::
(Kalnay, 2003)

::::
plus

::
the

:::::::::::
perturbation

::::
term

:::
Ψ.

:::::::
Without

::::
this

:::::
latter

:::::
term,

::
it

:::::::
provides

::::
the

::::::::
linearised

::::
time

::::::::
evolution

::
of

:
a
::::::::::
perturbation

:::
δy

::::::::::::
superimposed

::
to

:::
the

:::::
initial

:::::::::
conditions.

:::::
Here,

:::
Eq.

:::
(7)

::
is

::::::::
initialised

::::
with

:::::::::
δy(0) = 0

:::
and

:::::::
provides

:::
the

:::::
linear

::::::::::
“response”

::
of

:::
the

::::::::
trajectory

::::
y(τ)

::
to
:::
the

:::::::::::
perturbation

::
Ψ.

::
It
::
is

::::
thus

:::::::
assumed

::::
that

::::
there

::
is
:::
no

::::::::::
interference5

:::
due

::
to

:::::
initial

::::::::
condition

::::::
errors

::
in

:::
the

::::::::::
perturbation

::::::::
problem.

::::
Note

::::::::
however

:::
that

:::
the

::::::
effects

:::
on

:::
the

:::::::::
trajectories

::
of

::::
both

:::
the

::::::
initial

::::::::
conditions

:::::::::::
perturbation

:::
and

:::
the

::
Ψ

:::::::::::
perturbation

:::
can

::
be

::::::::::
investigated

:::::::
through

:::
this

::::::::
equation

::
by

::::::
setting

:::::::::
δy(0) 6= 0,

:::::::
altough

:::
we

:::
are

:::
not

:::::
aware

::
of

:::
any

:::::::::::
simultaneous

:::::
study

::
of

::::
both

:::::::::
responses.

:

:::
The

:::::::
tangent

:::::
model

::::::::
provides

::::
thus

:::
the

::::
tool

::::::
through

::::::
which

:::
we

::::
will

:::::::
evaluate

:::
the

::::::
impact

::
of

:::
the

::::::
model

::::::
change

:::
on

:::
the

:::::::
average

::::
used

::
by

::::::::
statistical

::::::::::::
postprocessing

::::::::
schemes.

::
In

:::::
other

::::::
words,

:::
the

::::::
tangent

:::::
model

::::
will

:::::
allow

::
us

::
to

::::
take

:::
into

:::::::
account

:::
the

::::::::::
information10

::
on

:::
the

:::::
model

:::::::
change

::::::
(viewed

:::
as

:
a
::::::::::
perturbation

::
of

:::
the

:::::
initial

:::::::
model)

::
to

::::::
modify

:::
the

:::::::
previous

::::::::::::
postprocessing

:::::::
scheme

:::
and

:::::
adapt

::
it

::
to

:::
the

::::
new

::::::
model.

::::
The

:::::::
solution

::
to

:::
Eq.

:::
(7)

::::
with

:::::::::
δy(0) = 0

::
is

:::::
given

::
by

:

δy(τ) =

τ∫
0

dτ ′ M
(
τ − τ ′,fτ

′
(y0)

)
·Ψ
(
fτ
′
(y0)

)
,

:::::::::::::::::::::::::::::::::::::::::::

(8)

:::::
where

:::
M

:
is
:::
the

:::::::::::
fundamental

::::::
matrix

::
of

:::::::
solutions

:::
of

:::
Eq.

:::
(7)

:::::::::::::::::::::::::
(Gaspard, 2005; Nicolis, 2016)

:
:

M(τ,y) = ∇yf
τ

::::::::::::::
(9)15

::::::
solution

:::
of

:::
the

::::::::::::
homogeneous

::::::::
equation

::::::::::::::
Ṁ = ∇yF ·M.

:::::
Using

::::
the

:::::
chain

::::
rule,

:::
the

::::::::
response

:::
(6)

::
is
::::::::

rewritten
:::

in
::::
term

::
of
::::

the

::::::::::
perturbation

:::::
alone:

:

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫
ρ(dy0) Ψ

(
fτ
′
(y0)

)T
·∇fτ′ (y0)

A(fτ (y0))

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

:::::
where

:::
the

:::::::
causality

:::
of

:::
the

::::::::::
perturbation

:::::
acting

:::
on

:::
the

::::::
system

:::
and

:::::::::
perturbing

:::
the

::::::::
averaged

:::::::::
observable

:::::::
appears

:::::::::::::
(Lucarini, 2008)

:
,

::::
since

::::::
τ ′ < τ .

:::
We

::::
will

::::
also

:::
use

:::
this

:::::::::
alternative

:::::::::
expression

:::::::::
throughout

:::
the

::::::
article.

::::
Note

::::
that

::::
when

:::
the

:::::
initial

:::::::::::
perturbation

:::::
δy(0)

::
is20

:::
not

::::
equal

::
to
::
0,
:::::::::
additional

:::::
terms

::
to

::::
Eqs.

:::
(8)

:::
and

::::
(10)

::::
will

::::::
appear.

:::::
These

::::
will

:::
not

::
be

:::::::::
addressed

::::
here

:::
but

::::
some

:::::
hints

:::
can

:::
be

:::::
found

::
in

:::::::::::::::::
Nicolis et al. (2009)

::
and

:::::::::::::
Nicolis (2016).

:

2.3
::::::::::::
Non-stationary

::::::::
response

::::::
theory

:::
The

::::::::
equation

:::
(6)

:::::
gives

:::
the

::::::::
transient,

::::::::::::
non-stationary

::::::::
response

::
to

:::
the

:::::::::::
perturbation,

::::::::
evaluated

:::
for

::::::::
averages

::::::::
computed

:::::
with

:::
the

:::::::
invariant

::::::::
measure.

::::::::
However,

:
in
::::
this

:::::
work,

::
we

:::::
need

::
to

::::::
evaluate

::::::::
response

::
to

::::::::::
perturbation

:::
for

:::::::
averages

::::::::
computed

::::
with

::::::::::::
non-stationary25

:::::::
measures

::::::::
evolving

::
in

:::::
time.

::
In

::::
that

:::::
sense,

::
it

::
is

:
a
:::::::::::::
non-stationary

:::::::
response

::::::
theory,

:::::
done

:::
for

:::::::
arbitrary

::::::
initial

:::::::::
probability

:::::::
density.

::
As

:::::
such,

:::
all

:::
the

:::::::
formula

::::::::
presented

:::
are

:::::
valid

::
if

:::
the

::::::::
measure

:::::
being

::::
used

::
is

:::
the

::::::::
measure

::
at

:::
the

::::
time

:::::
when

:::
the

:::::::::::
perturbation

::
is

:::::::::
introduced

:::::::
(τ = 0),

::
as

::::::
shown

::
in

::::::::
Appendix

:::
A.

::
In

::::
this

::::
case,

:::::
other

:::::
usual

:::::::
formula

:::::::
obtained

:::::::
through

::::::::::
substitution,

:::
for

::::::::
instance

::
to
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:::::
obtain

::
an

::::::
adjoint

::::::::::::
representation

::
of

::::
(10),

::::::
should

:::
be

::::
used

::::
with

:::
care

:::::
since

:::
the

:::::::
measure

::
is

::
no

::::::
longer

:::::::
invariant

::::
and

::
an

::::
extra

::::::::
Jacobian

::::
term

::::::
appears

::
in

:::
the

:::::::::
integrand.

