Response to anonymous reviewer comments

Dear Reviewer,

We first thank you for your general positive evaluation of the manuscript.
We agree that the points of concern that you raised add valuable discussion to
the work. Below we address your comments in detail. We also note where we
will make adjustments to the manuscript accordingly.

Many thanks,

Courtney Quinn, Terence O’Kane, and Vassili Kitsios

Main points:

1. Although the bibliography is rather dense (and better done than usual),
there are still a few (very) relevant references such as Palatella and Tre-
visan (2015) [9]; Grudzien et al. (2018a,b) [4, 5] that are missing.

We thank the reviewer for pointing out the additional relevant references
and we will include them in accordance with the specific suggestions below.

2. Even though the number of CLVs incorporated in the DA algorithm de-
pends on time, you still need to compute a number of CLVs corresponding
to the maximum local KY, do you? So that the gain is computationally
limited. If I am wrong, please explain.

In the way that we have implemented the variable dimension, one could
compute the local KY measure first and then only compute the num-
ber of CLVs corresponding to that given value at each assimilation time
step. (This is due to the fact that we compute dimension with the QR-~
factorization approach and the CLVs with a separate algorithm - clar-
ification of this and further discussion has been added to the modified
manuscript.) With respect to computational gain, there will be an addi-
tional cost associated with computing the unstable manifold regardless of
the method. Whether or not this is realizable in high dimensional systems,
or how the overall cost compares to increasing ensemble size in order to
fully sample the variance are not questions we attempt to answer in this
study. We rather focused on the applicability of assimilation in a vari-
able unstable subspace for different situations of strongly coupled data
assimilation (i.e. different types of observational subsets). We discuss
the reviewer’s comments regarding computational cost more within the
specific points below.



3. In at least a few experiments, you need to use optimally tuned inflation
(section 5.3 for instance), since it is already known that the lack of span of
the unstable modes can be compensated with by a stronger multiplicative
inflation. Otherwise several of your claims are undermined.

We first preface our response with bringing to the reviewer’s attention
that there was a small error in the calculation of the CLVs for the results
shown in the manuscript submission. We have since corrected this error
and updated all of our experiments. The updated tables are included at
the end of our responses below. Due to these corrected results, we now
can conclude for the benchmark and atmosphere observations that all ex-
periments are successful. The emphasis of the discussion is now regarding
the variable CLV full RMSE being closest to the full rank experiments
for each of the observation sets. These conclusions hold for a range of
inflation values. We show in Table 1 below the results for the benchmark
observations using full rank, 5 CLVs, and variable CLVs with inflation
values of 1% (as in manuscript - revised values), 2%, 5% and 10%. As
the lowest RMSEs occur for the 1% inflation cases, we conclude this is
the optimal inflation value and leave these results in the manuscript. We
have added a statement noting this to the beginning of the results section
(Section 5 in the manuscript). The optimization was already done for the
shadowed observations (Section 5.5), and the optimal inflation values are
given in the table. All other experiments have an optimal inflation of 1%.

4. The new inflation scheme is not justified enough. Beware that it has been
tested in a very specific case and does not warrant generality.

We agree with the reviewer that our language when discussing the util-
ity of the adaptive scaling for the Kalman gain is too strong. We have
changed the language to emphasize that the adaptive scaling works in
this particular case, but needs to be tested on more models to form a a
more general applicability. We also have added additional justification for
the proposed scheme and relate it to the work of Miller et al [7]. More
detailed discussion of our justification can be found in response to the
specific points of the following section.

5. Because of the above points, there are too strong statements in the con-
clusion regarding the novelty and performance of the proposed method.

Again, we agree with the reviewer that too strong of language is used
in regards to some of the conclusions. We note that due to our corrected
results we have already adjusted some of our conclusions accordingly. We
will additionally adjust the specific statements mentioned in the following
section.




Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full
CLVs -9 ey Uty Y 0.3142 0.1598 0.4948 0.4027 5.8928
1% inflation 1,1, 25)
CLVs -5 es Yty Y 0.3123 0.1843 0.5920 0.4550 5.8870
1% inflation 1,1,25]
CLVs - variable ey Uty Y 0.3215 0.1688 0.5346 0.4272 5.8863
1% inflation 1,1, 25)
CLVs - 9 ey Yty Y 0.3286 0.1893 0.5985 0.4625 5.8881
2% inflation 1,1, 25]
CLVs - 5 ey Uty Y 0.3274 0.1950 0.6083 0.4681 5.8871
2% inflation 1,1,25]
CLVs - variable ey Uty Y 0.3219 0.1916 0.5966 0.4594 5.8915
9% inflation 1.1, 25]
CLVs -9 es Yty Y 0.3564 0.2627 0.8858 0.6237 0.8832
5% inflation 1,1,25]
CLVs - 5 ey Uty Y 0.3600 0.2665 0.8880 0.6264 5.8836
5% inflation 1,1, 25)
CLVs - variable es Yty Y 0.3552 0.2647 0.8747 0.6180 0.8848
5% inflation 1,1,25]
CLVs -9 ey Uty Y 0.4117 0.3719 1.3278 0.8799 5.8763
10% inflation 1,1,25]
CLVs - 5 ey Uty Y 0.4187 0.3873 1.3168 0.8787 5.8824
10% inflation 1.1, 25]
CLVs - variable ey Uty Y 0.4123 0.3731 1.3153 0.8736 5.8775
10% inflation 1,1, 25)

Table 1: Summary metrics of DA experiments using right-transform matrix
(ETKF) and benchmark observations (y., y¢,Y). The angle brackets (-) denote
average over analysis steps. Compare to results in [12]. Parameters: analysis
window 0.08, 10 ensemble members.

Specific suggestions:

1. p.1, L5: “to determine” is a bit ambiguous as it could also need “to infer”
which would be a bold statement. I guess you meant “to prescribe”, right?

We have changed the statement to read “to prescribe” instead, as this
was our intended connotation.

p-2, 1.2: “implying very large ensemble sizes are needed” — “implying that
very large ensemble sizes are needed

We have amended the sentence.

3. p.3, 1.6: What are “local CLVs”? I know local LEs, but not local CLVs.




10.

This was a typo. We were referring to the CLVs calculated at a given
time. We have removed the term “local”.

p-3: Even though the beginning of the paper is very good and enjoyable,
reading “We also examine the role of correlated versus random obser-
vational errors.”, “along with a novel scheme for adaptive Kalman gain
inflation.” at the end of the introduction is odd as these two subjects do
not seem directly connected to the main objective of the paper, and they
seem, at this stage of the reading, unnecessary.

We can agree that the statements are superfluous. We will save the dis-
cussion of these two topics for when they arise in the study.

p-4, L.18: “uncentering parameters”: please explain what this means.

The terminology “uncentering” was originally used in the Pena and Kalnay
study [10] and refers to the uncentering of the unstable zero equilibrium in
the classical Lorenz model. Dynamically, the k; and k5 values used in the
manuscript allow for the second unstable asymptotic Lyapunov exponent
(fOI‘ ki =ko=0: N\ = 091,)\2 =0,\<0 for ¢ > 2)

p-4, 1.27: “We are interested in analysing both the local and global dy-
namics of system (1).”: I guess you mean the short-term and asymptotics
dynamics - your words lack accuracy here.

That is precisely what we meant. We will change the language as sug-
gested.

p.6, 1.16: Can you be sure/prove that the last digits of 5.9473 are relevant?

We do not claim that the last digits are relevant, they are included only
as the Lyapunov exponents were given up to four digits.

p-7, 1.2: “approach their corresponding asymptotic values” — “approach
their corresponding LEs asymptotic values”

We have changed the sentence to read “approach the asymptotic Lya-
punov exponent values”.

p.7, 1.3: You have to discuss/justify more the concept of local KY dimen-
sion. This is the main idea of your paper.

We have added some additional discussion around the concept of local
dimension used in our manuscript as suggested.

p.7,1.4: “We see the local dimension” — “We see that the local dimension”

We have amended the sentence.



11.

12.

13.

14.

15.

16.

17.

18.

19.

p-7, 1.13: “the cocycle of”: Please explain what a cocycle is. How is it
connected to (1)?

In relation to system (1) in the manuscript, a cocycle is the forward and
backward mapping of solutions under the tangent dynamics. The cocycle
is then given as A(z(t), 7) = e™// (") where J f denotes the Jacobian of f,
the right-hand-side of system (1). We have clarified this in the manuscript
and have restructured the sentence such that a prior knowledge of the term
cocycle is not assumed.

p-8, .7: “local time-varying Kaplan-Yorke dimension.”: what is its inter-
pretation? This is key to your paper.

