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Answer to reviewer #1

First of all, we would like to express our warm thanks to the reviewers and the editor for
the evaluation work they did and for all the comments and suggestions the reviewers
have provided on our study. Hereafter, we will answer in details the questions of the
referee #1. Accordingly, we will propose some changes that we could do in a revised
version, if the editor enables a revised submission.
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“In this study, the authors focused on the common challenge of the stochastic
subgrid parameterization schemes: the unresolved velocity construction. Two
kinds of parameterizations, data-driven and self-similar parameterizations, were
applied to LU and SALT frameworks. The results show that these two parameter-
izations can lead to high quality ensemble forecasts. In my opinion, the main in-
novation of this study is the proposal of the self-similar parameterization, which
improves the work of Resseguier et al. (2017b).”

Thank you for this summary of our work.

“Although this manuscript may be suitable for publication in NPG, there are still
some issues to be addressed.”

1. “Recently, many parameterizations are available. In this study, the authors
proposed a new self-similar parameterization. I know that its advantage
is tuning-free. However, more interestingly, when this parameterization is
used to the numerical models, whether the improvements of the simula-
tions or forecast are significantly enhanced, comparing to other parame-
terizations, especially for the one of Resseguier et al. (2017b).”

For stationary, fully-developed turbulence and after including a tuning stage to op-
timize the match, the self-similar parameterization and the method of Resseguier
et al. (2017b) give approximately the same results. Therefore, in order to appreci-
ate improvements of the simulations or of the forecasts, we must either work with
non-stationary flows or with erroneous tuning. This latter scenario is of course
the meaningful one for the application of such models to the real world, where tur-
bulence is non-stationary, heterogeneous, and so region-by-region and season-
by-season tuning is impossible to do with quality checks in place.

We believe that non-stationarity may yield a fair, yet idealized, comparison. So,
in a revised manuscript, we propose to compare the two parameterizations in a
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non-stationary case. The figure 1 below shows simulated buoyancy fields ini-
tialized with the “case 2” of Constantin et al. (1994) and corresponding errors.
After two days of advection, there is no turbulence yet, and a 128x128 resolution
is sufficient to correctly resolve every scale. Therefore, no stochastic subgrid
parameterization is needed. The self-similar method automatically adapts to the
situation, whereas the method of Resseguier et al. (2017b) introduces spurious
buoyancy isolines roughness by randomly folding these isolines. Accordingly, the
method of Resseguier et al. (2017b) introduces more errors.

2. “Figure 7 shows that the patterns obtained by the data-driven and self-
similar parameterizations are similar to that in the Low-resolution determin-
istic SQG model at day 110. This means that, for the short-term simulations,
the stochastic subgrid parameterizations have very weak improvements on
the low-resolution simulations?”

Yes, this is right. For the short-term simulations, our stochastic subgrid param-
eterizations have often weak improvements on the low-resolution simulations,
even though, sometimes, the stochastic subgrid parameterization can improve
the simulation. Indeed, Resseguier et al. (2017b) show that the LU dynamics at
a resolution 128x128 can trigger filament instabilities by random destabilization,
and hence obtain a more realistic proportion of eddies and filaments. This is con-
firmed by the figures 2 and 3 of our submitted draft, also at a resolution 128x128.
In figure 7, the resolution is coarser (64x64). Therefore, the stabilizing determin-
istic subgrid tensor (hyper viscosity) is stronger. This may explain an inhibition of
filament instabilities here, and hence less difference between deterministic and
stochastic coarse simulations.

We could add this discussion to the subsection "3.3 One realization" in a revised
version of our draft.

Nevertheless, our main goal is not improving a single simulation. Our main goal is
improving the uncertainty quantification without deteriorating single simulations.
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3. “The authors tested the two parameterizations in the SQG model. This
model is very simple. Please discuss how to apply these parameterizations
to the complicated atmosphere and ocean models.”

It is true that SQG is a simple model, in particular because the vertical variations
are described by analytic formulas and hence do not need to be simulated. The
reason for the selection of this model was that it occurs identically in the SALT
and LU formulations, not that this is an especially realistic model. For more com-
plicated atmosphere and ocean models, such as hydrostatic Boussinesq models,
simplicity is not to be found. The vertical dimension imposes anisotropy and het-
erogeneity of the small-scale velocity, at least breaking symmetric between the
vertical and horizontal directions. Thus anisotropy and heterogeneity need to
be parameterized–in the SQG system the anisotropy and vertical heterogeneity
is prescribed. Moreover, complex boundary conditions and heterogeneity often
prevent the direct use of Fourier transform. We develop these two points in the
following.