:::
We

:::
will

::::
thus

::::
also

::::::
assume

:::
that

:::
the

::::::::
measures

::
ρτ:::::

being
::::
used

:::
are

:::::::::
absolutely

:::::::::
continuous

::::
with

::::::
respect

::
to

:::
the

::::::::
Lebesgue

::::::::
measure.

::
In

:::
this

::::
case,

:::
we

:::
can

:::::
write

:::::::::::::::::
ρτ (dy) = ρτ (y)dy.

:::
We

::::
now

::::::
present

:::
the

:::::::
problem

::
of

::::::
model

::::::
change

::
in

:::
the

:::::::::
framework

::
of

:::::::::::::
postprocessing

:::
and

:::::
show

::
on

:
a
::::::
simple

::::::::
example

:::
how

::::::::
response

::::::
theory

:::::
allows

::
to

::::::
tackle

::
the

:::::
issue.

:
5

3 A simple analytical example

In order to get a first impression of the impact of a model change on a post-processing
::::::::::::
postprocessing

:
scheme, we consider

two Ornstein-Uhlenbeck processes representing the reality x(τ) and a model y(τ) of the reality. These processes obey the

following equations:

ẋ(τ)
::

= −λx x(τ)
::

+Kx +Qx ξx(τ) (11)10

ẏ(τ)
::

= −λy y(τ)
::

+Ky +Qy ξy(τ) (12)

where ξx and ξy are Gaussian white noise processes such that

〈ξx(τ)〉= 〈ξy(τ)〉 = 0

〈ξx(τ) ξx(τ ′)〉 = δ(τ − τ ′)

〈ξy(τ) ξy(τ ′)〉 = δ(τ − τ ′)15

〈ξx(τ) ξy(τ ′)〉 = 0

These are therefore uncorrelated Ornstein-Uhlenbeck processes with noise amplitudes Qx and Qy .

We then consider a change Ψy of the model y(τ), possibly improving or degrading the forecast performances:20

˙̂y(τ)
::

=−λy ŷ(τ)
::

+Ky +Qy ξy(τ) + Ψy(τ) (13)

where

Ψy(τ) =−κ
(
δK + δQ ξy(τ)

)
(14)

with δK =Ky−Kx and δQ=Qy−Qx. It can represent, for example, a better parameterisation of subgrid-scale processes or

an increase of the model resolution. Note that if
::
the

::::
best

::::::::
correction

::
is
::::::::
obtained

:
if
:
κ= 1, the correction is perfect.25

We have thus the reality x(τ) and two different models of it: y(τ) and ŷ(τ). We now want to evaluate the difference between

a post-processing
::::::::::::
postprocessing

:
scheme constructed before the model change (with the past forecasts of the model y(τ)), and

one constructed after it (with the past forecasts of model ŷ(τ)).
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3.1 The post-processing
:::::::::::::
postprocessing method

We now consider a forecast situation where the model y is initialised at the time τ = 0 with a perfect observation of the

reality: y(0) = x(0) = x0. We use the Error-in-Variables Model Output Statistics (EVMOS) post-processing
::::::::::::
postprocessing

scheme (Vannitsem, 2009) to correct the forecasts of the model y based on these initial conditions. In this context, given

K past forecasts yk and observations xk::
N

::::
past

::::::::
forecasts

::
yn::::

and
:::::::::::
observations

:::
xn, the correction of the univariate EVMOS5

post-processing
::::::::::::
postprocessing of variable x from a new forecast y(τ) is provided by the linear regression

xy
:
C(τ) = α(τ) +β(τ)·y(τ) (15)

The coefficients α and β are obtained by minimising the functional

J(τ) =
∑

K
k=1

[{α(τ) +β(τ)yk(τ)}−xk(τ)]

σ2
x(τ) +β2(τ)σ2

y(τ)
N
n=1

[{α(τ) +β(τ)yn(τ)}−xn(τ)]
2

σ2
x(τ) +β2(τ)σ2

y(τ)
:::::::::::::::::::::::::::::

, (16)

and are thus given by the equations:10

α(τ) = 〈x(τ)〉−β(τ)〈y(τ)〉 (17)

β(τ) =

√
σ2
x(τ)

σ2
y(τ)

(18)

where

σ2
x(τ) =

〈(
x(τ)−〈x(τ)〉

)2〉
(19)

σ2
y(τ) =

〈(
y(τ)−〈y(τ)〉

)2〉
(20)15

The averages 〈·〉 are taken over an ensemble of past forecasts and observations. This approach has been developed to allow

for
:::::
obtain

:
a
:

correct climatological forecast calibration. It constitutes a simple setting in which the impact of model changes

can be evaluated and corrected. More sophisticated approaches can be evaluated in the future
:::::
(other

:::::
MOS

::::::::
schemes,

::::::::
ensemble

::::::::
MOS,. . . ).

20

Since we are dealing with simple analytical models here, we can compute the theoretical values of the coefficient α and

β with an infinite ensemble of past forecasts, and the averaged quantities involved in this computation are then given by the

averages of
::
an infinite number of realisations of the Ornstein-Uhlenbeck processes, as if we had an infinite ensemble of past

forecasts.

3.2 Averaging the Ornstein-Uhlenbeck processes25

For the reality x and the model y, we directly get the averages (Gardiner, 2009)

〈x(τ)〉 = 〈x0〉e−λx τ +
Kx

λx

(
1− e−λx τ

)
(21)

σ2
x(τ) = σ2

x0
e−2λx τ +

Q2
x

2λx

(
1− e−2λxτ

)
(22)
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and

〈y(τ)〉 = 〈x0〉e−λy τ +
Ky

λy

(
1− e−λy τ

)
(23)

σ2
y(τ) = σ2

x0
e−2λy τ +

Q2
y

2λy

(
1− e−2λyτ

)
(24)

where we note that the model is initialised with the same initial conditions as the reality:

〈y(0)〉= 〈x(0)〉= 〈x0〉 , σ2
y(0) = σ2

x(0) = σ2
x0

(25)5

We get the post-processing
::::::::::::
postprocessing

:
coefficients before the model change α(τ) and β(τ) by inserting these expressions

in the equations (17) and (18).

Similarly, we get the same kind of results for the model ŷ, after the model change Ψy:

〈ŷ(τ)〉 = 〈x0〉e−λy τ +
Ky −κδK

λy

(
1− e−λy τ

)
(26)

σ2
ŷ(τ) = σ2

x0
e−2λy τ +

(Qy −κδQ)2

2λy

(
1− e−2λyτ

)
(27)10

and we also obtain the post-processing
::::::::::::
postprocessing

:
coefficients after the model change α̂(τ) and β̂(τ) (see also the analysis

in Vannitsem (2011)). We can also compute the variation of the bias α:

α̂(τ)−α(τ) = δα(τ) = β(τ)〈y(τ)〉− β̂(τ)〈ŷ(τ)〉 (28)

The ratio between the parameters β is given by

β̂(τ)

β(τ)
=

√
σ2
y(τ)

σ2
ŷ(τ)

(29)15

For τ �max(1/λx,1/λy), we note that this ratio tends to

β̂(τ)

β̂(τ)

β̂(τ)

β(τ)
::::

≈ 1

1−κδQ/Qy
(30)

and the difference between the biases α of the two models is approximatively given by:

δα(τ)≈−β(τ)
Ky

λy

[
1−κδK/Ky

1−κδQ/Qy
− 1

]
. (31)

Let us now assume that the model change Ψy can be considered as a perturbation of the initial model y. Using response20

theory, the averages 〈ŷ〉 and σ2
ŷ can be estimated using the initial model y instead of the perturbed model ŷ. In turn, the use of

these new estimated averages allows for computing the new post-processing
::::
give

::
us

:::
the

:::
new

:::::::::::::
postprocessing scheme coefficients

α̂ and β̂. We now detail the results obtained by using this method.
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3.3
:::::

Model
:::::::
Change

::::
and Response theory

After the model change, the forecasts are provided by the model ŷ and their time-evolution is given by Eq. (13). This model

can be seen as a perturbation of the model y by the term Ψy given by Eq. (14). In such case, given an observable A, its average

after the model change can then be related to its original average by

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ2〈A(τ)〉y + . . . (32)5

where the averages on the right-hand side are taken over the forecasts of model y. Response theory allows
::
us to obtain the

average over the model ŷ forecasts (the left-hand side) based solely on the average over model the
:::
the

:::::
model

:
y forecasts. The

ŷ model forecasts are therefore not required to estimate the new post-processing
:::::::::::
postprocessing

:
scheme.