We have added a more descriptive explanation of the local Kaplan-Yorke
dimension here, particularly relating to our implementation and its rela-
tion to the CLV behaviour.

p.8, 1.16-19: Palatella and Trevisan (2015) [9] could be mentioned here.

We have added the reference.

p.9, 1.4: “Suppose there exists”— “Suppose that there exists”

We have amended the sentence.

p-9, Fig.5, legend: replace the “v” symbol by “or” for the sake of clarity.

We have changed the legend accordingly.

p.9, 1.9-11: The errors are also supposed uncorrelated in time (white).

We have clarified the assumption of temporally uncorrelated errors in the
description of the Kalman filter method.

p.9, Egs.(8,9): Missing punctuation.
We have added punctuation to the noted equations.

p.10, 1.5: “There is difficulty” — “There is a difficulty”

We have amended the sentence.

p-10, 1.7: “assumption of linearity”: this is confusing here since you have
not introduced the extended Kalman filter yet.

We have removed the statement in which this phrase appears as it is
not critical to the reader.



20.

21.

22.

23.

24.

25.

p.10, 1.21: Even though quoting Bishop et al. (2001) [1] is certainly ade-
quate, a reference to Hunt et al. (2007) [6] is also missing as it is equally
relevant.

We have added the reference as suggested.
p.10, Eq.(14) is wrong, is it? It should be
E = R™'/2HX/. (1)

Also it is not recommended to use E as it is usually used for the full en-
semble matrix. Authors often use S instead.

We thank the reviewer for catching this typo. We did in fact mean to
define the matrix as above, as the left multiplication with its transpose is
included in Eq (15). We have also changed the notation from E to S as
suggested.

p.11, 1.7: “The Kalman gain K is defined through equation (9a)”: No.
Not in the classical ETKF (see Hunt et al. (2007) [6]).

We have changed the text to specify that we are following the definition
of the Kalman filter as given in Bishop et al [1].

p-11, 1.15-20: In this context, sampling errors are actually due to nonlin-
earity, as it was explained and proven by Bocquet et al. (2015) [2]; Raanes
et al. (2019) [11].

We have included the additional references here where we discuss the
sampling errors due to nonlinearity.

p-11, 1.25-27: “This differs to past approaches where the subspace was
determined in terms of the long time averaged (invariant) unstable and
neutral CLVs (Trevisan and Uboldi, 2004; Carrassi et al., 2008; Trevisan
and Palatella, 2011).”: This statement is misleading. You just mean that
the number of retained CLVs is kept fixed. Did you?

This is badly phrased. We meant “asymptotic Lyapunov exponents”, and
therefore the rank of the error covariance matrix is kept fixed. We have
updated the manuscript accordingly.

p-12, 1.7-8: “We compute CLVs at the assimilation step using Algorithm
1.”: The number of CLVs is fixed over the full time span of the algorithm,
is it?

We always compute all 9 CLVs in this case, and then only use the number
corresponding to the experiment set-up in constructing the covariance ma-
trix. In this toy model we were not as concerned with optimizing compu-
tation time. However, it is easily implemented to only compute a subset of



26.

27.

28.

29.

30.

the CLVs either specified as constant or variable based on the calculated
dimension for the assimilation step. (Note, the dimension is calculated
from the FTLEs computed using the QR method so this is a separate pro-
cess to the CLV calculation.) We discuss more about computation time
in response to the final comment (44) below.

p-12,1.19: “regardless of observation set” — “regardless of the observation
set”

We have amended the sentence.

p-12, 1.23: The term “Analysis window” is unfortunate as it usually refers
to the time range over which asynchronous observations are assimilated in
4D-Var or with an ensemble smoother. I guess you mean the time interval
between updates. You could denote it At for instance. Please change it
throughout the manuscript.

We have changed “analysis window” to “assimilation window” throughout
the manuscript (At conflicts with our integration time step notation).

p-13, section 5.1: Please explain better what changing the observation set
has to do with the main goal of the manuscript.

The different observation sets relate to the exploration of strongly cou-
pled data assimilation (strong CDA), namely the use of cross-covariances
to update unobserved states. We were interested in whether the use of
the reduced space method (either fixed or variable) is applicable in differ-
ent observation scenarios, including the cases where some subsystems are
left unobserved or where there are temporally correlated errors. We have
emphasized this in the introduction to the results section (Section 5) and
in Section 5.1.

p-13, 1.9-10: “We argue here that in reality, the true variance of the ob-
servation error can be spatially dependent and errors are often correlated
in time.”: this is a bit too much, since there are quite a few DA papers
dealing with at least spatially correlated errors.