(a) Third dimension, anisotropy and vertical heterogeneity :
In order to impose the divergence-free condition (∇·Ḃ = 0) in 3D, one can
build the small-scale velocity σḂ from a 3D curl∇3D× and a 3D streamfunc-
tion φσḂ:

σḂ = ∇3D ×
(
φσḂ

)
. (1)

This streamfunction can be filter along z in order to impose a given finite
vertical correlation length Hσ related to the vertical resolution (e.g. Hσ =
2∆z) :

φσḂ(x, y, z) = φ̆zσ(z) ∗z
((
φ2D
σ Ḃ

)
(x, y, z)

)
, (2)
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with ∗z a one-dimensional convolution along z and φ̆zσ a one-dimensional
vertical Gaussian filter:

φ̆zσ(z) = (2π)1/4H1/2
σ exp

(
− z2

H2
σ

)
. (3)

For simplicity, the 3 components of the horizontal streamfunction φ2D
σ Ḃ can

be assumed to be statistically independent. Each of these z-dependent
component can be defined – at each depth z independently – similarly to
the horizontal streamfunction of our draft:

(
φ2D
σ Ḃ

)
k

(x, y, z) = φ̆2D
σ (x, y, z) ∗(x,y) Ḃk(x, y, z), (4)

for 1 6 k 6 3, where ∗(x,y) is a horizontal two-dimensional convolution, Ḃ
is 3D spatio-temporal white noise, φ̆2D

σ is a scalar horizontal spatial filter.
If Fourier transforms are possible, that filter can be defined as in our draft
at each depth z from the horizontal large-scale resolved velocity statistics.
Otherwise, that filter can be a 2D Matérn covariance (Williams and Ras-
mussen, 2006; Lim and Teo, 2009; Lilly et al., 2017) of a correlation length
2π/κm related to the horizontal resolution (e.g. π/κm = 2

√
∆x∆y) and a

regularity parameter (r(z) + 1)/2 learned from the horizontal large-scale re-
solved velocity. Indeed, with such a parameterization, for large horizontal
wave number κ2D =

√
k2
x + k2

y, the horizontal ADSD is a smooth-along-z
version of :

cst.

(
κ2D

κm

)−r(z)
. (5)

Therefore, self-similar arguments can be still be used to identify the regular-
ity (r(z) + 1)/2 at large and small scales.
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(b) Boundary conditions and heterogeneity :
Non-periodic boundary conditions suggest small-scale velocity heterogene-
ity, at least in the variance. For instance, Dirichlet boundary conditions for
the velocity suggest that the small-scale velocity variance should be zero on
the boundary. Since this variance is non-zero inside the domain, there are
variance heterogeneity.
A first solution is to ignore the small-scale velocity boundary conditions, as
in (Chapron et al., 2018). Indeed, since that velocity appears only in a multi-
plicative way, the small-scale velocity homogeneity will be modulated by the
transported resolved fields heterogeneity. Therefore, the erroneous small-
scale velocity homogeneity is expected to have only weak impact.
If one wants to impose small-scale boundary conditions anyway, the homo-
geneous small-scale velocity v′ = σḂ – defined above – can be "conditioned
on" the values of the boundary conditions. As an example, we can consider
a one-dimensional process v′(x), with an (unconditioned) covariance γv′ and
a correlation length (small compared to the domain size L). A velocity v′BC
which respect the boundary conditions v′BC(0) = v′0 and v′BC(L) = v′L is
the conditioning of velocity v′ on the boundary conditions. That conditioned
velocity can be simulated as:

v′BC(x) = v′(x)− γv′(x− 0)
γv′(0)

(
v′(0)− v′0

)
− γv′(x− L)

γv′(0)
(
v′(L)− v′L

)
. (6)

Nevertheless, we believe that the above discussion is overly complex and not
mature enough to add it to our draft. Applying these parameterizations to the
complicated atmosphere and ocean models would require future works.

4. “In this study, the term “SALT-LU” appears frequently. In my opinion, this
term may mislead readers. They can think that the authors aimed at com-
bining the SALT and LU parameterizations.”
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In a revised version, we propose to use instead either only "LU" or "SALT and
LU", depending on the readability of the sentence.

5. “Lines 47 and 51. in (Gay-Balmaz and Holm, 2018) → in Gay-Balmaz and
Holm (2018); in (Cotter et al., 2018b, a)→ in Cotter et al. (2018b, a)"

We will correct this.

6. "Line 126. Two vertical lines were not plotted in the left panel of figure 1."

We will correct this.

7. "Line 401. Similar results UQ results→ Similar UQ results?"

This is also a typo and we will correct it.

We thank again the reviewer for all these useful comments and questions.
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Fig. 1.
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