The observables depend on the lead time τ of the forecast, as do the parameters α and β which determine the post-processing

::::::::::::
postprocessing correction for every lead time. This reflects the fact that the post-processing

:::::::::::
postprocessing

:
problem is typically10

a non-stationary initial value problem, since the initial conditions of the model Eqs. (12) and (13) are typically not chosen on

their respective model attractor, but rather as observations3 of the reality (11). As a consequence, the model averages (32) relax

toward the stationary response in the long-time limit, and the stationary response theory (Ruelle, 2009; Wang, 2013) cannot

provide us their short-time relaxation behaviour. Instead, the Ruelle time-dependent response theory should be used (Ruelle,

1998a). It follows that, if the perturbation (14) is small, then the first order is given by (see Appendix A):
::::::
section

:::
2):15

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dx0 ρ0(x0)
〈

Ψy(τ ′)·∇fτ′ (x0)
A(fτ (x0))

〉
(33)

where ρ0 is the distribution of the initial conditions (observations) used to initialise the models.∇x is the gradient evaluated at

the point x, and here it is the simple derivative. As indicated by Eq. (25), in the post-processing framework, it
::::::::::::
postprocessing

:::::::::
framework,

:::
ρ0 is taken as the stationary/invariant distribution of the reality. It is also assumed that there is no interference due

to initial condition errors in the problem.
::
As

::::::
shown

::
in

::::::::
Appendix

:::
A, Eq. (33) can be obtained through a Kubo-type perturbative20

expansion (Lucarini, 2008). We remark that this example deals with stochastic models, due to which we have to perform an

additional averaging over the realisations of the stochastic processes, denoted here as 〈·〉 (Lucarini, 2012). Finally the mapping

fτ which appears in Eq. (33) is the stochastic flow:

fτ (x0) = x0 e
−λyτ +

τ∫
0

dτ ′ e−λy(τ−τ
′)
[
Qy ξy(τ ′) +Ky

]
. (34)

This maps an initial condition x0 of the model y to the state fτ (x0) of a realisation of this model at the later lead time τ .25

The principle of causality is thus implicit in Eq. (33), which estimates the impact of the perturbation Ψy on the subsequent

perturbed model time-evolution by developing around the unperturbed model y trajectories.

3Here we consider that the observation are perfectly assimilated in the models, and that there is no observation errors. However in operational setups, such

errors are of course to be taken into account.

9



Evaluating Eq. (33) and its stochastic integrals
:::::::::::::::
(Gardiner, 2009) gives us the variation of the averages 〈y(τ)〉 and 〈y(τ)2〉 to

the perturbation Ψy:

δ〈y(τ)〉y = −κ
τ∫

0

dτ ′δK e−λy(τ−τ
′) =− κ

λy
δK

(
1− e−λyτ

)
(35)

δ〈y(τ)2〉y = −2κδK

τ∫
0

dτ ′
[
〈x0〉e−λy(2τ−τ

′) +
Ky

λy
e−λy(τ−τ

′)
(
1− e−λyτ

)]
− 2κδQQy

τ∫
0

dτ ′ e−2λy(τ−τ
′)

= −2κ
δK

λy
〈y(τ)〉

(
1− e−λyτ

)
− κ

λy
δQQy

(
1− e−2λyτ

)
(36)5

Rearranging these two terms, we also get the following expression for the variation of the variance (24):

δσ2
y(τ) =− κ

λy
δQQy

(
1− e−2λyτ

)
− κ2

λ2y
δK2

(
1− e−λyτ

)2
(37)

Note that the variation (35) corresponds to the exact difference between the average of the two models 〈ŷ(τ)〉− 〈y(τ)〉. On

the other hand the variation given by Eq. (37) lacks the term of order κ2 involving δQ that appears in the exact difference

σ2
ŷ(τ)−σ2

y(τ) given by Eqs. (24) and (27). Instead, another term of order κ2 and involving δK is present, indicating that we10

need to consider the higher-order term of response theory Ruelle (1998b) to correct it. The second-order term is given by the

expression4 (Lucarini, 2012):

δ2〈A(τ)〉y =

τ∫
0

dτ ′
τ∫

τ ′

dτ ′′
∫

dyρ0(x0)
〈

Ψy(τ ′)·∇fτ′ (x0)
Ψy(τ ′′)·∇fτ′′ (x0)

A(fτ (x0))
〉
. (38)

Applying this to the first moment of the y models directly yields

δ2〈y(τ)〉y = 0. (39)15

On the other hand, integrating the stochastic integrals present in this expression for the moment 〈y(τ)2〉 gives

δ2〈y(τ)2〉y =
κ2 δK2

λ2y

(
1− e−λyτ

)2
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
(40)

which corrects the κ2δK2 term in Eq. (37) and makes the response theory up to order 2 exactly match the difference σ2
ŷ(τ)−

σ2
y(τ), for every lead time τ . In fact, the subsequent orders of the response vanish due to the linearity of the simple Ornstein-

Uhlenbeck models, which allows
::::::
enables

::
us

:
to truncate the response Kubo-like expansion to the second order. Finally, this20

shows that the (non-stationary) response theory can be used to estimate the post-processing
::::::::::::
postprocessing parameters after the

model change based on the forecasts of the initial model. Indeed, instead of the averages 〈ŷ(τ)〉 and 〈σ2
ŷ(τ)〉, the approximate

averages 〈y(τ)〉+ δ〈y(τ)〉y and σ2
y(τ) + δ〈σ2

y(τ)〉y + δ2〈σ2
y(τ)〉

::::::::::::::::::::::
σ2
y(τ) + δσ2

y(τ) + δ2σ2
y(τ) can be used to compute α̂ and β̂.

We emphasise that the second order contribution had to be considered in order to obtain the exact result. Nevertheless, the

4
:::
This

:::::::
expression

:
is
:::::::
equivalent

::
to

::
the

:::::
second

::::
term

:
of
:::
Eq.

::
(1)

::
in

:::::::::::
Lucarini (2012)

:::
upon

:
a
:::
time

::::::::::
transformation.

::
It

::
can

:::
also

::
be

::::::
obtained

::
by

:::::::
computing

:::::::
explicitly

::
the

:::::
second

::::
order

::::::::
perturbation

::
of

::
the

:::::
average

::
in

::
Eq.

:::::
(A14)

:
in
:::::::
Appendix

::
A.