We have revised the tone of the sentence which now reads: “In many
applications the true variance ...”

p-13, 1.27: “we decrease the analysis window and do not perturb the con-
trol run at all when taking the observations.”: You mean that the synthetic
observations are not perturbed, do you? The sentence seems a bit twisted.

We have amended the sentence to read: “we decrease the assimilation
window and assume perfect observations.”



31.

32.

33.

34.

35.

36.

p-15, .15: “Finally we analyse our novel reduced subspace method which
uses a variable number of CLVs based on the local Kaplan-Yorke dimen-
sion.”: yes, but I guess you need to compute a number of CLVs corre-
sponding to the maximum local KY dimension, so that even though it is
theoretically interesting, it is, in practice, of limited interest.

We take this as a comment. To clarify, as mentioned in our response
to point 25, one only needs to compute the number of CLVs correspond-
ing to the local Kaplan-Yorke dimension for a given assimilation step.
In our experiments this varies between 0 and 8 for different assimilation
steps. We discuss practical implementation in response to the reviewer’s
final point below.

p.17, Fig. 7 (a-c): please plot over a smaller range, typically [500-600] as
in Fig.16.

We have changed the range of both figures (16 and 17 in previous manuscript)
to [450-550] in accordance with the discussion around the dynamical prop-
erties.

p-18, Table 3, and discussion around: This experiment does not account
for what is actually known in the literature. You should have made an
experiment with the 6 CLVs but with optimally tuned inflation, or you
could have used the finite-size EnKF (Bocquet et al., 2015, and references
therein). It is by now well known that the gap between the second and
the third experiment might be compensated by optimally tuned inflation.

This point was addressed in the main comments section above. With our
correction to the CLV calculation, we no longer have such a discrepancy
between experiments. The corrected table can be found in the following
section. We have additionally done an optimization on inflation and find
that the 1% is in fact optimal for these experiments.

p-19, 1.16-18: “but we are interested if we can preserve”: I don’t really
understand the phrase.

We have changed the sentence to read: “we are interested to see if we
can avoid collapse (i.e. the loss of variability) in the ensemble mean of
the extratropical attractor”.

p-21, L.1: “in ability” — “in the ability”

We have amended the sentence.

p-25, 1.5-10: In this paragraph, you argue but you don’t give a strong
rationale for the inflation scheme you propose. You need a stronger case
to convince the reader. All the more since the inflation scheme is tested
with a toy model in a very specific configuration.



37.

38.

We have added further discussion of the Miller et al [7] study to mo-
tivate our proposed modified Kalman gain. Through the study of data
assimilation schemes on the Lorenz '63 model, they find that the fore-
cast error covariance is often underestimated in highly nonlinear systems,
particularly when the model is in a region of phase space subject to transi-
tions. This leads to the Kalman gain being underestimated. The authors
account for this by including the third and fourth moments of anomalies
within the Kalman gain calculation, however this is done for the Extended
Kalman Filter (EKF) method (see eq. 4.3 of [7]). O’Kane and Frederiksen
[8] also derive a higher order gain for a closure-based statistical dynamical
Kalman filter applied in spectral space (see eq. 27 of [8]). Here we use
the notion that increased spread in a subsystem represents the inability of
ensemble members to track the same transitions in phase space. In such
a situation the forecast error covariance is likely to be underestimated
(presumably due to emerging importance of higher moments), therefore
we scale the forecast error covariance within the Kalman gain calculation
by a factor that represents a measure of overall spread in the system.
This then provides an adaptive scaling of the Kalman gain at every as-
similation time step based on the background performance of the system
(large spread implies an increase in Kalman gain, small spread implies a
decrease). The scaling can equivalently be written as an observation er-
ror variance scaling, and its overall behaviour is a balancing between the
forecast error covariance and the observation error variance within the
calculation of the Kalman gain. We have expanded upon this discussion
within the manuscript.

p.25, Eq.(25): The modified P/ does no have the good engineering dimen-
sional (cube in the anomalies instead of square). What do you make of
this?

Our introduction of the scaled Kalman gain was written poorly here. We
actually do not modify the forecast error covariance matrix as worded in
the original manuscript. We add an additional scaling term to the forecast
error covariance matrix only within the calculation of the Kalman gain.
The scaling factor (||P/]|) itself is a measure of the anomalies squared,
therefore making the quantity used in the Kalman gain a quartic measure
of anomalies. In a crude way one could consider this an incorporation of
higher moments into the Kalman gain, however since this is not a true
estimate of the fourth moment, we used the spread-based argument for its
motivation (as given above).

p-25, 1.23-24: It seems like the S-factor approach is implementing defla-
tion. Is it so? If yes, please use the term deflation instead of inflation,
which is customary.