10



difference between the first and the second order response is of order κ2, which implies that for a small perturbation (model

change), the first order will generally be a sufficiently good approximation. A more detailed derivation of the results obtained

in this section can be found in the supplementary material.

In order to investigate this research avenue on a case closer to those encountered in reality, we will now consider the

application of post-processing
:::::::::::
postprocessing

:
and response theory to a low-order atmospheric model displaying chaos.5

4 Application to a low-order atmospheric model

A 2-layer quasi-geostrophic atmospheric system on a β-plane with an orography is considered (Charney and Straus, 1980;

Reinhold and Pierrehumbert, 1982). This spectral model possesses well-identified large-scale flow regimes, such as zonal

and blocked regimes. The horizontal adimensionalised coordinates are denoted x and y,
:::
the

:::::::
model’s

:::::::
domain

:::::
being

::::::
defined

:::
by

::::::::::::::::::::
(0≤ x≤ 2π

n ,0≤ y ≤ π),
::::
with

:::::::::::
n= 2Ly/Lx:::

the
:::::
aspect

::::
ratio

:::::::
between

:::
its

:::::::::
meridional

:::
and

:::::
zonal

::::::
extents

:::
Ly :::

and
:::
Lx. The two main10

fields of this model are the 500 hPa pressure anomaly and temperature, which are proportional to the barotropic streamfunction

ψ(x,y) and the baroclinic streamfunction θ(x,y), respectively. These
:::
Both

:::::
fields

:::
are

::::::
defined

::
in
::
a
::::::
zonally

:::::::
periodic

:::::::
channel

::::
with

::::::
no-flux

::::::::
boundary

:::::::::
conditions

::
in

:::
the

::::::::::
meridional

:::::::
direction

:::::::::::
(∂ · /∂x≡ 0

::
at

::::::::
y = 0,π).

::::
The fields are expanded in Fourier modes

::::::::
respecting

:::::
these

::::::::
boundary

:::::::::
conditions:

F1(x,y) =
√

2 cos(y),15

F2(x,y) = 2 cos(nx) sin(y),

F3(x,y) = 2 sin(nx) sin(y),

F4(x,y) =
√

2 cos(2y),

...

such that20

∇2Fi(x,y) =−a2iFi(x,y) (41)

with eigenvalues a21 = 1, a22 = a23 = 1 +n2, a24 = 4, . . . , where n is the aspect ratio of the x-y domain. We have thus the

following decomposition

ψ(x,y) =

na∑
i=1

ψiFi(x,y) (42)

θ(x,y) =

na∑
i=1

θiFi(x,y). (43)25

where na is the number of modes of the spectral expansion. The partial differential equations controlling the time evolution of

the fields ψ(x,y) and θ(x,y) can then be projected on the Fourier modes to finally give a set of ordinary differential equations

for the coefficients ψi and θi:

ẋ= F (x) , x= (ψ1, . . . ,ψna ,θ1, . . . ,θna) (44)

11



that can be solved with usual numerical integrators. All variables are adimensionalized
::::::::::::::
adimensionalised.

::::
The

:::::::
ordinary

:::::::::
differential

::::::::
equations

::
of

:::
the

:::::
model

:::
are

:::::::
detailed

::
in

::::::::
Appendix

::
B.

In the version proposed by Reinhold and Pierrehumbert using the 10 first modes, beyond a certain value of the zonal temper-

ature gradient, the system displays chaos and makes transitions between the blocked and zonal flow regimes embedded in its

global attractor. Here, we adopt their notations and main adimensionalized
::::::::::::::
adimensionalised

:
parameters values: the friction at5

the interface between the two layers k = 0.05, the friction at the bottom surface k′ = 0.01, and the aspect ratio of the domain

n= 1.3. The β-plane lies at mid-latitude (45°) and the Coriolis parameter f0 is set accordingly.

In the present work, the parameter h, the Newtonian cooling coefficient is fixed to 0.1 instead of the value found in Reinhold

and Pierrehumbert (which is h= 0.045). Two additional fields have to be specified on the domain: θ?(x,y), the radiative

equilibrium temperature field, and ~(x,y), the topographic height field. These fields can be decomposed by projecting them10

onto the eigenfunctions of the Laplacian as before. The corresponding coefficients θ?i and ~i then allow for writing these fields

as sums of weighted eigenfunctions:

θ?(x,y) =

na∑
i=1

θ?i Fi(x,y) (45)

~(x,y) =

na∑
i=1

~iFi(x,y). (46)

In the present case, we consider that the only non-zero coefficients are θ?1 = 0.2 and ~2 = 0.2, meaning that the radiative equi-15

librium profile is given by the zonally varying function
√

2 cos(y) and the orography is made of a mountain and a valley shaped

by the function 2 cos(nx) sin(y). Again, the value of the temperature gradient θ?1 is larger than the one chosen in Reinhold

and Pierrehumbert (which is θ?1 = 0.1) to increase the chaotic variability in the system. Trajectories of variables θ1 and ψ4 are

depicted in Fig. 1, for the reference system (reality) and a model version (model 0) for which the friction coefficient has been

slightly modified.20

These parameter changes induce slight modifications of the dynamics. In particular the system possesses two distinct weather

regimes, depicted in Fig. 2(b): one characterised by a zonal circulation (see Fig. 1
:
2(c)), and another characterised by a blocking

situation (see Fig. 1
:
2(d)).

::
In

:::
the

::::::
former

::::
case,

:::
the

::::::::
variables

:::
ψ2:::

and
:::
ψ3::::::::::::

characterising
:::
the

:::::::
strength

::
of

:::
the

:::::
zonal

:::::::::::
wavenumber

::
1

::::::::
anomalies

:::
are

::::::
small,

:::::
while

::
in

:::
the

:::::
latter

::::
case

::::
they

:::
are

:::::
large,

::::::::
indicating

::::::
indeed

::
a
::::::::
blocking

::::::::
situation. This is different from the

case
:::::::
situation considered in Reinhold and Pierrehumbert (1982), where two

:::::::
different

:
blocking regimes coexist with the zonal25

regime.

4.1 Post-processing
:::::::::::::
Postprocessing experiments

The model described above with 10 modes (na = 10) is used and two different post-processing
::::::::::::
postprocessing experiments are

performed, one involving the Newtonian cooling parameter h and another involving the friction parameter k between the two

atmospheric layers. The parameter values detailed above correspond to the long-term reference (i.e. the reality). A first model30

is defined (model 0) which is a copy of the 2-layer quasi-geostrophic model defining the reality, but the parameters h or k are

slightly changed, i.e. the model error of the forecasting system lies in either the Newtonian cooling or the friction parameter.
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Figure 1. Dynamics of reference system and model 0 of the post-processing
::::::::::
postprocessing

:
experiment with change of friction (see Table 1),

for: (a) time evolution of the variable θ1, (b) time evolution of the variable ψ4.

Then, as in Section 3, a model change is imposed, leading to another forecasting model (model 1) that can either improve or

degrade the model error by a factor κ. The parameter variations involved in these experiments are detailed in Table 1. Without

loss of generality, we consider model changes that improve the representation of reality, in the sense that the amplitude of the

model errors in model 1 is smaller than in model 0. The effect of the model change is depicted in Figs. 3 and 4 for the friction

parameter experiment. These figures display the mean and the standard deviation of the model forecasts and observations5

coming from the reference forecasts, as a function of the lead time τ . We have used a set of one million trajectories of each

system to compute these averages.