39.

40.

41.

42.

43.

We have changed the language to refer to the S-factor approach as de-
flation.

p-27, 1.1: “there is remarkable” — “there is a remarkable”

We amended the sentence.

p-27, 1.7-8: “We have demonstrated the varying rank of the error covari-
ance matrix related to the transient growth in the stable modes of the
system.”: true but this was already emphasised in the literature, so that
your implicit statement of novelty should be tuned down here.

We agree with the reviewer that our statement was too strongly worded.
We have amended the sentence to read: “We have explored the varying
rank of the error covariance matrix related to the transient growth in the
stable modes of the system, and in particular the applicability of this
varying rank on different configurations of strong CDA.”

p-27, 1.16-17: “to determine the rank”: unclear and confusing; I believe
you mean “to specify the appropriate rank”; you don’t discover the rank,
you set it.

That is correct, we meant the connotation “to specify”. We have revised
the sentence accordingly.

p-27,1.22-24: “In particular, we found that spanning the space comprised
of the asymptotic unstable, neutral, and first weakly stable mode (5 CLVs
in this case) performed much worse than using either dimension measure
(asymptotic and local).”: I don’t think so. This is one weak point of
your study. It is known that in this case, the inflation must be adjusted
to account for the error upscaling from the the region of the spectrum
(Grudzien et al., 2018a,b). T don’t believe that you have tuned the infla-
tion, have you? If true, your statement appears to be too strong.

We have toned down the language around the discussion of these results
after the correction to the calculation. We no longer claim the 5 CLV case
performs “much” worse, as all methods now perform comparably. We
point out, however, that the 6 CLV and variable CLV both show a reduc-
tion in the full RMSE which can be related to significant linear growth
in more than one stable mode. We also have included the reference [5]
within our discussion of inflation in Section 4.1, and the reference [4] in
discussing the impact of transient growth of asymptotically stable modes
on model errors in the introduction.

p-28, 1.19-20: "The adaptive scaling introduced here can be applied to
general systems with weak coupling, although care may need to be taken
in the choice of the norm.”: No, you have not proven anything like that.
Please remove the statement.

10



44.

Instead of removing, we have amended the statement to one which re-
flects our original sentiment. We wanted to suggest that the method be
tested on other systems of weak coupling and then perhaps a more gen-
eral statement can be made under deeper analysis. We have changed the
statement to read “The adaptive scaling introduced here should be tested
on additional systems with weak coupling in order to assess its general
applicability, although care may need to be taken in the choice of the
norm.”

p-28, 1.33-34: “Future work should also consider the numerical cost of
CLV calculation and methods to increase efficiency for high dimensional
systems”: At the very end, you raise what experts familiar with AUS have
in mind reading your paper: what you propose is certainly interesting and
of theoretical interest but of lesser practical value since (i) one needs to
compute the CLVs alongside (ii) with the variable CLV context, you need
to compute the maximum number of CLVs. You should mentioned this
point way earlier in the paper, unless I am mistaken.

The reviewer is correct in that we do not address computational cost
throughout the paper. This was mainly intentional, as we did not aim to
optimize computational performance, but rather explore a method that
allows for the reduction of phase space and/or better representation of
errors in that reduced subspace. Whether or not there can be a computa-
tional cost reduction by using this method over spanning the space needed
to fully sample the variance is a question we do not attempt to answer
as it will depend on the system one wishes to assimilate. In accordance
with the reviewer’s request, we have added a footnote within the introduc-
tion at the point where we discuss assimilation in the unstable subspace
(AUS). The footnote acknowledges the additional cost that comes with
computing the unstable subspace which may or may not be less than the
cost of sampling the full model variance, and it also states that we will
leave the exploration of numerical efficiency in high dimensional systems
for future study.