In the framework of the EVMOS post-processing
::::::::::::
postprocessing scheme, the predictors and the predictands are the same

nominal variable and no other predictors are used. In both experiments considered, the post-processing
::::::::::::
postprocessing param-

eters α and β of the EVMOS for model 0, as well as α̂ and β̂ for model 1, are computed. The main objective here is then to10

estimate the difference between the former and the latter using Ruelle response theory. The approach in a multivariate setting

is presented below.

4.2
:::::

Model
:::::::
change, Response theory and the tangent linear

:::::::
Tangent

:::::::
Linear model

Let us consider again the response theory described in Section
::::::
section 3.3, but in the

::::::
general

:
multivariate deterministic case

::::::::
described

::
in

::::::
section

::
2. In the post-processing

::::::::::::
postprocessing

:
framework, models 0 and 1 evolve in time from a set of initial15

conditions taken outside of their respective attractors. Response formulae found in Ruelle’s work have to be adapted to take

13



Figure 2. (a) 3D scatter plot of the attractors along the variables ψ1, ψ2 and ψ3, (b) 2D scatter plot of the attractors along the variables ψ2

and ψ3. Two different parts
::

The
::::::::
attractors of the attractors

:::::
reality

:::
and

:::::
model

:
0
:::
are

:::::::::
qualitatively

::::::
similar,

::::
with

:::
two

:::::::
different

::::
parts

:::::
which

:
are

indicated by ellipses. The green crosses correspond to equilibrium points of the reference model, the reality. The dashed ellipse corresponds

on average to a zonal circulation depicted on panel (c). The dashed-dotted ellipse corresponds on average to a blocking situation depicted

in panel (d). In both panels (c) and (d), the underlying colour map denotes the orography on the domain, and the contours the geopotential

height anomaly at 500 hPa.
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Parameter description

Experiment
Newtonian cooling modification Friction coefficient modification

Symbol

System
Reality Model 0 Model 1 Model 0 Model 1

Newtonian cooling coefficient h 0.1 0.102 0.101 0.1

Atm. layers friction k 0.05 0.05 0.06 0.055

Bottom layer friction k′ 0.01

Domain aspect ratio n 1.3

Meridional temperature gradient θ?2 0.2

Mountain ridge altitude ~2 0.2

Table 1. The main parameters used and modified in the experiments. Model 0 and model 1 are respectively the forecast model of the reality

before and after the model change.

0 5 10 15 20
 (days)

0.150

0.155

0.160

0.165

0.170

0.175

0.180

1

Reality
Model 0

0 5 10 15 20
 (days)

0.150

0.155

0.160

0.165

0.170

0.175

0.180

1

Reality
Model 1

Figure 3. Behaviour of the averages as a function of the lead time τ in the reality and the forecast models before (left panel) and after (right

panel) the model change, in the case of the friction post-processing
:::::::::::
postprocessing experiment (see Table 1). The variable considered is the

temperature meridional gradient θ1. The solid lines denote the mean while the shaded areas denote the one standard deviation interval.
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Figure 4. Same as Figure 3, but for the variable ψ3 of the streamfunction ψ.

this into account. One therefore has to consider the density of initial conditions as the measure. For a system with a time-

independent perturbation Ψ(ŷ),

˙̂y = F (ŷ) + Ψ(ŷ) = F̂ (ŷ), (47)

an observable A with average 〈A(τ)〉y at the lead time τ for the system

ẏ = F (y) (48)5

has a first order response of

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ)T ·∇fτ (y0)A (49)

where fτ is the flow of the unperturbed system (48), ρ0 is the distribution of initial conditions, and δy(τ) is the solution of

the equation ẏ+ ˙δy = F̂ (y+δy) which can be approximated at first order by the following linear inhomogeneous differential

equation10

˙δy = ∇yF · δy+ Ψ(y). (50)

where y(τ) is solution of the unperturbed equation (48) with initial condition y(0) = y0 and we see that the systems (48)

and (50) have to be integrated simultaneously (Gaspard, 2005). The homogeneous part of Eq. (50) is the well-known tangent

linear model of the system and here it has to be solved with an additional boundary term which is the perturbation itself.
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Equation (49) is derived in Appendix A, and can be computed in the same way as the averages depicted in Figs. 3 and 4,

by averaging over multiple initial conditions of the reference system. Since we initialise the unperturbed (model 0) and the

perturbed systems (model 1) with the same initial conditions, the initial state of the tangent model (50) is δy(0) = 0. Therefore

we do not estimate the impact of the observation or assimilation errors, but rather the direct impact of the model errors viewed as

time-independent perturbations. The formulation of the problem and Eq. (50) can be adapted to take these errors into account,5

as described for instance by Nicolis (2016).

In what follows, we will numerically integrate Eq. (50) to evaluate the response on the average due to the perturbation

induced by the model change. This will in turn, as in Section 3, allow
::::::
enables us to compute the post-processing

::::::::::::
postprocessing

parameters for the new model.

4.3 Main results10

For each of the two experiments detailed in Table 1, we start by obtaining one million observations of the reality that will be used

to initialise the forecast models. For each observation, this is done by starting the model x (the reference) with a random initial

condition and running it for a very long time (100000 adimensionalized
::::::::::::::
adimensionalised time units) to achieve convergence to

its global attractor. Once the observations have been obtained, we run the reference model, model 0 and model 1 over 200 time

units (corresponding to roughly 22 days) to obtain the reality and the forecasts. The systems have been integrated using the15

fourth-order Runge-Kutta integration scheme with a time-step of 0.1 time unit corresponding to 16.15 minutes. The averaging

over the one million trajectories of the reality and of the forecasts at each lead time allow for computing the post-processing

:
is
::::
used

:::
to

:::::::
compute

:::
the

::::::::::::
postprocessing

:
coefficients α and β of the EVMOS by using formulas (17) and (18). For each variable,

the variable itself is used as the unique predictor.

The response-theory approximations of the averages of the model ŷ (model 1) averages are obtained by integrating the lin-20

earised equations of model 0 along its trajectories with the perturbation Ψ as inhomogeneous term. This is done by integrating

Eq. (50) over a lead time of 200 time unit
:::
units

:
with a zero initial condition, using the same integration scheme as before. It

allows us to obtain
::::
gives

::
us

:
the integrand of Eq. (49) for each trajectory, and the integral is then approximated as the average

of this integrand over the whole set of trajectories. The result of this integration and averaging is shown in Figs. 5 and 6 for

the first and second moment of the variable θ1. The results for other variables are available in the supplementary material. The25

black curve shows the moments of model 0 with the addition of their linear response δ〈θ1〉 and δ〈θ21〉 to the perturbation Ψ.

This curve agrees well with the green curves of the model 1 moments up to a lead time of 3 or 4 days, showing the efficiency

of response theory. Note that in contrast with the calculation of the averages shown in Figs. 3 and 4 and computed with one

million trajectories, we have here considered a limited subset of 10000 trajectories of model 0 and its tangent to compute the

corrections to these averages. The correction of the moments of model 1 are accurate until 3 days for both experiments. After30

this critical lead time, obtaining a good accuracy requires a huge increase in the number of forecasts and tangent model integra-

tions to perform the averaging. This problem is well-known (Nicolis, 2003; Eyink et al., 2004) and is due to the appearance of

fat-tails in the distribution of the perturbations δy in the integrand of Eq. (49). As it can be seen in Fig. 10, the problem worsens

with the increase of the lead time: initially the distributions are near-Gaussian and fat-tails appears progressively. Therefore, the
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number of samples of δy needed to converge to the correct mean up to a certain precision increases exponentially as the lead

time increases. This problem has consequences on the method used to perform the average. Indeed, to avoid rare and unrealistic

extreme response
::::::::
responses

:
of the system located far in the tails of the distributions, we have removed outliers above a certain

threshold (set to 3. adimensional unit
:
3

:::::::::::
adimensional

::::
units) from the averaging.