We additionally note that the projection onto CLVs is an example of one
specific projection that works for the variable local dimension, but it is not
the only one. One could also project onto the backwards Lyapunov vectors
(BLVs) which are computationally less expensive to compute and attain
similar results. Table 2 below includes the results of variable dimension
and projection onto BLVs. We have added a discussion of this alternate
projection into the manuscript, as well as the additional statistics of the
variable BLV experiment. However, we focus on the CLVs in this study as
the a posteriori analysis of CLV alignment can provide more information
of the time-varying phase space behaviour. (The BLVs are orthogonal
by construction.) The revised manuscript has an additional discussion of
CLV alignment, variable dimension, and specifically the relationship to

11



ensemble data assimilation which justifies the utility of CLVs.

We imagine that it is possible to find a computationally efficient projection
for high dimensional systems that incorporates the variable dimension
aspect. Our main goal in this manuscript though was to introduce the
implementation of time-varying dimension in this toy model with different
observational sets to understand in what configurations one might expect

successful results.

It would be of interest for practical applications if

future studies could explore numerically efficient projections that span
the time-varying dimension and therefore utilise the ideas of AUS in high
dimensional systems.

Minor corrections to DA experiments

After submission we discovered a small error in the orthogonalisation step of
the CLV calculation within the DA experiments. In correcting we found that us-
ing the CLV without orthogonalisation to the backwards subspaces (Algorithm
2.1 in [3]) was more appropriate due to the lack of an accurate forward model
within the DA implementation. This has minor impact on the results of the
experiments, however we include the tables with the updated statistics below

which we will also update in the new manuscript.

Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full

CLVs - 9 s Yty Y 0.3142 0.1598 0.4948 0.4027 5.8928
(full rank) 1,1,25]

CLVs -5 o5 Yty Y 0.3123 0.1843 0.5920 0.4550 5.8870
(unstable/neutral subspace + 1) 1,1,25]

CLVs - 6 s Yty Y 0.3156 0.1674 0.5513 0.4310 5.8892
(global dimension) 1,1,25]

CLVs - variable e, Yty Y 0.3215 0.1688 0.5346 0.4272 5.8863
(local dimension) 1,1, 25

BLVs - variable e, Yty Y 0.3149 0.1658 0.5122 0.4141 5.8895
(local dimension) 1,1,25]

Table 2: Summary metrics of DA experiments using right-transform matrix
(ETKF) and benchmark observations (ye,y:,Y). The angle brackets (-) denote
average over analysis steps. Compare to results in [12]. Parameters: assimilation
window 0.08, inflation factor 1%, 10 ensemble members.
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Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full
CLVs -9 yr, Ze, Yty 2t 0.1734 0.1332 0.5782 0.4515 5.8672
b b b 1
CLVs - 6 yf, Zes Yty 2t 0.1715 0.1386 0.5807 0.4524 5.8718
CLVs - variable yr, Ze, Yty 2t 0.1697 0.1383 0.5659 0.4433 5.8681
b ) b 1

Table 3: Summary metrics of DA experiments using right-transform matrix
(ETKF) and atmosphere observations (ye, e, Yt, 2t). Parameters: assimilation
window 0.08, inflation factor 1%, 10 ensemble members.

Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] extratropical | tropica ocean full

CLVs -9 v, Y. Z 7.0467 0.1571 | 0.3675 | 4.7182 | 4.5449

[1,1,25,25]
CLVs -9 Y, 2, Y, 2 5.56203 0.0480 0.1764 3.6860 5.4052
(0.01,0.01, 25, 25]

CLVs -9 Yt, 21, Y, Z 7.1308 0.1386 0.0873 4.7566 4.4959
[1,1,0.25,0.25]

CLVs -9 Yi, 2, Y, 2 5.1697 0.0431 0.0822 3.42478 5.4899

0.01,0.01,0.25,0.25]

Table 4: Summary metrics of DA experiments using right-transform matrix
(ETKF) and ENSO observations (y:, 2¢, Y, Z). Parameters: assimilation window
0.08, inflation factor 1%, 10 ensemble members.
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Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full
CLVs -9 e, Ut, Y 0.5200 0.1635 0.4255 0.4552 9.9576
3% inflation ?1, 1,25]
CLVs - variable e, Ut, Y 0.4848 0.1568 0.4095 0.4263 5.9371
3% inflation 1,1,25]
CLVs -9 Yes Zes Yty 2t 0.4258 0.1342 0.4300 0.4687 5.9237
3% inflation r ,1,1,1]
CLVs - variable | e, %0, 1. 51 0.4337 0.1373 | 04027 | 0.4649 | 5.9191
3% inflation f ,1,1,1]
CLVs - 9 Ui, 2t, Y, 2 6.8613 0.1431 0.3025 4.5961 4.5309
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