The moments obtained by the response theory approach are used to compute new EVMOS post-processing
::::::::::::
postprocessing5

α and β coefficients, thanks to the formulas (17) and (18).
:::::
These

::::::::
corrected

:::::::::
coefficients

:::
are

::::::
shown

::
in

::::
Fig.

:
7
::::

and
::
in

:::
the

::::::
panels

::
(c)

::::
and

:::
(d)

::
of

::::
Fig.

:::
12.

:
In Figs. 8 and 9, we compare the three post-processing

:::
four

:::::::::::::
postprocessing

:
schemes hence obtained:

the post-processing
::::::::::::
postprocessing

:
of model 0 (red curves) and 1 (green curves) obtained by averaging over their trajectories

(forecasts), and the post-processing
::::::::::::
postprocessing

:
of model 1 obtained with the

:::
past

::::::
model

:
0
::::::::
forecasts

::::::
(green

::::
“+”

:::::::
crosses)

:::
and

::::
with

:::
the

:
response theory approach (black

:::
“×”

:
crosses). In the panel (a) of these figures, the mean square error (MSE)10

between the trajectories of the models and the reference trajectories is displayed by solid curves, while the MSE between both

models correction and the reference is depicted by dash-dotted curves. In general, the
:
A
::::
first

::::::::
comment

::
is

::::
that,

::::
even

:
if
:::
the

::::::
model

::::::
change

::::
here

::
is

:::::
small,

:::
the

::::::::::::
postprocessing

:::::
using

:::
the

::::
past

::::::::
forecasts

::
of

:::::
model

::
0
:::::::::
completely

::::
fails

::
to
::::::
correct

:::
the

::::::
model

::
1

::::::::
forecasts,

::::::::::
highlighting

:::
the

::::
need

:::
for

:::
an

:::::::::
adaptation

::
of

:::
the

::::::::::::
postprocessing

:::
to

:::
the

:::::
model

:::::::
change

::
in

:::
the

::::::
present

:::::
case.

:::::
Then,

:::
we

::::
note

::::
that

::
in

:::::::
addition,

:::
the

::::::::
statistical

:::::::::::::
postprocessing corrections are efficient until a lead time

:::
lead

:::::
times

:
of 3-4 days. In fact, the skill of the15

corrections decreases with the lead time, and thus the EVMOS schemes become not better than the original models after 3

days. In the panels (b) and (c) of Figs. 8 and 9, the mean and variance of the corrected forecasts is compared with those of

the original models. Again, these corrections are efficient until 3 days for all the post-processing scheme considered. For all

::
the

:::::::::::::
postprocessing

::::::::
schemes.

:::
For

:
the 3 panels of these figures, the correction of model 1 using the response-theory EVMOS

is depicted by black crosses and it matches almost perfectly the score of the “exact” EVMOS obtained with the forecasts of20

model 1 (dash-dotted green curve), up to a 3 days lead time. After that lead time, the errors due to the fat-tails in the response

of the first moments of the statistics induce errors in the variance needed to compute the α and β coefficients (see Eqs. (17)

and (18)). These coefficients therefore degrade sharply after 3 days, as shown by the solid black curve in Fig. 11 (c) and (d).

This in turn induces a degradation of the response theory post-processing
::::::::::::
postprocessing scheme, as depicted in Figs. 8 and 9.

Nevertheless, this limitation of response theory is not a concern for our present aim, since after the critical lead time of 325

days, the EVMOS skill vanishes anyway. In conclusion, obtaining accurate EVMOS coefficients is therefore critical up to 3

days, which is precisely the timespan where
:::::
during

:::::
which

:
the response theory is the most accurate.

5 Discussion and Conclusions

Statistical post-processing
::::::::::::
postprocessing

:
techniques used to correct numerical weather predictions (NWP) require substantial

past forecast and observation databases. In the case of a model change, which frequently occurs during the normal life cycle30

of an operational forecast model, one has to reforecast the entire database of past forecasts (Hagedorn et al., 2008; Hamill

et al., 2008) to update the post-processing
::::::::::::
postprocessing coefficients and parameters. In the present work, we proposed a new

methodology based on response theory to produce these new coefficients without having to reforecast. Instead, the database of
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Figure 5. Corrections of the moments of θ1 from model 0 to model 1 using the response theory formula (49), for the experiment with varying

friction coefficient.

Performance of the corrections on the variable θ1 for the experiment varying the friction coefficient. (a) Mean square error (MSE) evolution

between the different forecasts and their correction, and the reality. (b) Mean of the different trajectories (reality, model 0 and 1) and

corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.
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Figure 6. Corrections of the moments of θ1 from model 0 to model 1 using the response theory formula (49), for the experiment with varying

Newtonian cooling coefficient.
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Figure 7.
:::::::::
Coefficients

::
α

:::
and

::
β

::
of

::
the

::::::::::::
postprocessing

::::::
schemes

:::
and

::::
their

::::::::
correction

::
by

:::
the

:::::::
response

:::::
theory,

:::
for

::
the

:::::::::
experiment

::::
with

::::::
varying

::::::::
Newtonian

::::::
cooling

::::::::
coefficient.

past forecasts is reused to perform integrations in the tangent space of the model. It allows to obtain the new post-processing

::::::::::::
postprocessing coefficients as modifications of the older ones. These new coefficients were shown to be accurate enough within

the lead time range for which the post-processing
::::::::::::
postprocessing corrections improve the forecast.

Figure 11 summarises the main results of this work, with the quasi-geostrophic system described in Section 4, but using

a different number m of trajectories of model 0 and its tangent model to compute the response-theory corrections. It shows5

that up to a lead time of 2 days, good post-processing
:::::::::::
postprocessing

:
scheme coefficients are obtained even with a mere 20

integrations in the tangent space.

Note however that in the context of this conceptual quasi-geostrophic model, it turns out one can also obtain good estimates

of the post-processing
::::::::::::
postprocessing

:
coefficients α and β simply by using a small set of reforecasts. For this it suffices

to directly integrate the updated model 1, given by the non-linear equation (47), for only 20 trajectories. So the response10

theory approach in the present case cannot really compete with the simple reforcasting
::::::::::
reforecasting

:
method. How this can be

improved in an operational context is an important question that should be addressed in the future. For instance, we can use a

simplified tangent linear model to reduce the computational burden, as often used in data assimilation (Bonavita et al., 2017).

This approach could also be implemented for short-range forecasts, say from 1 to 3 days.

The response-theory is efficient because the model changes are assumed to be small in comparison with the original param-15

eterisation of the models. The method cannot improve a post-processing
::::::::::::
postprocessing scheme, but it can efficiently adapt it

to a new model. As such, the success of this method also depends on the quality of the past post-processing
::::::::::::
postprocessing

scheme. There are also situations where linear response theory is known to fail, but statistical tests which allow to identify

its breakdown have been derived in Gottwald et al. (2016) and in Wormell and Gottwald (2018). In addition, the approach
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Figure 9. Performance of the corrections on the variable θ1 for the experiment varying the Newtonian cooling coefficient. (a) Mean square

error (MSE) evolution between the different forecasts and their correction, and the reality. (b) Mean of the different trajectories (reality,

model 0 and 1) and corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.
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Figure 10. Histograms of the solutions of the equation (50) for the perturbation δy(τ) along the trajectories of model 0, for different values

of the lead time τ . The solid orange curves are fits of a Gaussian distribution function to the different histograms. The fat-tail phenomenon

described in Eyink et al. (2004) is apparent and becomes more prominent as the lead time increases.
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Figure 11. Comparison of the efficiency of the response theory correction for different numbers m of trajectories used to average Eq. (49),

for the experiment of varying the friction coefficient: (a) Mean square error with reality, (b) Absolute difference between the response theory

correction and the correction based on the forecast of model 1, (c) and (d) Post-processing
::::::::::

Postprocessing
:
coefficients α and β. On the panels

(b), (c) and (d), the higher (100000) and the lower (20) numbers are depicted respectively by a solid black line and a dashed red line. The

other cases in-between are depicted by dotted lines.

24



presented here applies only for models for which a tangent model is available. The model change itself has to be provided as

an analytic function, which can in some circumstances limit of the applicability of the approach.

To test this approach, we have focused on the EVMOS statistical post-processing
::::::::::::
postprocessing method, but other methods

could be considered as well. The only requirement is that the outcome of the minimisation of the cost functions
:::::::
function uses

averages of the systems being considered. In fact, we hypothesise that any statistical method using average quantities could5

be concerned by our approach. For instance, member-by-member methods that correct both the mean square errors and the

spread of the ensemble while preserving the spatial correlation (Van Schaeybroeck and Vannitsem, 2015) could be considered.

These methods generally use the covariance between the model forecasts and the observations as ingredient, instead of their

marginal variance for the EVMOS. However, it does not preclude the applicability of response theory .
:::::::::

Response
::::::
theory

:::
can

::::
also

::
be

:::::::
applied

::::
here

:
since this covariance can easily be written as an ensemble average. This will be investigated in10

a future work, together with the applicability of the approach to parameters of probability distributions, as often used in

meteorology (Vannitsem et al., 2018).

The impact of initial condition errors has not been addressed here, since the purpose was to demonstrate the applicability

of the approach in a perfectly controlled environment. The main limiting issue of response theory in the present context is

the presence of fat tails in the distribution of the perturbations δy in the tangent model. This implies that beyond a certain15

lead time, typically 2-3 days for the synoptic scale, the number of trajectories of the tangent model needed for the averages to

converge increases exponentially. This renders the approach impractical at lead times beyond 2-3 days. This is a well-known

problem, which is typically due to the trajectories passing close to the stable manifolds structuring the dynamics of chaotic

systems (Eyink et al., 2004), generating an extreme response of the system to the perturbations Ψ. This is due to the exacerbated

sensitivity of these manifolds to the perturbation of the system. Indeed, as Fig. 12 suggests, the trajectories responsible for these20

extreme responses concentrate near some heteroclinic connection between the two regimes mentioned in the introduction of

Section 4 and depicted in Fig. 2. We see two possibilities to overcome this issue in the case where a long lead-time correction

is needed.

– First, as suggested by Eyink et al. (2004), the problem should be studied in other systems. It might be resolved by itself

in other systems. Indeed, in very large atmospheric systems, the encounter of such manifolds might become more rare.25

This could be related to the chaotic hypothesis (Gallavotti and Cohen, 1995a, b) which states that large systems can be

considered to behave like Axiom-a hyperbolic systems for the physical quantities of interest, and thus Ruelle response

theory (Ruelle, 2009) might get better as the dimensionality of a system increases. This hypothesis would be interesting

to test in current state-of-the-art NWP systems.

– Secondly, another avenue would be to adapt the very effective techniques based on the Covariant Lyapunov vec-30

tors (CLVs)
::
or

:::
on

:::::::
unstable

:::::::
periodic

:::::
orbits

:::::::
(UPOs)

:
to non-stationary dynamics. These techniques were recently intro-

duced (Wang, 2013; Ni and Wang, 2017; Ni, 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wang, 2013; Ni and Wang, 2017; Ni, 2019; Lasagna, 2019; Lasagna et al., 2019)

to deal with stationary responses of chaotic systems, i.e. the response of a system that lies on its attractor.

25



Figure 12. 2D scatter plot showing the phase-space locations of the perturbations composing the fat tails shown in Fig. 10. Blue dots: plot of

the trajectories of the model 0 used to compute the average response, along the variables ψ2 and ψ3. Red dots: plot of the forecast trajectories

of the model 0 leading to an extreme response δθ1 with an absolute deviation from the mean response greater than 100 standard deviations

of the distribution shown in Fig. 10. Green crosses: Equilibrium points of model 0. White cross: Location of the maximum perturbation

encountered in the data, across all the trajectories and lead times.

The CLVs methods mentioned focus on finding an adjoint representation (Eyink et al., 2004) of the response, while in the

present work the approach is based on forward integrations (direct method). The adjoint representation allows to change easily

the perturbation function Ψ for a fixed observableA, while the direct method allows for different observables to be considered,

::::::
enables

::
to

::::::::
consider

:::::::
different

::::::::::
observables

:
while keeping the perturbation function fixed. The adjoint representation, however,

requires one to integrate the tangent model backward in time. Therefore, its accuracy depends on the absolute value of the5

smallest Lyapunov exponent of the system, which might render its results less good than the direct forward representation.

26



In conclusion, the response-theory approach developed here is an effective method to deal with the problem of the impact of

model change on the post-processing
::::::::::::
postprocessing

:
scheme. Its main advantage is to be computed on the past model version

and does not require reforecasts of the full model. Its operational implementation, however, is still an open question that should

be addressed in the future.

Code availability. The quasi-geostrophic model used is called QGS and was obtained by adapting the Python code of the MAOOAM ocean-5

atmosphere model (De Cruz et al., 2016), following the model description in Cehelsky and Tung (1987). This model will be released in a

separate publication soon. The additional notebooks generating the figures will be provided as supplementary material to the present article.

It will be ready by the end of the discussion process. A link to them will be provided through the Zenodo service.

Appendix A: Non-stationary response theory

We consider a perturbed autonomous dynamical system10

˙̂y = F (ŷ) + Ψ(ŷ) = F̂ (ŷ) (A1)

with a prescribed distribution of initial conditions ρ0. For the unperturbed system

ẏ = F (y), (A2)

an observable A has the average at time τ

〈A(τ)〉y =

∫
dy0 ρ0(y0)A(fτ (y0)) =

∫
dyρτ (y)A(y) (A3)15

where fτ is the flow of the unperturbed system (A2) and where ρτ is the distribution obtained by propagating the initial

distribution ρ0 with the Liouville equation (Gaspard, 2005). In this section, the variation of this average due to the presence of

the perturbation is evaluated,

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ2〈A(τ)〉y + . . . (A4)

In other words, we compute the average of A in system (A1)20

〈A(τ)〉ŷ =

∫
dy0 ρ0(y0)A(f̂τ (y0)) (A5)

as a perturbation of the average (A3) in the unperturbed system (A2). Here, f̂τ is the flow of the perturbed system (A1). In

the following, we will derive these corrections thanks to a Kubo-type perturbative expansion (Lucarini, 2008) that amounts

to constructing a Dyson series in the interaction picture framework where the perturbation is seen as an interaction Hamil-

tonian (Wouters and Lucarini, 2012). We start by considering the time evolution of the observable A in the system (A1):25

d

dτ
A
(
f̂τ (y0)

)
= (L0 +L1)A

(
f̂τ (y0)

)
(A6)
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with the operators L0A(y) = F (y)T ·∇yA

L1A(y) = Ψ(y)T ·∇yA
(A7)

and define an interaction observable as

AI(τ,y0) = Π0(−τ)A
(
f̂τ (y0)

)
(A8)

with Π0(τ) = exp(L0 τ). It is easy to show that the interaction observable satisfies the differential equation:5

d

dτ
AI(τ,y0) = LI(τ)AI(τ,y0) (A9)

with the interaction operator LI(τ) = Π0(−τ)L1 Π0(τ). The solution to this equation is

AI(τ,y0) =AI(0,y0) +

τ∫
0

ds1LI(s1)AI(s1,y0) =A(y0) +

τ∫
0

ds1LI(s1)AI(s1,y0) (A10)

which can be rewritten as

A
(
f̂τ (y0)

)
= Π0(τ)A(y0) +

τ∫
0

ds1 Π0(τ − s1)L1 Π0(s1)AI(s1,y0). (A11)10

Iteratively replacing the interaction observable by the formula (A10) finally leads to the Dyson series:

A
(
f̂τ (y0)

)
= Π0(τ)A(y0) +

τ∫
0

ds1 Π0(τ − s1)L1 Π0(s1)A(y0)

+

τ∫
0

ds1

s1∫
0

ds2 Π0(τ − s1)L1 Π0(s1− s2)L1 Π0(s2)A(y0) + . . . (A12)

Using the definitions (A3) and (A5), as well as the fact that

g (fτ (y0)) = Π0(τ)g(y0) (A13)15

for any smooth function g, we get finally a formula for the perturbations in Eq. (A4):

〈A(τ)〉ŷ = 〈A(τ)〉y +

τ∫
0

ds1

∫
dy0 ρ0(y0)Π0(τ − s1)L1 Π0(s1)A(y0) + . . . (A14)

We will now focus on the first term of this expansion, but the subsequent orders of the response can be treated alike. We thus

have

δ〈A(τ)〉y =

τ∫
0

ds1

∫
dy0 ρ0(y0)Ψ

(
fτ−s1(y0)

)T ·∇fτ−s1 (y0)A(fτ (y0)) (A15)20
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which with the change of variable s1→ t− τ ′ can be rewritten as

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·∇fτ′ (y0)

A(fτ (y0)) (A16)

and then

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·
(
∂fτ (y0)

∂fτ ′(y0)

)T

·∇fτ (y0)A (A17)

=

τ∫
0

dτ ′
∫

dy0 ρ0(y0)Ψ
(
fτ
′
(y0)

)T
·M

(
τ − τ ′,fτ

′
(y0)

)T
·∇fτ (y0)A (A18)5

M is the fundamental matrix (Gaspard, 2005; Nicolis, 2016) of the homogeneous part of the linear differential equation

˙δy = ∇yF · δy+ Ψ(y) (A19)

where y is solution of Eq. (A2) with initial condition y0, and we have the definition

M(t,y) =
∂f t(y)

∂y
. (A20)

Equation (A19) is the linearised approximation of equation (A1):10

ẏ+ ˙δy = F (y+ δy) + Ψ(y+ δy) (A21)

that provides a tool to estimate Eq. (A18). Indeed, since the solution of Eq. (A19) can be written as

δy(τ) =

τ∫
0

dτ ′M
(
τ − τ ′,fτ

′
(y0)

)
·Ψ
(
fτ
′
(y0)

)
, (A22)

we can write the first order variation of the average of the observable A in term of these solutions:

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ)T ·∇fτ (y0)A (A23)15

The interpretation of this equation is that the averaging of an observable over the trajectories of the linear approximation (A21)

of the perturbation equation (A1) provides the first order response of the observable. It is the main ingredient used to compute

the new post-processing
::::::::::::
postprocessing scheme in the present work. It is explained in detail in Sections 3.3 and 4.2.

Appendix B:
:::
The

::::::::::::::::
quasi-geostrophic

:::::
model

:::::::::
equations
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:::
The

:::::::
ordinary

::::::::::
differential

::::::::
equations

::
of

:::
the

:::::
model

:::
are

:::::
given

:::
by

ψ̇i
:

=
:

n

2
a−2i

na∑
j,m=1

cijm
{(
a2j − a2m

)
(ψj ψm + θj θm)− ~m (ψj − θj)

}
−nβa−2i

na∑
j=1

bij ψj − k (ψi− θi)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B1)

θ̇i
:

=
:

n

2
a−2i

na∑
j,m=1

cijm
{(
a2j − a2m

)
(ψj θm + θj ψm) + ~m (ψj − θj)

}
:::::::::::::::::::::::::::::::::::::::::::::::::::

−nβa−2i
na∑
j=1

bij θj + k (ψi− θi)− 2k′ θi + a−2i ωi

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B2)

θ̇i
:

=
:
−n

na∑
j,m=1

cijmψj θm +σ0ωi +h (θ∗i − θi)

::::::::::::::::::::::::::::::::::

(B3)5

:::::
where

:::::::::::
adimensional

::::::::::
parameters

:::::
values

::::
and

:::::::::
description

::::
can

::
be

::::::
found

::
in

:::::
Table

::
1

:::
and

::::::
section

:::
4.

:::
The

::::::::::
coefficients

:::
ai :::

are
:::::
given

::
by

:::
Eq.

::::
(41)

:::::
while

::
β
::
is

:::
the

:::::::::
meridional

:::::::
gradient

:::
of

:::::::
Coriolis

::::::::
parameter

::::::
which

:::
has

:::
the

:::::::::::
adimensional

:::::
value

::::
0.21

::
at

:::
50

::::::
degrees

:::
of

::::::
latitude

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Reinhold and Pierrehumbert, 1982; Cehelsky and Tung, 1987)

:
.
:::
The

:::::::
vertical

:::::::
velocity

::
ωi:::

can
:::
be

:::::::::
eliminated,

:::::::
leading

::
to

::::::::
equations

::::
(B2)

:::
and

::::
(B3)

:::::
being

:::::::
reduced

::
to
::
a
:::::
single

::::::::
equation

::
for

:::
θi.::::

The
::::::::
parameter

:::
σ0 ::

is
:::
the

:::::::::::
adimensional

:::::
static

:::::::
stability

::
of

:::
the

:::::::::
atmosphere

:::
set

:::::::
typically

::
to

::::
0.1.

:::
The

:::::::::
coefficient

::::
cijm::::

and
::
bij:::

are
:::
the

:::::
inner

:::::::
products

::
of

:::
the

::::::
Fourier

::::::
modes

::
Fi:::::::

defined
::
in

::::::
section

::
4:10

cijm
:::

=
:

n

2π2

π∫
0

2π/n∫
0

Fi(x,y)J (Fj(x,y),Fm(x,y)) dxdy

:::::::::::::::::::::::::::::::::::::::

(B4)

bij
::

=
:

n

2π2

π∫
0

2π/n∫
0

Fi(x,y)
∂

∂x
Fj(x,y)dxdy

::::::::::::::::::::::::::::::

(B5)

:::::
where

::
J

::
is

::
the

::::::::
Jacobian

::::::
present

::
in

:::
the

::::::::
advection

::::::
terms:

J(S,G) =
∂S

∂x

∂G

∂y
− ∂S

∂y

∂G

∂x
.

::::::::::::::::::::::::

(B6)15
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